
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2013-09

A spatiotemporal clustering approach to maritime

domain awareness

Tester, Kristofer A.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/37731

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A SPATIOTEMPORAL CLUSTERING APPROACH TO

MARITIME DOMAIN AWARENESS

by

Kristofer A. Tester

September 2013

Thesis Advisor: Jim Scrofani

Thesis Co-Advisor: Murali Tummala

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

September 2013

3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE
A SPATIOTEMPORAL CLUSTERING APPROACH TO MARITIME DOMAIN

AWARENESS

5. FUNDING NUMBERS

6. AUTHOR(S) Kristofer A. Tester
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Spatiotemporal clustering is the process of grouping objects based on both their spatial and temporal similarity. This

approach is useful when considering the distance between objects and how that distance changes through time.

Spatiotemporal clustering analysis is applied to the maritime domain in this thesis, specifically to a defined area of

water, during a period of time, in order to gain behavioral knowledge of vessel interactions and provide the

opportunity to screen such interactions for further investigation. The proposed spatiotemporal clustering algorithm

spatially clusters vessels in the water space using k-means clustering analysis, kinematically refines the clusters based

on the similarity of vessel headings, speeds and the distance between them, and temporally analyzes the continuity of

membership of the kinematic clusters through time to determine which clusters are moving. The algorithm is

implemented in the MATLAB programming environment, verified with a synthetic data scenario, and validated with

two real-world datasets.

14. SUBJECT TERMS Spatiotemporal Clustering; Maritime Domain Awareness 15. NUMBER OF

PAGES
125

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE
Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT
Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)

 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A SPATIOTEMPORAL CLUSTERING APPROACH TO MARITIME DOMAIN

AWARENESS

Kristofer A. Tester

Lieutenant, United States Navy

B.S., United States Naval Academy, 2006

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 2013

Author: Kristofer A. Tester

Approved by: Jim Scrofani

Thesis Advisor

Murali Tummala

Thesis Co-Advisor

 David Garren

 Second Reader

R. Clark Robertson

Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Spatiotemporal clustering is the process of grouping objects based on both their spatial

and temporal similarity. This approach is useful when considering the distance between

objects and how that distance changes through time. Spatiotemporal clustering analysis is

applied to the maritime domain in this thesis, specifically to a defined area of water,

during a period of time, in order to gain behavioral knowledge of vessel interactions and

provide the opportunity to screen such interactions for further investigation. The

proposed spatiotemporal clustering algorithm spatially clusters vessels in the water space

using k-means clustering analysis, kinematically refines the clusters based on the

similarity of vessel headings, speeds and the distance between them, and temporally

analyzes the continuity of membership of the kinematic clusters through time to

determine which clusters are moving. The algorithm is implemented in the MATLAB

programming environment, verified with a synthetic data scenario, and validated with

two real-world datasets.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

A. THESIS OBJECTIVE ...2

B. RELATED WORK ..3

C. THESIS OUTLINE ..4

II. BACKGROUND ..5

A. NAVY MARITIME DOMAIN AWARENESS CONCEPT5

B. DATA SOURCE OPTIONS FOR STC ANALYSIS6

C. SPATIOTEMPORAL CLUSTERING ..7

1. The Relationship Between Spatial and Kinematic Data8

2. Temporal Data ...8

3. Spatiotemporal Clustering Approaches ...9

D. K-MEANS CLUSTERING ANALYSIS ..9

III. SPATIOTEMPORAL CLUSTERING ALGORITHM ...13

A. INPUT ...15

1. Collection of Vessel Position Reports ...15

2. User Input ...16

a. Mandatory User Inputs ...16

b. Optional User Inputs ...18

B. DATA CONDITIONING ..22

C. CLUSTER PREPROCESSING ..23

D. PROXIMITY FILTERING ..24

E. KINEMATIC FILTERING ..25

F. TEMPORAL REFINEMENT ..27

G. POST-PROCESSING OF SPATIOTEMPORAL RESULTS29

1. Identifying Members of a Moving Cluster29

2. Kinematic Clusters Occurring at the Last Time-step of Data30

3. Generation of the Contacts of Interest List30

4. Post-processing of Spatiotemporal Results to Form Usable

Outputs..30

a. Text Output ..30

b. Visual Output ..31

IV. IMPLEMENTATION AND RESULTS ..35

A. MATLAB IMPLEMENTATION MODEL ...35

1. MATLAB Graphical User Interface ..35

2. Simulation and Real-world Analysis Parameters35

B. VERIFICATION USING SYNTHETIC DATA ...37

1. Simulation Setup ..38

2. Kinematic Clustering Results ...40

3. Spatiotemporal Clustering Results ...44

C. VALIDATION USING REAL-WORLD DATA...48

1. AIS Real-world Data Concerning the Strait of Malacca49

 viii

2. AIS Real-world Data Results ..50

3. GNSS Real-world Data Concerning Vehicles Imitating Small

Boats ..52

4. GNSS Real-world Data Results ..53

V. CONCLUSIONS ..57

A. SIGNIFICANT RESULTS ..57

B. FUTURE WORK ...58

APPENDIX ...61

LIST OF REFERENCES ..101

INITIAL DISTRIBUTION LIST ...105

 ix

LIST OF FIGURES

Figure 1. A 24- hour satellite AIS position report collection in the Strait of Malacca.2

Figure 2. K-means clustering result on a random set of data points when k=2. After

[21]. ..11

Figure 3. Top-level view of the spatiotemporal clustering algorithm.14

Figure 4. An illustration of the determination of the maximum heading difference of

two contacts beginning in the same position. ..20

Figure 5. An illustration of the overtaking problem to determine the maximum

speed difference between contacts that begin eight nautical miles apart.22

Figure 6. An example of k-means, distance, and velocity kinematic clustering

results at time-step two of a generic simulation. ..27

Figure 7. An example text output from the STC algorithm’s analysis of a generic

simulation scenario. ...32

Figure 8. An example visual representation output of the STC algorithm’s analysis

of a generic simulation scenario. ...33

Figure 9. The MATLAB graphical user interface with slider and open text

parameter input options..36

Figure 10. The MATLAB graphical user interface with push-button input.37

Figure 11. The kinematic clustering results for time-step one, which reveal two

clusters, each containing five contacts, are in accordance with the expected

outcome. ...40

Figure 12. The kinematic clustering results for time-step two, which reveal three

clusters, cyan and green each containing five contacts, and red with two

contacts, are in accordance with the expected outcome.41

Figure 13. The kinematic clustering results for time-step three contain two clusters:

green, which is the combination of the two five-contact clusters from time-

step two, and red, with two contacts. The clusters are as expected.42

Figure 14. The kinematic clustering results for time-step four, which reveal the same

two clusters as in time-step three, are as expected. ..42

Figure 15. The kinematic clustering result for time-step five contains one cluster,

which contains the remaining six contacts from the larger ten-contact

cluster in time-step four, is tracked as expected because of the moving

cluster threshold value definition of 60%. ...43

Figure 16. The kinematic clustering result for time-step six contains one cluster,

which contains the remaining three contacts from the larger six-contact

cluster in time-step five, is tracked as expected as a kinematic cluster.44

Figure 17. The simulation scenario STC text output detailing five moving clusters

and multiple contacts of interest. ...45

Figure 18. A broad view of the visual representation of the five moving clusters

determined in the synthetic scenario, which is as expected.46

Figure 19. An enlarged view of the visual representation of moving cluster 3, which

contains contacts 1 and 2 in the synthetic scenario, exists between time-

steps 2 and 4, and is as expected. ...47

 x

Figure 20. An enlarged view of the visual representation of clusters 1, 2, 4, and 5 in

the synthetic scenario. Clusters 1 and 2 combine at time-step 3 to form

cluster 4, and cluster 5 is tracked during time-step five as the remaining

six contacts of cluster 4. ...48

Figure 21. Visual representation of the Strait of Malacca AIS position report dataset

for 10 January 2012. ..49

Figure 22. The STC algorithm text output for the AIS real-world data analysis of the

Strait of Malacca on 10 January 2012..51

Figure 23. STC algorithm visual output for a AIS real-world data analysis of the

Strait of Malacca on 10 January 2012. Moving cluster 9 containing two

contacts travels on average heading 126 at an average speed of 13 knots.52

Figure 24. STC algorithm visual output for a GNSS real-world data analysis of

vehicles imitating small boats on 24 April 2013. ..54

Figure 25. STC algorithm text output for GNSS real-world data analysis of vehicles

imitating small boats on 24 April 2013..55

 xi

LIST OF TABLES

Table 1. The U.S. Navy fleet maritime domain awareness process. From [3].6

Table 2. Typical field headings of an AIS vessel position and attribute report.16

Table 3. Summary of mandatory and optional user inputs with default values and

selection ranges. ...17

Table 4. Maximum heading difference values for various beginning distances

between two contacts traveling at 12 knots for sixty minutes.21

Table 5. The MATLAB interactive plot color-code key for moving cluster

membership identification. ..33

Table 6. MATLAB top-level functional organization of the STC algorithm.36

Table 7. Synthetic and real-world analyses model parameters.37

Table 8. Summary of the vessel interactions for the simulation scenarios.38

Table 9. GNSS real-world data analysis vehicle drive-plan. ...53

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AIS Automatic identification system

C4 Command, control, communications, and cyber

CNO Chief of Naval Operations

CONOPS Concept of operations

DoD Department of Defense

GNSS Global navigation satellite system

GPS Global positioning system

GUI Graphical user interface

IMO International Maritime Organization

KDVC K-means, distance, and velocity clustering

MDA Maritime domain awareness

MMSI Maritime mobile service identity

MOC Maritime operation center

M/V Motor vessel

RMP Recognized maritime picture

STC Spatiotemporal clustering

UTC Coordinated Universal Time

VOI Vessel of interest

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Maritime domain awareness (MDA) presents a continuous challenge to national strategic

decision makers and technical analysts. MDA is based on the concept that maritime

security is achieved or improved through developing an understanding of events

occurring in the maritime domain. The ability to autonomously classify vessel movement

at sea in order to gain behavioral knowledge of a water space presents a significant

challenge, especially when more than 90% of the world’s commerce is conducted by sea,

and non-traditional maritime threats, counter-proliferation, and piracy are increasingly

more important to national security. Previously, much effort has been placed into the

development of algorithms that employ time-series analysis to estimate vessel position

and predict future vessel location and that determine what normal, and by extension,

abnormal behavior of vessels at sea can be considered to be. These efforts support the

creation and maintenance of the recognized maritime picture (RMP) but lack analysis of

how ships interact and, by extension, a behavioral knowledge of a water space.

The objective of this thesis is to develop a method to autonomously analyze and

classify ship movement and possible intent at sea in order to gain behavioral knowledge

of a specific water space. The approach utilizes spatiotemporal clustering (STC) in which

spatial relationships between objects are studied as they change over time. The STC

concept has been applied to other areas, including urban combat environments,

georeferenced mobile device tracking, traffic incidents, and the spread of the avian

influenza H5N1. A spatiotemporal extension of STC algorithms designed to analyze

urban combat environments is used as a method of classifying paralleling and following

movement behavior in the maritime domain because vessels involved in illicit activity

may exhibit these behaviors. The proposed STC algorithm for MDA application is

modeled in the MATLAB programming environment, and results for both simulated and

real-world scenarios are presented.

Although there are several methods to perform spatiotemporal analysis, in this

thesis the process of first applying a k-means proximity filter, kinematically clustering

 xvi

vessels at each unique time-step based on likeness of course, speed, and distance, and

then performing temporal analysis, is proven to be effective in the maritime domain.

Both a simulation and real-world data analysis are presented using the MATLAB

programming environment. The simulation scenario is presented to test operability of the

kinematic clustering parameter thresholds of the STC algorithm and to verify

functionality of text and visual outputs. Two real-world datasets, one taken from

worldwide automatic identification system (AIS) position reports and the other from a

global positioning system (GPS) source, are used with a hypothetical scenario to illustrate

the possibilities revealed by this method of analysis.

In the first real-world data analysis, a hypothetical scenario is presented in which

a vessel of interest (VOI) might have transferred illicit cargo on a specific date in the

Strait of Malacca. On the date of interest there are approximately 5,000 AIS vessel

position reports in the area of interest. The STC algorithm developed in this thesis is

applied to the AIS dataset to characterize VOI interactions with other vessels in the area

of interest and to determine if the VOI interacts with or moves in coordination with any

other vessels. The results of this analysis provide a realistic understanding of the

capabilities of the STC algorithm. The VOI is found to be spatiotemporally clustered with

another vessel at multiple time steps during a nearly four hour timespan. The results of

the real-world data analysis offer enough insight as to the vessel’s interactions during the

time period of interest for an analyst’s further investigation.

The second real-world data analysis is performed on GPS data gathered over a

twenty-three minute period via GPS transmitters mounted on six vehicles simulating a

collection of small boats travelling together. The drive-plan for the experiment required

three of the vehicles to form a convoy and maintain speed and distance for the duration of

the exercise. The other three vehicles acted as confuser vehicles and moved in and out of

the convoy. The analysis from the STC algorithm reveals that multiple moving clusters

are tracked over the twenty-three minute period, which is in accordance with the drive-

plan. The two real-world data analyses highlight two different possible uses for the STC

algorithm.

 xvii

ACKNOWLEDGMENTS

I would like to give my love and thanks to my wife, Katy, for her support,

patience, commitment, and never-ending encouragement during the course of my

master’s work, specifically for the days and nights on which I stared at the computer. I

could not have been as successful in my work without you.

I would also like to extend my gratitude to Professor Jim Scrofani, Professor

Murali Tummala, and Professor Dave Garren of the Naval Postgraduate School,

Monterey, California, for their patience, instruction, guidance, and contributions to this

work.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Maritime domain awareness (MDA) presents a continuous challenge to national

strategic decision makers and technical analysts. Defined as “the effective understanding

of anything associated with the maritime domain that could impact the security, safety,

economy, or environment of a nation,” MDA is based on the concept that maritime

security is achieved or improved through developing an understanding of events

occurring in the maritime domain [1], [2]. A previous commander of the U.S. Sixth Fleet

indicated that the interdiction of illegal or terrorist activity in today’s complex

environment is utterly dependent on maritime domain awareness [3].

The gathering and sharing of information and intelligence, between international

maritime and other partner organizations, in order to develop a recognized maritime

picture (RMP), is a fundamental component of MDA [3]. In the past, the Department of

Defense’s (DoD) MDA focus was on understanding opposing navies and maritime

forces, but more recently this focus has shifted to commercial vessels, as non-traditional

maritime threats, counter-proliferation, and piracy have become increasingly more

important to national security [3]. Accordingly, these trends necessitate the tracking,

managing, and understanding of extensive details about many more vessels, from

merchant tankers to fishing trawlers and pleasure craft [3].

In addition to these emerging trends, the fact that more than ninety percent of the

world’s commerce today is conducted via the sea results in an even greater need for

capabilities to track vessels and assess their behaviors [4]. The ability to autonomously

classify vessel movement at sea, in order to gain this behavioral knowledge of a specific

water space, is a novel challenge. From a national security perspective, vessels of interest

(VOI) are often found to be moving together in formation, following or paralleling, or

converging for transfer of illicit cargo. From a simple navigation radar display, an

example of which is illustrated in Figure 1, to a vessel listing system like the automatic

identification system (AIS), classifying these types of movement utilizing the tools

available is a time-intensive process for even a team of analysts. Automating the analysis

of ship movements through the use of a spatiotemporal clustering algorithm provides a

flexible, user-interfaced solution.

Figure 1. A 24- hour satelli

A. THESIS OBJECTIVE

The objective of this thesis is to develop

classify ship movement and possible intent at sea in order to gain behavioral knowledge

of a specific water space. The behaviors

they are common interactions between

Vessels involved in illicit activity may exhibit

A spatiotemporal clustering (STC)

direction and displacement directivity algorithm

thesis as a method of classifying

maritime domain. The proposed STC algorithm

MATLAB, and results for both

analyses are presented.

 2

hour satellite AIS position report collection in the Strait of Malacca

THESIS OBJECTIVE

The objective of this thesis is to develop a method to autonomously analyze and

ment and possible intent at sea in order to gain behavioral knowledge

The behaviors focused on are paralleling and following

interactions between vessels at sea and their traits are easily defined.

Vessels involved in illicit activity may exhibit either of these behavioral traits.

clustering (STC) extension of the urban combat environment

direction and displacement directivity algorithms presented in [5]–[7] is proposed

as a method of classifying paralleling and following movement behavior

The proposed STC algorithm for MDA application is

for both a synthetic simulation scenario and real-world dataset

Strait of Malacca.

method to autonomously analyze and

ment and possible intent at sea in order to gain behavioral knowledge

paralleling and following because

s at sea and their traits are easily defined.

behavioral traits.

urban combat environment

proposed in this

behavior in the

is modeled in

world dataset

 3

B. RELATED WORK

In the maritime domain much effort has been placed into the development of

algorithms that employ time-series analysis to estimate vessel position, predict future

vessel location, and determine what is normal, and by extension, abnormal behavior of

vessels at sea [8]. Specifically, Tunaley describes the development of a ship detection and

tracking program that is designed to analyze processed imagery rapidly and

inexpensively and to deliver messages automatically by email [9]. Efforts like Tunaley’s

support the creation and maintenance of the RMP but lack analysis of how ships interact

and, by extension, a behavioral knowledge of the water space. One potential solution to

overcome this shortcoming is STC analysis as proposed in this thesis.

The STC concept has not previously been applied to the maritime domain but has

been applied in other areas. Hwang et al. examined the properties of moving objects in

road networks in [10] and defined spatiotemporal similarity between trajectories based on

points and times of interest. From their work, early methods were proposed for searching

for similar trajectories amongst moving objects in road networks, and one of these early

methods serve as the framework for the STC analysis in this thesis. Si et al. later used

STC via the space-time permutation scan statistic to analyze the spread of the avian

influenza H5N1 in poultry, wild birds, and humans in [11]. Their STC analysis aided

them in determining that H5N1 outbreaks showed a clear seasonal pattern and were

shown to be relatable to the patterns of migration of wild birds. The space-time

permutation model was an option for the basis of STC in this thesis, but the STC

algorithm used in this thesis analyzes the water space of interest in one sweep instead of

using multiple smaller area sweeps.

Yuan and Raubal expanded on the STC concept and provided a framework for the

extraction of spatiotemporal knowledge from georeferenced mobile phone devices and

other information and communication technologies [12]. In [13], Eckley and Curtin

presented methods for performing spatiotemporal analysis, with special attention given to

the interpretation of the results for traffic incidents and also presented arguments for

performing spatial and temporal analyses independently. The works presented in [12] and

 4

[13] expanded upon the use of STC to analyze data and explored the idea of extracting

information from the analysis results, similar to the intent of the work in this thesis.

Das et al. created STC algorithms to explore urban combat environments in [5]-[7]

to introduce a method of analyzing troop movements and interactions on land. Their use of

STC in combat environments was the genesis of the idea to extend spatiotemporal analysis

to the maritime domain to study the interactions of vessels at sea. An extension of the

direction and displacement directivity algorithm presented in [5]-[7] is used in this thesis.

C. THESIS OUTLINE

The outline of this thesis is as follows: background information on several topics

including the United States Navy MDA concept, an explanation of one of the data

sources used in this thesis, spatiotemporal clustering and its fundamental parts, and k-

means clustering are presented in Chapter II. The STC algorithm components of data

conditioning, cluster preprocessing, proximity filtering, kinematic filtering, temporal

analysis, and the post-processing of spatiotemporal results to create easily understood text

and visual outputs are discussed in Chapter III. The set-up and results of the simulation

scenario and real-world data analyses are detailed in Chapter IV. A summary of the work

completed, the significant results, and ideas for future work are provided in Chapter V.

The MATLAB code that implements the STC algorithm is included in the Appendix.

 5

II. BACKGROUND

A brief overview of the DoD MDA concept was provided in Chapter I. In this

chapter, a more detailed description of the Navy’s approach to MDA is presented in order

to frame the current methods being utilized and bring to light the shortfalls faced by these

methods. A discussion of a typical data source used in real-world analysis is presented,

along with alternative sources. The STC concept and spatial and temporal data are

defined. The advantages and disadvantages of three methods of STC are discussed, and

an overview of the k-means clustering algorithm is provided. At the end of this chapter,

the reader will have the necessary understanding to comprehend the details of the STC

algorithm prior to its application to synthetic and real-world datasets.

A. NAVY MARITIME DOMAIN AWARENESS CONCEPT

The Navy MDA concept was elaborated on in May 2007 by then Chief of Naval

Operations (CNO) Admiral Michael Mullen. The memorandum he signed provided a

framework to prioritize the MDA efforts across the Navy, to ensure alignment with

external MDA initiatives, and to outline the fleet MDA concept of operations (CONOPS)

[14]. The implementation of MDA guidance was intended to take ten years, so efforts to

improve MDA are ongoing and remain relevant [14]. Vice Admiral Nancy Brown, then

Director, Command, Control, Communications and Computers (C4) Systems on the Joint

Staff, summarized the importance of the Navy’s role in MDA in 2010 when she indicated

that with the astronomical number of vessels at sea, the purpose of MDA is to gain an

understanding of the small number of them that are involved in illicit activity, and that

mission on the high seas is owned by the Navy [14].

The CONOPS for MDA organizes the MDA process into five activities. The

activities are monitor, collect, fuse, analyze, and disseminate and are detailed in Table 1.

 6

Table 1. The U.S. Navy fleet maritime domain awareness process. From [3].

MDA analysts and maritime operation centers (MOC) should have the ability to

persistently monitor, access, and maintain information on vessels and craft, cargo, vessel

crews and passengers, maritime infrastructure, and other identified areas of interest.

Legally protected personal information and private sector proprietary information should

be safeguarded and protected in accordance with U.S. and DoD regulations. The MOC

should also be efficient in collecting, fusing, analyzing, and disseminating information to

facilitate effective understanding and threat detection to decision makers and partner

MDA organizations [3]. The introduction and development of a STC algorithm to support

MDA seeks to support the Navy’s CONOPS for the MDA mission as described above.

B. DATA SOURCE OPTIONS FOR STC ANALYSIS

The STC algorithm is designed to ingest data in a particular manner, taking into

consideration the position, course, and speed of vessels at sea. The data sources for the

real-world analyses presented in Chapter IV are derived from AIS and the global

navigation satellite system (GNSS), the broad term for the global positioning system

(GPS). AIS is used because of its availability and the ease with which it can be formatted

and used. In order to employ the algorithm, three requirements for a data source must be

met. The first is that the data must provide knowledge of georeferenced vessel position,

ideally in degrees of latitude and longitude. A source would be compatible as long as

degrees of latitude and longitude can be extrapolated. The second requirement is that the

data must provide knowledge of the course and speed associated with each vessel. The

 7

third requirement is that each vessel position report include a time reference. With these

three requirements met, other parameters such as the vessel identifier can be defined

locally, as the global identifier need only identify individual vessels to the program user.

Various other data sources could be used with this algorithm, including data derived from

intelligence, surveillance, and reconnaissance systems, as long as the three requirements

above are met.

A disadvantage of using AIS as the primary data source is that a particular VOI

may not properly report position or even transmit its AIS signal. Further, because only

certain classes of vessels are required to operate AIS, a VOI may not be outfitted with the

system. In this thesis the assumption is made that a VOI will properly report its position

because vessels that are involved in illicit activity will often attempt to act as normal as

possible in order to detract attention from them. Another assumption is that many vessels

that are of interest for national security purposes fit the criteria to need the use of AIS

onboard. The use of GNSS as a data source in the second scenario provides an alternative

to AIS. GNSS does not have the above disadvantages, nor do the assumptions above need

to be made. Those criteria are outlined in Chapter IV.

C. SPATIOTEMPORAL CLUSTERING

Kisilevich et al. [15] define STC as the process of grouping objects based on their

spatial and temporal similarity. STC is a relatively new approach to data mining and has

been primarily used in mobile device and other location-based data tracking problems. In

its application to the maritime domain, STC analysis is used to detect paralleling and

following behaviors between vessels. Paralleling behavior is when one vessel traces the

same or similar spatial pattern at the same time as another vessel but is offset in space [7].

Following occurs when one vessel traces the same or similar spatial route as another

vessel at a later time [7]. To provide a better understanding of STC it is necessary to

define what spatial and temporal datasets are and how they can be analyzed to create a

STC result.

 8

1. The Relationship Between Spatial and Kinematic Data

Spatial data contains information that describes the location of objects in relation

to Earth, to each other, or to another frame of reference. A metric of distance is used

when describing spatial relationships between objects. Several distance metrics exist, but

two of the most common are the Manhattan and Euclidean distances. The Manhattan

distance dMH
 between two points (x1, y1) and (x2 , y2) is computed as the sum of the

absolute differences of their Cartesian coordinates and is mathematically described as

[16]

 dMH = x1 − x2 + y1 − y2 . (1)

This can be more easily thought of as the number of city blocks we would travel between

points and is most relevant when measuring distance in a grid-constrained context [16].

Euclidean distance, on the other hand, is the more common straight-line distance

metric and is defined as the length of the line segment that connects two points [16]. The

Euclidean distance dEU
 between two points (x1, y1) and (x2 , y2) is mathematically

described as [16]

 dEU = x1 − x2()2
+ y1 − y2()2

. (2)

To understand the underlying behaviors of paralleling and following, kinematic

information is also required. Kinematics describes the motion of points in a particular

frame of reference, and kinematic similarity between nearby objects can suggest

collusion and other behaviors of interest [17]. In this maritime application, vessel

characteristics like course and speed will factor largely into determining vessels that are

exhibiting paralleling or following behavior. For this reason the STC algorithm does not

exclusively spatially cluster vessels at sea, but rather does so kinematically by

considering course and speed characteristics in addition to spatial relationships.

2. Temporal Data

Temporal data represents variable-state variation in time. It is often collected to

analyze weather patterns, monitor traffic conditions, or study demographic trends, among

 9

many other applications. Any variable that changes over time can be organized into a

temporal dataset. The fifth stage of the STC algorithm is temporal data analysis.

3. Spatiotemporal Clustering Approaches

As stated, in this thesis STC analysis is applied to the maritime domain in order to

autonomously classify vessel movement at sea in order to gain behavioral knowledge of a

water space, specifically to determine when vessels exhibit paralleling or following

behavior as an indicator of possible illicit behavior.

Hwang, Kang, and Li [10] propose three methods to perform STC of objects

moving on road networks. These methods can be extended to moving vessels at sea. In

the first method, clusters are formed based on spatial clustering and are then refined with

temporal analysis. In the second method, clusters are formed based on temporal

clustering and then refined with spatial analysis. In the third method, clusters are formed

based on the simultaneous consideration of spatial and temporal analyses.

In this thesis the first method is used as the general approach to STC. The second

method is not easily translated to the maritime domain because temporal clustering would

yield much larger clusters in need of kinematic refinement and, in turn, create a more

difficult problem. This would not be an efficient approach to analyzing a water space that

has high traffic density, like a major strait. The third method is likely the most robust of

the three, but because of the time-latent nature of maritime domain data, it is not

necessary to simultaneously consider space and time. The simultaneous accounting of

kinematic and temporal attributes creates a larger workload and leads to inefficiencies in

the STC algorithms’ performance. Based on the first method above, vessels at sea are

kinematically clustered and then refined through temporal analysis to form

spatiotemporal results which can be processed for further understanding.

D. K-MEANS CLUSTERING ANALYSIS

A version of the k-means clustering algorithm was first proposed in 1957 as a

technique for pulse code modulation, but the term “k-means clustering” came into use

when McQueen [18] published the term in 1967 [19]. K-means clustering seeks to

 10

partition a set of n observations x1, x2 ...xn() into a set c of k clusters c = c1,c2...ck{ },

where both the observations and clusters are vectors of specified dimension. The k-means

clustering process can be described as the optimization of the objective function [20]

 J = argmin
c

xi − µ j

xi ∈ c j

∑
2

j=1

k

∑ (3)

where µ j
 is the centroid of observations in c j

. The centroid of a cluster is defined as the

mean of the observations in the cluster as

 µ j =
1

Ncj

xi

i=1

Ncj

∑ , (4)

where xi
 are members of the cluster and Ncj

 is the number of observations in the cluster.

The most common form of the k-means algorithm uses an iterative refinement

approach with two steps. In the assignment step an observation xi
 is assigned to the

cluster whose centroid is closest to it using the nearest neighbor rule

 d xi ,µl() ≤ d xi ,µ j() for j ≠ k and 1 ≤ j ≤ k, (5)

where the distance d is defined as

 d x
i
,µ

l() = µ
lm

− x
im

()
2

m

∑ . (6)

Once all observations have been assigned to a cluster, the update step calculates

the new centroid of each cluster. The algorithm then goes back to the assignment step and

reassigns the observations using the new cluster centroids. The algorithm is complete

when the observation assignments no longer change [20].

The k-means clustering algorithm uses the Euclidean distance metric when

minimizing the within-cluster sum of squares and calculating the mean in the assignment

step. The main drawback to k-means clustering is that the number of clusters to be used

k is an input parameter to the algorithm and a poor choice for k can lead to poor results.

As such, any use of the k-means algorithm should include a discussion regarding the

selection of k . An example of the result of k

which k = 2 and the data points associ

Figure 2. K-means clustering result

In this chapter an overview of the Navy’s approach to MDA was presented to

frame possible uses of the STC algorithm. A discussion of AIS data and alternative

sources was discussed. Spatial and kinematic data were conceptualized, and an overview

of the k-means clustering algorithm was provided.

 11

example of the result of k-means clustering is given in Figure 2

and the data points associated with each cluster are colored red and blue.

means clustering result on a random set of data points when

After [21].

In this chapter an overview of the Navy’s approach to MDA was presented to

frame possible uses of the STC algorithm. A discussion of AIS data and alternative

sources was discussed. Spatial and kinematic data were conceptualized, and an overview

ans clustering algorithm was provided.

clustering is given in Figure 2, in

ated with each cluster are colored red and blue.

on a random set of data points when k=2.

In this chapter an overview of the Navy’s approach to MDA was presented to

frame possible uses of the STC algorithm. A discussion of AIS data and alternative

sources was discussed. Spatial and kinematic data were conceptualized, and an overview

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. SPATIOTEMPORAL CLUSTERING ALGORITHM

A background of the STC concept was presented in Chapter II. Specifically, the

relationship of spatial and kinematic data was addressed, and three methods of STC were

presented. The method of forming clusters kinematically and performing temporal

analysis to form spatiotemporal clusters is applied to the maritime domain in this chapter.

An overview of the proposed algorithm is presented, followed by an in-depth explanation

of the progression and development of the STC algorithm, with a focus on its six stages:

1) data conditioning, 2) cluster preprocessing, 3) proximity filtering, 4) kinematic

filtering, 5) temporal refinement, and 6) post-processing of spatiotemporal results.

The algorithm begins with an input dataset consisting of vessel position reports

during a specific timeframe. After user-provided input for parameter definitions, the data

is submitted to a data conditioning stage in which time indices are assigned and the data

is formatted, filtered, and converted. The proximity filtering stage spatially refines the

position attributes of the vessel position reports, and through kinematic filtering, clusters

of vessels are formed at each time-step based on similarity of vessel courses, speeds, and

distance between them. The kinematic clusters are temporally refined to determine which

of them can be considered moving clusters and which are only present at one instance in

time. Once vessel position reports have been analyzed both kinematically and temporally,

the results are spatiotemporal in nature and completely describe how the kinematic

relationships between vessels change over time. Behavioral knowledge of the water space

can then be gained through post-processing of the results and interpretation of the text

and visual outputs. The progression of the six stages of the STC algorithm along with

data input and behavioral knowledge output are depicted in Figure 3.

 14

Figure 3. Top-level view of the spatiotemporal clustering algorithm.

 15

A. INPUT

As illustrated in Figure 3, there are two types of input provided to the STC

algorithm. The first is the collection of vessel position reports, which is the bulk data the

STC algorithm analyzes to gain behavioral knowledge of the water space of interest. The

second input is the user-provided input. Different parameters must be defined, either

through use of default values or through manual input, to enable the various stages of the

STC algorithm to function.

1. Collection of Vessel Position Reports

Vessel attribute data reports, which are transmitted by vessels as discussed in

Chapter II, containing information on position, course, speed, a timestamp of the report,

and other attributes this work does not concern, are collected from a suitable data source.

A vessel identifier, such as MMSI, is typically supplied, and a local identifier may be

defined, if necessary. A typical data source for this application is AIS information. In this

thesis, AIS is the primary data source used because of its availability. The International

Maritime Organization (IMO) requires AIS to be fitted aboard international voyaging

ships with gross tonnage of greater than 300 tons and all passenger ships regardless of

size [22]. The IMO requirement means that most sea-going commercial vessels are

outfitted with and required to transmit position reports in AIS. AIS is, therefore, a

suitable selection as the input data source for the development of a STC algorithm aimed

at improving MDA. A typical AIS position report dataset is formatted into eleven fields,

the titles of which are provided in Table 2.

The input dataset provided to the STC algorithm is a collection of AIS data for a

specific period of time in a specific location. For the purposes of the STC algorithm, the

data fields required are MMSI, speed over ground, longitude, latitude, course over

ground, and the Coordinated Universal Time (UTC) timestamp. These six fields must be

formatted and placed in the correct order to be analyzed and understood by the STC

algorithm. This formatting occurs in two stages, data conditioning and cluster

preprocessing, which are discussed following a description of user input.

 16

Table 2. Typical field headings of an AIS vessel position and attribute report.

MID MMSI

Nav Status Rate of Turn

Speed Over Ground Longitude

Latitude Course Over Ground

Heading UTC Timestamp

Source

2. User Input

The algorithm requires four mandatory and five optional user inputs. The four

mandatory user inputs are: 1) data source, 2) parameter selection method, 3) location

filter definition, and 4) minimum vessel speed for consideration. The five optional user

inputs, each of which has an associated program default value, are: 1) time window

length, 2) maximum distance between contacts, 3) maximum heading difference between

contacts, 4) maximum speed difference between contacts, and 5) moving cluster

threshold value. Both the mandatory and optional user inputs are summarized in Table 3.

a. Mandatory User Inputs

(1) Data Source and Type

The first mandatory user-provided input is the data source

positional data type. Positional data is provided in either degrees of latitude and longitude

or in Cartesian coordinates. Positional data in degrees of longitude and latitude require

conversion to the x-y coordinate grid for STC algorithm analysis, with zero degrees

longitude and latitude serving as the origin. Conversely, data presented directly in the x-y

coordinate grid are excused from the data conversion and preprocessing step. Both types

of data then undergo time indexing in order to create time-step assignments.

 17

Table 3. Summary of mandatory and optional user inputs with default values and

selection ranges.

Variable Mandatory/Optional Default Value Selection Range

Data Source and

Type
Mandatory -

Synthetic or Real-

World
Parameter

Selection Method
Mandatory -

Default Values or

Manual Input

Location Filter

Definition
Mandatory -

Central Latitude

and Longitude,

and Width and

Height of Box
Minimum Vessel

Speed
Mandatory 2 Knots 0 – 30 Knots

Time Window

Length
Optional 12 Minutes 1 – 120 Minutes

Maximum

Distance Between

Contacts

Optional 8 Nautical Miles
0 – 50 Nautical

Miles

Maximum

Heading

Difference

Optional 39o 0
o to 359o

Maximum Speed

Difference
Optional 16 Knots 0 – 30 Knots

Moving Cluster

Threshold Value
Optional 60% 0% - 100%

(2) Parameter Selection Method

The second mandatory user-provided input required for program

operability is the parameter selection method. When prompted, the user must decide

whether to use program default values or to manually input them for STC algorithm

calculations. The default values are explained in detail as part of each parameter’s

discussion that follows. Manual user inputs for each parameter have a high degree of

freedom and are bound only by technical constraints (e.g., a vessel can only have a course

heading between 0
o and 359o

).

 18

(3) Location Filter Definition

The third mandatory user-provided input defines the location of

interest for analysis. This input requires four attributes: 1) central latitude, 2) central

longitude, 3) height, and 4) width. All four parts are defined in tenths of degrees of

latitude and longitude and form a rectangular shaped bounding box. With this input the

user can tailor the geographical region of interest for STC analysis.

(4) Minimum Vessel Speed

The fourth mandatory user-provided input is the minimum vessel

speed for the STC algorithm to consider. The default value is two knots, but the user can

select any speed value from zero to thirty knots. All contacts traveling at or below the

selected speed are eliminated from consideration by the STC algorithm.

b. Optional User Inputs

The five optional user-provided inputs each have an associated default

value. If the user opts for the manual parameter selection method, the following five

parameters require specific assignment.

(1) Time Window Length

In order to make proper time-step assignments, the STC algorithm

requires a defined time window length in minutes, as well as a defined start hour and start

minute. The time window length serves as the minimum amount of time that can exist

between each individual contact’s position reports. If a contact reports itself more than

once per time window, a function of the STC algorithm averages the multiple reports into

one representative contact report. The values available for user selection range from one

to one hundred and twenty minutes. The default setting is twelve minutes and is derived

from the six minute rule of navigation, which says that the speed at which a vessel is

traveling divided by ten is the distance it will travel in six minutes and is defined as

 d =
s

10
 (7)

 19

where d is the distance in nautical miles traveled in six minutes, and s is the speed in

knots of the vessel [23]. The start hour and start minute are defined by the user as the

starting time from which to calculate time steps based on time window length. For

example, if the start hour is 01 and the start minute is 00, and time window length is

twelve minutes, time-step one will be from 01:00:00-01:11:59 and time-step two from

01:12:00-01:23:59.

(2) Maximum Distance Between Contacts

During the kinematic clustering of contacts there are four factors

taken into consideration. The first parameter input to kinematic clustering is the maximum

distance between contacts measured in nautical miles. The value of this parameter is

subjective as to how far apart two vessels can be and be considered to be paralleling or

following each other in a manner of interest. Two logical values for this parameter are line-

of-radar-sight and line-of-visual-sight, which are the distances from which a vessel can be

detected by radar and visually, respectively, and can be calculated as

 Rradar = 1.23 h1 + h2() (8)

 Rvisual =
h1

0.5736
 (9)

where R is the range in nautical miles, h1
 and h2

 are the height of the observer and

target in feet, respectively [24].

When calculated with h1
 and h2

 set to the height of the pilothouse of a

DDG-51 Arleigh Burke Class Destroyer, the values for Rradar and Rvisual
 are

approximately eight and 16 nautical miles, respectively. The default value for maximum

distance between contacts is set to eight nautical miles. The reason for this is that while

ships not in visual sight of each other could be exhibiting behavior of interest, illicit

behavior is more likely to occur when ships are within visual sight.

 20

(3) Maximum Heading Difference

The next parameter input is the maximum heading difference,

measured in degrees between contacts. When determining the value of maximum heading

difference to consider, the user subjectively defines what is encompassed in paralleling or

following behavior. The range of input from which the user can select begins at 0
o
 and

extends to 359o
. A key consideration when setting the value for this parameter is the

distance between the two contacts at the start of the analysis. The default setting for this

parameter is 39o and is based on the contacts beginning essentially in the same position.

This value was determined as the angle that is formed for two vessels that are slightly

more than eight nautical miles apart, the default value for maximum distance between

contacts, after traveling for sixty minutes, or five time steps, assuming the default value

for time window length, at a speed of 12 knots. The setup of this is illustrated in Figure 4.

The values for maximum heading difference when using alternate starting distances

between contacts us shown in Table 4.

Figure 4. An illustration of the determination of the maximum heading difference of

two contacts beginning in the same position.

 21

Table 4. Maximum heading difference values for various beginning distances

between two contacts traveling at 12 knots for sixty minutes.

Starting Distance Between

Contacts

Maximum Heading

Difference

0 Nautical Miles 39o

1 Nautical Mile 34o

3 Nautical Miles 24o

5 Nautical Miles 14o

(4) Maximum Speed Difference

Similar to the maximum heading difference, the maximum speed

difference between contacts is a key parameter during the kinematic clustering stage of

the algorithm. The range of input for maximum speed difference is from zero to thirty

knots. Selecting a value of zero or near zero indicates that for vessels to be clustered

together they would need to be traveling at identical speeds. On the other hand, selecting

a value near thirty, which is considered the higher end of maximum attainable speed of

ships at sea, would result in this parameter not having a significant role in the clustering

algorithm. The default for maximum speed difference is set to 16 knots, which was

determined by considering the following overtaking problem, illustrated in Figure 5.

Vessel A begins eight nautical miles astern of vessel B and is traveling 16 knots faster.

After sixty minutes, vessel A is 8 nautical miles ahead of vessel B.

 22

Figure 5. An illustration of the overtaking problem to determine the maximum speed

difference between contacts that begin eight nautical miles apart.

(5) Moving Cluster Threshold Value

The moving cluster threshold value that is used to determine

whether kinematic clusters are stored as moving clusters, or are discarded, must be

defined. In this selection, the user defines the degree to which the membership of a

moving cluster can change and still be considered a moving cluster. The sizes of the

dataset and moving cluster have a large impact on the moving cluster threshold value

selection. The larger the sizes, the higher the moving cluster threshold value should be. If

the sizes are small, the moving cluster threshold value should be set to a smaller value to

allow for better tracking. For example, if the moving cluster contains four contacts, the

threshold could be set at 50% or below to track the cluster even if two vessels depart. If

the cluster contains ten contacts, the threshold could be set to 80% to still allow for two

vessels to depart the cluster. The range of values for selection begins at 0% and extends

to 100%. A selection of 0% would discount the temporal consideration of the STC

algorithm, while a selection of 100% would require that a moving cluster not lose any

members in order to maintain its status as a moving cluster. The default value is 60%,

which allows a moving cluster of five contacts to lose up to two members and still be

considered a moving cluster.

B. DATA CONDITIONING

Data conditioning is the stage in which the input dataset is formatted and aligned

for STC algorithm use. First, time indexing, the process of converting UTC seconds to a

 23

time-step assignment, an integer greater than or equal to one, is applied to the input

dataset. UTC seconds are converted to the time and date of the timestamp, and then, with

the user input for start hour, start minute, and time window length, the time and date is

converted to a time-step value t. A function designed to ensure that each MMSI or vessel

identifier has only one position report for each time-step is also applied. If a vessel has

more than one report in a time-step, the vessel attributes from the multiple reports are

averaged to form one representative report for the time-step.

Second, the dataset is formatted and placed in the correct order so that the

required data fields are properly aligned for STC algorithm use. Each unique AIS vessel

attribute report is stored as a row in the matrix Ψ in which each column represents a

vector of different attribute from the AIS data as

 Ψ = x y r s m t

,

 (10)

where Ψ is of size LAIS × 6, and LAIS
 is the number of AIS vessel reports in the input

dataset. The variables are all vectors of length LAIS ×1 and x and y describe each

vessel’s position on the x-y coordinate grid, r its course, s its speed, m its MMSI, and t

its time-step assignment.

C. CLUSTER PREPROCESSING

Cluster preprocessing is the introduction of vessel identity indexing and the

decomposition of Ψ into manageable pieces for STC algorithm analysis. During the

clustering preprocessing stage, each unique MMSI in the vector m is assigned an index

q beginning at 1 and continuing until each unique MMSI has an assignment. The index

q will be used as a subscript to identify which vessel’s attributes are being used.

The Ψ matrix is decomposed by time-step assignment into a three-dimensional

matrix ψ of dimension Lt × 4 × Nt
 where Nt

 represents the maximum number of time

steps, Lt
 is the number of vessels in each time-step, and Lt∑ = LAIS . The data matrix ψ

can be represented at the t -th time-step as

 24

 ψ t = x ' y ' r ' s '

,

 (11)

where

 x ' =

x1

x2

.

.

xq

, y ' =

y1

y2

.

.

yq

, r ' =

r1

r2

.

.

rq

, and s ' =

s1

s2

.

.

sq

, (12)

and q is the vessel identity index.

D. PROXIMITY FILTERING

Proximity filtering, accomplished through the use of k-means clustering,

identifies spatial relationships between vessels at a particular time-step. Only x and y

position data of ψ t is considered. The optimum number of centroids k available for

assignment is calculated from the length of ψ
t
 at the time-step being analyzed as [25]

 L
t
= 2k log k(). (13)

To determine the specific centroids at each time-step, the farthest-first

methodology is used [25]. The x and y position information for the contact in the first

row of ψ t
 is designated as the initial centroid. The second through k -th centroids are

chosen to be the contact that has the maximum Euclidean distance from the previously

selected centroid. For example, for t = 1 the first contact of ψ 1 is designated as the first

centroid. The second centroid is chosen as the contact has the greatest distance from the

first centroid, where distance is calculated as

 d = xn − x1()2
+ yn − y1()2

 for n = 2,3,...Lt . (14)

The third centroid is chosen as the point that has the greatest distance d from the second

centroid and so on.

 25

Then the centroids are used to perform k-means clustering on the position data in

ψ t to spatially refine the contacts by assigning each contact to one of the centroids. The

contacts associated with each centroid j at each time-step t are stored in a matrix c j

t
 of

size Lt j
× 4 where Lt j

 is the number of contacts assigned to each centroid at each time-

step as

 c j

t = x ' y ' r ' s '

 for j = 1,2,...k, (15)

where x ', y ', r ', and s ' are vectors of size Lt j
×1 containing the respective attributes for

the vessels in the cluster. After all contacts have been assigned to a centroid, k-means

cluster assignments for a time-step are stored in a cell array ξ t as

 ξ t = c j

t
c j+1

t . . . ck

t{ }. (16)

A cell array is a set of matrices of different dimensions. At the completion of the

proximity filtering stage there is a cell array ξ t for each time-step that contains the k-

means assignment for all contacts in that time-step.

E. KINEMATIC FILTERING

Kinematic filtering is used to further refine the clustering results from the

proximity filter to form clusters of contacts with attributes that exhibit paralleling or

following behavior as defined by the user. In kinematic filtering, the similarities of course

and speed attributes of vessels, as well as the distance between them, are determined for

each k-means cluster. In each cluster c j

t
 in ξ t , a seed contact σ is determined as the

vessel with the maximum speed in c j

t
 to initialize kinematic filtering as

 σ = max s '(), (17)

where s ' is a vector of speeds in c j

t . To formulate kinematic clusters, three thresholds are

defined. The heading difference between the seed contact and all other contacts in c j

t
 is

defined as

 26

 TH = rqσ
− rqp

 for p = 2,3,...Lt j
, (18)

the speed difference is defined as

 TS = sqσ
− sqp

, (19)

and the distance between them is defined as

 TD = xqσ
− xqp

()
2

+ yqσ
− yqp

()
2

. (20)

If TH ,TS , and TD
 are less than the user defined thresholds for maximum heading

difference, maximum speed difference, and maximum distance between contacts, the

contacts associated with qσ
 and qp

 are classified as a kinematic cluster φ
l

t and are

represented as

 φl

t =
qσ

qp

 for l = 1,2,...Lt (21)

where i is the number of kinematic clusters for each time-step of ξ t . The length of φ
l

t

varies and is dependent on the number of contacts that when compared with the seed

contact result in TH ,TS , and TD
 values that are less than the user defined thresholds. The

contacts assigned to φ
l

t from c j

t
 are removed from further consideration for assignment to

another kinematic cluster.

A new seed contact is determined so that TH ,TS , and TD
 may be calculated for the

remaining contacts in c j

t
 to discover other kinematic clusters as described in Equations

(17)-(21). The iterative process continues until all contacts in c j

t
 have been considered for

assignment to a kinematic cluster. Upon completion, a snapshot of the kinematic clusters

in ξ t are compiled in a cell array β t for temporal analysis as

 β t = φl

t φl+1

t . . . φLt

t{ }. (22)

An example of a k-means, distance, and v

illustrated in Figure 6 in which there are four kinematic clusters identified at time

two of a generic simulation. The maximum distance

nautical miles for the simulation, and each of the four resultant clusters ar

different color. The contacts of each cluster were initially grouped by proximity filtering

and further refined kinematically by determining similarities between vessel

speeds, and the distance between them.

Figure 6. An example of k-

F. TEMPORAL REFINEMENT

Temporal refinement

which are not. The input data to this stage are cell

the kinematic clusters for each time

moving in time, it is necessary to calculate the similarity of the membership of the

kinematic clusters in consecutive

 27

means, distance, and velocity kinematic clustering result is

in which there are four kinematic clusters identified at time

two of a generic simulation. The maximum distance between contacts was defined as

nautical miles for the simulation, and each of the four resultant clusters are displayed in a

The contacts of each cluster were initially grouped by proximity filtering

and further refined kinematically by determining similarities between vessel

speeds, and the distance between them.

-means, distance, and velocity kinematic clustering results at

time-step two of a generic simulation.

TEMPORAL REFINEMENT

Temporal refinement determines which kinematic clusters are moving in time and

The input data to this stage are cell arrays that contain the membership of

the kinematic clusters for each time-step. To determine which kinematic clusters are

it is necessary to calculate the similarity of the membership of the

kinematic clusters in consecutive time steps. The first kinematic cluster in

elocity kinematic clustering result is

in which there are four kinematic clusters identified at time-step

was defined as four

e displayed in a

The contacts of each cluster were initially grouped by proximity filtering

and further refined kinematically by determining similarities between vessel headings,

elocity kinematic clustering results at

which kinematic clusters are moving in time and

arrays that contain the membership of

step. To determine which kinematic clusters are

it is necessary to calculate the similarity of the membership of the

e first kinematic cluster in β t , φ
l

t , is

 28

designated as the reference cluster, and the intersection of φ
l

t and each kinematic cluster

in β t+1 is calculated as

 (23)

If an intersection is found between φ
l

t and a cluster in β t+1, the variable fuse f is

calculated as

 f =
I

length φl

t()
, (24)

and the next cluster in β t , φ
l+1

t , becomes the reference cluster.

If an intersection is not found between φ
l

t and a cluster in β t+1, the intersection is

calculated between φ
l

t and each kinematic cluster in β t+2 as in Equation (23). If an

intersection is found, fuse is calculated as in Equation (24). If an intersection is not found,

φ
l

t is removed from consideration as a moving cluster and the second cluster in β t , φ
l+1

t

becomes the reference cluster, and the process is repeated.

Once all kinematic clusters in β t have served as the reference cluster for

intersection calculations, the kinematic clusters of β t+1 beginning with φ
l

t+1 become the

reference clusters. This iterative process continues until all the clusters in β max t()−1
 have

served as the reference cluster. Kinematic clusters in β max t()
 are not considered in

temporal refinement due to the lack of future kinematic clusters with which to calculate

intersections.

When a value other than zero is calculated for f , it is compared to the user-

defined moving cluster threshold value. If f is greater than or equal to that value, the

associated kinematic cluster φ
l

t is stored to the cell array δ as

δ = φl

t{ },
 (25)

 29

where δ is of size 1× LMC
 and LMC

 is the number of moving clusters determined in

temporal refinement.

G. POST-PROCESSING OF SPATIOTEMPORAL RESULTS

Upon completion of temporal analysis, three cell arrays, each containing

spatiotemporal results, are constructed. Through post-processing of these cell arrays, it is

possible to build usable outputs to determine information about the selected water space,

including the detection of moving clusters of vessels that are exhibiting paralleling or

following behavior and the ability to track vessel interactions over time.

1. Identifying Members of a Moving Cluster

The first cell array δ represents all kinematic clusters that move through time for

a minimum of two time steps with a minimum threshold of continuous membership in the

variable fuse f as

δ =

φl

t φl+1

t φLt

t .

φl+1

t φl+2

t φl+3

t φLt

t

. . . .

φl

z φl+1

z φl+4

z
.

 (26)

where z is the maximum time-step that contains a moving cluster. The row location of

any cluster φ in the cell array σ indicates the time steps at which the moving cluster

exists. For example φ
l+2

t that appears in the second row, is a moving cluster that begins at

time-step two.

Further analysis of this cell array provides details such as when a moving cluster

forms, which contacts are members of the subject moving cluster, if contacts join or leave

the cluster, and when, if ever, the cluster’s membership becomes low enough that it can

no longer be considered a moving cluster.

 30

2. Kinematic Clusters Occurring at the Last Time-step of Data

The cell array ρ is equal to β t at the last time-step of available data and is of

size 1× Lt
 where Lt

 is the number of kinematic clusters found in β t . Due to a lack of

future time steps with which to compare this time-step of data, these current clusters are

stored as a matter of interest to the user as

ρ = φl

max t() φl+1

max t() . . φLt

max t(){ }.
 (27)

The clusters in ρ are not known to be moving clusters but represent only the kinematic

clusters of the last time-step of data. Information detailed in ρ is displayed only in the

text output, under the “Moving Clusters” section, to avoid unnecessary cluttering of the

visual output.

3. Generation of the Contacts of Interest List

The third cell array, θ , is the same size as δ , but rather than containing cluster

membership information, it contains the global identity index q of contacts that either

join or leave clusters. Vessels that move together as a moving cluster for several time

steps are of interest to an analyst, but a vessel that joins a cluster then departs it, and then

joins another cluster, is also of interest. The information contained in θ is displayed only

in the text output, under the “Contacts of Interest” section.

4. Post-processing of Spatiotemporal Results to Form Usable Outputs

The post-processing of the spatiotemporal results stored in the cell arrays δ , ρ,

and θ is the transfer of data into usable outputs for better user understanding. Post-

processing of the cell arrays results in the generation of two outputs. One output is text

based and the other is a visual representation of moving vessel clusters in the water space.

a. Text Output

The text output has two distinct parts, Moving Clusters and Contacts of

Interest. The Moving Clusters part provides the global identifiers of the members of each

moving cluster, as well as the time at which the cluster is formed and the time at which

 31

the cluster ceases to exist. Current clusters are also detailed in this manner in the text

output. The second part of the text output, Contacts of Interest, results from the ρ cell

array and contains the global identifier of any contact that joins or leaves an existent

moving cluster, as well as the time at which the event occurs. If the contact is deemed to

be leaving a moving cluster, the text output also details the heading and speed of the

contact’s departure. If there are two or more contacts that depart a larger moving cluster

and continue to move as a smaller moving cluster, then the heading and speed reported is

an average of the two contacts. An example of both parts of the text output is presented in

Figure 7 where there are fourteen moving clusters identified and three contacts of interest

defined.

b. Visual Output

The visual based output is an interactive, MATLAB-generated plot that

depicts the position and track of each moving cluster analyzed by the STC algorithm. In

Figure 8, there are several moving clusters displayed, some red, some orange, and some

green, each color indicating the membership of the moving clusters as defined in Table 5.

The position, heading, and speed of each moving cluster displayed is computed by

averaging its constituent members’ respective attributes. For example, for a given moving

cluster, the speed reported is the average speed of all vessels contained within that

specific cluster. Moving clusters are marked by an ‘x’ for each time-step that they occur

and with an ‘o’ at their final time-step of occurrence. If a moving cluster is only present

for two time steps, it is represented by an ‘o’. The markers and track lines on the plot are

color-coded to detail the degree of membership that the moving cluster maintains.

 32

Figure 7. An example text output from the STC algorithm’s analysis of a generic simulation scenario.

Figure 8. An example visual representation output of the STC algorithm’s analysis of a

Table 5. The MATLAB interactive plot color

Display Color

Red

Orange

Green

Blue

Violet

 33

An example visual representation output of the STC algorithm’s analysis of a

generic simulation scenario.

MATLAB interactive plot color-code key for moving cluster

membership identification.

Color Percentage Membership Indicated

100%

Orange 75% - 99%

 50% - 74%

 25% - 49%

 0% - 24%

An example visual representation output of the STC algorithm’s analysis of a

for moving cluster

 34

The MATLAB plot also has an interactive functionality that is illustrated in

Figure 8. The user is able to click on any marker of a moving cluster to determine which

cluster is represented, at which time-step the cluster occurs, as well as the cluster’s

position, heading, and speed. In Figure 8 it is determined that moving cluster 4 exists at

time-step two, in position −8.67,−1.33() heading 157o
 at 23 knots. To discover which

contacts compose moving cluster 4, it is necessary to reference the first portion of the text

output. Upon doing so, it can be determined that the contacts in moving cluster 4 have

vessel identifiers of 25 and 30.

In this chapter, the six stages of the STC algorithm were detailed. Vessel data and

user-provided input were discussed as the primary inputs to the STC algorithm. The data

conditioning and cluster preprocessing stages, where datasets are time indexed,

formatted, and aligned for algorithm use, were discussed. Proximity and kinematic

filtering were defined and the attributes each considers were given. Temporal refinement

to determine which clusters move through time was detailed, and examples of the usable

outputs formed from post-processing of spatiotemporal results were presented. In Chapter

IV, the STC algorithm is verified against a synthetic dataset and is validated using two

real-world datasets.

 35

IV. IMPLEMENTATION AND RESULTS

The STC algorithm presented in Chapter III is implemented, verified, and

validated in this chapter. The algorithm is implemented in the MATLAB programming

environment. To verify operability and validate its possible use, the STC algorithm is

tested using synthetic and real-world datasets. An overview of the MATLAB functional

code and user environment is provided, followed by a detailed explanation of the

synthetic and real-world scenarios and results.

A. MATLAB IMPLEMENTATION MODEL

The MATLAB programming code is organized into a top-level function, Thesis,

which calls various functions to execute the STC algorithm based on user input. An

overview of the highest-level MATLAB functions and their purposes is found in Table 6.

The detailed code for these and other functions is included in the appendix.

1. MATLAB Graphical User Interface

The MATLAB user interface for operation of the STC algorithm was designed to

be intuitive and to ensure ease of use. The algorithm’s user-provided inputs discussed in

Chapter III are provided to the algorithm via the MATLAB graphical user interface

(GUI) tool, examples of which are illustrated in Figures 9 and 10.

2. Simulation and Real-world Analysis Parameters

The thresholds used for the simulation and real-world analyses are defined in

Table 7 and are the default values as discussed in Chapter III.

 36

Table 6. MATLAB top-level functional organization of the STC algorithm.

Function Overview

Thesis

Thesis is the function call to access spatiotemporal algorithms that

support maritime domain awareness. The user will select whether their

input is “Synthetic” or “Real-world,” and the program will determine

which set of functions to use for analysis.

RealWorld

RealWorld is the top-level function call for real-world AIS data analysis.

This function begins with data pre-processing and filtering, and includes

all functions required for spatiotemporal analysis of the water space.

KDVC

KDVC(A,clusters,time,climit,dlimit,spdlimit) returns the kinematic

clusters at a given time-step based on user inputs where A is the input

dataset, clusters is the matrix for output storage, time is the time-step

being evaluated, climit is the user defined heading difference between

contacts in degrees, dlimit is the user defined distance between contacts

in nautical miles, and spdlimit is the user defined speed difference

between contacts in knots.

Kinematic

Kinematic(A,c,climit,dlimit,spdlimit,h) returns the kinematic clusters at a

given time-step based on user inputs where A is the input dataset, c is the

seed contact, climit is the user defined heading difference between

contacts in degrees, dlimit is the user defined distance between contacts

in nautical miles, spdlimit is the user defined speed difference between

contacts in knots, and h is the time-step.

Figure 9. The MATLAB graphical user interface with slider and open text parameter

input options.

 37

Figure 10. The MATLAB graphical user interface with push-button input.

Table 7. Synthetic and real-world analyses model parameters.

Parameter
Value for Synthetic and

AIS Real-World Scenarios

Value for GPS Real-

World Scenario

Time Window Length 12 Minutes 1 Minute

Maximum Heading

Difference Between

Contacts
 39o

 10o

Maximum Distance

Between Contacts
8 Nautical Miles 0.5 Nautical Miles

Maximum Speed Difference

Between Contacts
16 Knots 5 Knots

Moving Cluster Threshold

Value
60% 25%

B. VERIFICATION USING SYNTHETIC DATA

The simulation is run using data that was purposefully created to test the

functionality of the STC algorithm. Specifically, the synthetic scenario provides proof-of-

concept that the algorithm can properly evaluate the user-selected values from Table 7

and that the text output and the interactive aspect of the visual output are operable. The

data simulation involves a dataset of three hundred vessel position reports taken over a

period of seventy-two minutes, or six time steps. The setup and results of the simulation

are presented below.

 38

1. Simulation Setup

In the simulation, two separate scenarios are executed. Scenario one, which

occurs on the top half of Figures 11–16, consists of two contacts and is designed to test

maximum heading difference between contacts and maximum distance between contacts.

Scenario two, which occurs on the lower half of Figures 11–16, begins with two groups

of five contacts each, and is designed to test maximum speed difference between the

contacts, maximum distance between contacts, and the operability of the moving cluster

threshold value. The narrative steps for both scenarios, as well as the expectation for

kinematic clustering, are detailed in Table 8.

Table 8. Summary of the vessel interactions for the simulation scenarios.

Time-

Step
Scenario One Expectations Scenario Two Expectations

1
Distance: 9 nm

Heading Diff: 38o
No Cluster

Distance: 9 nm
Speed Diff: 17kts

2 Clusters

2
Distance: 7.8 nm

Heading Diff: 38o
Cluster

Distance: 7.3 nm
Speed Diff: 17kts

2 Clusters

3
Distance: 6.6 nm

Heading Diff: 0
o

Cluster
Distance: 5.6 nm
Speed Diff: 15kts

1 Cluster

4
Distance: 6.6 nm

Heading Diff: 0
o

Cluster
Distance: 7.1 nm
Speed Diff: 15kts

1 Cluster

5
Distance: 6.6 nm

Heading Diff: 40o
No Cluster

Distance: 5.6 nm
Speed Diff: 15kts
Lose 4 contacts

1 Cluster

6
Distance: 7.8 nm

Heading Diff: 40o
No Cluster

Distance: 4.1 nm
Speed Diff: 15kts
Lose 3 contacts

1 Cluster

In scenario one, the contacts begin nine nautical miles apart with a course heading

difference of 38o
 at time-step one. The contacts are traveling at a constant speed of 18

knots and at time-step two are 7.8 nautical miles apart with the same course heading

difference. At this point, because they now fall inside the eight nautical mile threshold

and have less than a 39o
 heading difference, the two contacts should be classified as a

 39

kinematic cluster. At time-step three, the contacts are 6.6 nautical miles apart and have

both turned to course 090. With a 0
o
 course heading difference, the contacts should

again be stored as a kinematic cluster. The contacts maintain course and speed through

time-step four, and should, therefore, be kinematically clustered. At time-step five, the

contacts turn on outbound courses with a heading difference of 40o. Although they are

still only 6.6 nautical miles apart, the contacts’ course heading difference has now

exceeded the defined threshold, and they should no longer be considered a kinematic

cluster. They continue on their outbound courses at time-step six and should not be

kinematically clustered. The contacts in scenario one should be considered a moving

cluster beginning at time-step 2 and ending at time-step four.

In scenario two, two groups of five contacts each begin nine nautical miles apart

traveling on identical courses with a speed difference between the groups of 17 knots.

Due to the speed difference and distance between them, the groups should be classified as

two separate kinematic clusters, as the five contacts in each group are traveling at the

same speed. At time-step two, the two groups are inside the eight nautical mile threshold,

but still maintain a 17-knot speed difference and, therefore, should be clustered

separately. At this point, each of the groups should be classified as a moving cluster that

begins at time-step one. The two groups of contacts shift speed at time-step three and

settle to a 15-knot speed difference. Now, inside the speed difference threshold of 16

knots, the two groups should be kinematically clustered as one group of ten contacts. At

time-step four, the contacts shift speed again but maintain their speed difference at 15

knots. They should again be clustered as one group of ten contacts and now considered a

moving cluster that begins at time-step three. At time-step five, the contacts maintain

their speed, but four of the ten contacts fail to transmit a position report in order to test

the moving cluster threshold value of 60%. The remaining contacts should continue to be

kinematically clustered, and because 60% of the contacts of the moving cluster remain,

they should be considered a moving cluster. At time-step six, the contacts maintain speed,

but three of the remaining six contacts do not have associated position reports. The

remaining three contacts should be kinematically clustered, but because only 50% of the

six contacts remain, the moving cluster should be reported to end at time-step five.

2. Kinematic Clustering

The simulation scenarios have been described in detail

kinematic clustering and moving cluster analysis have been set. In the discussion to follow,

the kinematic results at each time

The visual representa

Figure 11. As expected, the only kinematic clusters displayed are those from scenario

two, each consisting of five contacts,

respectively, in Figure 11. The black dots represent other contacts in the input dataset that

are not kinematically clustered in any cluster.

Figure 11. The kinematic clustering results for time

each containing five contacts, are in accordance with the expected outcome.

The kinematic clustering results for time

addition to the kinematic clusters for scenario tw

and c3
, respectively, the two contacts from scenario one are now kinemat

colored red, and labeled c2.

 40

Kinematic Clustering Results

imulation scenarios have been described in detail above, and expectations for

kinematic clustering and moving cluster analysis have been set. In the discussion to follow,

each time-step and the spatiotemporal outcome will be detail

The visual representation of the kinematic clusters at time-step one is presented in

. As expected, the only kinematic clusters displayed are those from scenario

two, each consisting of five contacts, colored cyan and green and labeled

The black dots represent other contacts in the input dataset that

are not kinematically clustered in any cluster.

inematic clustering results for time-step one, which reveal two clusters,

each containing five contacts, are in accordance with the expected outcome.

The kinematic clustering results for time-step two are shown in Figure 12

addition to the kinematic clusters for scenario two, colored green and cyan and l

the two contacts from scenario one are now kinematically clustered,

, and expectations for

kinematic clustering and moving cluster analysis have been set. In the discussion to follow,

step and the spatiotemporal outcome will be detailed.

ep one is presented in

. As expected, the only kinematic clusters displayed are those from scenario

and labeled c1
 and c2

,

The black dots represent other contacts in the input dataset that

reveal two clusters,

each containing five contacts, are in accordance with the expected outcome.

step two are shown in Figure 12. In

and labeled c1

ically clustered,

Figure 12. The kinematic clustering results for time

cyan and green each containing five contacts, and red with two contacts, are

At time-step three, the expectation was for the kinematic cluster from scenario

one to continue, but for the two kinematic clusters from scenario two to be combined into

one. The results, illustrated in Figure 13

colored purple and labeled c

colored cyan and labeled c1.

The visual representation of the kinematic clusters at time

in Figure 14. In time-step four

expected to be kinematically clustered as in time

 41

The kinematic clustering results for time-step two, which reveal three clusters,

cyan and green each containing five contacts, and red with two contacts, are

in accordance with the expected outcome.

the expectation was for the kinematic cluster from scenario

two kinematic clusters from scenario two to be combined into

esults, illustrated in Figure 13, are as expected. The scenario one cluster is

c2 , and the new larger kinematic cluster from scenario t

The visual representation of the kinematic clusters at time-step four is presented

step four, all contacts maintained course and speed and were

expected to be kinematically clustered as in time-step three.

which reveal three clusters,

cyan and green each containing five contacts, and red with two contacts, are

the expectation was for the kinematic cluster from scenario

two kinematic clusters from scenario two to be combined into

ario one cluster is

and the new larger kinematic cluster from scenario two is

p four is presented

all contacts maintained course and speed and were

Figure 13. The kinematic clustering results for time

green, which is the combination of the two five

step two, and red, with two contacts.

Figure 14. The kinematic clustering results for time

clusters as in time

 42

The kinematic clustering results for time-step three contain two clusters:

, which is the combination of the two five-contact clusters

and red, with two contacts. The clusters are as expected.

The kinematic clustering results for time-step four, which reveal the same two

clusters as in time-step three, are as expected.

three contain two clusters:

contact clusters from time-

The clusters are as expected.

the same two

At time-step five, we do not expect the contacts in scenario one to be

kinematically clustered due to exceeding the maximum heading difference thresh

illustrated in Figure 15, the cluster from scenario one no longer appears. Four contacts

from scenario two did not transmit

kinematically clustered together.

red and labeled c1.

The contacts in scenario one continue to exceed the maximum

threshold at time-step six and should not be kinematically clustered together. Of the

remaining six contacts in scenario two, three fail to transmit a position report. The

remaining three contacts should still be kinematically clustered

and labeled c1
 in Figure 16.

Figure 15. The kinematic clustering result for time

contains the remaining six contacts from the larger ten

time-step four, is

 43

we do not expect the contacts in scenario one to be

kinematically clustered due to exceeding the maximum heading difference thresh

, the cluster from scenario one no longer appears. Four contacts

ansmit position reports, but the remaining six should s

kinematically clustered together. In Figure 15, the cluster from scenario two is

The contacts in scenario one continue to exceed the maximum heading difference

step six and should not be kinematically clustered together. Of the

remaining six contacts in scenario two, three fail to transmit a position report. The

remaining three contacts should still be kinematically clustered and are illustra

The kinematic clustering result for time-step five contains one cluster, which

contains the remaining six contacts from the larger ten-contact cluster in

step four, is tracked as expected because of the moving cluster

value definition of 60%.

we do not expect the contacts in scenario one to be

kinematically clustered due to exceeding the maximum heading difference threshold. As

, the cluster from scenario one no longer appears. Four contacts

, but the remaining six should still be

, the cluster from scenario two is colored

heading difference

step six and should not be kinematically clustered together. Of the

remaining six contacts in scenario two, three fail to transmit a position report. The

and are illustrated in red

step five contains one cluster, which

contact cluster in

moving cluster threshold

Figure 16. The kinematic clustering result for time

contains the remaining three contacts from the larger six

time-step fi

3. Spatiotemporal Clustering Results

The kinematic clustering results were all as expected from the description of the

synthetic simulation scenarios.

the two groups of contacts in scenario two are considered moving clusters beginning at

time-step one and ending at time

cluster. The memberships of the clusters are detailed as clust

17, cluster 3 contains the membership of the contacts in scenario one. They begin as a

moving cluster at time-step two and end at time

is the combination of clusters 1 and 2, begins at time

four, because of the departure of four contacts in time

contacts that remain from the large group, is described to begin and end at time

This occurs because the group is still consi

does not continue into time-step six due to the loss of thre

 44

The kinematic clustering result for time-step six contains one cluster, which

contains the remaining three contacts from the larger six-contact cluster in

step five, is tracked as expected as a kinematic cluster.

Spatiotemporal Clustering Results

The kinematic clustering results were all as expected from the description of the

synthetic simulation scenarios. The STC text results are given in Figure 17.

the two groups of contacts in scenario two are considered moving clusters beginning at

step one and ending at time-step two when the two combine to form one larger

cluster. The memberships of the clusters are detailed as cluster 1 and cluster 2. In Figure

, cluster 3 contains the membership of the contacts in scenario one. They begin as a

step two and end at time-step four, as expected. Cluster 4, which

is the combination of clusters 1 and 2, begins at time-step three and ends at time

four, because of the departure of four contacts in time-step five. Cluster five, the six

contacts that remain from the large group, is described to begin and end at time

This occurs because the group is still considered a moving cluster from time-

step six due to the loss of three of the remaining six contacts.

step six contains one cluster, which

contact cluster in

ve, is tracked as expected as a kinematic cluster.

The kinematic clustering results were all as expected from the description of the

 As expected,

the two groups of contacts in scenario two are considered moving clusters beginning at

step two when the two combine to form one larger

d cluster 2. In Figure

, cluster 3 contains the membership of the contacts in scenario one. They begin as a

step four, as expected. Cluster 4, which

ep three and ends at time-step

step five. Cluster five, the six

contacts that remain from the large group, is described to begin and end at time-step five.

-step four but

e of the remaining six contacts.

 45

Figure 17. The simulation scenario STC text output detailing five moving clusters and multiple contacts of interest.

The visual representation of the S

the text output in Figure 17

inspection of Figure 18 it is found that there are indeed five clusters, four

The fifth moving cluster is a single cyan mark on the plot immediately above the lower

center moving cluster. The moving clusters have been enlarged i

order to further investigate each moving cluster.

Cluster 3, which contains contacts 1 and 2

interactive display of MATLAB has been used to select the middle clustering point, and

it is shown that the point is a point in Cluster 3 at time

on it are in red, indicating that the moving cluster maintains 100% membership during its

life, as expected. The straight

created by averaging the position, course and speed of contacts 1 and 2.

Figure 18. A broad view of

determined in the synthetic scenario, which is as expected.

 46

The visual representation of the STC results is given in Figure 18. According

the text output in Figure 17, there should be five moving clusters displayed. Upon

it is found that there are indeed five clusters, four

The fifth moving cluster is a single cyan mark on the plot immediately above the lower

center moving cluster. The moving clusters have been enlarged in Figures 19 and 20

order to further investigate each moving cluster.

ontains contacts 1 and 2, has been enlarged in Figure 19

interactive display of MATLAB has been used to select the middle clustering point, and

it is shown that the point is a point in Cluster 3 at time-step three. The line and all marks

red, indicating that the moving cluster maintains 100% membership during its

life, as expected. The straight-line nature of the moving cluster track in Figure 19

created by averaging the position, course and speed of contacts 1 and 2.

A broad view of the visual representation of the five moving clusters

determined in the synthetic scenario, which is as expected.

. According to

, there should be five moving clusters displayed. Upon

it is found that there are indeed five clusters, four are red lines.

The fifth moving cluster is a single cyan mark on the plot immediately above the lower-

n Figures 19 and 20 in

, has been enlarged in Figure 19. The

interactive display of MATLAB has been used to select the middle clustering point, and

step three. The line and all marks

red, indicating that the moving cluster maintains 100% membership during its

oving cluster track in Figure 19 is

moving clusters

determined in the synthetic scenario, which is as expected.

Figure 19. An enlarged view of the visual representation of moving cluster 3

contains contacts 1 and 2

The other four moving clusters

left and right correspond to C

of the plot it can be seen that bot

two when they combine into one larger moving cluster,

in Figure 20. Both clusters have red lines and marks associated with them, indicating

100% membership is maintai

representative of Cluster 4 from Figure 17

moving clusters. Although one mark of the cluster

marker, all marks and the line of

its two-time-step life, which begins at time

MATLAB interactive plot marker is marki

ends at time-step five after four of the ten contacts depart the large moving cluster. Under

the MATLAB interactive marker the mark is cyan in color, indicating

moving cluster’s life.

 47

An enlarged view of the visual representation of moving cluster 3

contains contacts 1 and 2 in the synthetic scenario, exists between time

2 and 4, and is as expected.

The other four moving clusters have been enlarged in Figure 20. The lines on the

correspond to Clusters 1 and 2 in Figure 17. Through the interactive feature

of the plot it can be seen that both clusters begin at time-step one and end at time

two when they combine into one larger moving cluster, represented by the center red line

. Both clusters have red lines and marks associated with them, indicating

100% membership is maintained for both time steps of their lives. The middle cluster

f Cluster 4 from Figure 17, which is the combination of the two smaller

. Although one mark of the cluster is hidden by the MATLAB plot

ine of the cluster are red, indicating 100% membership during

step life, which begins at time-step three and ends at time-step four. The

MATLAB interactive plot marker is marking Cluster 5 from Figure 17, which begins and

e after four of the ten contacts depart the large moving cluster. Under

the MATLAB interactive marker the mark is cyan in color, indicating the end of the

An enlarged view of the visual representation of moving cluster 3, which

between time-steps

The lines on the

. Through the interactive feature

step one and end at time-step

represented by the center red line

. Both clusters have red lines and marks associated with them, indicating

of their lives. The middle cluster is

, which is the combination of the two smaller

is hidden by the MATLAB plot

are red, indicating 100% membership during

step four. The

, which begins and

e after four of the ten contacts depart the large moving cluster. Under

the end of the

Figure 20. An enlarged view of the visual representation of clusters 1, 2,

synthetic scenario

and cluster 5 is tracked during time

C. VALIDATION USING

After successfully evaluating the synthetic data scenarios, the

tested on two real-world data

worldwide AIS vessel position reports for the twenty

10 January 2012. The water space of interest for the

of Malacca. The Strait of Malacca, which is the main shipping channel between the

Indian Ocean and the Pacific Ocean, is considered one of the most important shipping

lanes in the world, with more than 60,000 vessels passing through it each year

The purpose of the real

ability to process a robust and relatively large set of data. On 10 January 2012 there were

slightly more than 1.5 million worldwide AIS vessel position reports, approximately five

thousand of which occurred in and around the Strait of Malacca.

 48

An enlarged view of the visual representation of clusters 1, 2, 4, and 5 i

scenario. Clusters 1 and 2 combine at time-step 3 to form cluster 4,

and cluster 5 is tracked during time-step five as the remaining six contacts of

cluster 4.

VALIDATION USING REAL-WORLD DATA

After successfully evaluating the synthetic data scenarios, the STC algorithm

world datasets. For the first analysis, the real-world data source is

vessel position reports for the twenty-four hour period beginning at 0001,

10 January 2012. The water space of interest for the analysis was chosen to be the Strait

of Malacca. The Strait of Malacca, which is the main shipping channel between the

cean and the Pacific Ocean, is considered one of the most important shipping

more than 60,000 vessels passing through it each year

The purpose of the real-world data analysis is to illustrate the STC

rocess a robust and relatively large set of data. On 10 January 2012 there were

slightly more than 1.5 million worldwide AIS vessel position reports, approximately five

thousand of which occurred in and around the Strait of Malacca. The complete AIS

4, and 5 in the

step 3 to form cluster 4,

step five as the remaining six contacts of

algorithm was

world data source is

four hour period beginning at 0001,

chosen to be the Strait

of Malacca. The Strait of Malacca, which is the main shipping channel between the

cean and the Pacific Ocean, is considered one of the most important shipping

more than 60,000 vessels passing through it each year [26].

STC algorithm’s

rocess a robust and relatively large set of data. On 10 January 2012 there were

slightly more than 1.5 million worldwide AIS vessel position reports, approximately five

The complete AIS

position report picture is shown in Figure 21

individual AIS position report

Figure 21. Visual representation of

1. AIS Real-wor

To set up the scenario

motor vessel (M/V) Mairini

transfer of cargo or persons on 10 January 2012 in or

Theater strategic decision makers need

traveled with any other ships for any period of time during the

worldwide AIS dataset for 10 January

are detailed below.

 49

rt picture is shown in Figure 21. Each circle on the plot represents an

position report during the time period of interest.

isual representation of the Strait of Malacca AIS position report datas

10 January 2012.

world Data Concerning the Strait of Malacca

up the scenario, we present a hypothetical report of intelligence

Mairini, with MMSI number 538003897 has conducted an illicit

transfer of cargo or persons on 10 January 2012 in or around the Strait of Malacca

Theater strategic decision makers need to determine if M/V Mairini interacted with or

with any other ships for any period of time during the day in question.

set for 10 January is provided to the STC algorithm, and the

Each circle on the plot represents an

the Strait of Malacca AIS position report dataset for

of intelligence that the

has conducted an illicit

around the Strait of Malacca.

nteracted with or

day in question. The

e STC algorithm, and the results

 50

2. AIS Real-world Data Results

Twelve moving clusters are reported as a result of the STC algorithm analysis

using the threshold values defined in Table 7. The text output results of the Strait of

Malacca analysis are presented in Figure 22. Through examination of the text output, we

can determine that the VOI, MMSI 538003897, appears to interact with another vessel on

the day in question in the Strait of Malacca. By converting the time steps to time of day,

we can determine that M/V Mairini began interacting with another vessel around 1936

UTC on 10 January 2012. The STC algorithm text output reports that the VOI and the

vessel it is clustered with, MMSI 538002853, are a current cluster as well. The latest

time-step of data that contains kinematic clusters is time-step 116, which converts to

2312 UTC. An overview of the visual output is presented in Figure 23.

The underlay of the Google map on the visual output provides situational

awareness to the user. The MATLAB interactive capability that was highlighted in the

synthetic simulation provides further insight into the situation. The moving cluster in

question, cluster 9, has been selected in Figure 23, and its attributes are displayed. The

cluster was moving on an average course of 126o
 at a speed of 13 knots at time-step 98,

and when the two vessels are last clustered at time-step 116, they are moving on an

average course of 114o
 at a speed of 14 knots. From the visual representation in Figure

23, it appears that the moving cluster is on a standard transit course through the Strait of

Malacca. While the results of the real-world data analysis are not conclusive evidence

that M/V Mairini was involved in illicit behavior, they do offer enough insight as to the

vessel’s interactions on the day in question for an analyst’s further scrutiny.

 51

Figure 22. The STC algorithm text output for the AIS real-world data analysis of the Strait of Malacca on 10 January 2012.

Figure 23. STC algorithm visual output for a

Malacca on 10 January 2012.

travels on average

3. GNSS Real-world Data

The second real-world data analysis is performed on

twenty-three minute period

transmitters mounted on six vehicles driving on Route 3 in Massachusetts

operate in a manner to simulate small boats travel

vehicles dictated three of the

the span of the exercise. The other three vehicles acted as confuser vehicles and moved in

and out of the convoy. One of the convoy vehicles was unable to report heading data and

was, therefore, excluded from STC algorithm analysis. The analysis from the STC

algorithm reveals that multiple moving clusters are tracked over the twenty

period, which is in keeping with the drive

 52

STC algorithm visual output for a AIS real-world data analysis of the

on 10 January 2012. Moving cluster 9 containing two contacts

travels on average heading 126 at an average speed of 13 knots.

world Data Concerning Vehicles Imitating Small Boats

world data analysis is performed on GPS data gathered over a

three minute period from 1514 to 1537 UTC on 24 April 2013

transmitters mounted on six vehicles driving on Route 3 in Massachusetts. The vehicles

to simulate small boats traveling together. The drive

vehicles dictated three of the them to form a convoy and maintain speed and distance for

the span of the exercise. The other three vehicles acted as confuser vehicles and moved in

and out of the convoy. One of the convoy vehicles was unable to report heading data and

ed from STC algorithm analysis. The analysis from the STC

reveals that multiple moving clusters are tracked over the twenty-

in keeping with the drive-plan, which is summarized in Table 9

world data analysis of the Strait of

containing two contacts

at an average speed of 13 knots.

Concerning Vehicles Imitating Small Boats

data gathered over a

from 1514 to 1537 UTC on 24 April 2013 via GNSS

. The vehicles

drive-plan for the

to form a convoy and maintain speed and distance for

the span of the exercise. The other three vehicles acted as confuser vehicles and moved in

and out of the convoy. One of the convoy vehicles was unable to report heading data and

ed from STC algorithm analysis. The analysis from the STC

-three minute

arized in Table 9.

 53

Table 9. GNSS real-world data analysis vehicle drive-plan.

Vehicle Drive Plan

1
Confuser: drive alongside/lead/trail/enter/exit convoy, pass other

confusers

2 Confuser: drive alongside/lead/trail/enter/exit convoy

3 Convoy lead: drive at/near speed limit in right lane

4
Convoy middle: do not change convoy order, vary follow spacing,

allow confusers to enter/exit convoy

5 Confuser: drive alongside/lead/trail/enter/exit convoy

6
Convoy tail: do not change convoy order, vary follow spacing,

allow confusers to enter/exit convoy

4. GNSS Real-world Data Results

According to the drive-plan, vehicles 3, 4, and 6 form the convoy and should

regularly be clustered as a moving cluster over the span of the twenty-three minute

dataset. Vehicle 3 did not transmit heading data, so it was not analyzed by the STC

algorithm. The remaining vehicles should move in and out of the convoy and form

various moving clusters during the run. From the visual representation in Figure 24 and

the text output in Figure 25, it is evident that several moving clusters are tracked in the

analysis of the dataset. Vehicles 4 and 6, which form the convoy, are not explicitly

clustered together for the length of the analysis but are detailed in the “Contacts of

Interest” section as a moving cluster that joins and departs other clusters. This

designation provides evidence that contacts 4 and 6 move together for much of the

twenty-three minute run as directed in the drive-plan. With user thresholds set as

previously detailed, thirteen moving clusters are identified during the analysis. The

confuser vehicles moving in and out of the convoy account for a majority of these cluster

changes. In Figure 24 moving cluster 9 consisting of vehicles 1, 2, and 6 is identified.

Figure 24. STC algorithm visual output for a GNSS

In summary, the implementation of the STC algorithm in the MATLAB

programming environment was detailed in this chapter. A synthetic scenario was used to

verify the algorithm’s filtering and clustering logic and user

Two real-world datasets were used to validate the STC algorithm’s performance. The

first used AIS data and a hypothetical scenario to analyze the interactions of a

commercial VOI. The second used GNSS data consisting of vehicles simulating small

boats operating at higher speeds and closer distances than the commercial

 54

TC algorithm visual output for a GNSS real-world data analysis of vehicles

imitating small boats on 24 April 2013.

he implementation of the STC algorithm in the MATLAB

programming environment was detailed in this chapter. A synthetic scenario was used to

e algorithm’s filtering and clustering logic and user-provided threshold limits.

world datasets were used to validate the STC algorithm’s performance. The

first used AIS data and a hypothetical scenario to analyze the interactions of a

VOI. The second used GNSS data consisting of vehicles simulating small

boats operating at higher speeds and closer distances than the commercial AIS

world data analysis of vehicles

he implementation of the STC algorithm in the MATLAB

programming environment was detailed in this chapter. A synthetic scenario was used to

provided threshold limits.

world datasets were used to validate the STC algorithm’s performance. The

first used AIS data and a hypothetical scenario to analyze the interactions of a

VOI. The second used GNSS data consisting of vehicles simulating small

AIS scenario.

 55

Figure 25. STC algorithm text output for GNSS real-world data analysis of vehicles imitating small boats on 24 April 2013.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

V. CONCLUSIONS

The focus of this thesis was to develop a STC algorithm to aid in the Navy’s

mission of MDA. Specifically, the STC algorithm was designed to autonomously analyze

vessel interactions to gain behavioral knowledge of a water space. An extension of the

urban combat environment direction and displacement directivity algorithms was

proposed as a method of classifying paralleling and following movement which may be

exhibited by vessels involved in illicit activity.

The general framework of STC in this thesis was to form clusters kinematically

and then refine them temporally. Clusters were formed through proximity filtering with

k-means clustering, kinematically refined by determination of the similarity of vessel

course, speed, and distance between vessels, and further refined through temporal

analysis. This methodology was deemed to effectively provide a refined kinematic

clustering result that carefully balanced user input with mathematical reasoning. The

kinematic clusters were then temporally analyzed to determine which clusters were

moving in time and which were not. Spatiotemporal results were then processed to

produce usable text and visual outputs that result in better understanding of vessel

interactions and behavioral insight in a water space.

A. SIGNIFICANT RESULTS

The work presented in this thesis provides three contributions to the MDA

problem set. First an STC scheme was developed and applied to the maritime domain to

identify interactions between vessels at sea in order to gain behavioral knowledge of

paralleling and following movement in a water space. The scheme was validated using

multiple data sources that provided a real-world hypothetical scenario in the Strait of

Malacca and a simulated movement of small boats.

Second, three filters were designed in support of the operation of the STC

algorithm. Location filtering enabled a large input dataset to be focused onto a specific

water space of interest. The proximity filter spatially refined the input dataset by

grouping contacts via k-means clustering centroid assignment. Kinematic filtering then

 58

determined the similarity of vessel course and speed within each k-means cluster and

further spatially refined the clustering process by comparing the distance between

vessels.

Finally, the STC algorithm provided those interested in national or theater

security decision making the opportunity to quantify the (membership) continuity of a

moving cluster. A group of vessels deemed to be exhibiting paralleling or following

behavior by the algorithm were tracked until the continuity fell below the user-defined

threshold of interest. The opportunity to quantify the continuity allows the user to

characterize the degree to which a moving cluster may change.

B. FUTURE WORK

In this thesis the focus of the STC algorithm was on a water space of interest. Use

of the VOI identifier as input to determine the water space of interest during the time of

interest would improve the algorithm’s performance. Future work should extend the

algorithm to include VOI identity if available.

An extension of this work would be to focus on countering the knowledgeable

enemy. In this thesis the assumption was made that vessels will not attempt to prevent

detection of their behaviors. If, for instance, vessels rendezvoused with other vessels in a

way that inhibited the algorithm from detection as a moving cluster, the advantage

provided by the STC algorithm would be nullified. Perhaps the vessels would meet via a

head-on scenario or would steer headings that were always greater than 90o
 in difference

in order to avoid detection. Expanding the current algorithm to detect a head-on meeting

scenario would improve its performance.

The STC algorithm presented in this thesis does not provide track estimation

functions. In future work, when a position report is missing or unreadable, the vessel’s

movement could be tracked through the use of a Kalman filter or a similar method. This

would prevent negative effects on the formation or tracking of a moving cluster and

would allow for greater insight and analysis of the water space.

 59

The STC algorithm’s scope could be expanded to include more than commercial

vessels. Given the speed that a small boat swarm might attack with, early detection of

their formation is an important task. An extension of this thesis work could be applied to

the detection of such a swarm by applying short time windows and small thresholds for

distance, heading, and speed differences between contacts. Although the second real-

world dataset was meant to mimic small boats, conducting the STC analysis on actual

small boat data would be beneficial.

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

APPENDIX

The MATLAB code used to implement the spatiotemporal clustering analysis is

provided in the appendix.

function Thesis
% Thesis Top-Level Function Call.
% Thesis is the function call to access spatiotemporal
algorithms that support maritime domain awareness. The user will
select whether their input data is “Synthetic” or “Real-World,”
and the program will determine which set of functions to use for
analysis.
% Created by LT Kristofer Tester, USN, April 2013

% Function Input: None
% Function Output: Proper file path alignment

clear all
close all
clc
t = cputime;

% Display a menu offering the user choice of data type
z = menu(‘Select Source Data Type’,’Synthetic’,’Real-World’);

% Process user selection and choose next function call. Matlab
directory changes to reflect user selection, and to keep data
files separated and easily organzied.
if z == 1
 oldFolder = cd(‘Thesis Synthetic’);
 Synthetic;
 cd(oldFolder);
else
 oldFolder = cd(‘Thesis RealWorld’);
 RealWorld;
 cd(oldFolder);
end

% Display the time, in seconds, the program takes to run in its
entirety
t = cputime

 62

function RealWorld

% REALWORLD Top-level function call for real-world data
analysis.
% RealWorld is the top-level function call for real-world AIS
data analysis. This function begins with data pre-processing and
filtering, and includes all functions required for spatiotemporal
analysis of the waterspace. Created by LT Kristofer Tester, USN,
April 2013

% Call function to read data input and perform preprocessing
duties
[A,default,climit,spdlimit,dlimit,spdinput,storage] =...
 InputandPreprocessing;

% Loop through the data by time-step. At each time-step, arrange
a submatrix, B, of the A matrix, such that all members of B have
the same time-step assignment. Proximity filter and kinematically
cluster the contacts in the B matrix using the KDVC function and
return the results in clusters. Store clusters in the cell array,
compold.
[compold,Data,maxtime,clusters1] =
ProxKin(A,default,climit,spdlimit,...
 dlimit,spdinput,storage)

% Call function Temporal to perform temporal analysis of the
kinematic time step snapshots
[MovingClusters,FuseClusters,DiffClusters,CurrentClusters,timecou
nt] =...
 Temporal(compold,storage)

% Build the text output by comparing each cell of MovingClusters.
If the cell is found elsewhere, determine what time-step it
appears, and what time-step it disappears. Output this
information, along with the membership details of the moving
cluster in a text format.
Postprocessing(MovingClusters,FuseClusters,DiffClusters,CurrentCl
usters,...
 timecount,Data,maxtime,clusters1)

 63

function [A,default,climit,spdlimit,dlimit,spdinput,storage]...
 = InputandPreprocessing;

% InputandPreprocessing This function reads the input data
stream and formats it for use by the algorithm.
% Created by LT Kristofer Tester, USN, April 2013

% Display push-button menu for user selection of the input data
file type
a = menu('Select Data Format:','xlsx Format','.mat Format','csv
Format');

% List all files of the type xlsx and .mat in the current
directory and store the filenames in TestList cell array for user
selection
if a == 1;
 TestFiles = dir('*xlsx');
 TestList = {};
 for i = 1:length(TestFiles)
 filename = TestFiles(i).name;
 TestList{i} = filename;
 end
 z = menu('Choose the Source Data File',TestList);
 Data = xlsread(TestList{z});
elseif a == 2;
 TestFiles = dir('*.mat');
 for b = 1:length(TestFiles)
 filename = TestFiles(b).name;
 TestList{b} = filename;
 end
 z = menu('Choose the Source Data File',TestList);
 Data = load(TestList{z});
 cellData = struct2cell(Data);
 matData = cell2mat(cellData);
 Data = matData;
elseif a == 3;
 TestFiles = dir('*csv');
 for j = 1:length(TestFiles)
 filename = TestFiles(j).name;
 TestList{j} = filename;
 end
 z = menu('Choose the Source Data File',TestList);
 Data = csvread(TestList{z});
end

z =...
menu('Choose Global Location or Manually Input Area of Interest
Coordinates',...
'Strait of Malacca','West Coast of Africa','Panama Canal','Bab Al
Mandeb',...
'Manual','Entire Area');
if z == 1;
 locationFiltered = locationFilter(Data,2,102,4,4);
elseif z == 2;
 locationFiltered = locationFilter(Data,20,-18,5,5);
elseif z == 3;
 locationFiltered = locationFilter(Data,7,-80,5,5);

 64

elseif z == 4;
 locationFiltered = locationFilter(Data,12.5,43.5,5,5);
elseif z == 5;
 handles = guihandles(LocationFilt);
 centlat = get(handles.slider1,'Value');
 centlon = get(handles.slider2,'Value');
 height = get(handles.slider3,'Value');
 width = get(handles.slider4,'Value');
 close(handles.figure1);
 locationFiltered =
locationFilter(Data,centlat,centlon,width,height);
elseif z == 6;
 locationFiltered = Data;
end

% Store the source data in the Data variable and assign variables
for the necessary columns of the Data matrix
Data = locationFiltered;
Lon = Data(:,6);
Lat = Data(:,7);
Cog = Data(:,8);
Sog = Data(:,5);
UTC = Data(:,10);
counter = Data(:,2);

% Create the A matrix - the variables from Data that are
necessary for analysis
A = [Lon Lat Cog Sog counter UTC];

% Format the A matrix using Data_Read
default = menu('Parameter Selection','Default Values',...
 'User Selected Values');
[A] = Data_Read(A,default);

% Add longitude and latitude component of each contact to the A
matrix for use in output formats
A = [A Lon Lat];

% Initialize looping variables and determine the unique MMSI
identifiers that are reported in the A matrix
sizedata = size(A);
n = 1;
k = unique(A(:,7));

% Loop through the unique MMSI identifiers and quiver plot each
contact. This plot represents all of the individual contacts
reported in the data set.
figure();
while n <= length(k)
 j = find(A(:,7)==k(n));
 scatter(A(j,9),A(j,10));
 title('Example Contact Picture')
 xlabel('Degrees of Longitude')
 ylabel('Degrees of Latitude')
 set(gcf,'color','w');
 hold on
 n = n+1;

 65

end
plot_google_map

% Initialize looping variables
n = 1;

% Create slider and text input GUI for user input
if default == 1;
 climit = 39;
 spdlimit = 16;
 dlimit = 8;
 spdinput = 2;
 storage = 0.6;
elseif default == 2;
 handles = guihandles(SlideFilt);
 climit = get(handles.slider1,'Value');
 spdlimit = get(handles.slider2,'Value');
 dlimit = get(handles.slider3,'Value');
 spdinput = get(handles.slider4,'Value');
 storage = (get(handles.slider5,'Value'))/100;
 close(handles.figure1);
end

% Loop through the A matrix to ensure none of the variables have
a value of exactly zero
while n <= sizedata(1)
 if A(n,1) == 0
 A(n,1) = 0.001;
 else
 A(n,1) = A(n,1);
 end
 if A(n,2) == 0
 A(n,2) = 0.001;
 else
 A(n,2) = A(n,2);
 end
 if A(n,4) == 0
 A(n,4) = 0.001;
 else
 A(n,4) = A(n,4);
 end
 if A(n,3) == 0
 A(n,3) = 0.001;
 else
 A(n,3) = A(n,3);
 end
 if A(n,5) == 0
 A(n,5) = 0.001;
 else
 A(n,5) = A(n,5);
 end
 if A(n,6) <= spdinput;
 A(n,:) = 0;
 else
 A(n,6) = A(n,6);
 end
 n = n+1;

 66

end

% Assign variables for the columns of the A matrix
x = nonzeros(A(:,1));
y = nonzeros(A(:,2));
dx = nonzeros(A(:,3));
dy = nonzeros(A(:,4));
cse = nonzeros(A(:,5));
spd = nonzeros(A(:,6));
counter = nonzeros(A(:,7));
timestep = nonzeros(A(:,8));
Lon = nonzeros(A(:,9));
Lat = nonzeros(A(:,10));

% Store the variables back into the A matrix
A = [x y dx dy cse spd counter timestep Lon Lat];

 67

function [locationFiltered] = locationFilter(entry,centralLat,...
 centralLon,width,height)

% LOCATIONFILTER Filter real-world data by defining a boundary
box.
% [locationFiltered] =
LOCATIONFILTER(entry,centralLat,centralLon,width,height) filters
the data provided in entry that is located inside a boundary box
defined by the centalLat, centralLon, width, and height. Entry is
a matrix of AIS position reports with latitude and longitude
stored in tenths of degrees. CentralLat/Lon indicate the center
of the area of interest in tenths of degrees of latitude and
longitude. Width and Height indicate teh size of the area of
interest in tenths of degrees of latitude and longitude.
% Created by LT Ashley McAbee, USN, April 2013

% Define the boundary box
latLowBound = centralLat - height/2;
latUpBound = centralLat + height/2;
longLowBound = centralLon - width/2;
longUpBound = centralLon + width/2;

% Find all datapoints in entry that are positioned inside the
boundary box, and store them in the output variable,
locationFiltered.
locationFilteredIdx = find(entry(:,7) > latLowBound & ...
 entry(:,7) < latUpBound & entry(:,6) > longLowBound &
entry(:,6) <...
 longUpBound);
locationFiltered = entry(locationFilteredIdx,:);
end

 68

function [A] = Data_Read(A,default)

% DATA_READ Data conversion file for real-world AIS datasets.
% [A] = DATA_READ(A) returns a reformatted A matrix after
converting latitude and longitude to x and y coordinates where
the origin is zero degrees latitude and zero degrees longitude.
The function also converts course and speed into dx and dy
velocity components.
% Created by LT Kristofer Tester, USN, April 2013

% Store the incoming data from the A matrix into appropriate
columns to assist in determining the degrees, minutes, and
seconds of latitude and longitude.
Data(:,1) = floor(A(:,2));
Latmin = (A(:,2)-Data(:,1))*60;
Data(:,2) = floor(Latmin);
Latsec = (Latmin-Data(:,2))*60;
Data(:,3) = floor(Latsec);
Data(:,4) = floor(A(:,1));
Lonmin = (A(:,1)-Data(:,4))*60;
Data(:,5) = floor(Lonmin);
Lonsec = (Lonmin-Data(:,5))*60;
Data(:,6) = floor(Lonsec);
Data(:,7) = A(:,3);
Data(:,8) = A(:,4);
Data(:,9) = A(:,6);
counter = A(:,5);

% Organize degrees, minutes, and seconds of latitude and
longitude into components for x and y coordinate plotting.
y1(:,1) = Data(:,1);
y1(:,2) = Data(:,2);
y1(:,3) = Data(:,3);
x1(:,1) = Data(:,4);
x1(:,2) = Data(:,5);
x1(:,3) = Data(:,6);
c(:,1) = Data(:,7);
s(:,1) = Data(:,8);

% Initialize looping variables and loop through each row of the
Data matrix. Determine the degrees of latitude of the contact in
order to determine the conversion matrix, LatDistConv. Multiply
the conversion matrix by the y components from above to determine
a y coordinate on the grid signifying the distance, in nautical
miles, from zero degrees latitude.
n = 1;
while n <= length(Data)
 if Data(n,1) <= 15
 variable = Data(n,1)*((110.649-110.574)/15)+110.574;
 LatDistConv = [variable*0.62 (variable*0.62)/60
((variable*0.62)/60)/60];
 y(n,1) = y1(n,:)*LatDistConv';
 n = n+1;
 elseif Data(n,1) > 15 & Data(n,1) <= 30
 variable = Data(n,1)*((110.852-110.649)/15)+110.649;
 LatDistConv = [variable*0.62 (variable*0.62)/60
((variable*0.62)/60)/60];

 69

 y(n,1) = y1(n,:)*LatDistConv';
 n = n+1;
 elseif Data(n,1) > 30 & Data(n,1) <= 45
 variable = Data(n,1)*((111.132-110.852)/15)+110.852;
 LatDistConv = [variable*0.62 (variable*0.62)/60
((variable*0.62)/60)/60];
 y(n,1) = y1(n,:)*LatDistConv';
 n = n+1;
 elseif Data(n,1) > 45 & Data(n,1) <= 60
 variable = Data(n,1)*((111.412-111.132)/15)+111.132;
 LatDistConv = [variable*0.62 (variable*0.62)/60
((variable*0.62)/60)/60];
 y(n,1) = y1(n,:)*LatDistConv';
 n = n+1;
 elseif Data(n,1) > 60 & Data(n,1) <= 75
 variable = Data(n,1)*((111.618-111.412)/15)+111.412;
 LatDistConv = [variable*0.62 (variable*0.62)/60
((variable*0.62)/60)/60];
 y(n,1) = y1(n,:)*LatDistConv';
 n = n+1;
 elseif Data(n,1) > 75 & Data(n,1) <= 90
 variable = Data(n,1)*((111.694-111.618)/15)+111.618;
 LatDistConv = [variable*0.62 (variable*0.62)/60
((variable*0.62)/60)/60];
 y(n,1) = y1(n,:)*LatDistConv';
 n = n+1;
 end
end

% Initialize looping variables and again loop through each
element of the Data matrix to determine the proper conversion
matrix for longitude, LonDistConv. The number of nautical miles
in a degree of longitude decreases as distance from the equator
increases. In order to determine the LonDistConv matrix, first
determine the degree of latitude of the contact, and then
interpolate to determine the conversion matrix.
n = 1;
while n <= length(Data)
 if Data(n,1) <= 15
 variable = Data(n,1)*((107.551-111.320)/15)+111.320;
 LonDistConv = [variable*0.62 (variable*0.62)/60
((variable*0.62)/60)/60];
 x(n,1) = x1(n,:)*LonDistConv';
 n = n+1;
 elseif Data(n,1) > 15 & Data(n,1) <= 30
 variable = Data(n,1)*((96.486-107.551)/15)+107.551;
 LonDistConv = [variable*0.62 (variable*0.62)/60
((variable*0.62)/60)/60];
 x(n,1) = x1(n,:)*LonDistConv';
 n = n+1;
 elseif Data(n,1) > 30 & Data(n,1) <= 45
 variable = Data(n,1)*((78.847-96.486)/15)+96.486;
 LonDistConv = [variable*0.62 (variable*0.62)/60
((variable*0.62)/60)/60];
 x(n,1) = x1(n,:)*LonDistConv';
 n = n+1;
 elseif Data(n,1) > 45 & Data(n,1) <= 60

 70

 variable = Data(n,1)*((55.800-78.847)/15)+78.847;
 LonDistConv = [variable*0.62 (variable*0.62)/60
((variable*0.62)/60)/60];
 x(n,1) = x1(n,:)*LonDistConv';
 n = n+1;
 elseif Data(n,1) > 60 & Data(n,1) <= 75
 variable = Data(n,1)*((28.902-55.800)/15)+55.800;
 LonDistConv = [variable*0.62 (variable*0.62)/60
((variable*0.62)/60)/60];
 x(n,1) = x1(n,:)*LonDistConv';
 n = n+1;
 elseif Data(n,1) > 75 & Data(n,1) <= 90
 variable = Data(n,1)*((0-28.902)/15)+28.902;
 LonDistConv = [variable*0.62 (variable*0.62)/60
((variable*0.62)/60)/60];
 x(n,1) = x1(n,:)*LonDistConv';
 n = n+1;
 end
end

% Initialize looping variables.
cse = c;
n = 1;
loop = length(c);

% Loop through the matrix to convert course headings in degrees
into units of radians on the unit circle.
while n <= loop
 if c(n) == 0
 c(n) = c(n)*(pi/180)+(pi/2);
 elseif c(n) == 90
 c(n) = c(n)*(pi/180)-(pi/2);
 elseif c(n) == 180
 c(n) = c(n)*(pi/180)+(pi/2);
 elseif c(n) == 270
 c(n) = c(n)*(pi/180)-(pi/2);
 elseif c(n)>0 & c(n)<90
 c(n) = (pi/2)-(c(n)*(pi/180));
 elseif c(n)>90 & c(n)<180
 c(n) = (pi/2)-(c(n)*(pi/180));
 elseif c(n)>180 & c(n)<270
 c(n) = (450-c(n))*(pi/180);
 elseif c(n)>270 & c(n)<360
 c(n) = (450-c(n))*(pi/180);
 end
n = n + 1;
end

% Determine dx and dy components of velocity as a function of
time
dx(:,1) = (s/10).*cos(c);
dy(:,1) = (s/10).*sin(c);

% Call the TimeFuseReal function to convert the data timestamps
into time-steps.
timestep = TimeFuseReal(Data(:,9),default);

 71

% Store the finalized data in the A matrix to be sent back to the
RealWorld function for analysis.
A = [x y dx dy cse s counter timestep];

 72

function [compold,Data,maxtime,clusters1] =
ProxKin(A,default,climit,...
 spdlimit,dlimit,spdinput,storage)

% ProxKin Proximity and kinematic filtering function.
% ProxKin uses k-means clustering to proximity filter the data
and then kinematically filter those results by determining
similarity of vessel courses, speeds, and the distance between
them.
% Created by LT Kristofer Tester, USN, April 2013

% Determine the maximum time-step that has been assigned to the
data
maxtime = max(A(:,8));

% Initialize looping variables
k = [];
compar = [];
compold = [];
time = 1;
Data = [];
clusters1 = [];

while time <= maxtime
 clusters = [];
 B = [];
 sizeA = size(A);
 n = 1;
 while n <= sizeA(1)
 if A(n,8) == time;
 B = [B;A(n,:)];
 else end
 n = n+1;
 end
 sizeB = size(B);
 if sizeB(1) >= 2

 % Ensure no global identifier is reported more than one
 time during each time-step. If one is, use the
 deconflict function to resolve the issue.
 B = deconflict(B,time);
 Data = [Data;B];
 [clusters] =
KDVC(B,clusters,time,climit,dlimit,spdlimit);
 sizeclusters = size(clusters);
 clusters1 = [clusters1;clusters];
 if any(clusters)
 sizeclusters = size(clusters);
 maxcluster = max(clusters(:,8));
 j = 1;
 while j <= maxcluster
 h = 1;
 while h <= sizeclusters(1)
 if clusters(h,8) == j
 k = [k;clusters(h,7)];
 else
 end

 73

 h = h+1;
 end
 if time == 1
 if j == 1
 compar = [compar,k];
 else
 sizek = size(k);
 sizecompar = size(compar);
 if sizek(1) == sizecompar(1)
 compar = [compar,k];
 elseif sizek(1) > sizecompar(1)
 m = sizek(1)-sizecompar(1);
 n = 1;
 while n <= m
 compar =
[compar;zeros(1,sizecompar(2))];
 n = n+1;
 end
 compar = [compar,k];
 else sizek(1) < sizecompar(1)
 m = sizecompar(1)-sizek(1);
 n = 1;
 while n <= m
 k = [k;0];
 n = n+1;
 end
 compar = [compar,k];
 end
 end
 else time ~= 1
 if j == 1
 compar = [compar,k];
 else
 sizek = size(k);
 sizecompar = size(compar);
 sizecompold = size(compold);
 if sizek(1) == sizecompar(1)
 compar = [compar,k];
 elseif sizek(1) > sizecompar(1)
 m = sizek(1)-sizecompar(1);
 n = 1;
 while n <= m
 compar =
[compar;zeros(1,sizecompar(2))];
 n = n+1;
 end
 compar = [compar,k];
 else sizek(1) < sizecompar(1)
 m = sizecompar(1)-sizek(1);
 n = 1;
 while n <= m
 k = [k;0];
 n = n+1;
 end
 compar = [compar,k];
 end
 sizecompar = size(compar);

 74

 end
 end
 k = [];
 j = j+1;
 end
 compold{time} = compar;
 compar = [];
 clc
 else
 end
 else
 end
 time=time+1;
end

 75

function B = deconflict(B,time)

% DECONFLICT Deconflict multiple contact reports.
% B = DECONFLICT(B,time) returns the B matrix ensuring that no
contact global identifier is reported more than one time per
time-step, which is denoted in the variable time.
% Created by LT Kristofer Tester, USN, April 2013

% Note - The B matrix is the A matrix, just named differently

% Determine if any global identi0fiers are repeated in the B
matrix, and if so, which ones
uniqueB = unique(B(:,7));
if length(uniqueB) > 1
 countOfB = hist(B(:,7),uniqueB);
 indexToRepeatedValue = (countOfB~=1);
 repeatedValues = uniqueB(indexToRepeatedValue);
else
 repeatedValues = uniqueB;
end

% Determine the size of the B matrix
sizeB = size(B);

% Initialize looping variables
current = 0;
m = 1;
spot = [];
boom = 0;

% Loop through the repeated global identifiers and either:
% 1. If the distance between reports is less than 0.5
nautical miles, average the contacts as one.
% 2. If the distance between reports is greater than 0.5
nautical miles, keep the contacts separate and give one of them a
new global identifier.
while m <= length(repeatedValues)
 C = [];
 spot = [];
 n = 1;
 while n <= sizeB(1)
 if B(n,7) == repeatedValues(m);
 C = [C;B(n,:)];
 spot = [spot;n];
 else end
 n = n+1;
 end
 sizeC = size(C);
 if sizeC(1) == 2
 if sqrt((C(1,1)-C(2,1))^2+(C(1,2)-C(2,2))^2) <= 20;

 % Average the two contacts' components
 avgxpos = (C(1,1)+C(2,1))/2;
 avgypos = (C(1,2)+C(2,2))/2;
 avgdx = (C(1,3)+C(2,3))/2;
 avgdy = (C(1,4)+C(2,4))/2;
 avgcse = (C(1,5)+C(2,5))/2;

 76

 avgspd = (C(1,6)+C(2,6))/2;
 avglon = (C(1,9)+C(2,9))/2;
 avglat = (C(1,10)+C(2,10))/2;
 if avgxpos == 0
 avgxpos = 0.0001;
 else
 end
 if avgypos == 0
 avgypos = 0.0001;
 else
 end
 if avgdx == 0
 avgdx = 0.0001;
 else
 end
 if avgdy == 0
 avgdy = 0.0001;
 else
 end
 if avgcse == 0
 avgcse = 0.0001;
 else
 end
 if avgspd == 0
 avgspd = 0.0001;
 else
 end
 if avglon == 0
 avglon = 0.0001;
 else
 end
 if avglat == 0
 avglat = 0.0001;
 else
 end
 B(spot(1),:) = [avgxpos avgypos avgdx avgdy avgcse
avgspd...
 repeatedValues(m) time avglon avglat];
 B(spot(2),:) = B(spot(2),:)*0;
 sizeB = size(B);
 else
 end
 sizeB = size(B);
 else
 sizespot = size(spot);
 a = 1;
 while a <= sizespot(1)
 if any(spot(a));
 b = a+1;
 while b <= sizespot(1)
 if C(a,7) ~= 0 & C(b,7) ~= 0
 dist = sqrt((C(a,1)-C(b,1))^2+(C(a,2)-
C(b,2))^2);
 if dist <= 20;

 % Average the contacts' components
 avgxpos = (C(a,1)+C(b,1))/2;

 77

 avgypos = (C(a,2)+C(b,2))/2;
 avgdx = (C(a,3)+C(b,3))/2;
 avgdy = (C(a,4)+C(b,4))/2;
 avgcse = (C(a,5)+C(b,5))/2;
 avgspd = (C(a,6)+C(b,6))/2;
 avglon = (C(1,9)+C(2,9))/2;
 avglat = (C(1,10)+C(2,10))/2;
 if avgxpos == 0
 avgxpos = 0.0001;
 else
 end
 if avgypos == 0
 avgypos = 0.0001;
 else
 end
 if avgdx == 0
 avgdx = 0.0001;
 else
 end
 if avgdy == 0
 avgdy = 0.0001;
 else
 end
 if avgcse == 0
 avgcse = 0.0001;
 else
 end
 if avgspd == 0
 avgspd = 0.0001;
 else
 end
 if avglon == 0
 avglon = 0.0001;
 else
 end
 if avglat == 0
 avglat = 0.0001;
 else
 end
 B(spot(a),:) = [avgxpos avgypos avgdx
avgdy...
 avgcse avgspd repeatedValues(m)
time...
 avglon avglat];
 B(spot(b),:) = B(spot(b),:)*0;
 C(a,:) = B(spot(a),:);
 current = 1;
 spot(b) = 0;
 if length(nonzeros(spot)) <= 1
 a = a+sizeC(1);
 b = b+sizeC(1);
 else
 end
 sizeB = size(B);
 b = b+1;
 else
 b = b+1;

 78

 end
 else
 b = b+1;
 end
 end
 if current == 1
 spot(a) = 0;
 current = 0;
 else
 current = 0;
 end
 a = a+1;
 else
 a = a+1;
 end
 end

 % Create a new contact global identifier
 sizespot = size(spot);
 j = 1;
 sizeB = size(B);
 end
 m = m+1;
end

% Redefine the B matrix for output. This B matrix will have no
repeated global identifier values.
B = [nonzeros(B(:,1)) nonzeros(B(:,2)) nonzeros(B(:,3))...
 nonzeros(B(:,4)) nonzeros(B(:,5)) nonzeros(B(:,6))...
 nonzeros(B(:,7)) nonzeros(B(:,8)) nonzeros(B(:,9))...
 nonzeros(B(:,10))];

 79

function [clusters] =
KDVC(A,clusters,time,climit,dlimit,spdlimit)

% KDVC K-means, distance, and displacement clustering.
% [clusters] = KDVC(A,clusters,time,climit,dlimit,spdlimit)
returns the kinematic clusters at a given time-step based on user
inputs where A is the input dataset, clusters is the matrix for
output storage, time is the time-step being evaluated, climit is
the user defined course limit in degrees, dlimit is the user
defined distance limit in nautical miles, and spdlimit is the
user definied speed limit in knots.
% Created by LT Kristofer Tester, USN, April 2013

% Determine the size of the input dataset, A
sizeA = size(A);

% Determine the sample of contacts from A to be used in
determining the centroids of k clusters using subset-farthest-
first methodology
sample = round(sizeA(1));
syms w
k = round(solve(sample == 2*w*log(w)));

% Call for function sff in which subset-farthest-first
methodology is implemented. Returns a matrix, kstart, which
contains the centroids for k-means clustering.
if sample >= 3
 eval(['[kstart] = CentroidSff(A,k,sample)']);
else
 kstart = A(1:sample,:);
end

% Conduct k-means clustering on the dataset A using the centroids
stored in kstart. Store the results as B
sizekstart = size(kstart);
if sizekstart(1) == sizeA(1)
 if kstart ~= A
 B = kmeans(A,[],'start',kstart,'EmptyAction','drop');
 else
 B = ones(sizekstart(1),1);
 end
else
 B = kmeans(A,[],'start',kstart,'EmptyAction','drop');
end

% Redefine the A matrix to incorporate the results of k-means
clustering, B
A = [A(:,1) A(:,2) A(:,3) A(:,4) A(:,5) A(:,6) A(:,7) B A(:,8)
A(:,9) A(:,10)];

% Initialize loop variable which aids in titling of the plots
provided by the function
h = 1;

% Define the default line style for plotting
set(0,'DefaultAxesLineStyleOrder',{'-','--',':'})

 80

% Begin loop for clustering analysis of A matrix and continue
loop as long as A has non-zero members
leginfo = {};
while any(A) == 1

 % Determine the row of the A matrix that has the maximum
speed value.
 % Use the corresponding contact as the seed contact.
 [a,b] = max(A(:,6));
 c = A(b,:);
 A(b,:) = A(b,:)*0;

 % Call function Kinematic which is the actual clustering
algorithm. Returns the A matrix along with those contacts that
are clustered together in c
 eval(['[A,c] = Kinematic(A,c,climit,dlimit,spdlimit,h)']);

 % Determine the size of the c matrix
 sizec = size(c);

 % If contacts were clustered together, drop in and plot those
contacts. If contacts were not clustered together, plot nothing
and loop to
 if sizec(1) > 1

 % Ensure the contacts in c are sorted by global
identifier in ascending order
 update = c;
 update = sortrows(update,7);
 clusters = [clusters;update];

 % Quiver plot the contacts that are clustered together in
each time-step
 quiver(c(:,10),c(:,11),c(:,3),c(:,4));
 title('Kinematic Microclusters')
 xlabel('Position in miles from the origin')
 ylabel('Position in miles from the origin')
 leginfo{h} = ['c_' num2str(h)];
 grid on
 hold on
 set(gcf,'color','w');
 h = h + 1;

 % Determine the size of the matrix clusters and add a row
of zeros to separate each cluster found in each time-step
 sizeclusters = size(clusters);
 clusters = [clusters;zeros(1,sizeclusters(2))];
 else sizec(1) < 1
 end
end

% Provide the legend information for the cluster plot
if isempty(leginfo) == 0
 legend(leginfo)
else
end
hold off

 81

clc

 82

function [kstart] = CentroidSff(A,k,sample)

% SFF Subset farthest first function
% [kstart] = SFF(A,k,sample) returns the centroid positions for
use in k-means clustering that are determined using subset
farthest first technology, where A is the input data matrix, k is
the number of centroids to determine, and sample is the size of
the subset of the A matrix to be considered.
% Created by LT Kristofer Tester, USN, April 2013

% Initialize looping variables
n = 1;
j = 1;
sizeA = size(A);
z = sizeA(1);
l = round(sizeA(1)/2-k/2);
B = A;

% Initialize a looping variable and assign the first centroid to
kstart
i = 1;
kstart(1,:) = B(1,:);
B(1,:) = B(1,:)*0;

% After assigning the first member of kstart, reconfigure the B
matrix to exhaust that member
x = nonzeros(B(:,1));
y = nonzeros(B(:,2));
dx = nonzeros(B(:,3));
dy = nonzeros(B(:,4));
cse = nonzeros(B(:,5));
spd = nonzeros(B(:,6));
counter = nonzeros(B(:,7));
t = nonzeros(B(:,8));
lon = nonzeros(B(:,9));
lat = nonzeros(B(:,10));
B = [x y dx dy cse spd counter t lon lat];

% Loop through the B matrix and assign follow-on members of the
kstart matrix (centroids) as the contact that is farthest from
the previous selection.
while i < k
 n = 1;
 sizeB = size(B);
 while n < sizeB(1)
 d(n,i) = sqrt((B(n,1)-kstart(i,1)).^2 + (B(n,2)-
kstart(i,2)).^2);
 n = n+1;
 end
 [F,I] = max(d(:,i));
 i = i+1;
 kstart(i,:) = B(I,:);
 B(I,:) = B(I,:)*0;

 % Reconfigure the B matrix to account for kstart assignment
and exhaust further possible consideration of the members.
 x = nonzeros(B(:,1));

 83

 y = nonzeros(B(:,2));
 dx = nonzeros(B(:,3));
 dy = nonzeros(B(:,4));
 cse = nonzeros(B(:,5));
 spd = nonzeros(B(:,6));
 counter = nonzeros(B(:,7));
 t = nonzeros(B(:,8));
 lon = nonzeros(B(:,9));
 lat = nonzeros(B(:,10));
 B = [x y dx dy cse spd counter t lon lat];
end

 84

function [A,c] = Kinematic(A,c,climit,dlimit,spdlimit,h)

% Kinematic Distance and displacement clustering.
% [A,c] = Kinematic(A,c,climit,dlimit,spdlimit,h) returns the
kinematic clusters at a given time-step based on user inputs
where A is the input dataset, c is the seed contact, climit is
the user defined course limit in degrees, dlimit is the user
defined distance limit in nautical miles, spdlimit is the user
definied speed limit in knots, and h is the time-step.
% Created by LT Kristofer Tester, USN, April 2013

% Determine the size of the A matrix and initialize looping
variable
sizeA = size(A);
n = 1;

% Compare each row of the A matrix to the seed contact in c and
determine if:
% 1. They have the same k-means cluster assignment
% 2. The distance between them is less than the user defined
threshold
% 3. The difference in their courses is less than the user
defined threshold
% 4. The difference in their speeds is less than the user
defined threshold
% If so, cluster them together, set the row in the A matrix to
zero to exhaust it from further consideration, and store the
contact in c
while n <= sizeA(1)
 if c(1,8) == A(n,8);
 if sqrt((c(1,1)-A(n,1)).^2 + (c(1,2)-A(n,2)).^2) <
dlimit;
 if (A(n,5) >= c(1,5)-climit) & (A(n,5) <=
c(1,5)+climit);
 if (A(n,6) >= c(1,6)-spdlimit) & (A(n,6) <=
c(1,6)+...
 spdlimit);
 c(n+1,:) = A(n,:);
 A(n,:) = A(n,:)*0;
 else end
 else end
 else end
 else end
 n = n+1;
end
x = nonzeros(c(:,1));
y = nonzeros(c(:,2));
dx = nonzeros(c(:,3));
dy = nonzeros(c(:,4));
cse = nonzeros(c(:,5));
spd = nonzeros(c(:,6));
counter = nonzeros(c(:,7));
sizex = size(x);
h = h*ones(sizex(1),1);
t = nonzeros(c(:,9));
Lon = nonzeros(c(:,10));
Lat = nonzeros(c(:,11));

 85

% Redefine the c matrix to account for those contacts deemed to
be clustered with the seed contact
c = [x y dx dy cse spd counter h t Lon Lat];
end

 86

function
[MovingClusters,FuseClusters,DiffClusters,CurrentClusters,...
 timecount] = Temporal(compold,storage)

% Temporal Temporal analysis function of STC algorithm.
% Temporal compares the kinematic cluster snapshots from each
time-step to determine which clusters are moving through time.
The results are stored in MovingClusters. FuseClusters contains
the continuity of the moving clusters. DiffClusters contains the
vessel identifiers of those vessels that join or depart already
formed moving clusters. CurrentClusters contains the kinematic
clusters found at the last time-step of data. Created by LT
Kristofer Tester, USN, April 2013

% A snapshot of each time-step has been analyzed, and the
kinematic clusters that occur at each time-step are stored in the
cell array compold. Now initialize looping variables and loop
through compold to determine if any kinematic clusters were
stored. If there were, assign a value of one to the variable
moveon.
zz = 1;
moveon = 0;
timecount = 0;
timemat = [];
while zz <= length(compold)
 if any(compold{zz})
 moveon = 1;
 timecount = timecount+1;
 timemat = [timemat;zz];
 zz = zz+1;
 else
 zz = zz+1;
 end
end

% With moveon equal to one it is known that there are kinematic
clusters stored in compold. It is now time to perform temporal
analysis on those kinematic clusters and determine if any of them
move together over time. Again, while looping through the time-
steps that contain kinematic clusters, the variable fuse will be
defined as the intersection of the current time-step's kinematic
clusters' memberships with the next time-step's kinematic
clusters' memberships. If fuse is greater than or equal to a user
defined threshold, store the kinematic cluster as a moving
cluster. If fuse is less than the threshold or zero, compare the
current time-step's kinematic clusters' membership to the next
time-step plus one's clusters' membership in order to recalculate
fuse. If fuse is still less than the threshold or zero, discard
the kinematic cluster from consideration of being a moving
cluster.
if moveon == 1
 timemat = sort(timemat);
 mm = 0;
 sizetimemat = size(timemat);
 time = timemat(1);
 MovingClusters = {};
 CurrentClusters = {};

 87

 FuseClusters = {};
 DiffClusters = {};
 while time <= timemat(sizetimemat(1))
 mm = mm+1;
 if time == timemat(1);
 B = compold{time};
 C = compold{timemat(2)};
 else end
 if time <= timemat(sizetimemat(1)-2);
 D = compold{timemat(mm+2)};
 else end
 columnB = size(B);
 columnC = size(C);
 columnD = size(D);
 j = 1;
 while j <= columnB(2)
 h = 1;
 sizeB = size(nonzeros(B(:,j)));
 if time <= timemat(sizetimemat(1)-1);
 while h <= columnC(2)
 sizeC = size(nonzeros(C(:,h)));
 Z =
intersect(nonzeros(B(:,j)),nonzeros(C(:,h)));
 sizeZ = size(Z);
 if sizeC(1) > sizeB(1);
 fuse = sizeZ(1)/sizeC(1);
 elseif sizeB(1) > sizeC(1);
 fuse = sizeZ(1)/sizeB(1);
 else sizeC(1) == sizeB(1);
 fuse = sizeZ(1)/sizeB(1);
 end
 katysnumber = 0;
 if fuse >= storage;
 MovingClusters{time,j} = B(:,j);

 FuseClusters{time,j} = fuse;
 if fuse ~= 1 & fuse ~= 0
 X = setdiff(B(:,j),C(:,h));
 DiffClusters{time,j} = X;
 else
 end
 h = columnC(2)+1;
 katysnumber = 1;
 else
 if time <= timemat(sizetimemat(1)-2) & h
<=...
 columnD(2);
 sizeD = size(nonzeros(D(:,h)));
 Z = intersect(nonzeros(B(:,j)),...
 nonzeros(D(:,h)));
 sizeZ = size(Z);
 if sizeD(1) > sizeB(1);
 fuse = sizeZ(1)/sizeD(1);
 elseif sizeB(1) > sizeD(1);
 fuse = sizeZ(1)/sizeB(1);
 else sizeD(1) == sizeB(1);
 fuse = sizeZ(1)/sizeB(1);

 88

 end
 if fuse >= storage;
 MovingClusters{time,j} = B(:,j);

 FuseClusters{time,j} = fuse;
 if fuse ~= 1 & fuse ~= 0
 X = setdiff(B(:,j),D(:,h));
 DiffClusters{time,j} = X;
 else
 end
 h = columnD(2)+1;
 katysnumber = 1;
 else end
 else end
 end
 h = h+1;
 end
 else time == timemat(sizetimemat(1));
 CurrentClusters{1,j} = B(:,j);
 end
 j = j+1;
 end
 B = C;
 C = D;
 if mm < sizetimemat(1)
 time = timemat(mm+1);
 else
 time = max(timemat)+1;
 end
 end
else
 return
end

 89

function
Postprocessing(MovingClusters,FuseClusters,DiffClusters,...
 CurrentClusters,timecount,Data,maxtime,clusters1)

% Postprocessing Function to handle the development of usable
text and visual outputs.
% Postprocessing creates user-friendly text and visual outputs
from the cell array inputs to provide the user an understanding
of the algorithm’s findings.
% Created by LT Kristofer Tester, USN, April 2013

clc
moveon = 0;
zz = 1;
sizeMovingClusters = size(MovingClusters);
while zz <= sizeMovingClusters(1)*sizeMovingClusters(2)
 if any(MovingClusters{zz})
 moveon = 1;
 zz = sizeMovingClusters(1)*sizeMovingClusters(2)+1;
 else
 zz = zz+1;
 end
end
if moveon == 1
 CompClusters = MovingClusters;
 occur = [];
 begin = {};
 time = 1;
 index = 1;
 B = {};
 cluster1 = [];
 l = 0;
 str = ('Moving Clusters:');
 disp(str)
 str = (' ');
 disp(str)
 while time <= sizeMovingClusters(1)
 h = 1;
 while h <= sizeMovingClusters(2)
 if any(MovingClusters{time,h})
 b = nonzeros(MovingClusters{time,h});
 index = 1;
 occur = [];
 while index <=
sizeMovingClusters(1)*sizeMovingClusters(2)
 if any(intersect(MovingClusters{index},b))
 J = nonzeros(MovingClusters{index});
 sizeindex = size(J);
 sizeb = size(b);
 if sizeindex(1) == sizeb(1)
 if J == b
 [I,J] =
ind2sub(sizeMovingClusters,index);
 occur = [occur;I];
 MovingClusters{index} =...
 MovingClusters{index}*0;
 index = index+1;

 90

 else
 index = index+1;
 end
 else
 index = index+1;
 end
 else
 index = index+1;
 end
 end
 if any(occur)
 l = l+1;
 occur = sort(occur);
 sizeoccur = size(occur);
 b = nonzeros(b);
 sizeb = size(b);
 sizeCurrentClusters = size(CurrentClusters);
 current = 0;
 q = 1;
 while q <= sizeCurrentClusters(2)
 Q = nonzeros(CurrentClusters{q});
 sizeq = size(Q);
 if sizeq(1) == sizeb(1)
 if nonzeros(CurrentClusters{q}) ==
nonzeros(b)
 current = 1;
 q = sizeCurrentClusters(2)+1;
 else
 q = q+1;
 end
 else
 q = q+1;
 end
 end
 if current == 1;
 occur = [occur;maxtime];
 if length(occur) == max(occur)-
min(occur)+1;
 str = ['Cluster ' num2str(l)...
 ' containing contacts
',num2str(b'),...
 ' begins at time
',num2str(occur(1)),...
 ' and is a current cluster'];
 else
 str = ['Cluster ' num2str(l)...
 ' containing contacts
',num2str(b'),...
 ' begins at time
',num2str(occur(1)),...
 ', is a current cluster, but gains or loses
members'];
 end
 disp(str)
 current = 0;
 else
 str = ['Cluster ' num2str(l)...

 91

 ' containing contacts
',num2str(b'),...
 ' begins at time ',
num2str(occur(1)),...
 ' and ends at time ',
num2str(occur(sizeoccur(1)))];
 disp(str)
 end

 % Average the cluster-contacts into a
 representative cluster at each timestep
 they occur in order to store the
 information for presentation on the visual
 output.
 sizeoccur = size(occur);
 mm = 0;
 y = occur(1);
 while y <= max(occur)
 mm = mm+1;
 z = 1;
 clust = [];
 while z <= sizeb(1)
 K = find(Data(:,7)==b(z));
 sizeK = size(K);
 if sizeK == 1;
 clust = [clust;Data(K,:)];
 z = z+1;
 else
 clust = [clust;Data(K(mm),:)];
 z = z+1;
 end
 end
 avgxpos = mean(clust(:,1));
 avgypos = mean(clust(:,2));
 avgdx = mean(clust(:,3));
 avgdy = mean(clust(:,4));
 avglon = mean(clust(:,9));
 avglat = mean(clust(:,10));
 avgcse = mean(clust(:,5));
 avgspd = mean(clust(:,6));
 cluster1 = [cluster1;avgxpos avgypos
avgdx avgdy...
 y FuseClusters{time,h} l avglon
avglat...
 avgcse avgspd];
 if mm < sizeoccur(1)
 y = occur(mm+1);
 else
 y = max(occur)+1;
 end
 end
 d = 1;
 while d <= length(CurrentClusters)
 kk = nonzeros(CurrentClusters{d});
 ll = nonzeros(clust(:,7));
 sizekk = size(kk);
 sizell = size(ll);

 92

 if sizekk == sizell
 if length(intersect(nonzeros...

(CurrentClusters{d}),nonzeros...

(clust(:,7))))/length(nonzeros...
 (clust(:,7))) == 1
 f = nonzeros(clust(:,7));
 g = 1;
 while g <= length(f)
 row = find(clusters1(:,7) ==
f(g),1);
 clusters1(row,:) =
clusters1(row,:)*0;
 g = g+1;
 end
 else end
 d = d+1;
 else
 d = d+1;
 end
 end
 sizecluster1 = size(cluster1);
 cluster1 =
[cluster1;zeros(1,sizecluster1(2))];
 end
 else
 h = h+1;
 end
 end
 time = time+1;
 end
 sizecluster1 = size(cluster1);
 o = max(clusters1(:,8));
 r = 1;
 b = [];
 l = l+1;

 % Reorganize the matrix cluster1 for administrative purposes.
 % Determine the maximum and minimum of the cardinal
directions for plotting purposes. Call the moneyscatter function
to create an interactive visual output the function
plot_google_map will lay the google map representation of the
area underneath the output plot for better user situational
awareness.
 cluster1 = [cluster1(:,8) cluster1(:,9) cluster1(:,3)
cluster1(:,4)...
 cluster1(:,5) cluster1(:,6) cluster1(:,7)
cluster1(:,10)...
 cluster1(:,11)];
 west = min(nonzeros((cluster1(:,1))));
 east = max(nonzeros((cluster1(:,1))));
 south = min(nonzeros((cluster1(:,2))));
 north = max(nonzeros((cluster1(:,2))));
 PlotScatter(cluster1)
 title('Interactive Visual Cluster Representation')
 xlabel('Degrees of Longitude')

 93

 ylabel('Degrees of Latitude')
 axis([west-0.5 east+0.5 south-0.5 north+0.5]);
 set(gcf,'color','w');
 plot_google_map

 % Using the cell array DiffClusters, determine which contacts
join and depart other moving clusters throughout the timeline of
analysis. This information is then output in text format for the
user to better determine potential contacts of interest.
 str = (' ');
 disp(str)
 disp(str)
 str = ('Contacts of Interest:');
 disp(str)
 str = (' ');
 disp(str)
 h = 1;
 sizeDiffClusters = size(DiffClusters);
 sizeDC = sizeDiffClusters(1)*sizeDiffClusters(2);
 while h <= sizeDC
 if any(DiffClusters{h});
 occur = [];
 m = nonzeros(DiffClusters{h});
 j = 1;
 sizeCompClusters = size(CompClusters);
 sizeCC = sizeCompClusters(1)*sizeCompClusters(2);
 while j <= sizeCC
 if any(intersect(m,CompClusters{j}));
 [I,J] = ind2sub(sizeCompClusters,j);
 occur = [occur;I];
 j = j+1;
 else
 j = j+1;
 end
 end
 dep = max(occur);% + 1;
 current = 0;
 if length(occur) == timecount-1
 if length(m) > 1
 str = ['Contacts ' num2str(m')...
 ' are a moving cluster that join and depart other larger
clusters.'];
 disp(str)
 else
 str = ['Contact ' num2str(m')...
 ' is a moving cluster that joins and departs other larger
clusters.'];
 disp(str)
 end
 else
 kk = 1;
 sizem = size(m);
 while kk <= sizem(1)
 if any(find((Data(:,7) == m(kk)) &
(Data(:,8)...
 == dep)));
 s(kk) = find((Data(:,7) == m(kk)) &

 94

(Data(:,8)...
 == dep));
 kk = kk+1;
 current = 1;
 else
 kk = kk+1;
 end
 end
 end
 if current == 1
 course = 0;
 speed = 0;
 sizes = size(s);
 kk = kk-1;
 if sizes(1) == 1;
 course = Data(s(1),5);
 speed = Data(s(1),6);
 else
 while kk >= 1
 course = (course+Data(s(kk),5))/2;
 speed = (speed+Data(s(kk),6))/2;
 kk = kk-1;
 end
 end
 if length(occur) == max(occur)-min(occur)+1
 str = ['Contact ' num2str(m')...
 ' joins a cluster at time '
num2str(min(occur))...
 ' and remains with the cluster until it departs at
time '...
 num2str(max(occur)) '. ''The contact departs on average
course '...
 num2str(round(course)) ' at average speed of '...
 num2str(round(speed)) ' knots.'];
 disp(str)
 else
 str = ['Contact ' num2str(m')...
 ' joins a cluster at time '
num2str(min(occur))...
 ', departs the cluster, and then rejoins it, finally departing
at time '...
 num2str(max(occur)) '. ''The contact departs on average course
'...
 num2str(round(course)) ' at average speed of '
num2str(round(speed))...
 ' knots.'];
 disp(str)
 end
 else
 end
 h = h+1;
 else
 h = h+1;

 end
 end
else

 95

 return
end

 96

function PlotScatter(cluster1)

% PlotScatter Interactive scatterplot output
% PlotScatter(cluster1) returns an interactive scatterplot of
the information stored in the cluster1 matrix. The user is able
to interactively click on the scatterplot to determine
information from various data points.
% Created by LT Kristofer Tester, USN, April 2013

% Set default line style for the scatterplot
set(0,'DefaultAxesLineStyleOrder',{'-','-','-','-'})

% Open new figure
fh = figure();

% Plot various colors on a far reach of the figure to enable
labeling in the legend
h1 = plot(1e6,1e6,'r');
hold on
h2 = plot(1e6,1e6,'color',[1 .5 0]);
h3 = plot(1e6,1e6,'g');
h4 = plot(1e6,1e6,'color',[0 .5 .5]);
h5 = plot(1e6,1e6,'color',[.25 0 1]);

% Intialize looping variables
n = 1;
xy = [];

% Loop through each row of cluster1 and plot each cluster in the
appropriate color and style according to its attributes
sizecluster1 = size(cluster1);
while n < sizecluster1(1)
 if any(cluster1(n,:))
 if cluster1(n+1,5) == 0;
 if n == 1 || (cluster1(n+1,5) == 0 & cluster1(n-1,5)
== 0)
 if cluster1(n,6) == 1;
 if any(xy)
 xy = [xy;cluster1(n,1) cluster1(n,2)];
 plot(xy(:,1),xy(:,2),'rx-');
 hold on
 grid on
 xy = [];
 else end
 plot(cluster1(n,1),cluster1(n,2),'ro')
 hold on
 grid on
 elseif cluster1(n,6) >= 0.75 & cluster1(n,6) < 1;
 if any(xy)
 xy = [xy;cluster1(n,1) cluster1(n,2)];
 plot(xy(:,1),xy(:,2),'x-','color',[1 .5
0]);
 hold on
 grid on
 xy = [];
 else end

 97

plot(cluster1(n,1),cluster1(n,2),'o','color',[1 .5 0])
 hold on
 grid on
 elseif cluster1(n,6) >= 0.5 & cluster1(n,6) <
0.75;
 if any(xy)
 xy = [xy;cluster1(n,1) cluster1(n,2)];
 plot(xy(:,1),xy(:,2),'gx-');
 hold on
 grid on
 xy = [];
 else end
 plot(cluster1(n,1),cluster1(n,2),'go')
 hold on
 grid on
 elseif cluster1(n,6) >= 0.25 & cluster1(n,6) <
0.5;
 if any(xy)
 xy = [xy;cluster1(n,1) cluster1(n,2)];
 plot(xy(:,1),xy(:,2),'x-','color',[0 .5
.5]);
 hold on
 grid on
 xy = [];
 else end

plot(cluster1(n,1),cluster1(n,2),'o','color',[0 .5 .5])
 hold on
 grid on
 elseif cluster1(n,6) > 0 & cluster1(n,6) < 0.25;
 if any(xy)
 xy = [xy;cluster1(n,1) cluster1(n,2)];
 plot(xy(:,1),xy(:,2),'x-','color',[.25 0
1]);
 hold on
 grid on
 xy = [];
 else end

plot(cluster1(n,1),cluster1(n,2),'o','color',[.25 0 1])
 hold on
 grid on
 else cluster1(n,6) == 0
 scatter(cluster1(n,1),cluster1(n,2),'ko')
 hold on
 grid on
 end
 n = n+1;
 else
 if cluster1(n-1,6) == 1;
 if any(xy)
 xy = [xy;cluster1(n,1) cluster1(n,2)];
 plot(xy(:,1),xy(:,2),'rx-');
 hold on
 grid on
 xy = [];
 else end

 98

 plot(cluster1(n,1),cluster1(n,2),'ro')
 hold on
 grid on
 elseif cluster1(n-1,6) >= 0.75 & cluster1(n,6) <
1;
 if any(xy)
 xy = [xy;cluster1(n,1) cluster1(n,2)];
 plot(xy(:,1),xy(:,2),'x-','color',[1 .5
0]);
 hold on
 grid on
 xy = [];
 else end

plot(cluster1(n,1),cluster1(n,2),'o','color',[1 .5 0])
 hold on
 grid on
 elseif cluster1(n-1,6) >= 0.5 & cluster1(n,6) <
0.75;
 if any(xy)
 xy = [xy;cluster1(n,1) cluster1(n,2)];
 plot(xy(:,1),xy(:,2),'gx-');
 hold on
 grid on
 xy = [];
 else end
 plot(cluster1(n,1),cluster1(n,2),'go')
 hold on
 grid on
 elseif cluster1(n-1,6) >= 0.25 & cluster1(n,6) <
0.5;
 if any(xy)
 xy = [xy;cluster1(n,1) cluster1(n,2)];
 plot(xy(:,1),xy(:,2),'x-','color',[0 .5
.5]);
 hold on
 grid on
 xy = [];
 else end

plot(cluster1(n,1),cluster1(n,2),'o','color',[0 .5 .5])
 hold on
 grid on
 elseif cluster1(n-1,6) > 0 & cluster1(n,6) <
0.25;
 if any(xy)
 xy = [xy;cluster1(n,1) cluster1(n,2)];
 plot(xy(:,1),xy(:,2),'x-','color',[.25 0
1]);
 hold on
 grid on
 xy = [];
 else end

plot(cluster1(n,1),cluster1(n,2),'o','color',[.25 0 1])
 hold on
 grid on

 99

 else cluster1(n-1,6) == 0
 scatter(cluster1(n,1),cluster1(n,2),'ko')
 hold on
 grid on
 end
 n = n+1;
 end
 elseif cluster1(n+1,5) ~= 0;
 xy = [xy;cluster1(n,1) cluster1(n,2)];
 n = n+1;
 end
 else
 n = n+1;
 end
end

% Define the legend properties and labels for each color
legend([h1 h2 h3 h4 h5],'100%','75-99%','50-74%;','25-49%','0-
25%');
% Enable data cursor mode in the figure and call the function to
enable interactive use and response from the figure
dcm = datacursormode(fh);
datacursormode on
set(dcm,'displaystyle','window');
set(dcm,'UpdateFcn',{@poscluster,cluster1})

% Function call to provide the information for data points on the
scatterplot based on where the data cursor is.
function InfoBox = poscluster(obj,event_obj,cluster1)

% Determine the position of the user mouse click and store in pos
pos = get(event_obj,'Position');

% Define the portions of pos that correspond to the x and y
position values
x = pos(1);
y = pos(2);

% Search the cluster1 matrix for the contact in the selected x
and y posiition
a = find(cluster1(:,1) == x);
b = find(cluster1(:,2) == y);
c = find(cluster1(:,5) ~= 0);

% Set the variable row to the contact in the given x and y
position
row = intersect(a,b);
row = intersect(row,c);

% Set output text accordingly (Could be anything we want it to
be)
InfoBox = {['Longitude: ' num2str(pos(1),4)],...
 ['Latitude: ' num2str(pos(2),4)]...
 ['Cluster: ' num2str(cluster1(row,7))]...
 ['Time: ' num2str(cluster1(row,5))]...
 ['Average Course: ' num2str(round(cluster1(row,8)))]...
 ['Average Speed: ' num2str(round(cluster1(row,9)))]};

 100

THIS PAGE INTENTIONALLY LEFT BLANK

 101

LIST OF REFERENCES

[1] Joint Chiefs of Staff, “Department of Defense Dictionary of Military and

Associated Terms,” Department of Defense, Washington, DC. [Online].

Available: http://www.dtic.mil/doctrine/dod_dictionary/

[2] Joint Chiefs of Staff, “Command and Control for Joint Maritime Operations,”

Department of Defense, Washington, DC. [Online]. Available:

http://www.dtic.mil/doctrine/new_pubs/jp3_32.pdf

 [3] Chief of Naval Operations, “Maritime Domain Awareness,” Department of the

Navy, Norfolk, VA. [Online]. Available: https://community.apan.org/.../TM-

3_2D00_32.1_2D00_10.pdf

[4] Chief of Naval Operations, “A Cooperative Strategy for 21st Century Seapower,”

Department of the Navy, Washington, DC. [Online]. Available:

http://www.navy.mil/maritime/Maritimestrategy.pdf

[5] S. Das, et al., “Spatiotemporal clustering for aggregating hostile units in cluttered

environments,” in 9th International Conference on Information Fusion, pp.1,8,

10–13, 2006.

[6] P. Kanjilal, et al., “Spatiotemporal clustering from noisy data,” presented at the

20th International Joint Conference on Artificial Intelligence, Hyderabad, India,

Jan. 2007.

[7] S. Das, High-Level Data Fusion, Norwood, MA: Artech House, 2008.

[8] G. Welch and G. Bishop, “An introduction to the Kalman filter,” UNC, Chapel

Hill, NIC. Tech. Rep. TR95-041, Nov. 2000. [Online]. Available:

http://www.cs.unc.edu.

[9] J. K. Tunaley, “Algorithms for ship detection and tracking using satellite

imagery,” in Geoscience and Remote Sensing Symposium, IEEE International

Proc., vol. 3, Sept. 20-24 2004.

[10] J. Hwang, et al., “Searching for similar trajectories on road networks using spatio-

temporal similarity,” in Proc. of the 10th East European Conference on Advances

in Databases and Information Systems, Berlin, Germany: Springer-Verlag, pp.

282–295, 2006.

[11] Y. Si, et al., (2009) “Spatio-temporal dynamics of global outbreaks match bird

migration patterns,” in Geospat Health, vol. 4, pp. 65–78, 2009.

 102

[12] Y. Yuan and M. Raubal, “Spatio-temporal knowledge discovery from

georeferenced mobile phone data,” presented at the Proc. Workshop Movement

Pattern Analysis, Zurich, Switzerland, Sept. 14, 2010.

[13] D. C. Eckley and K. M. Curtin, “Evaluating the spatiotemporal clustering of

traffic incidents,” in Computers, Environment and Urban Systems, vol. 37, pp. 70-

81, Jan. 2013.

[14] Memorandum on Navy Maritime Domain Awareness Concept, Department of the

Navy, Washington, DC, Tech. Memo, May 29, 2007.

[15] S. Kisilevich, et al., Spatio-Temporal Clustering, Data Mining and Knowledge

Discovery Handbook, 2nd edition, New York: Springer Press, 2010.

[16] A. Vadivel, et al., “Performance comparison of distance metrics in content-based

image retrieval applications,” presented at the International Conference on

Information Technology, Newark, NJ, 2003.

[17] P. P. Teodorescu, “Kinematics," in Mechanical Systems, Classical Models:

Particle Mechanics. Dordrecht, Netherlands: Springer, ch. 5, pp. 287, 2006.

[18] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on

Information Theory, vol. 28, pp. 129–137, Jan. 1982.

[19] J. B. MacQueen, “Some Methods for classification and Analysis of Multivariate

Observations,” Proc. 5th Berkeley Symposium on Mathematical Statistics and

Probability vol. 1: Statistics, Berkeley: University of California Press. pp. 281–

297, 1963.

[20] D. MacKay, “An Example Inference Task: Clustering,” in Information Theory,

Inference and Learning Algorithms, Cambridge, United Kingdom: Cambridge

University Press, pp. 284–292, Oct. 6, 2003.

[21] MathWorks, “MATLAB help topic on k-means clustering, R2013a

Documentation,” MathWorks, Natick, MA. [Online]. Available:

http://www.mathworks.com/help/stats/kmeans.html

[22] International Maritime Organization, “International Convention for the Safety of

Life at Sea (SOLAS),” International Maritime Organization, London, UK.

[Online]. Available:

http://www.imo.org/About/Conventions/ListOfConventions/Pages/International-

Convention-for-the-Safety-of-Life-at-Sea-(SOLAS),-1974.aspx

[23] N. Bowditch, The American Practical Navigator, National Imagery and Mapping

Agency, Paradise Cay, Oct. 01, 2002.

 103

[24] W. Stutzman and G. Theile, Antenna Theory and Design, Danvers, MA: John

Wiley & Sons, Dec. 29, 1997.

[25] M. E. Celebi, “Effective initialization of k-means for color quantization,” 16th

IEEE International Conference on Image Processing (ICIP), pp. 1649-1652 Nov.

7–10, 2009.

[26] H. Evers and S. Gerky, “The strategic importance of the Straits of Malacca for

world trade and regional development,” Center for Development Research,

University of Bonn, Bonn, Germany, Working Paper Nr. 17, 2006.

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

