
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2005

Applying Gaming Technology to

Tomahawk Mission Planning and Training

Doris, Ken

Monterey, California: Naval Postgraduate School.

http://hdl.handle.net/10945/37867

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36730308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Applying Gaming Technology to Tomahawk Mission Planning and Training

Ken Doris

Mark Larkin
Applied Visions, Inc.
Northport, NY 11768

631-754-4920
kend@avi.com
markl@avi.com

David Silvia

Naval Undersea Warfare Center DivNpt
Newport, RI 02841

401-832-2869
silviada@npt.nuwc.navy.mil

Perry McDowell

The MOVES Institute
Monterey, CA 93943

831-656-7591
mcdowell@nps.edu

Keywords:

Computer Game Engine, 3D Visualization, Tomahawk Missile, Vehicle Movement Prediction

ABSTRACT: Over the past decade the computer gaming industry has not only generated its own multi-billion dollar
section of the entertainment industry, but it has also made significant inroads into the military market, especially in
training and simulation, starting with Marine Doom and continuing up to today�’s Full Spectrum Command and
America�’s Army.
This paper describes a Navy-funded research project that uses gaming technology for not only training, but also as
an operational decision aid for the Tactical Tomahawk Weapon Control System (TTWCS). The research is aimed at
adapting game engine technology to predict and simulate the motion of ground target vehicles (e.g. SCUD Launch-
ers) through their local terrain over a given period of time, then use the associated rendering capabilities to provide
realistic 3D views.
The paper presents an overview of the TTWCS mission and how it will benefit from specific advances in gaming tech-
nology, especially in the areas of artificial intelligence, path finding, and physics. It discusses the current state of the
project using existing commercial gaming technology and the future plans for adapting and expanding the open
source game engine technology of the Delta3D project underway at the MOVES Institute at the Naval Postgraduate
School.

1. Introduction
The Tactical Tomahawk missile is the latest in the evo-
lution of the Tomahawk weapon system. It adds the
capability to reprogram the missile in-flight to either

strike preprogrammed alternate targets or to redirect
the missile to newly found targets of opportunity. The
missile is also able to loiter over a given area, either
using its on-board camera to assess the target, or oper-
ating in a stand-off mode, waiting for a target to enter a

Figure 1 �– Tactical Tomahawk Missions

kill window, perhaps some distance away. Figure 1 be-
low illustrates some of these capabilities
The ability to reprogram the missile in-flight is pro-
vided by the Tactical Tomahawk Weapon Control Sys-
tem (TTWCS). The success of TTWCS will depend on
how well a
weapons officer
can decide
which missile
should be as-
signed to what
target and when
it should carry
out its attack.
The problem is
a complicated
one, and typi-
cally includes
multiple targets
and threats,
with complex
time/distance
relationships.
The need to
provide the op-
erator with a
method to quickly and easily visualize the possible fu-
ture movements of those targets and threats is clear.
How to design and implement such a system was the
question asked by the Navy in an SBIR topic in 2004.
Applied Visions (AVI) was one of three awardees of a
Phase I contract and was recently selected as the final-
ist to continue into Phase II. This paper describes the
progress made under that Phase I contract as well as
the plans for Phase II.

2. Motivation
The Tomahawk Land Attack Missile (TLAM) is a long
range, subsonic cruise missile, launched from U. S.
Navy surface ships and U.S. Navy and Royal Navy
submarines. Tomahawk missiles, used for land attack
warfare, are designed to fly at extremely low altitudes
at high subsonic speeds and are piloted over an evasive
route by several mission-tailored guidance systems.
There are two variants of the Tomahawk Missile cur-
rently deployed, the Block III and the Block IV. Both
feature an Inertial Navigation System (INS) aided by
Terrain Contour Matching (TERCOM) for missile
navigation and a Digital Scene Matching Area Correla-
tion (DSMAC) and Global Positioning Satellite (GPS)
System, which are coupled to the guidance systems to
provide precision navigation. In addition the Block IV,
or Tactical Tomahawk, features the ability to repro-
gram the missile in-flight and strike alternate targets at

any Global Positioning System (GPS) coordinates. It
also has the ability to loiter over a target area and pro-
vide target battle damage assessment using its on-board
camera.
The Tomahawk missile has become the weapon of

choice for the
U.S. Department
of Defense be-
cause of its long
range, lethality,
and extreme accu-
racy. They are
used against high-
priority, long-
dwell targets
whose priority
does not change
during the mis-
sile�’s transit time
[1].
However, the
Tomahawk has
limited effective-
ness against short-
dwell or time-
critical targets,

and has never been used against mobile, high-value
targets such as mobile missile launchers. These targets
present special challenges for the weapon system be-
cause the missile cannot be retargeted quickly. Fur-
thermore, the Tomahawk missile has limited endur-
ance, increasing the likelihood that it will run out of
fuel before new target solutions can be determined [2].
With the advent of the Tactical Tomahawk, with its
ability to be queried and controlled, new technologies
must be developed and optimized in order to increase
weapon effectiveness within an ever changing battle-
space. One area that must be addressed is Situational
Awareness. Situational Awareness supports the opera-
tor by providing the correct level of information to
make decisions in a timely manner. The operator
needs to understand the battlespace relative to land at-
tack from a sea-based platform, in order to optimize
missions and reduce missile to target times. For the
TTWCS operator it is as important to understand future
battlespace, as well as the current. Specifically, the op-
erator needs to predict the movement of time-critical/
mobile targets, reduce collateral damage, and under-
stand the effects of weather within a geographic area.
This level of understanding is only possible through
the development of tools that allow the operator to
visualize current and future events. It is for this pur-
pose that this SBIR topic was proposed.

3. Background
A number of existing military systems are used to pre-
dict or simulate ground vehicle movement. We first
analyzed several of these before determining that using
gaming technology was the best solution.

Adapting Existing Military Systems

One approach to providing these capabilities is to start
with existing DoD mobility models and adapt them to
the TTWCS. For example, one of the most widely used
models is the NATO Reference Mobility Model
(NRMM), originally developed in the 1970�’s by the
US Army�’s Waterways Experiment Station (WES).
The NRMM is a set of equations and algorithms that
predict a particular vehicle's performance in a pre-
scribed terrain based on vehicle characteristics and ter-
rain properties. The main prediction module considers
vehicle, terrain, and vehicle/terrain-independent sce-
nario data such as weather conditions, to determine the
maximum possible speed at which the vehicle can op-
erate. The NRMM is primarily used during a vehicle�’s
design stage to predict the ability of that vehicle to
traverse a given type of terrain. Adapting it to the
TTWCS mission would require significant effort, as it
is a computationally intense, engineering-level simula-
tion. As a result it runs considerably slower than real-
time. The TTWCS operator will need to analyze multi-
ple paths quickly, thus any system employed must be
capable of running faster than real time.
Another potential source of a suitable mobility model
is the military training community. Mobility models in
trainers are typically employed to simulate the vehicles
of opposing forces. This class of models can range
from basic doctrine-driven approximations to sophisti-

cated systems that incorporate engineering data for soil
and vehicle interaction. These basic systems can be
eliminated from consideration as they rely on simple
generic rules for both vehicles and terrain, and are
aimed at company level or higher resolution. The more
sophisticated systems offer much higher fidelity, such
as that used in the Army�’s WARSIM project [3]:

�“WARSIM (Warfighting Simulation) is a simu-
lation developed for the purpose of training
U.S. Army commanders and their staffs from a
battalion through a theater level war. The
level of fidelity in modeling ground vehicle
mobility considers platform-level issues; how-
ever a large amount of behavior will be ag-
gregated to the platoon level.�”

The WARSIM mobility model uses NRMM as an off-
line component, as illustrated in Figure 2. This model
makes heavy use of lookup tables to characterize over
200 towed, wheeled and tracked ground vehicles,
while terrain is handled with over 800 terrain codes.
Although the WARSIM model currently only runs in
real-time or slower, it is possible that a version to run
at speeds needed for the TTWCS problem could be de-
veloped. One difficulty in modifying this system is the
fact that the application has already been optimized for
speed via the use of table lookups (vs. running equa-
tions). A second, and perhaps more significant problem
in that effort, would be the difficulty of working with
the WARSIM code base, which is relatively old (the
project began in the mid 90�’s).
We next began looking at the commercial world for
mobility-related technology and found the most strik-
ing examples in the entertainment industry �– in com-
puter games.

Figure 2 �– WARSIM Mobility Model

4. Why use Gaming Technology?
The problem of predicting vehicle movement within
the TTWCS context can be broken down logically into
three essential parts: prior history, current state, and
future goals. By analyzing and combining these ele-
ments, it is possible to determine the probable move-
ment of the vehicle. In Phase I we began attacking this
problem by dividing it into the following technology
areas:
- Artificial Intelligence �– �“memory�” of prior events,

�“sensing�” current status and events, and decision
making, all resulting in evaluation of holding posi-
tion or moving to a new destination.

- Pathfinding �– given a decision to move to a new
destination, what routes would the ground vehicle
take and what are the relative benefits and risks of
each path?

- Vehicle Physics �– how quickly can the vehicle
move along each route to reach the potential desti-
nations?

- Visualization �– provide the operator with a user
interface (UI) that allows intuitive interaction and
rapidly increases situational awareness.

All four of these elements are found in modern game
engines. Computer games now exist that handle both
tracked and wheeled vehicles, running on and off road.
The proliferation of these games is astonishing, with
literally hundreds of titles currently available for the
PC platform alone. Driven by a huge mass market,
with R&D costs spread over a vast revenue base, game
engines offer a �“best in breed�” technology that con-
tinually improves with each year at a breathtaking rate.
The following sections describe our work in each of
the four technology areas.

5. Artificial Intelligence (AI)
Our research looks into adapting the computer-
controlled forces (often referred to as Non-Player
Characters, or NPC�’s) that play a large part in most
modern games. The technology has rapidly evolved to
the point that, in some of the latest games, the NPCs
exhibit behaviors that in many ways appear to be sen-
tient. We are seeking to adapt this cutting-edge tech-
nology to predict the future actions of hostile ground
vehicles.

In looking at the architecture of each of the candidate
game engines we found that while the more established
functions such as audio and physics were implemented
as true subsystems, it is difficult to separate out the AI
code from the rest of the game engine logic. This re-
flects the fact that, over the last decade, companies
such as Havok and Novodex (now Ageia) have pro-
duced and marketed separate products for those tech-
nologies. AI is a relative newcomer to this paradigm,
and the emergence of the technology as a separate
product has only recently occurred, with what are
termed �“AI middleware�” products. We researched the
market�’s most recent products, and arrived at the fol-
lowing list of candidates:
- AI.implant, from BioGraphic Technologies
- DirectIA, by Mathematiques Appliquees
- RenderWare AI Middleware (RWAI), by

Kynogon
- SimBionic, by Stottler Henke
By reviewing the literature on each of these products
we were able to create a comparison chart, as shown in
Figure 3.
While all of these candidates appear viable for the
TTWCS application, we narrowed our choices down to
AI.implant and SimBionic based on attributes which we
felt were critical to the TTWCS application: high-level
editors combined with user-developed behaviors. We
finally selected AI.implant as our Phase I choice based
on the availability of a free development license com-
bined with good documentation and an active user
community.
AI.implant�’s development environment (AI.DE) in-
cludes an editor that allows creation and modification
of NPCs, including a full definition of the �“brain�” of
the NPC. This brain consists of the following elements:
- Knowledge of one�’s own capabilities and per-

formance parameters
- Knowledge of prior events (world and self history)
- Knowledge of current state

o Internal status, such as fuel, speed,
etc.

o External status, such as proximity to
threats, gained through the use of
user-defined sensors

Figure 3 �– AI Middleware Product Comparison

Feature AI.implant DirectIA RWAI SimBionic

User Decision Support Binary decision trees Motivated decision graphs
Finite state machines, neural

networks Finite state machines

Other Services Auto path generation, pathfinding Pathfinding

Graphics and physics in other
modules, auto path

generation, pathfinding
Inter-agent

communication

Behavior Support Pre-packaged behaviors Templated behavior scripts Pre-packaged behaviors
User developed

behaviors
Engine Source Code

Availability Some No Yes Some

Extensibility User-developed behaviors
User-developed scripts, callback

functions
User-developed behaviors,

callback functions

User developed
behaviors, callback

functions

Production Tools Maya/3ds max plug-ins Script templates, tuning GUI
AI skeleton code, XML

configuration
Visual editor, visual

debugger

Product
Feature AI.implant DirectIA RWAI SimBionic

User Decision Support Binary decision trees Motivated decision graphs
Finite state machines, neural

networks Finite state machines

Other Services Auto path generation, pathfinding Pathfinding

Graphics and physics in other
modules, auto path

generation, pathfinding
Inter-agent

communication

Behavior Support Pre-packaged behaviors Templated behavior scripts Pre-packaged behaviors
User developed

behaviors
Engine Source Code

Availability Some No Yes Some

Extensibility User-developed behaviors
User-developed scripts, callback

functions
User-developed behaviors,

callback functions

User developed
behaviors, callback

functions

Production Tools Maya/3ds max plug-ins Script templates, tuning GUI
AI skeleton code, XML

configuration
Visual editor, visual

debugger

Product

- Decision Logic �– given the current state and prior
history, what action, if any, to take next.

All of these elements are completely customizable
without writing any code, thus putting the design of the
�“brain�” directly into the hands of an Analyst without
needing the support of a Programmer. This type of AI
architecture can be tremendously useful in the context
of TTWCS. Figure 4 contains a screenshot taken from
the AI.mplant development environment showing the
development of an NPC,
The current version of AI.implant allows two types of
decision logic: Decision Trees and Finite State Ma-
chines (FSMs). In Phase I we experimented with Finite
State Machines as the primary decision logic, as they
are more efficient at handling large numbers of input
variable and output states. While this approach was
certainly sufficient for the Phase I Prototype, we fully
realize that other options need to be explored as we
move forward. For example, an FSM might not be the
best solution since it expects crisp data as inputs, and
produces Boolean results for the possible output states
with only one of n states declared true. While having
many possible states is one way to improve the FSM
flexibility, it is costly in terms of both complexity and
resource utilization.
In Phase II of the SBIR we will explore the use of
Fuzzy State Machine (FuSM) technology. In a FuSM
the logic allows degrees of true/false for each output
state through the use of membership functions which
map input variables into a degree of membership in a
fuzzy set between 0 and 1. A FuSM doesn�’t produce a

single answer, but rather shows multiple possible an-
swers, each with a weighting factor. This type of out-
put may be better suited to the TTWCS application.

6. Pathfinding
In the previous section we discussed how we are adapt-
ing gaming AI to predict the next most likely actions of
the hostile ground vehicles. In many cases this will re-
sult in the decision to move to a new location. How the
vehicle might traverse the distance from its current po-
sition to that location is the next problem to be solved.
A hostile ground vehicle at a given location will trav-
erse to a new location in accordance with a number of
dynamic factors. It will avoid exposure to threats, fol-
low the most efficient path, etc. In Phase I our goal was
to experiment with how easily the pathfinding logic in
game engines could be adapted to the TTWCS applica-
tion.
Starting with our initial list of approximately a dozen
candidate game engines, we narrowed the choice to
UnReal and Torque since we had access to source code
for both and were reasonably familiar with their code
base. The versions of each engine we had in our pos-
session employ relatively rudimentary AI pathfinding
based on pre-scripted waypoints. We believe that en-
tering waypoints into each terrain map is both error-
prone and overly time consuming, so we decided to
modify the Torque engine to include a dynamic path-
finding capability based on the �“A*�” (pronounced �“A-
star�”) algorithm. We chose A* for its efficiency: it is
widely used in modern games, and is the subject of
continual analysis and improvement by the gaming
community [4].
Given a starting point and a destination, A* dynami-

cally builds paths by evaluating the �“cost�” of each pos-
sible route section, with an overall goal of generating
the �“least cost�” path. For Phase I our only cost function
was terrain slope. Using the slope of each terrain tile,
A* will build a path that follows the flattest (easiest)
path between the two points.

Figure 5 �– Terrain & Road Network Path-Following in Torque Engine

Figure 4 �– Development of an NPC in AI.DE

One of the
strengths of
this approach
is that the cost
function can
be comprised
of a number of
factors. For
example, add-
ing a cost fac-
tor for expo-
sure to danger
would be use-
ful in the
TTWCS appli-
cation. We ex-
pect, for ex-
ample, that the
hostile ground
vehicles will
often choose
their routes

based upon
well they can
hide from sat-
ellite and air-
borne sensors.
In Phase II we
plan to include
these factors in
our pathfind-
ing improve-
ments.
The next step
was to add in a
road network
to see how
well A* could
quickly and
accurately
compute the
best route
across a com-
bination of ter-

Figure 6 �– TEL Vehicle Simulation in ODE

rain and roads. As part of this effort we decided to
switch from the basic �“first person shooter�” (FPS) ver-
sion of Torque to the �“real time strategy�” (RTS) ver-
sion to better handle larger map areas. After overcom-
ing some minor integration issues, we successfully
added in the roads and tested A*�’s ability to use them
as part of its route building.
Figure 5 is a screenshot taken during this activity. In
this example, the path illustrated is that from a TEL,
located on a grassy area off the road, to a predicted
destination which is also located some distance off-
road. The white highlighted route indicates the most
likely path, with the vehicle first traveling to the near-
est road and then following the road network to a point
close to the destination, with a final leg across open
terrain.

7. Vehicle
Physics
Knowing where a
vehicle might
move next is not
enough: we must
also be able to
predict how
quickly it can
move from one
location to
another. One way
of doing this is by
running what are
termed �“vehicle
mobility models�”;
in our Phase I
proposal we dis-
cussed our plans
to investigate the
use of a modern
game engine or its standalone physics engine to
achieve results equal or better than traditional mobility
models. This viewpoint was based on the recent suc-
cess of games like Gran Turismo 4, which have taken
their physics modeling of vehicles to the point where
they can accurately simulate the real-world perform-
ance of vehicles down to minute detail, such as tire
pressures vs. road surfaces, etc.
In Phase I we started this aspect of the research with
the Havok physics engine, as it appeared to provide the
most comprehensive vehicle modeling tools. We soon
ran into licensing issues and had to discard the Havok
solution. We found the next best alternative to be the
Novodex engine. This decision was partly influenced
by the fact that Epic Games had recently chosen No-
vodex for its next version of the UnReal Engine, and

bolstered by the fact that Novodex offered an excellent
evaluation package at no cost.
Although Novodex didn�’t provide a separate vehicle
package, as we began working with its development
environment we found it relatively easy to assemble
basic components into workable vehicle simulations;
enough to show the feasibility of our initial concept.
The expiration of our Novodex evaluation license,
combined with the specter of continuing to face heavy
license fees, drove us to our next platform: the Open
Dynamics Engine (ODE), which is available as open-
source. While we didn�’t have sufficient time in Phase I
to advance the vehicle modeling with ODE any further
than we had with Novodex. We did reach the conclu-
sion that the development environment was adequate

for our purposes and
integrated well with
the Delta3D game
engine. This in-
cluded three
dimensional models
of vehicles, as
shown in Figure 6,
which illustrates a
SCUD launch

vehicle,
implemented in
ODE, attempting to
climb a steep hill.
While our model
thus far is using
generic values for
weight, center-of-
mass, etc., we plan
to increase the fi-
delity in our next
phase.

8. Visualization
Although our approach of using gaming technology
was based primarily on the industry�’s great strides in
artificial intelligence and vehicle simulation, the com-
pelling 3D visualization of the game engines promised
to provide an additional �“bonus�” by adding to the situ-
ational awareness of the operator. While 2D views of
the battlefield are sufficient for most decision-making,
we believe the ability to also �“fly�” through the target
area and see the layout of the terrain will give the
TTWCS operator much better insight into where a tar-
get might move or how a threat might be positioned.
For this portion of our investigation we made the as-
sumption that a typical area of interest would be ap-
proximately 100 miles on a side. Beginning with the
UnReal engine we found that it has a maximum gam-

Figure 7 �– Large-Scale Terrain Simulation

ing area of approximately 4 miles on a side, expressed
as 524,288 (512K) units. While this gives excellent
resolution (each unit equal to about a half-inch), the
gaming area is
too limited for
our purposes.
We attempted
to change the
scaling to
increase the
boundaries but
ran into
performance
and stability
problems. In
looking at
UnReal
developer fo-
rums on the
web, we found
others have had
similar
experiences.
We then moved
on to the Torque
engine and had similar difficulties.
We next tried working with Flight Simulator from Mi-
crosoft, as it has essentially an unlimited gaming area,
achieved by using generic blocks of terrain for every-
thing but airports and their immediate surroundings.
Using the API that Microsoft offers, we were able to
replace any set of generic terrain with more detailed
data. We obtained this new terrain data from the U.S.
Geological Survey (USGS) website [x] which has an
excellent selection of unclassified elevation and fea-
ture/texture data. We prototyped our concept by select-
ing the area around AVI (Northport, NY) from the
USGS website and replacing the corresponding area in
Flight Simulator. Figure 7 is a screenshot taken during
this activity; Northport Harbor is visible in the lower
right, just below the plane�’s wingtip:
While this experiment in Phase I proved the feasibility
of simulating large, custom terrain via a game engine,
the MS Flight Simulator package has other shortcom-
ings in terms of AI and physics.
For Phase II we plan to resolve the large terrain prob-
lem by utilizing the Delta3D game engine, being de-
veloped at the MOVES Institute of the Naval Post
Graduate School. Delta3D has the ability to process
and display extremely large terrain areas, and is based
on an open-source architecture that promises to be an
excellent fit to all of our requirements.

9. Training
The use of gaming technology for the TTWCS applica-

tion brings with it the
added benefit of
providing a natural
foundation for
developing an
embedded training
mode. One of our
Phase II objectives is
to add operator
training features that
can be utilized either
in a stand-alone mode
or as a participant in
networked training
exercises.

Working with the
MOVES Institute we
will design and
implement a set of
training features to be

embedded into the new
system software. Most of

the requisite elements, such as simulation of the oppos-
ing forces, will already be in place in the form of the
artificial intelligence and physics engines. In addition,
we plan to add several training-specific elements, in-
cluding:
- Simulation of Tomahawk missile fly out
- Sample lesson content
- Pass/fail criteria
- Capture of trainee actions
- Grading or after-action review of trainee actions
- Tracking of trainee progress through lessons

The training tasks will include basic set up and use of
the system, as well as a limited number of scenarios
aimed at teaching the fundamental workflow and meth-
odology of analyzing Tomahawk and target parameters
and relationships. In addition, an HLA-compliant inter-
face may be added to allow the ability to participate in
networked training exercises.

While this capability will initially be built into the
SBIR prototype, we foresee it evolving later into forms
that will run on a variety of platforms including con-
soles such as X-Box. This evolution will allow the
TTWCS operators to train/play in their off-duty hours,
working with a larger number of scenarios, targets, and
terrain, perhaps even competing with each other in
mock attacks to sharpen their skills.

10. Delta3D
Delta3D is an open source game engine designed spe-
cifically for military games and simulations. Histori-
cally, using a game engine has required significant fi-
nancial resources. However, Delta3D is specifically
designed to provide a low cost, easy to use alternative
to commercial and proprietary game engines. While in
the past, using an engine for certain applications might
have been too cost prohibitive, now an engine can be
used for these products. These include several different
types of applications:
- those where graphical quality enhances value but

is not the major consideration;
- smaller applications where each user might only

use the application for a short period of time, such
as fifteen minutes to one hour;

- those produced by developers lacking the capital
to invest in a commercial engine.

While Delta3D does not require high licensing costs, it
is a full featured engine easily capable of serving as the
base for most applications. Additionally, it has several
advantages over proprietary engines. These engines
often require data to be in unique formats which cannot
be used in other engines. This locks the developer into
using that engine for all future modifications whether
that engine is the best fit for them, effectively leaving
the developer at the mercy of the engine builder. Addi-
tionally, if the proprietary game engine does not meet
the developer�’s needs, they have no way to modify it.
This leads to time wasting work-arounds for the devel-
oper, limiting productivity. McDowell et al [6] goes
into more detail on the problems faced using proprie-
tary engines and how they shaped the design philoso-
phy of Delta3D.

Delta3D is made up of many other open source prod-
ucts which form the different modules of the engine.
For example, Delta3D uses the OpenSceneGraph li-
brary for rendering, the Open Dynamics Engine for
physics, Open AL for audio, etc. Delta3D acts as a thin
API over these other systems, giving the developer a
wide range of capabilities while only learning one API.

Figure 8 (above) shows all the open source projects
which currently make up Delta3D and what features
each provides. Using these other projects as the basis
of Delta3D allowed the engine to be built in a short pe-
riod of time but nonetheless turn out extremely power-
ful. Additionally, this provides Delta3D with an inher-
ited developer base, meaning that as these other source
products improve, Delta3D also benefits from those
improvements.
One feature of Delta3D which makes it particularly
well suited for the TTWCS is its advanced method to
render terrain. Delta3D can render extremely realistic
terrains with several advantages over current terrain
models used in games and flight simulators. Delta3D
uses the Generating Enhanced Natural Environments
and Terrain for Interactive Combat Simulations (GE-
NETICS) terrain and vegetation engine [7], created by
William Wells, an Air Force PhD student at MOVES.
Wells�’ approach begins by processing elevation data
points to create 1 degree by 1 degree skirted height
field meshes of the terrain. The elevation data is im-
ported directly from an elevation data repository (e.g.
DTED�™ �– Digital Terrain Elevation Data from the Na-
tional Geospatial-Intelligence Agency) at run-time. De-
tail between the known elevation postings are added by
subdividing the base mesh and increasing or decreas-
ing the values of the linearly interpolated midpoint
heights with Perlin noise. The algorithm uses the
SOARX continuous level-of-detail (CLOD) algorithm
[8] to take the enhanced height field data and construct
a dynamically optimized mesh grid based on the user's
view frustum. As the user nears the edge of the exist-
ing terrain, we determine the next geocell�’s coordi-
nates, load up the corresponding source data from our
repository, and process the next geocell in the same
manner. Generating a geocell�’s height is very quick, on
the order of a few seconds. Because elevation data is
available for most of the world, this algorithm can pro-
duce a near endless source of optimized elevation
meshes from raw source data with increased resolution.
Satellite imagery is layered over this elevation data at
run time with normal maps which represent the base
and detail gradients which adds relief shading and sur-
face details. Once a geocell�’s data has been calculated,
it can be saved for improved load times. Of particular

Figure 8 �– Delta3D Architecture

interest to simulations is the ability to reproduce the
exact same terrain by seeding the random generator
with the same seed.
At this point, GENETICS adds realism to the terrain by
vegetation using GeoTIFF (Geographic Tagged-Image
File Format) files representing land cover data. In the
U.S., the National Land Cover Dataset (NLCD) fills
this requirement, while other systems exist in other
parts of the world (i.e., CORINE). The data from the
GeoTIFF Images is used to place the correct number
and type of vegetation onto the terrain. Once the cor-
rect models representing the vegetation have been de-
termined, they are added to the scene using an efficient
data structure, such as a quadtree. This controls each
vegetation object so it is drawn in a realistic and effi-
cient manner.
This generation of both terrain and vegetation results in
GENETICS and Delta3D providing applications with
exceptionally realistic terrain. Such realistic terrain is
one of the major features which make Delta3D ideal
for a project such as the TWCS.

10. Summary
The Phase I SBIR described in this paper proved the
feasibility of using gaming technology for predicting
future movement of ground vehicles. Modern game
engines incorporate sophisticated algorithms for artifi-
cial intelligence, path finding, physics and 3D render-
ing, all of which are directly applicable to this problem
space. Future research in this area will expand the op-
erational and training use of gaming technology for
TTWCS, including use of the Delta3D engine being
developed by the MOVES Institute.

11. References

[1]United States Navy Fact File: Tomahawk Cruise
Missile. 11 Aug. 2003. Office of U.S. Navy Informa-
tion. 4 Feb. 2004
<http://www.chinfo.navy.mil/navpalib/factfile/missiles
/wep-toma.html >.
[2]Morrow, Capt. Steve. What Comes After Toma-
hawk? Naval Institute Proceedings, July, 2003.
 [3] �“Terrain Trafficability in Modeling and Simula-
tion�”, Dr. Paul A. Birkel, MITRE Corp., SEDRIS Con-
ference, Orlando FL, 2002.

[4] �“Optimizing Pathfinding�”, Sean Barrett, Game De-
veloper Magazine, a series of 5 articles running from
Jan through May, 2005.

[5] On the web at http://seamless.usgs.gov

[6] Military Uses of an Open Source Game Engine,
Perry L. McDowell, et al, Proceedings of the 2005

IMAGE Conference. Tempe, Arizona: The IMAGE
Society.

[7] Generating Enhanced Natural Environments and
Terrain for Interactive Combat Simulations (GENET-
ICS), William D. Wells & Christopher J. Darken, Pro-
ceedings of the 2005 IMAGE Conference. Tempe,
Arizona: The IMAGE Society.

[8] Real Time Visualization of Detailed Terrain, An-
dras Balugh, Master�’s Thesis, Budapest, Hungary: Bu-
dapest University of Technology and Economics.

12. Author Biographies
KEN DORIS is the Vice President of Engineering at
Applied Visions, Inc. in Northport, NY. He serves as
the Principal Investigator on the Navy SBIR project
described in this paper as well an on-going Army SBIR
that also uses gaming technology for battlefield analy-
sis and visualization. One of the authors of IEEE 1278
(the original DIS specification), Ken has published
numerous technical papers on subjects such as 3D
visualization, real-time network traffic analysis and
multicast addressing. He received his Bachelor of Elec-
trical Engineering degree from Rensselaer Polytechnic
Institute.
MARK LARKIN is a Project Engineer at Applied Vi-
sions, Inc. in Northport, N.Y. and is the Project Engi-
neer on the SBIR project described in this paper. He
has over eighteen years experience developing Visuali-
zation and Modeling system software. He was the lead
developer on prior SBIR projects at AVI, including
AF98-021 �“Air Tasking Order Visualization �– Appli-
cations of VR to AOC�’s and a DARPA funded SBIR
project, SB992-043 �“Visual Representation of Cyber
Defense Situational Awareness�”. This project led di-
rectly to our current SecureScopeTM product line. Mr.
Larkin holds both a Masters of Science in Computer
Science from the New York Institute of Technology
and a Bachelor of Electrical Engineering from the State
University of New York at Stony Brook.
DAVID SILVIA David Silvia is an Engineer with the
Naval Undersea Warfare Center (NUWC) in Newport,
Rhode Island. He currently serves as a liaison for the
Tactical Tomahawk Weapon Control System
(TTWCS) Advanced Concept Working Group
(ACWG) participating in technical exchanges between
Naval Surface Warfare Center, Johns Hopkins Applied
Physics Laboratory, Lockheed Martin Corporation, and
NUWC. In addition, Mr. Silvia conducts technical
evaluations, surveys new candidate technologies, and
develops prototypes to address future requirements for
the TTWCS. His past work for the Navy has included
the development of applications in speech recognition,
distributed database design, and peer-to-peer architec-

tures. Mr. Silvia has over 20 years of experience in
software development and engineering. He has Bache-
lors Degree in Engineering from Roger Williams Uni-
versity in Bristol, Rhode Island. He has worked for the
Navy for five years and lives in Massachusetts.
PERRY MCDOWELL is a former Naval Nuclear
Power Surface Warfare Officer. He served as Damage
Control Assistant on USS VIRGINIA (CGN-38), Op-
erations Officer on USS ELROD (FFG-55), and Reac-
tor Controls Assistant and Main Propulsion Assistant
on USS ENTERPRISE (CVN-65). He has been on the
faculty of the Naval Postgraduate School since 2000,

where he teaches computer science and does research
in virtual environments and training for the Modeling,
Virtual Environments, and Simulations (MOVES) In-
stitute. His research has been primarily focused on
training in virtual environments, and he is the Execu-
tive Director for the Delta3D open source game engine.
He is currently conducting research for his PhD. He
graduated with a B.S. in Naval Architecture from the
U.S. Naval Academy in 1988, and earned an M.S. in
Computer Science (with honors) from the Naval Post-
graduate School in 1995. Mr. McDowell is pursuing a
doctorate degree in Computer Science.

