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ABSTRACT: This research has addressed the need for modeling human performance more realistically. It 
developed a computational model for vigilance performance, embedded in a new cognitive framework that utilizes 
recent advances in system neuroscience, evolutionary psychology, and complexity theory. A computational model of 
vigilance is needed�—for example to simulate airport security screeners, radar screen operators, sonar operators, and 
intelligence analysts. The developed model allows the simulation of realistic human errors in monitoring tasks; it can 
thereby generate surprises in simulation programs that might show weaknesses of security systems.  
After studying human performance especially vigilance, experiments were conducted to establish correlations 
between personality and performance and to collect data for calibrating and validating the model. 
The robust model shows a reasonable range of individual behaviors and represents a tool well suited for gaining 
insights into vigilance theories. The insights can potentially be used to improve existing theories and monitoring 
procedures, minimizing errors that might lead to catastrophic outcomes 
 
 
1. Introduction 
This research represents a multidisciplinary effort that 
led to a Ph.D. in MOVES (modeling, virtual 
environments and simulation) at the Naval 
Postgraduate School�’s MOVES Institute in Monterey, 
California. The disciplines of complexity theory, 
computer science, psychology, social science, and 
operations research were amalgamated to yield a 
computational treatment of reduced human 
performance�—specifically, vigilance performance�—as 
a complex adaptive system, or CAS. The work falls 
under the rubric of modeling and simulation. 

This paper summarizes the dissertation produced [1] 
and discusses research motivation, approach, and 
overall contribution to modeling and simulation, 
focusing on design considerations, especially the use of 
loosely coupled components that promote 
interoperability and reuse of code. Event graphs were 
used to describe the design of the multi-agent system, 
as they facilitated discussion between modeler and 
expert and enabled us to transform psychological into 
computational models.  
 
 
 



1.1. Motivation 
 
The attacks of September 11, 2001, showed, not for the 
first time in Western history, a need for simulative 
models that are capable of generating or revealing 
surprises, unintended consequences, and blind spots 
[2](Smith 2002). One axiom of this research is that the 
modeling of surprise demands realistic simulation of 
reduced human performance, which is a primary cause 
of less-than-ideal behavior. In such a simulation, 
manlike errors should lead to surprising or unexpected 
outcomes�—for example, through a cascade of errors 
due to laxity or irrationality that analysts did not 
predict. 
 
The authors will discuss their assumptions and show a 
proof-of-concept implementation of their main 
hypothesis: Human performance can be modeled as a 
complex adaptive system. 
 
The National Research Council�’s report in 1998[3], 
and follow-on research [4], [5] on modeling human and 
organizational behavior described the status of 
cognitive modeling, broadly indicating strengths and 
weaknesses of current models. The NRC recommended 
�“�… continued efforts to improve the quality of existing 
modeling approaches that will result in architectures as 
yet unconceived.�” [3,p.111]  
 
Our research focused to overcome two difficulties in 
modeling realistic human performance: 
1) Current cognitive models generate neither 

adaptation nor emergent behavior, which are 
essential features in the modeling of human 
behavior. 

2) Current cognitive models do not model the 
individual�’s reduction in performance over time, 
thus producing homogenous, predictable, and 
brittle modeled behavior. 

 
We hypothesize these weaknesses can be overcome by 
using CAS theory as the foundation for a new 
cognitive architecture, and that use of multi-agent 
systems is the ideal implementation for a CAS. We 
anticipate the advantages of autonomy, emergence, 
flexibility, adaptivity, dynamism, robustness, and self-
explanation in modeled behaviors. 
 
1.1 Research Scope and Approach 
 
It is beyond the scope of this research to design, 
implement, and validate a new cognitive architecture; 
such work requires the cooperation of many research 
communities over a number of years (the States 
Operators and Rules [SOAR] community, for example, 

has been operating for more than two decades). But 
even a partial implementation of a cognitive 
architecture should be embedded in a framework using 
proper design techniques, so that the model can be 
enlarged at any time.  
 
We used psychological models (i.e., the information-
stage processing model) as blueprints for the 
computational model. While we will not describe the 
entire design of the agent-based model (called the 
reduced-human-performance model, or RHPM), we 
will show an event graph of the short-term memory 
store to manifest our design approach. 
 
Our implementation focuses on cognitive resource 
modeling with respect to vigilance tasks. This is meant 
as a proof-of-concept implementation and should add 
validity to our hypothesis. Considerable future work is 
required to implement the full framework. 
 
Figure 1 shows the approach for this research, an 
approach cited by McKelvey as a �“third way�” of doing 
science, namely, by fitting an agent-based model to a 
real system.[6]  
 
We construct a model that produces humanlike 
experimental data (including variability) by using the 
appropriate theories and models for the social model 
(in our case, a man or woman). We collect data in 
human experiments and configure the fit of the 
computational and social models using genetic 
algorithms to generate a parameter setup that meets 
human data.  
 
Of course, this in itself would not be sufficient to 
validate the model; we also test it by maintaining the 
parameters but introducing unfamiliar scenarios, then 
measuring output. Only if the model�’s output 
approximates human results can we claim our model is 
robust. If so, we hypothesize that the model can be 
used a surrogate of the social system, producing 
testable predictions and insights into the problem 
domain.  
 
We strive to create a cognitive model that can identify 
weaknesses in organizations by modeling the effects of 
reduced human performance. Because the decisions 
and policies of imperfectly rational actors can be 
exploited towards some malevolent goal, agents must 
be forced to operate and decide with imperfect 
knowledge and restricted cognitive resources. 
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Figure 1 Fitting a Model to a Real System (adapted from [6]) 
 
2. Human Performance and Complex 

Adaptive Systems  
This chapter is a cursory overview of the definition and 
features of human performance and complex adaptive 
systems. [1] provides a minute discussion for the 
interested reader. 
 
2.1 Defining Human Performance 
Our definition of human performance is derived from 
performance psychology: �“Human beings are born to 
perform. In a broader sense, we perform every time we 
engage in a goal-directed activity.�” [7, p.1] 
 
While cognitive models assume ideal behavior, real 
human performance routinely suffers breakdown and 
failure. The possibility of error, which plays a major 
role in accidents such as car or airplane crashes, should 
always be predicated. At the same time, the possibility 
of enhanced performance is also an integral part of the 
picture; thus our framework and the cognitive model 
take performance variability into consideration. 
 
2.2 Defining Complex Adaptive Systems  
 
There is no standard definition for complex adaptive 
systems. CASs provide insights into a problem domain, 

but these insights do not necessarily forecast certain 
behaviors or behavioral ranges. Thus CASs do not 
function as weather-forecasting tools; rather, they show 
possible interactions, producing emergent behavior that 
might occur at some point.  
 
Hence we formulated a working definition that enables 
us to discern whether a system is a CAS:  
 
A CAS consists of many autonomous agents that act in 
parallel with decentralized control. The nonlinear 
interaction between these agents leads to adaptive, 
emergent behavior. The agents are organized in 
dynamically rearranging structures that achieve 
equilibria while never maintaining one particular 
equilibrium. In many systems, the CAS builds an 
internal (implicit or explicit) model of the future. There 
is a strong sense of path dependency in CASs, built 
upon the interaction of autonomous active entities and 
the nonlinearity of their mutual impact. As the system�’s 
structure evolves, it incorporates information that can 
serve as the foundation for new interaction and 
behavior. 
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Figure 2 Design of the Reduced Human Performance Model 
 
3. Design of RHPM 
 
3.1 Description of Main Components 
 
Figure 2 shows the principle design of the RHPM. This 
is a transformation of the human information-
processing model, after Wickens [8]. Symbolic 
constructor agents (SCAs) perceive information 
(impressions) and relay them to the cognitive module, 
which holds a symbolic interpretation of the 
environment. The symbolic representation depends on 
the inner state of the system. A highly aroused person, 
for example, may perceive background noise as a 
threat, whereas someone used to the noise might not 
even register it. The cognitive module is a multi-agent 
system itself and contains several diverse composite 
agents. This module coordinates intentions with actions 
and creates behavior. The capacity manager is a multi-
agent system, based on Wickens�’ multiple-resource 
model, that determines the current arousal level and 
introduces noise into the system. It can also interrupt or 
disturb transitions and access the cognitive module to 
suppress processes. The impression stream is analyzed 
and, if appropriate, a capacity decrease is initiated. The 
capacity manager also evaluates capacity demands of 
planned activities, determining whether they will be 
executed. The Ampere component conducts all 
computations, based on the idea that CapacityManager 
provides resources analogously with resource 
distributions in electrical circuits.  
 
The Ego module represents personality, emotions and 
goals. GoalAgent deals with conflicting goals and 
actions, using a weighting scheme based on personality 
traits to determine action in the face of opposing goals. 
An example might be an airport-security screener 

before a long line of travelers. He wants to decrease the 
queue, but also to find weapons. At one point he 
detects an item he cannot identify but which does not 
look like a weapon. What will he do? The answer will 
lie in his personality.  
 
Personality plays a major role in human performance. 
To return to our example, evidence shows that 
introverts outperform extraverts when it comes to 
routine screening [9], [10], [11]. Evidence also 
indicates that extroverts outperform introverts under 
conditions of high arousal [12], and that in such a case 
an extrovert will probably examine the item. A realistic 
cognitive model should capture this interplay between 
conditions and personality. The conflict and resource 
managers use personality traits to set parameters that 
determine whether the screener inspects the item or lets 
it pass. 
 
3.2 Design Decisions 
 
Although this research focuses on building a 
computational model of vigilance, the big picture, of 
embedding the model in a cognitive framework, is of 
ultimate concern. This research suggests that a future 
cognitive architecture should consist of interoperable 
subcomponents. 
 
Loosely coupled components (LCCs) are currently 
under investigation at the Naval Postgraduate School 
and should assist modelers in rapidly prototyping and 
utilizing software components as building blocks; 
fittingly, the latest research paper describes these 
components as LEGOs (listener-event-graph objects). 
�“The name is also a metaphor for how complex models 
can be built by rapidly linking simpler component sub-
models�” [13, p.732]. Since 1995, many projects have 



used this design strategy successfully in the domain of 
military simulation (see [14],[15],[16],[17]). 
LCC design philosophy is based on the �“observer�” 
design pattern of the �“gang of four�” [18]. LCCs use 
weaker criteria on the coupling mechanism and 
therefore call it the �“listener pattern.�” For example, the 
observer pattern uses interfaces for attaching and 
detaching observer objects. LCCs use no coupling 
between components, though initially they used 
mediators. This research employs software routers 
embedded in the listener pattern, in a manner 
analogous to networking. 
 

Figure 3 Message Routing between Agents 
 
Figure 3 illustrates why the structure is considered 
loosely coupled: Agent A could be any agent in a 
simulation system that provides a message (A) as 
output. The agent sends this message out even if 
nobody listens, continuing to work independently of 
acknowledgement (in contrast to the observer pattern). 
In this example, the router listens to Agent A�’s 
messages. It can use several information modes: 
unicast (one-to-one connection); multicast (one-to-
many); or broadcast (one-to-all). The router can also 
filter the information and transport the entire message 
(A) to Agent B and a reduced message (A-) to Agent 
C. Unidirectional arrows indicate the listener pattern: 
the arrowhead points to the listener and the shaft 
connects to the sender. The message object can be 
formatted using typical agent-communication protocols 
(e.g., using Knowledge-Queering Modeling Language 
[19]). 
 
Bidirectional arrows show that the entities 
communicate two ways, acting as receivers or senders. 
The listener pattern seems very apt for a next-
generation cognitive architecture. Some advantages 
include: 
- ·An architecture based on the listener pattern is 

dynamically extensible. Its structure can be 
changed during run-time, which is essential for 
CAS modeling. 

- Components can be exchanged at any time (event 
run-time) without creating a new system. 

- The listener pattern facilitates reuse of software. 

- · The pattern lends itself to a plug-and-play 
approach, like exchanging hardware components 
via USB. 

 
To exploit these benefits, we designed our research 
using the listener pattern for most components of the 
simulation system. 
 
3.3 Using Event Graphs 
 
Event graphs depict discrete-event simulation models. 
Also known as �“simulation graphs,�” they have a 
primitive design, with a single type of node and two 
types of edges with up to three options. Despite this 
simplicity, event graphs are extremely powerful. The 
event graph is the only graphical paradigm that directly 
models event-list logic. There is no limitation to the 
event graph�’s ability to create a simulation model for 
any circumstance. Their simplicity and extensibility 
make them an ideal tool for rapid construction and 
prototyping of simulation models [20].  
 
Event graphs contain several important features: 
1. They visually describe the logic of a model. 
2. Event graphs are simple and extensible. 
3. They are ideal for rapid prototyping. 
4. They help identify important state variables. 
5. Event graphs help anticipate problems with 

distributed (simultaneous) events. 
6. They help streamline a model by eliminating 

unnecessary event routines. 
 
There is evidence that event graphs are equivalent to 
stochastic Petri nets [21]. Petri nets have a decided 
reachability problem. This can be expensive. �“In the 
worst case, the time and memory (computational 
complexity) needed to analyze a Petri net grows 
exponentially with the size of a net�” [22, p.1402] 
However, since a Petri net can be analyzed, by 
induction so also can an event graph. The following 
references explain the features of Petri nets and event 
graphs in more detail: [23],[24],[25]. 
  
In cognitive modeling, event graphs have other key 
advantages:  
- Event graphs are easy to read and there is no need 

to go into implementation details to explain how 
the model works. They provide a transparent look 
into the model, avoiding black boxes.  

- Since event graphs are extensible, it is easy to 
create new relationships or simulation entities 
(e.g., introducing emotions into a cognitive 
architecture), thus allowing flexibility in the 
mathematical model. 
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Figure 4: Event Graph for the Short Term Sensory Store 
 
 
Example: Short Term Sensory Store (STSS) 
 
At first the parameters of an entity (an object or agent) 
are defined; these parameters can be changed or varied. 
They represent the buttons used to calibrate a model.  
 
1. Parameters: 

 
capacity; storage  where 

buffer  specific afor  fadetime  , where,

Bj

Bjt

j

F j  

The important parameters for STSS are: 
- the time when a stimulus fades away (a positive 

real number),  
- and its storage capacity (positive integer).  
- The index j belongs to a set B (the set of all 

agents or objects that use a capacitated queue). 
Next the system�’s state variables in this entity are 
defined: 
 
2. State Variables 
 queue  FIFOin elements of num.    where BjQ j

 
STSS only contains a state variable for its queue. Q has 
a positive integer value. Next the statistical variables 
are declared. 
 
3. Statistic Variables 

 

nsobservatio (picked) erased ofnumber  
nsobservatio dropped ofnumber   

nsobservatio faded ofnumber  

Erases
Drops
Fades

 

Fades are observations for which the time for storage 
has expired. Drops are observations that couldn�’t enter 
the system due to its limited capacity. Erases are 

stimuli that made it into the system as percepts. Finally, 
the event graph shows the logic of STSS inner 
workings. 
 
4. Event Graph 

See Figure 4. 
 

5.  Event-Graph Description 
STSS receives a task object from the 
SymbolicConstructorAgent SCA (perception event) 
and checks whether its storage capacity is sufficient. If 
so, it stores the observation; if not, it drops it. A time 
ticker is instantiated on this task. If it expires, the 
observation fades away (fade event). The pick event 
interrupts (dashed line) the fade event, given a task in 
the queue. It then erases this task from the queue and 
relays it to the UpdateAgent (UA). 
 
This brief example shows how a system�’s components 
can be described in a rigid way. Its design is 
transparent and facilitates discussion. The 
implementation�’s particulars can be changed. In our 
case, we implemented (after intense discussion) the 
STSS as a FIFO queue; however, a LIFO queue or 
prioritized FIFO queue are alternatives that can be 
tried. 
 
5. Experiments and Results 
 
Laboratory data on vigilance performance of some fifty 
participants was collected in four experiments using 
performance test-and-evaluation software 
(SynWinGenerator from Activity Research). The 



experiments lasted thirty minutes and varied workloads 
(experiment 1: low workload; experiment 2: high 
workload,; experiment 3: switch from low to high, and 
back to low (LHL) in ten-minute intervals; and 
experiment 4: switch from high low high (HLH) in 10-
minute intervals). See [1] for a more detailed 
description of the methodology. Because we expected 
that time would influence performance, we collected 
reaction time, hit rate, and false-alarm rate every ten 
minutes during the thirty-minute trials.  
The tasks of the SynWinGenerator were simulated and 
used as input events for RHPM; for example, the 
auditory task was simulated by generating random 
numbers from two normal distributions with different 
means. RHPM has a decision process based on signal-
detection theory to decide whether the stimulus is a 
signal. The computational output of a specific 
parameter configuration was compared with the 
experimental data (hit rates, false-alarm rates, and 
reaction times) of low- and high-workload conditions 
after ten, twenty, and thirty minutes. A fitness value for 
the specific parameter configuration was computed 
using the least square method for every MOP. RHPM 
was calibrated using data from low- and high-workload 
conditions. We used a genetic algorithm to find a 
robust parameter setup for the model; this 
configuration was used to evaluate whether RHPM 
could match experimental data without recalibration. 
These runs were called validation runs because the 
model�’s output was validated to experimental data that 
was not used for calibration beforehand. The 
performance outcomes from the RHPM show a very 
close match with the human experimental data for most 
MOPs.   

Auditory Monitoring Task LHL: Comparison Reaction Times
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Figure 5 shows that the model�’s output for a previously 
unknown scenario closely matches human data. 
Because the differences were statistically insignificant, 
we could not conclude that the data from the model 
stems from a distribution different from the 
experimental data.  

 
Overall, RHPM produced matches in sixteen of 
eighteen possibilities. The differences in two cases can 
be traced to theoretical implications such as warm-up 
and perceptual-learning effects. Another important 
question was whether the model would be brittle or 
produce variability. 
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Figure 6 False-Alarm Variability RHPM 
 
Figure 6 shows that RHPM is a stochastic model. The 
curves are individual (random) outcomes that would 
converge to the mean MOEs. RHPM produces 
outcomes with almost no false alarms (yellow triangle) 
or with an unusually high number in the last ten 
minutes (red diamond).  
Another important research question to be answered 
was whether RHPM would have enough variability to 
mimic human variation. 
 

Table 1 Standard Deviation Comparison 
 
Table 1 shows a comparison of the MOEs�’ standard 
deviations of RHPM and human subjects in the LHL 
condition. While human data is more dispersed, the 
differences, especially in misses, are small. Together 
with the good approximation to the mean MOEs, 
RHPM is shown to be neither mechanistic nor brittle. 
The random-number generation allows repeatability of 
runs and also pseudo-randomness, making it very 
difficult to predict the next outcome precisely. We can 

FalseAlarm 
RHPM

FalseAlarm 
Human

10 1.21 2.04
20 1.29 2.76
30 1.32 2.72

Misses  RHPM Misses Human
10 1.38 2.30
20 1.33 1.75
30 1.88 1.92

Standard Deviation LHL



introduce even more variability by using more random 
numbers in different situations. 
 
The validation-run results of RHPM match our 
expectations. The model showed reliable behavior 
during �“normal�” simulation runs. It also generated 
insights into applying theories to the vigilance-
decrement phenomenon (i.e., the importance of the 
detectability of a signal). RHPM could be validated 
against two previously unseen scenarios. RHPM can 
also demonstrate the pitfalls of certain theories. For 
example, it is well known that an increase in signal 
probability leads to an improvement of miss- and false-
alarm rates. Signal-detection theory does not address 
this phenomenon; consequently, RHPM increases, 
rather than decreases, the miss rate. However, by 
looking at the design of the model and how different 
modules work together, possible avenues to improving 
model performance become apparent. These 
improvements could lead to improvements in theory.  
 
The multiple-resource model�’s implementation 
influences reaction time in a normal case. As soon as 
the main energy level decreases, error rates increase to 
the point that the model no longer processes signals. 
This effect should be encouraged by, for example, 
introducing other stressors to the model than time on 
task or change of workload. 
 
Some experimental results also indicated the need to 
introduce perceptual learning (better distinguishing 
signals) into the model. These mechanisms are not well 
documented in vigilance research, and further research 
is required to introduce perceptual learning to a 
computational model of vigilance. 
 
One issue in the proof-of-concept implementation is 
how well it would fit scenarios from a different 
experimental setup. It happens that the time required to 
program new scenarios is minimal, and due to the open 
architecture, they can be connected swiftly. However 
some task characteristics (e.g., signal salience) should 
be adjusted before RHPM should be used. 
 
6. Summary 
 
This research suggested a new cognitive model that 
simulates individual reduced human performance.  
Using a discrete-event simulation with an event-graph 
design opens a cognitive architecture to design 
discussions with domain experts (in our case, human-
factor specialists and psychologists).   
There is convincing evidence that a paradigm shift in 
human-behavior modeling to take vagary into account 
is suggestive. The proposed framework for a next-

generation cognitive architecture has shown 
advantages in terms of robustness and adaptivity. The 
open and flexible architecture shows a possible path of 
cooperation between modelers. The implemented parts 
of the cognitive framework show their contribution by 
modeling the challenging problem of vigilance 
decrement.  
 
RHPM has been validated with quantitative and 
qualitative analyses. Limitations to the model and 
possible improvements have been identified. These 
improvements should occur in cooperation with 
vigilance researchers.  
 
This research suggests directions towards improving 
signal-detection theory. The model�’s behavior and the 
theory�’s predicted behavior are coherent. However, 
differences in outcome between human 
experimentation and RHPM lead to the assumption that 
there are perceptual-learning effects in signal detection 
that affect sensitivity. RHPM can fit the data better 
with a sensitivity increase based on number of signals. 
If the number reaches a threshold, detection seems to 
become easier. The next step should be human-
vigilance experiments that try to find a relationship 
between signal quantity and sensitivity increment.  
 
Two further achievements deserve mentioning: 
1)  RHPM appears to be the first computational 

vigilance model composed of multi-agent 
systems.  

2) The implementation of Wickens�’ multiple-
resource model also seems to be a first try for a 
computational model on multiple cognitive 
resources. 

 
Thus, this research contributes to the modeling of 
human behavior as well as to cognitive psychology, 
especially vigilance research. It is difficult to make 
comparisons with current cognitive architecture since 
this research has not the same level of sophistication. 
However, it has shown potential by modeling an 
important phenomenon that has been inadequately 
explored. It also showed that a multi-agent system 
based on CAS theory can be used to produce desired 
results that are within range of human performance. 
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