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ABSTRACT 

Spatiotemporal clustering is the process of grouping objects based on both their spatial 

and temporal similarity. This approach is useful when considering the distance between 

objects and how that distance changes through time. Spatiotemporal clustering analysis is 

applied to the maritime domain in this thesis, specifically to a defined area of water, 

during a period of time, in order to gain behavioral knowledge of vessel interactions and 

provide the opportunity to screen such interactions for further investigation. The 

proposed spatiotemporal clustering algorithm spatially clusters vessels in the water space 

using k-means clustering analysis, kinematically refines the clusters based on the 

similarity of vessel headings, speeds and the distance between them, and temporally 

analyzes the continuity of membership of the kinematic clusters through time to 

determine which clusters are moving. The algorithm is implemented in the MATLAB 

programming environment, verified with a synthetic data scenario, and validated with 

two real-world datasets. 
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EXECUTIVE SUMMARY 

Maritime domain awareness (MDA) presents a continuous challenge to national strategic 

decision makers and technical analysts. MDA is based on the concept that maritime 

security is achieved or improved through developing an understanding of events 

occurring in the maritime domain. The ability to autonomously classify vessel movement 

at sea in order to gain behavioral knowledge of a water space presents a significant 

challenge, especially when more than 90% of the world’s commerce is conducted by sea, 

and non-traditional maritime threats, counter-proliferation, and piracy are increasingly 

more important to national security. Previously, much effort has been placed into the 

development of algorithms that employ time-series analysis to estimate vessel position 

and predict future vessel location and that determine what normal, and by extension, 

abnormal behavior of vessels at sea can be considered to be. These efforts support the 

creation and maintenance of the recognized maritime picture (RMP) but lack analysis of 

how ships interact and, by extension, a behavioral knowledge of a water space.  

The objective of this thesis is to develop a method to autonomously analyze and 

classify ship movement and possible intent at sea in order to gain behavioral knowledge 

of a specific water space. The approach utilizes spatiotemporal clustering (STC) in which 

spatial relationships between objects are studied as they change over time. The STC 

concept has been applied to other areas, including urban combat environments, 

georeferenced mobile device tracking, traffic incidents, and the spread of the avian 

influenza H5N1. A spatiotemporal extension of STC algorithms designed to analyze 

urban combat environments is used as a method of classifying paralleling and following 

movement behavior in the maritime domain because vessels involved in illicit activity 

may exhibit these behaviors. The proposed STC algorithm for MDA application is 

modeled in the MATLAB programming environment, and results for both simulated and 

real-world scenarios are presented. 

Although there are several methods to perform spatiotemporal analysis, in this 

thesis the process of first applying a k-means proximity filter, kinematically clustering 
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vessels at each unique time-step based on likeness of course, speed, and distance, and 

then performing temporal analysis, is proven to be effective in the maritime domain. 

Both a simulation and real-world data analysis are presented using the MATLAB 

programming environment. The simulation scenario is presented to test operability of the 

kinematic clustering parameter thresholds of the STC algorithm and to verify 

functionality of text and visual outputs. Two real-world datasets, one taken from 

worldwide automatic identification system (AIS) position reports and the other from a 

global positioning system (GPS) source, are used with a hypothetical scenario to illustrate 

the possibilities revealed by this method of analysis.  

In the first real-world data analysis, a hypothetical scenario is presented in which 

a vessel of interest (VOI) might have transferred illicit cargo on a specific date in the 

Strait of Malacca. On the date of interest there are approximately 5,000 AIS vessel 

position reports in the area of interest. The STC algorithm developed in this thesis is 

applied to the AIS dataset to characterize VOI interactions with other vessels in the area 

of interest and to determine if the VOI interacts with or moves in coordination with any 

other vessels. The results of this analysis provide a realistic understanding of the 

capabilities of the STC algorithm. The VOI is found to be spatiotemporally clustered with 

another vessel at multiple time steps during a nearly four hour timespan. The results of 

the real-world data analysis offer enough insight as to the vessel’s interactions during the 

time period of interest for an analyst’s further investigation. 

The second real-world data analysis is performed on GPS data gathered over a 

twenty-three minute period via GPS transmitters mounted on six vehicles simulating a 

collection of small boats travelling together. The drive-plan for the experiment required 

three of the vehicles to form a convoy and maintain speed and distance for the duration of 

the exercise. The other three vehicles acted as confuser vehicles and moved in and out of 

the convoy. The analysis from the STC algorithm reveals that multiple moving clusters 

are tracked over the twenty-three minute period, which is in accordance with the drive-

plan. The two real-world data analyses highlight two different possible uses for the STC 

algorithm.  
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I. INTRODUCTION 

Maritime domain awareness (MDA) presents a continuous challenge to national 

strategic decision makers and technical analysts. Defined as “the effective understanding 

of anything associated with the maritime domain that could impact the security, safety, 

economy, or environment of a nation,” MDA is based on the concept that maritime 

security is achieved or improved through developing an understanding of events 

occurring in the maritime domain [1], [2]. A previous commander of the U.S. Sixth Fleet 

indicated that the interdiction of illegal or terrorist activity in today’s complex 

environment is utterly dependent on maritime domain awareness [3]. 

The gathering and sharing of information and intelligence, between international 

maritime and other partner organizations, in order to develop a recognized maritime 

picture (RMP), is a fundamental component of MDA [3]. In the past, the Department of 

Defense’s (DoD) MDA focus was on understanding opposing navies and maritime 

forces, but more recently this focus has shifted to commercial vessels, as non-traditional 

maritime threats, counter-proliferation, and piracy have become increasingly more 

important to national security [3]. Accordingly, these trends necessitate the tracking, 

managing, and understanding of extensive details about many more vessels, from 

merchant tankers to fishing trawlers and pleasure craft [3]. 

In addition to these emerging trends, the fact that more than ninety percent of the 

world’s commerce today is conducted via the sea results in an even greater need for 

capabilities to track vessels and assess their behaviors [4]. The ability to autonomously 

classify vessel movement at sea, in order to gain this behavioral knowledge of a specific 

water space, is a novel challenge. From a national security perspective, vessels of interest 

(VOI) are often found to be moving together in formation, following or paralleling, or 

converging for transfer of illicit cargo. From a simple navigation radar display, an 

example of which is illustrated in Figure 1, to a vessel listing system like the automatic 

identification system (AIS), classifying these types of movement utilizing the tools 

available is a time-intensive process for even a team of analysts. Automating the analysis 

of ship movements through the use of  a spatiotemporal clustering algorithm provides a 

flexible, user-interfaced solution. 



 

Figure 1.  A 24- hour satelli
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B. RELATED WORK 

In the maritime domain much effort has been placed into the development of 

algorithms that employ time-series analysis to estimate vessel position, predict future 

vessel location, and determine what is normal, and by extension, abnormal behavior of 

vessels at sea [8]. Specifically, Tunaley describes the development of a ship detection and 

tracking program that is designed to analyze processed imagery rapidly and 

inexpensively and to deliver messages automatically by email [9]. Efforts like Tunaley’s 

support the creation and maintenance of the RMP but lack analysis of how ships interact 

and, by extension, a behavioral knowledge of the water space. One potential solution to 

overcome this shortcoming is STC analysis as proposed in this thesis. 

The STC concept has not previously been applied to the maritime domain but has 

been applied in other areas. Hwang et al. examined the properties of moving objects in 

road networks in [10] and defined spatiotemporal similarity between trajectories based on 

points and times of interest. From their work, early methods were proposed for searching 

for similar trajectories amongst moving objects in road networks, and one of these early 

methods serve as the framework for the STC analysis in this thesis. Si et al. later used 

STC via the space-time permutation scan statistic to analyze the spread of the avian 

influenza H5N1 in poultry, wild birds, and humans in [11]. Their STC analysis aided 

them in determining that H5N1 outbreaks showed a clear seasonal pattern and were 

shown to be relatable to the patterns of migration of wild birds. The space-time 

permutation model was an option for the basis of STC in this thesis, but the STC 

algorithm used in this thesis analyzes the water space of interest in one sweep instead of 

using multiple smaller area sweeps. 

Yuan and Raubal expanded on the STC concept and provided a framework for the 

extraction of spatiotemporal knowledge from georeferenced mobile phone devices and 

other information and communication technologies [12]. In [13], Eckley and Curtin 

presented methods for performing spatiotemporal analysis, with special attention given to 

the interpretation of the results for traffic incidents and also presented arguments for 

performing spatial and temporal analyses independently. The works presented in [12] and 
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[13] expanded upon the use of STC to analyze data and explored the idea of extracting 

information from the analysis results, similar to the intent of the work in this thesis.  

Das et al. created STC algorithms to explore urban combat environments in [5]-[7] 

to introduce a method of analyzing troop movements and interactions on land. Their use of 

STC in combat environments was the genesis of the idea to extend spatiotemporal analysis 

to the maritime domain to study the interactions of vessels at sea. An extension of the 

direction and displacement directivity algorithm presented in [5]-[7] is used in this thesis. 

C. THESIS OUTLINE 

The outline of this thesis is as follows: background information on several topics 

including the United States Navy MDA concept, an explanation of one of the data 

sources used in this thesis, spatiotemporal clustering and its fundamental parts, and k-

means clustering are presented in Chapter II. The STC algorithm components of data 

conditioning, cluster preprocessing, proximity filtering, kinematic filtering, temporal 

analysis, and the post-processing of spatiotemporal results to create easily understood text 

and visual outputs are discussed in Chapter III. The set-up and results of the simulation 

scenario and real-world data analyses are detailed in Chapter IV. A summary of the work 

completed, the significant results, and ideas for future work are provided in Chapter V. 

The MATLAB code that implements the STC algorithm is included in the Appendix. 
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II. BACKGROUND 

A brief overview of the DoD MDA concept was provided in Chapter I. In this 

chapter, a more detailed description of the Navy’s approach to MDA is presented in order 

to frame the current methods being utilized and bring to light the shortfalls faced by these 

methods. A discussion of a typical data source used in real-world analysis is presented, 

along with alternative sources. The STC concept and spatial and temporal data are 

defined. The advantages and disadvantages of three methods of STC are discussed, and 

an overview of the k-means clustering algorithm is provided. At the end of this chapter, 

the reader will have the necessary understanding to comprehend the details of the STC 

algorithm prior to its application to synthetic and real-world datasets. 

A. NAVY MARITIME DOMAIN AWARENESS CONCEPT 

The Navy MDA concept was elaborated on in May 2007 by then Chief of Naval 

Operations (CNO) Admiral Michael Mullen. The memorandum he signed provided a 

framework to prioritize the MDA efforts across the Navy, to ensure alignment with 

external MDA initiatives, and to outline the fleet MDA concept of operations (CONOPS) 

[14]. The implementation of MDA guidance was intended to take ten years, so efforts to 

improve MDA are ongoing and remain relevant [14]. Vice Admiral Nancy Brown, then 

Director, Command, Control, Communications and Computers (C4) Systems on the Joint 

Staff, summarized the importance of the Navy’s role in MDA in 2010 when she indicated 

that with the astronomical number of vessels at sea, the purpose of MDA is to gain an 

understanding of the small number of them that are involved in illicit activity, and that 

mission on the high seas is owned by the Navy [14]. 

The CONOPS for MDA organizes the MDA process into five activities. The 

activities are monitor, collect, fuse, analyze, and disseminate and are detailed in Table 1.  
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Table 1.   The U.S. Navy fleet maritime domain awareness process. From [3]. 

 

MDA analysts and maritime operation centers (MOC) should have the ability to 

persistently monitor, access, and maintain information on vessels and craft, cargo, vessel 

crews and passengers, maritime infrastructure, and other identified areas of interest. 

Legally protected personal information and private sector proprietary information should 

be safeguarded and protected in accordance with U.S. and DoD regulations. The MOC 

should also be efficient in collecting, fusing, analyzing, and disseminating information to 

facilitate effective understanding and threat detection to decision makers and partner 

MDA organizations [3]. The introduction and development of a STC algorithm to support 

MDA seeks to support the Navy’s CONOPS for the MDA mission as described above.  

B. DATA SOURCE OPTIONS FOR STC ANALYSIS 

The STC algorithm is designed to ingest data in a particular manner, taking into 

consideration the position, course, and speed of vessels at sea. The data sources for the 

real-world analyses presented in Chapter IV are derived from AIS and the global 

navigation satellite system (GNSS), the broad term for the global positioning system 

(GPS). AIS is used because of its availability and the ease with which it can be formatted 

and used. In order to employ the algorithm, three requirements for a data source must be 

met. The first is that the data must provide knowledge of georeferenced vessel position, 

ideally in degrees of latitude and longitude. A source would be compatible as long as 

degrees of latitude and longitude can be extrapolated. The second requirement is that the 

data must provide knowledge of the course and speed associated with each vessel. The 
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third requirement is that each vessel position report include a time reference. With these 

three requirements met, other parameters such as the vessel identifier can be defined 

locally, as the global identifier need only identify individual vessels to the program user. 

Various other data sources could be used with this algorithm, including data derived from 

intelligence, surveillance, and reconnaissance systems, as long as the three requirements 

above are met. 

A disadvantage of using AIS as the primary data source is that a particular VOI 

may not properly report position or even transmit its AIS signal. Further, because only 

certain classes of vessels are required to operate AIS, a VOI may not be outfitted with the 

system. In this thesis the assumption is made that a VOI will properly report its position 

because vessels that are involved in illicit activity will often attempt to act as normal as 

possible in order to detract attention from them. Another assumption is that many vessels 

that are of interest for national security purposes fit the criteria to need the use of AIS 

onboard. The use of GNSS as a data source in the second scenario provides an alternative 

to AIS. GNSS does not have the above disadvantages, nor do the assumptions above need 

to be made. Those criteria are outlined in Chapter IV. 

C. SPATIOTEMPORAL CLUSTERING 

Kisilevich et al. [15] define STC as the process of grouping objects based on their 

spatial and temporal similarity. STC is a relatively new approach to data mining and has 

been primarily used in mobile device and other location-based data tracking problems. In 

its application to the maritime domain, STC analysis is used to detect paralleling and 

following behaviors between vessels. Paralleling behavior is when one vessel traces the 

same or similar spatial pattern at the same time as another vessel but is offset in space [7]. 

Following occurs when one vessel traces the same or similar spatial route as another 

vessel at a later time [7]. To provide a better understanding of STC it is necessary to 

define what spatial and temporal datasets are and how they can be analyzed to create a 

STC result. 



 

 8

1. The Relationship Between Spatial and Kinematic Data 

Spatial data contains information that describes the location of objects in relation 

to Earth, to each other, or to another frame of reference. A metric of distance is used 

when describing spatial relationships between objects. Several distance metrics exist, but 

two of the most common are the Manhattan and Euclidean distances. The Manhattan 

distance dMH
 between two points (x1, y1) and (x2 , y2 )  is computed as the sum of the 

absolute differences of their Cartesian coordinates and is mathematically described as 

[16] 

 dMH = x1 − x2 + y1 − y2 .  (1) 

This can be more easily thought of as the number of city blocks we would travel between 

points and is most relevant when measuring distance in a grid-constrained context [16].  

Euclidean distance, on the other hand, is the more common straight-line distance 

metric and is defined as the length of the line segment that connects two points [16]. The 

Euclidean distance dEU
 between two points (x1, y1) and (x2 , y2 )  is mathematically 

described as [16] 

 dEU = x1 − x2( )2
+ y1 − y2( )2

.  (2) 

To understand the underlying behaviors of paralleling and following, kinematic 

information is also required. Kinematics describes the motion of points in a particular 

frame of reference, and kinematic similarity between nearby objects can suggest 

collusion and other behaviors of interest [17]. In this maritime application, vessel 

characteristics like course and speed will factor largely into determining vessels that are 

exhibiting paralleling or following behavior. For this reason the STC algorithm does not 

exclusively spatially cluster vessels at sea, but rather does so kinematically by 

considering course and speed characteristics in addition to spatial relationships.  

2. Temporal Data 

Temporal data represents variable-state variation in time. It is often collected to 

analyze weather patterns, monitor traffic conditions, or study demographic trends, among 
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many other applications. Any variable that changes over time can be organized into a 

temporal dataset. The fifth stage of the STC algorithm is temporal data analysis.  

3. Spatiotemporal Clustering Approaches 

As stated, in this thesis STC analysis is applied to the maritime domain in order to 

autonomously classify vessel movement at sea in order to gain behavioral knowledge of a 

water space, specifically to determine when vessels exhibit paralleling or following 

behavior as an indicator of possible illicit behavior. 

Hwang, Kang, and Li [10] propose three methods to perform STC of objects 

moving on road networks. These methods can be extended to moving vessels at sea. In 

the first method, clusters are formed based on spatial clustering and are then refined with 

temporal analysis. In the second method, clusters are formed based on temporal 

clustering and then refined with spatial analysis. In the third method, clusters are formed 

based on the simultaneous consideration of spatial and temporal analyses. 

In this thesis the first method is used as the general approach to STC. The second 

method is not easily translated to the maritime domain because temporal clustering would 

yield much larger clusters in need of kinematic refinement and, in turn, create a more 

difficult problem. This would not be an efficient approach to analyzing a water space that 

has high traffic density, like a major strait. The third method is likely the most robust of 

the three, but because of the time-latent nature of maritime domain data, it is not 

necessary to simultaneously consider space and time. The simultaneous accounting of 

kinematic and temporal attributes creates a larger workload and leads to inefficiencies in 

the STC algorithms’ performance. Based on the first method above, vessels at sea are 

kinematically clustered and then refined through temporal analysis to form 

spatiotemporal results which can be processed for further understanding. 

D. K-MEANS CLUSTERING ANALYSIS 

A version of the k-means clustering algorithm was first proposed in 1957 as a 

technique for pulse code modulation, but the term “k-means clustering” came into use 

when McQueen [18] published the term in 1967 [19]. K-means clustering seeks to 
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partition a set of n  observations x1, x2 ...xn( )  into a set c  of k  clusters c = c1,c2...ck{ },
 

where both the observations and clusters are vectors of specified dimension. The k-means 

clustering process can be described as the optimization of the objective function [20] 

 J = argmin
c

xi − µ j

xi ∈ c j

∑
2

j=1

k

∑   (3) 

where µ j
 is the centroid of observations in c j

. The centroid of a cluster is defined as the 

mean of the observations in the cluster as 

 µ j =
1

Ncj

xi

i=1

Ncj

∑ ,   (4) 

where xi
 are members of the cluster and Ncj

 is the number of observations in the cluster. 

The most common form of the k-means algorithm uses an iterative refinement 

approach with two steps. In the assignment step an observation xi
 is assigned to the 

cluster whose centroid is closest to it using the nearest neighbor rule 

 d xi ,µl( ) ≤ d xi ,µ j( )  for j ≠ k  and 1 ≤ j ≤ k,   (5) 

where the distance d  is defined as 

 d x
i
,µ

l( ) = µ
lm

− x
im

( )
2

m

∑ .  (6) 

Once all observations have been assigned to a cluster, the update step calculates 

the new centroid of each cluster. The algorithm then goes back to the assignment step and 

reassigns the observations using the new cluster centroids. The algorithm is complete 

when the observation assignments no longer change [20]. 

The k-means clustering algorithm uses the Euclidean distance metric when 

minimizing the within-cluster sum of squares and calculating the mean in the assignment 

step. The main drawback to k-means clustering is that the number of clusters to be used 

k  is an input parameter to the algorithm and a poor choice for k  can lead to poor results. 

As such, any use of the k-means algorithm should include a discussion regarding the 



 

selection of k . An example of the result of k

which k = 2  and the data points associ

Figure 2.  K-means clustering result

In this chapter an overview of the Navy’s approach to MDA was presented to 

frame possible uses of the STC algorithm. A discussion of AIS data and alternative 

sources was discussed. Spatial and kinematic data were conceptualized, and an overview 

of the k-means clustering algorithm was provided. 
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example of the result of k-means clustering is given in Figure 2

and the data points associated with each cluster are colored red and blue.

means clustering result on a random set of data points when 

After [21]. 

In this chapter an overview of the Navy’s approach to MDA was presented to 

frame possible uses of the STC algorithm. A discussion of AIS data and alternative 

sources was discussed. Spatial and kinematic data were conceptualized, and an overview 

ans clustering algorithm was provided.  

 

clustering is given in Figure 2, in 

ated with each cluster are colored red and blue. 

 

on a random set of data points when k=2.  

In this chapter an overview of the Navy’s approach to MDA was presented to 

frame possible uses of the STC algorithm. A discussion of AIS data and alternative 

sources was discussed. Spatial and kinematic data were conceptualized, and an overview 
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III. SPATIOTEMPORAL CLUSTERING ALGORITHM 

A background of the STC concept was presented in Chapter II. Specifically, the 

relationship of spatial and kinematic data was addressed, and three methods of STC were 

presented. The method of forming clusters kinematically and performing temporal 

analysis to form spatiotemporal clusters is applied to the maritime domain in this chapter. 

An overview of the proposed algorithm is presented, followed by an in-depth explanation 

of the progression and development of the STC algorithm, with a focus on its six stages: 

1) data conditioning, 2) cluster preprocessing, 3) proximity filtering, 4) kinematic 

filtering, 5) temporal refinement, and 6) post-processing of spatiotemporal results. 

The algorithm begins with an input dataset consisting of vessel position reports 

during a specific timeframe. After user-provided input for parameter definitions, the data 

is submitted to a data conditioning stage in which time indices are assigned and the data 

is formatted, filtered, and converted. The proximity filtering stage spatially refines the 

position attributes of the vessel position reports, and through kinematic filtering, clusters 

of vessels are formed at each time-step based on similarity of vessel courses, speeds, and 

distance between them. The kinematic clusters are temporally refined to determine which 

of them can be considered moving clusters and which are only present at one instance in 

time. Once vessel position reports have been analyzed both kinematically and temporally, 

the results are spatiotemporal in nature and completely describe how the kinematic 

relationships between vessels change over time. Behavioral knowledge of the water space 

can then be gained through post-processing of the results and interpretation of the text 

and visual outputs. The progression of the six stages of the STC algorithm along with 

data input and behavioral knowledge output are depicted in Figure 3.
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Figure 3.  Top-level view of the spatiotemporal clustering algorithm.  
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A. INPUT 

As illustrated in Figure 3, there are two types of input provided to the STC 

algorithm. The first is the collection of vessel position reports, which is the bulk data the 

STC algorithm analyzes to gain behavioral knowledge of the water space of interest. The 

second input is the user-provided input. Different parameters must be defined, either 

through use of default values or through manual input, to enable the various stages of the 

STC algorithm to function. 

1. Collection of Vessel Position Reports 

Vessel attribute data reports, which are transmitted by vessels as discussed in 

Chapter II, containing information on position, course, speed, a timestamp of the report, 

and other attributes this work does not concern, are collected from a suitable data source. 

A vessel identifier, such as MMSI, is typically supplied, and a local identifier may be 

defined, if necessary. A typical data source for this application is AIS information. In this 

thesis, AIS is the primary data source used because of its availability. The International 

Maritime Organization (IMO) requires AIS to be fitted aboard international voyaging 

ships with gross tonnage of greater than 300 tons and all passenger ships regardless of 

size [22]. The IMO requirement means that most sea-going commercial vessels are 

outfitted with and required to transmit position reports in AIS. AIS is, therefore, a 

suitable selection as the input data source for the development of a STC algorithm aimed 

at improving MDA. A typical AIS position report dataset is formatted into eleven fields, 

the titles of which are provided in Table 2.  

The input dataset provided to the STC algorithm is a collection of AIS data for a 

specific period of time in a specific location. For the purposes of the STC algorithm, the 

data fields required are MMSI, speed over ground, longitude, latitude, course over 

ground, and the Coordinated Universal Time (UTC) timestamp. These six fields must be 

formatted and placed in the correct order to be analyzed and understood by the STC 

algorithm. This formatting occurs in two stages, data conditioning and cluster 

preprocessing, which are discussed following a description of user input. 
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Table 2.   Typical field headings of an AIS vessel position and attribute report. 

MID MMSI 

Nav Status Rate of Turn 

Speed Over Ground Longitude 

Latitude Course Over Ground 

Heading UTC Timestamp 

Source 

 

2. User Input 

The algorithm requires four mandatory and five optional user inputs. The four 

mandatory user inputs are: 1) data source, 2) parameter selection method, 3) location 

filter definition, and 4) minimum vessel speed for consideration. The five optional user 

inputs, each of which has an associated program default value, are: 1) time window 

length, 2) maximum distance between contacts, 3) maximum heading difference between 

contacts, 4) maximum speed difference between contacts, and 5) moving cluster 

threshold value. Both the mandatory and optional user inputs are summarized in Table 3. 

a. Mandatory User Inputs 

(1) Data Source and Type 

The first mandatory user-provided input is the data source 

positional data type. Positional data is provided in either degrees of latitude and longitude 

or in Cartesian coordinates. Positional data in degrees of longitude and latitude require 

conversion to the x-y coordinate grid for STC algorithm analysis, with zero degrees 

longitude and latitude serving as the origin. Conversely, data presented directly in the x-y 

coordinate grid are excused from the data conversion and preprocessing step. Both types 

of data then undergo time indexing in order to create time-step assignments.  
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Table 3.   Summary of mandatory and optional user inputs with default values and 

selection ranges. 

Variable Mandatory/Optional Default Value Selection Range 

Data Source and 

Type 
Mandatory - 

Synthetic or Real-

World 
Parameter 

Selection Method 
Mandatory - 

Default Values or 

Manual Input 

Location Filter 

Definition 
Mandatory - 

Central Latitude 

and Longitude, 

and Width and 

Height of Box 
Minimum Vessel 

Speed 
Mandatory 2 Knots 0 – 30 Knots 

Time Window 

Length 
Optional 12 Minutes 1 – 120 Minutes 

Maximum 

Distance Between 

Contacts 

Optional 8 Nautical Miles 
0 – 50 Nautical 

Miles 

Maximum 

Heading 

Difference 

Optional  39o   0
o  to 359o  

Maximum Speed 

Difference 
Optional 16 Knots 0 – 30 Knots 

Moving Cluster 

Threshold Value 
Optional 60% 0% - 100% 

 

(2) Parameter Selection Method 

The second mandatory user-provided input required for program 

operability is the parameter selection method. When prompted, the user must decide 

whether to use program default values or to manually input them for STC algorithm 

calculations. The default values are explained in detail as part of each parameter’s 

discussion that follows. Manual user inputs for each parameter have a high degree of 

freedom and are bound only by technical constraints (e.g., a vessel can only have a course 

heading between  0
o  and 359o

).  
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(3) Location Filter Definition 

The third mandatory user-provided input defines the location of 

interest for analysis. This input requires four attributes: 1) central latitude, 2) central 

longitude, 3) height, and 4) width. All four parts are defined in tenths of degrees of 

latitude and longitude and form a rectangular shaped bounding box. With this input the 

user can tailor the geographical region of interest for STC analysis. 

(4) Minimum Vessel Speed 

The fourth mandatory user-provided input is the minimum vessel 

speed for the STC algorithm to consider. The default value is two knots, but the user can 

select any speed value from zero to thirty knots. All contacts traveling at or below the 

selected speed are eliminated from consideration by the STC algorithm. 

b. Optional User Inputs 

The five optional user-provided inputs each have an associated default 

value. If the user opts for the manual parameter selection method, the following five 

parameters require specific assignment. 

(1) Time Window Length 

In order to make proper time-step assignments, the STC algorithm 

requires a defined time window length in minutes, as well as a defined start hour and start 

minute. The time window length serves as the minimum amount of time that can exist 

between each individual contact’s position reports. If a contact reports itself more than 

once per time window, a function of the STC algorithm averages the multiple reports into 

one representative contact report. The values available for user selection range from one 

to one hundred and twenty minutes. The default setting is twelve minutes and is derived 

from the six minute rule of navigation, which says that the speed at which a vessel is 

traveling divided by ten is the distance it will travel in six minutes and is defined as  

 d =
s

10
  (7) 
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where d  is the distance in nautical miles traveled in six minutes, and s  is the speed in 

knots of the vessel [23]. The start hour and start minute are defined by the user as the 

starting time from which to calculate time steps based on time window length. For 

example, if the start hour is 01 and the start minute is 00, and time window length is 

twelve minutes, time-step one will be from 01:00:00-01:11:59 and time-step two from 

01:12:00-01:23:59. 

(2) Maximum Distance Between Contacts 

During the kinematic clustering of contacts there are four factors 

taken into consideration. The first parameter input to kinematic clustering is the maximum 

distance between contacts measured in nautical miles. The value of this parameter is 

subjective as to how far apart two vessels can be and be considered to be paralleling or 

following each other in a manner of interest. Two logical values for this parameter are line-

of-radar-sight and line-of-visual-sight, which are the distances from which a vessel can be 

detected by radar and visually, respectively, and can be calculated as 

 Rradar = 1.23 h1 + h2( )   (8) 

 Rvisual =
h1

0.5736
  (9)  

where R  is the range in nautical miles, h1
 and h2

 are the height of the observer and 

target in feet, respectively [24].  

When calculated with h1
 and h2

 set to the height of the pilothouse of a 

DDG-51 Arleigh Burke Class Destroyer, the values for Rradar  and Rvisual
 are 

approximately eight and 16 nautical miles, respectively. The default value for maximum 

distance between contacts is set to eight nautical miles. The reason for this is that while 

ships not in visual sight of each other could be exhibiting behavior of interest, illicit 

behavior is more likely to occur when ships are within visual sight. 
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(3) Maximum Heading Difference 

The next parameter input is the maximum heading difference, 

measured in degrees between contacts. When determining the value of maximum heading 

difference to consider, the user subjectively defines what is encompassed in paralleling or 

following behavior. The range of input from which the user can select begins at  0
o
 and 

extends to  359o
. A key consideration when setting the value for this parameter is the 

distance between the two contacts at the start of the analysis. The default setting for this 

parameter is  39o  and is based on the contacts beginning essentially in the same position. 

This value was determined as the angle that is formed for two vessels that are slightly 

more than eight nautical miles apart, the default value for maximum distance between 

contacts, after traveling for sixty minutes, or five time steps, assuming the default value 

for time window length, at a speed of 12 knots. The setup of this is illustrated in Figure 4. 

The values for maximum heading difference when using alternate starting distances 

between contacts us shown in Table 4. 

 

Figure 4.  An illustration of the determination of the maximum heading difference of 

two contacts beginning in the same position.  
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Table 4.   Maximum heading difference values for various beginning distances 

between two contacts traveling at 12 knots for sixty minutes. 

Starting Distance Between 

Contacts 

Maximum Heading 

Difference 

0 Nautical Miles  39o  

1 Nautical Mile  34o 

3 Nautical Miles  24o  

5 Nautical Miles  14o  

 
(4) Maximum Speed Difference 

Similar to the maximum heading difference, the maximum speed 

difference between contacts is a key parameter during the kinematic clustering stage of 

the algorithm. The range of input for maximum speed difference is from zero to thirty 

knots. Selecting a value of zero or near zero indicates that for vessels to be clustered 

together they would need to be traveling at identical speeds. On the other hand, selecting 

a value near thirty, which is considered the higher end of maximum attainable speed of 

ships at sea, would result in this parameter not having a significant role in the clustering 

algorithm. The default for maximum speed difference is set to 16 knots, which was 

determined by considering the following overtaking problem, illustrated in Figure 5. 

Vessel A begins eight nautical miles astern of vessel B and is traveling 16 knots faster. 

After sixty minutes, vessel A is 8 nautical miles ahead of vessel B.  



 

 22

 

Figure 5.  An illustration of the overtaking problem to determine the maximum speed 

difference between contacts that begin eight nautical miles apart.  

(5) Moving Cluster Threshold Value 

The moving cluster threshold value that is used to determine 

whether kinematic clusters are stored as moving clusters, or are discarded, must be 

defined. In this selection, the user defines the degree to which the membership of a 

moving cluster can change and still be considered a moving cluster. The sizes of the 

dataset and moving cluster have a large impact on the moving cluster threshold value 

selection. The larger the sizes, the higher the moving cluster threshold value should be. If 

the sizes are small, the moving cluster threshold value should be set to a smaller value to 

allow for better tracking. For example, if the moving cluster contains four contacts, the 

threshold could be set at 50% or below to track the cluster even if two vessels depart. If 

the cluster contains ten contacts, the threshold could be set to 80% to still allow for two 

vessels to depart the cluster. The range of values for selection begins at 0% and extends 

to 100%. A selection of 0% would discount the temporal consideration of the STC 

algorithm, while a selection of 100% would require that a moving cluster not lose any 

members in order to maintain its status as a moving cluster. The default value is 60%, 

which allows a moving cluster of five contacts to lose up to two members and still be 

considered a moving cluster. 

B. DATA CONDITIONING 

Data conditioning is the stage in which the input dataset is formatted and aligned 

for STC algorithm use. First, time indexing, the process of converting UTC seconds to a 
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time-step assignment, an integer greater than or equal to one, is applied to the input 

dataset. UTC seconds are converted to the time and date of the timestamp, and then, with 

the user input for start hour, start minute, and time window length, the time and date is 

converted to a time-step value t.  A function designed to ensure that each MMSI or vessel 

identifier has only one position report for each time-step is also applied. If a vessel has 

more than one report in a time-step, the vessel attributes from the multiple reports are 

averaged to form one representative report for the time-step. 

Second, the dataset is formatted and placed in the correct order so that the 

required data fields are properly aligned for STC algorithm use. Each unique AIS vessel 

attribute report is stored as a row in the matrix Ψ  in which each column represents a 

vector of different attribute from the AIS data as 

 Ψ = x y r s m t



,

  (10) 

where Ψ  is of size LAIS × 6,  and LAIS
 is the number of AIS vessel reports in the input 

dataset. The variables are all vectors of length LAIS ×1 and x  and y  describe each 

vessel’s position on the x-y coordinate grid, r  its course, s  its speed, m  its MMSI, and t  

its time-step assignment.  

C. CLUSTER PREPROCESSING 

Cluster preprocessing is the introduction of vessel identity indexing and the 

decomposition of Ψ  into manageable pieces for STC algorithm analysis. During the 

clustering preprocessing stage, each unique MMSI in the vector m  is assigned an index 

q  beginning at 1 and continuing until each unique MMSI has an assignment. The index 

q  will be used as a subscript to identify which vessel’s attributes are being used. 

The Ψ  matrix is decomposed by time-step assignment into a three-dimensional 

matrix ψ  of dimension Lt × 4 × Nt
 where Nt

 represents the maximum number of time 

steps, Lt
 is the number of vessels in each time-step, and Lt∑ = LAIS . The data matrix ψ  

can be represented at the t -th time-step as 
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 ψ t = x ' y ' r ' s '



,

  (11) 

where  
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sq























,   (12) 

and q  is the vessel identity index. 

D. PROXIMITY FILTERING 

Proximity filtering, accomplished through the use of k-means clustering, 

identifies spatial relationships between vessels at a particular time-step. Only x  and y  

position data of ψ t  is considered. The optimum number of centroids k  available for 

assignment is calculated from the length of ψ
t
 at the time-step being analyzed as [25] 

 L
t
= 2k log k( ).  (13) 

To determine the specific centroids at each time-step, the farthest-first 

methodology is used [25]. The x  and y  position information for the contact in the first 

row of ψ t
 is designated as the initial centroid. The second through k -th centroids are 

chosen to be the contact that has the maximum Euclidean distance from the previously 

selected centroid. For example, for t = 1 the first contact of ψ 1  is designated as the first 

centroid. The second centroid is chosen as the contact has the greatest distance from the 

first centroid, where distance is calculated as 

 d = xn − x1( )2
+ yn − y1( )2

  for n = 2,3,...Lt .  (14) 

The third centroid is chosen as the point that has the greatest distance d  from the second 

centroid and so on.  
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Then the centroids are used to perform k-means clustering on the position data in 

ψ t  to spatially refine the contacts by assigning each contact to one of the centroids. The 

contacts associated with each centroid j  at each time-step t  are stored in a matrix c j

t
 of 

size Lt j
× 4  where Lt j

 is the number of contacts assigned to each centroid at each time-

step as 

 c j

t = x ' y ' r ' s '



  for j = 1,2,...k,   (15) 

where x ',  y ',  r ',  and s '  are vectors of size Lt j
×1 containing the respective attributes for 

the vessels in the cluster. After all contacts have been assigned to a centroid, k-means 

cluster assignments for a time-step are stored in a cell array ξ t  as 

 ξ t = c j

t
c j+1

t . . . ck

t{ }.  (16) 

A cell array is a set of matrices of different dimensions. At the completion of the 

proximity filtering stage there is a cell array ξ t  for each time-step that contains the k-

means assignment for all contacts in that time-step. 

E. KINEMATIC FILTERING 

Kinematic filtering is used to further refine the clustering results from the 

proximity filter to form clusters of contacts with attributes that exhibit paralleling or 

following behavior as defined by the user. In kinematic filtering, the similarities of course 

and speed attributes of vessels, as well as the distance between them, are determined for 

each k-means cluster. In each cluster c j

t
 in ξ t ,  a seed contact σ  is determined as the 

vessel with the maximum speed in c j

t
 to initialize kinematic filtering as  

 σ = max s '( ),  (17) 

where s ' is a vector of speeds in c j

t . To formulate kinematic clusters, three thresholds are 

defined. The heading difference between the seed contact and all other contacts in c j

t
 is 

defined as 
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 TH = rqσ
− rqp

  for p = 2,3,...Lt j
,   (18) 

the speed difference is defined as 

 TS = sqσ
− sqp

,  (19) 

and the distance between them is defined as 

 TD = xqσ
− xqp

( )
2

+ yqσ
− yqp

( )
2

.  (20) 

If TH ,TS ,  and TD
 are less than the user defined thresholds for maximum heading 

difference, maximum speed difference, and maximum distance between contacts, the 

contacts associated with qσ
 and qp

 are classified as a kinematic cluster φ
l

t  and are 

represented as 

 φl

t =
qσ

qp












 for l = 1,2,...Lt   (21) 

where i  is the number of kinematic clusters for each time-step of ξ t . The length of φ
l

t  

varies and is dependent on the number of contacts that when compared with the seed 

contact result in TH ,TS ,  and TD
 values that are less than the user defined thresholds. The 

contacts assigned to φ
l

t  from c j

t
 are removed from further consideration for assignment to 

another kinematic cluster. 

A new seed contact is determined so that TH ,TS ,  and TD
 may be calculated for the 

remaining contacts in c j

t
 to discover other kinematic clusters as described in Equations 

(17)-(21). The iterative process continues until all contacts in c j

t
 have been considered for 

assignment to a kinematic cluster. Upon completion, a snapshot of the kinematic clusters 

in ξ t  are compiled in a cell array β t  for temporal analysis as 

 β t = φl

t φl+1

t . . . φLt

t{ }.  (22) 



 

An example of a k-means, distance, and v

illustrated in Figure 6 in which there are four kinematic clusters identified at time

two of a generic simulation. The maximum distance 

nautical miles for the simulation, and each of the four resultant clusters ar

different color. The contacts of each cluster were initially grouped by proximity filtering 

and further refined kinematically by determining similarities between vessel 

speeds, and the distance between them. 

 

Figure 6.  An example of k-

F. TEMPORAL REFINEMENT

Temporal refinement 

which are not. The input data to this stage are cell 

the kinematic clusters for each time

moving in time, it is necessary to calculate the similarity of the membership of the 

kinematic clusters in consecutive 
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means, distance, and velocity kinematic clustering result is

in which there are four kinematic clusters identified at time

two of a generic simulation. The maximum distance between contacts was defined as 

nautical miles for the simulation, and each of the four resultant clusters are displayed in a 

The contacts of each cluster were initially grouped by proximity filtering 

and further refined kinematically by determining similarities between vessel 

speeds, and the distance between them.  

-means, distance, and velocity kinematic clustering results at 

time-step two of a generic simulation. 

TEMPORAL REFINEMENT 

Temporal refinement determines which kinematic clusters are moving in time and 

The input data to this stage are cell arrays that contain the membership of 

the kinematic clusters for each time-step. To determine which kinematic clusters are 

it is necessary to calculate the similarity of the membership of the 

kinematic clusters in consecutive time steps. The first kinematic cluster in 

elocity kinematic clustering result is 

in which there are four kinematic clusters identified at time-step 

was defined as four 

e displayed in a 

The contacts of each cluster were initially grouped by proximity filtering 

and further refined kinematically by determining similarities between vessel headings, 

 

elocity kinematic clustering results at 

which kinematic clusters are moving in time and 

arrays that contain the membership of 

step. To determine which kinematic clusters are 

it is necessary to calculate the similarity of the membership of the 

e first kinematic cluster in β t ,  φ
l

t ,  is 
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designated as the reference cluster, and the intersection of φ
l

t  and each kinematic cluster 

in β t+1  is calculated as  

   (23) 

If an intersection is found between φ
l

t  and a cluster in β t+1,  the variable fuse f  is 

calculated as 

 f =
I

length φl

t( )
,    (24) 

and the next cluster in β t ,  φ
l+1

t ,  becomes the reference cluster.  

If an intersection is not found between φ
l

t  and a cluster in β t+1,  the intersection is 

calculated between φ
l

t  and each kinematic cluster in β t+2  as in Equation (23). If an 

intersection is found, fuse is calculated as in Equation (24). If an intersection is not found, 

φ
l

t  is removed from consideration as a moving cluster and the second cluster in β t ,  φ
l+1

t  

becomes the reference cluster, and the process is repeated.  

Once all kinematic clusters in β t  have served as the reference cluster for 

intersection calculations, the kinematic clusters of β t+1  beginning with φ
l

t+1 become the 

reference clusters. This iterative process continues until all the clusters in β max t( )−1
 have 

served as the reference cluster. Kinematic clusters in β max t( )
 are not considered in 

temporal refinement due to the lack of future kinematic clusters with which to calculate 

intersections.  

When a value other than zero is calculated for f ,  it is compared to the user-

defined moving cluster threshold value. If f  is greater than or equal to that value, the 

associated kinematic cluster φ
l

t  is stored to the cell array δ  as 

 
δ = φl

t{ },
  (25) 
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where δ  is of size 1× LMC
 and LMC

 is the number of moving clusters determined in 

temporal refinement. 

G. POST-PROCESSING OF SPATIOTEMPORAL RESULTS 

Upon completion of temporal analysis, three cell arrays, each containing 

spatiotemporal results, are constructed. Through post-processing of these cell arrays, it is 

possible to build usable outputs to determine information about the selected water space, 

including the detection of moving clusters of vessels that are exhibiting paralleling or 

following behavior and the ability to track vessel interactions over time. 

1. Identifying Members of a Moving Cluster 

The first cell array δ  represents all kinematic clusters that move through time for 

a minimum of two time steps with a minimum threshold of continuous membership in the 

variable fuse f  as  

 

δ =

φl

t φl+1

t φLt

t .

φl+1

t φl+2

t φl+3

t φLt

t

. . . .

φl

z φl+1

z φl+4

z
.

























   (26)  

where z  is the maximum time-step that contains a moving cluster. The row location of 

any cluster φ  in the cell array σ  indicates the time steps at which the moving cluster 

exists. For example φ
l+2

t  that appears in the second row, is a moving cluster that begins at 

time-step two.  

Further analysis of this cell array provides details such as when a moving cluster 

forms, which contacts are members of the subject moving cluster, if contacts join or leave 

the cluster, and when, if ever, the cluster’s membership becomes low enough that it can 

no longer be considered a moving cluster. 
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2. Kinematic Clusters Occurring at the Last Time-step of Data 

The cell array ρ  is equal to β t  at the last time-step of available data and is of 

size 1× Lt
 where Lt

 is the number of kinematic clusters found in β t . Due to a lack of 

future time steps with which to compare this time-step of data, these current clusters are 

stored as a matter of interest to the user as 

 
ρ = φl

max t( ) φl+1

max t( ) . . φLt

max t( ){ }.
  (27) 

The clusters in ρ  are not known to be moving clusters but represent only the kinematic 

clusters of the last time-step of data. Information detailed in ρ  is displayed only in the 

text output, under the “Moving Clusters” section, to avoid unnecessary cluttering of the 

visual output. 

3. Generation of the Contacts of Interest List 

The third cell array, θ ,  is the same size as δ ,  but rather than containing cluster 

membership information, it contains the global identity index q  of contacts that either 

join or leave clusters. Vessels that move together as a moving cluster for several time 

steps are of interest to an analyst, but a vessel that joins a cluster then departs it, and then 

joins another cluster, is also of interest. The information contained in θ  is displayed only 

in the text output, under the “Contacts of Interest” section. 

4. Post-processing of Spatiotemporal Results to Form Usable Outputs 

The post-processing of the spatiotemporal results stored in the cell arrays δ ,  ρ,  

and θ  is the transfer of data into usable outputs for better user understanding. Post-

processing of the cell arrays results in the generation of two outputs. One output is text 

based and the other is a visual representation of moving vessel clusters in the water space.  

a. Text Output 

The text output has two distinct parts, Moving Clusters and Contacts of 

Interest. The Moving Clusters part provides the global identifiers of the members of each 

moving cluster, as well as the time at which the cluster is formed and the time at which 
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the cluster ceases to exist. Current clusters are also detailed in this manner in the text 

output. The second part of the text output, Contacts of Interest, results from the ρ  cell 

array and contains the global identifier of any contact that joins or leaves an existent 

moving cluster, as well as the time at which the event occurs. If the contact is deemed to 

be leaving a moving cluster, the text output also details the heading and speed of the 

contact’s departure. If there are two or more contacts that depart a larger moving cluster 

and continue to move as a smaller moving cluster, then the heading and speed reported is 

an average of the two contacts. An example of both parts of the text output is presented in 

Figure 7 where there are fourteen moving clusters identified and three contacts of interest 

defined. 

b. Visual Output 

The visual based output is an interactive, MATLAB-generated plot that 

depicts the position and track of each moving cluster analyzed by the STC algorithm. In 

Figure 8, there are several moving clusters displayed, some red, some orange, and some 

green, each color indicating the membership of the moving clusters as defined in Table 5. 

The position, heading, and speed of each moving cluster displayed is computed by 

averaging its constituent members’ respective attributes. For example, for a given moving 

cluster, the speed reported is the average speed of all vessels contained within that 

specific cluster. Moving clusters are marked by an ‘x’ for each time-step that they occur 

and with an ‘o’ at their final time-step of occurrence. If a moving cluster is only present 

for two time steps, it is represented by an ‘o’. The markers and track lines on the plot are 

color-coded to detail the degree of membership that the moving cluster maintains.  
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Figure 7.  An example text output from the STC algorithm’s analysis of a generic simulation scenario. 



 

Figure 8.  An example visual representation output of the STC algorithm’s analysis of a 

 

Table 5.   The MATLAB interactive plot color

Display Color

Red 

Orange

Green 

Blue 

Violet 
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An example visual representation output of the STC algorithm’s analysis of a 

generic simulation scenario. 

MATLAB interactive plot color-code key for moving cluster 

membership identification. 

Color Percentage Membership Indicated 

100% 

Orange 75% - 99% 

 50% - 74% 

 25% - 49% 

 0% - 24% 

 

An example visual representation output of the STC algorithm’s analysis of a 

for moving cluster 
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The MATLAB plot also has an interactive functionality that is illustrated in 

Figure 8. The user is able to click on any marker of a moving cluster to determine which 

cluster is represented, at which time-step the cluster occurs, as well as the cluster’s 

position, heading, and speed. In Figure 8 it is determined that moving cluster 4 exists at 

time-step two, in position −8.67,−1.33( )  heading  157o
 at 23 knots. To discover which 

contacts compose moving cluster 4, it is necessary to reference the first portion of the text 

output. Upon doing so, it can be determined that the contacts in moving cluster 4 have 

vessel identifiers of 25 and 30. 

In this chapter, the six stages of the STC algorithm were detailed. Vessel data and 

user-provided input were discussed as the primary inputs to the STC algorithm. The data 

conditioning and cluster preprocessing stages, where datasets are time indexed, 

formatted, and aligned for algorithm use, were discussed. Proximity and kinematic 

filtering were defined and the attributes each considers were given. Temporal refinement 

to determine which clusters move through time was detailed, and examples of the usable 

outputs formed from post-processing of spatiotemporal results were presented. In Chapter 

IV, the STC algorithm is verified against a synthetic dataset and is validated using two 

real-world datasets. 
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IV.  IMPLEMENTATION AND RESULTS 

The STC algorithm presented in Chapter III is implemented, verified, and 

validated in this chapter. The algorithm is implemented in the MATLAB programming 

environment. To verify operability and validate its possible use, the STC algorithm is 

tested using synthetic and real-world datasets. An overview of the MATLAB functional 

code and user environment is provided, followed by a detailed explanation of the 

synthetic and real-world scenarios and results. 

A. MATLAB IMPLEMENTATION MODEL 

The MATLAB programming code is organized into a top-level function, Thesis, 

which calls various functions to execute the STC algorithm based on user input. An 

overview of the highest-level MATLAB functions and their purposes is found in Table 6. 

The detailed code for these and other functions is included in the appendix. 

1. MATLAB Graphical User Interface 

The MATLAB user interface for operation of the STC algorithm was designed to 

be intuitive and to ensure ease of use. The algorithm’s user-provided inputs discussed in 

Chapter III are provided to the algorithm via the MATLAB graphical user interface 

(GUI) tool, examples of which are illustrated in Figures 9 and 10.  

2. Simulation and Real-world Analysis Parameters 

The thresholds used for the simulation and real-world analyses are defined in 

Table 7 and are the default values as discussed in Chapter III. 
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Table 6.   MATLAB top-level functional organization of the STC algorithm. 

Function Overview 

Thesis 

Thesis is the function call to access spatiotemporal algorithms that 

support maritime domain awareness. The user will select whether their 

input is “Synthetic” or “Real-world,” and the program will determine 

which set of functions to use for analysis. 

RealWorld 

RealWorld is the top-level function call for real-world AIS data analysis. 

This function begins with data pre-processing and filtering, and includes 

all functions required for spatiotemporal analysis of the water space. 

KDVC 

KDVC(A,clusters,time,climit,dlimit,spdlimit) returns the kinematic 

clusters at a given time-step based on user inputs where A is the input 

dataset, clusters is the matrix for output storage, time is the time-step 

being evaluated, climit is the user defined heading difference between 

contacts in degrees, dlimit is the user defined distance between contacts 

in nautical miles, and spdlimit is the user defined speed difference 

between contacts in knots. 

Kinematic 

Kinematic(A,c,climit,dlimit,spdlimit,h) returns the kinematic clusters at a 

given time-step based on user inputs where A is the input dataset, c is the 

seed contact, climit is the user defined heading difference between 

contacts in degrees, dlimit is the user defined distance between contacts 

in nautical miles, spdlimit is the user defined speed difference between 

contacts in knots, and h is the time-step. 

 

 

Figure 9.  The MATLAB graphical user interface with slider and open text parameter 

input options. 
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Figure 10.  The MATLAB graphical user interface with push-button input. 

Table 7.   Synthetic and real-world analyses model parameters. 

Parameter 
Value for Synthetic and 

AIS Real-World Scenarios 

Value for GPS Real-

World Scenario 

Time Window Length 12 Minutes 1 Minute 

Maximum Heading 

Difference Between 

Contacts 
 39o

   10o
  

Maximum Distance 

Between Contacts 
8 Nautical Miles 0.5 Nautical Miles 

Maximum Speed Difference 

Between Contacts 
16 Knots 5 Knots 

Moving Cluster Threshold 

Value 
60% 25% 

 

B. VERIFICATION USING SYNTHETIC DATA 

The simulation is run using data that was purposefully created to test the 

functionality of the STC algorithm. Specifically, the synthetic scenario provides proof-of-

concept that the algorithm can properly evaluate the user-selected values from Table 7 

and that the text output and the interactive aspect of the visual output are operable. The 

data simulation involves a dataset of three hundred vessel position reports taken over a 

period of seventy-two minutes, or six time steps. The setup and results of the simulation 

are presented below. 
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1. Simulation Setup 

In the simulation, two separate scenarios are executed. Scenario one, which 

occurs on the top half of Figures 11–16, consists of two contacts and is designed to test 

maximum heading difference between contacts and maximum distance between contacts. 

Scenario two, which occurs on the lower half of Figures 11–16, begins with two groups 

of five contacts each, and is designed to test maximum speed difference between the 

contacts, maximum distance between contacts, and the operability of the moving cluster 

threshold value. The narrative steps for both scenarios, as well as the expectation for 

kinematic clustering, are detailed in Table 8. 

Table 8.   Summary of the vessel interactions for the simulation scenarios. 

Time- 

Step 
Scenario One Expectations Scenario Two Expectations 

1 
Distance: 9 nm 

Heading Diff:  38o  
No Cluster 

Distance: 9 nm 
Speed Diff: 17kts 

2 Clusters 

2 
Distance: 7.8 nm 

Heading Diff:  38o  
Cluster 

Distance: 7.3 nm 
Speed Diff: 17kts 

2 Clusters 

3 
Distance: 6.6 nm 

Heading Diff:  0
o  

Cluster 
Distance: 5.6 nm 
Speed Diff: 15kts 

1 Cluster 

4 
Distance: 6.6 nm 

Heading Diff:  0
o  

Cluster 
Distance: 7.1 nm 
Speed Diff: 15kts 

1 Cluster 

5 
Distance: 6.6 nm 

Heading Diff:  40o  
No Cluster 

Distance: 5.6 nm 
Speed Diff: 15kts 
Lose 4 contacts 

1 Cluster 

6 
Distance: 7.8 nm 

Heading Diff:  40o  
No Cluster 

Distance: 4.1 nm 
Speed Diff: 15kts 
Lose 3 contacts 

1 Cluster 

 

In scenario one, the contacts begin nine nautical miles apart with a course heading 

difference of  38o
 at time-step one. The contacts are traveling at a constant speed of 18 

knots and at time-step two are 7.8 nautical miles apart with the same course heading 

difference. At this point, because they now fall inside the eight nautical mile threshold 

and have less than a  39o
 heading difference, the two contacts should be classified as a 
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kinematic cluster. At time-step three, the contacts are 6.6 nautical miles apart and have 

both turned to course 090. With a  0
o
 course heading difference, the contacts should 

again be stored as a kinematic cluster. The contacts maintain course and speed through 

time-step four, and should, therefore, be kinematically clustered. At time-step five, the 

contacts turn on outbound courses with a heading difference of  40o. Although they are 

still only 6.6 nautical miles apart, the contacts’ course heading difference has now 

exceeded the defined threshold, and they should no longer be considered a kinematic 

cluster. They continue on their outbound courses at time-step six and should not be 

kinematically clustered. The contacts in scenario one should be considered a moving 

cluster beginning at time-step 2 and ending at time-step four. 

In scenario two, two groups of five contacts each begin nine nautical miles apart 

traveling on identical courses with a speed difference between the groups of 17 knots. 

Due to the speed difference and distance between them, the groups should be classified as 

two separate kinematic clusters, as the five contacts in each group are traveling at the 

same speed. At time-step two, the two groups are inside the eight nautical mile threshold, 

but still maintain a 17-knot speed difference and, therefore, should be clustered 

separately. At this point, each of the groups should be classified as a moving cluster that 

begins at time-step one. The two groups of contacts shift speed at time-step three and 

settle to a 15-knot speed difference. Now, inside the speed difference threshold of 16 

knots, the two groups should be kinematically clustered as one group of ten contacts. At 

time-step four, the contacts shift speed again but maintain their speed difference at 15 

knots. They should again be clustered as one group of ten contacts and now considered a 

moving cluster that begins at time-step three. At time-step five, the contacts maintain 

their speed, but four of the ten contacts fail to transmit a position report in order to test 

the moving cluster threshold value of 60%. The remaining contacts should continue to be 

kinematically clustered, and because 60% of the contacts of the moving cluster remain, 

they should be considered a moving cluster. At time-step six, the contacts maintain speed, 

but three of the remaining six contacts do not have associated position reports. The 

remaining three contacts should be kinematically clustered, but because only 50% of the 

six contacts remain, the moving cluster should be reported to end at time-step five. 



 

2. Kinematic Clustering

The simulation scenarios have been described in detail

kinematic clustering and moving cluster analysis have been set. In the discussion to follow, 

the kinematic results at each time

The visual representa

Figure 11. As expected, the only kinematic clusters displayed are those from scenario 

two, each consisting of five contacts, 

respectively, in Figure 11. The black dots represent other contacts in the input dataset that 

are not kinematically clustered in any cluster.

 

Figure 11.  The kinematic clustering results for time

each containing five contacts, are in accordance with the expected outcome.

The kinematic clustering results for time

addition to the kinematic clusters for scenario tw

and c3
, respectively, the two contacts from scenario one are now kinemat

colored red, and labeled c2. 
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Kinematic Clustering Results 

imulation scenarios have been described in detail above, and expectations for 

kinematic clustering and moving cluster analysis have been set. In the discussion to follow, 

each time-step and the spatiotemporal outcome will be detail

The visual representation of the kinematic clusters at time-step one is presented in 

. As expected, the only kinematic clusters displayed are those from scenario 

two, each consisting of five contacts, colored cyan and green and labeled 

The black dots represent other contacts in the input dataset that 

are not kinematically clustered in any cluster. 

inematic clustering results for time-step one, which reveal two clusters, 

each containing five contacts, are in accordance with the expected outcome.

The kinematic clustering results for time-step two are shown in Figure 12

addition to the kinematic clusters for scenario two, colored green and cyan and l

the two contacts from scenario one are now kinematically clustered, 

 

, and expectations for 

kinematic clustering and moving cluster analysis have been set. In the discussion to follow, 

step and the spatiotemporal outcome will be detailed. 

ep one is presented in 

. As expected, the only kinematic clusters displayed are those from scenario 

and labeled c1
 and c2

, 

The black dots represent other contacts in the input dataset that 

 

reveal two clusters, 

each containing five contacts, are in accordance with the expected outcome. 

step two are shown in Figure 12. In 

and labeled c1
 

ically clustered, 



 

 

Figure 12.  The kinematic clustering results for time

cyan and green each containing five contacts, and red with two contacts, are 

At time-step three, the expectation was for the kinematic cluster from scenario 

one to continue, but for the two kinematic clusters from scenario two to be combined into 

one. The results, illustrated in Figure 13

colored purple and labeled c

colored cyan and labeled c1. 

The visual representation of the kinematic clusters at time

in Figure 14. In time-step four

expected to be kinematically clustered as in time
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The kinematic clustering results for time-step two, which reveal three clusters, 

cyan and green each containing five contacts, and red with two contacts, are 

in accordance with the expected outcome. 

the expectation was for the kinematic cluster from scenario 

two kinematic clusters from scenario two to be combined into 

esults, illustrated in Figure 13, are as expected. The scenario one cluster is 

c2 , and the new larger kinematic cluster from scenario t

  

The visual representation of the kinematic clusters at time-step four is presented 

step four, all contacts maintained course and speed and were 

expected to be kinematically clustered as in time-step three. 

 

which reveal three clusters, 

cyan and green each containing five contacts, and red with two contacts, are 

the expectation was for the kinematic cluster from scenario 

two kinematic clusters from scenario two to be combined into 

ario one cluster is 

and the new larger kinematic cluster from scenario two is 

p four is presented 

all contacts maintained course and speed and were 



 

 

Figure 13.  The kinematic clustering results for time

green, which is the combination of the two five

step two, and red, with two contacts.

 

Figure 14.  The kinematic clustering results for time

clusters as in time
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The kinematic clustering results for time-step three contain two clusters: 

, which is the combination of the two five-contact clusters 

and red, with two contacts. The clusters are as expected.

The kinematic clustering results for time-step four, which reveal the same two 

clusters as in time-step three, are as expected. 

 

three contain two clusters: 

contact clusters from time-

The clusters are as expected. 

 

the same two 



 

At time-step five, we do not expect the contacts in scenario one to be 

kinematically clustered due to exceeding the maximum heading difference thresh

illustrated in Figure 15, the cluster from scenario one no longer appears. Four contacts 

from scenario two did not transmit

kinematically clustered together.

red and labeled c1.  

The contacts in scenario one continue to exceed the maximum 

threshold at time-step six and should not be kinematically clustered together. Of the 

remaining six contacts in scenario two, three fail to transmit a position report. The 

remaining three contacts should still be kinematically clustered 

and labeled c1
 in Figure 16. 

  

Figure 15.  The kinematic clustering result for time

contains the remaining six contacts from the larger ten

time-step four, is
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we do not expect the contacts in scenario one to be 

kinematically clustered due to exceeding the maximum heading difference thresh

, the cluster from scenario one no longer appears. Four contacts 

ansmit position reports, but the remaining six should s

kinematically clustered together. In Figure 15, the cluster from scenario two is 

The contacts in scenario one continue to exceed the maximum heading difference 

step six and should not be kinematically clustered together. Of the 

remaining six contacts in scenario two, three fail to transmit a position report. The 

remaining three contacts should still be kinematically clustered and are illustra

 

The kinematic clustering result for time-step five contains one cluster, which 

contains the remaining six contacts from the larger ten-contact cluster in 

step four, is tracked as expected because of the moving cluster

value definition of 60%. 

we do not expect the contacts in scenario one to be 

kinematically clustered due to exceeding the maximum heading difference threshold. As 

, the cluster from scenario one no longer appears. Four contacts 

, but the remaining six should still be 

, the cluster from scenario two is colored 

heading difference 

step six and should not be kinematically clustered together. Of the 

remaining six contacts in scenario two, three fail to transmit a position report. The 

and are illustrated in red 

 

step five contains one cluster, which 

contact cluster in 

moving cluster threshold 



 

 

Figure 16.  The kinematic clustering result for time

contains the remaining three contacts from the larger six

time-step fi

3. Spatiotemporal Clustering Results

The kinematic clustering results were all as expected from the description of the 

synthetic simulation scenarios. 

the two groups of contacts in scenario two are considered moving clusters beginning at 

time-step one and ending at time

cluster. The memberships of the clusters are detailed as clust

17, cluster 3 contains the membership of the contacts in scenario one. They begin as a 

moving cluster at time-step two and end at time

is the combination of clusters 1 and 2, begins at time

four, because of the departure of four contacts in time

contacts that remain from the large group, is described to begin and end at time

This occurs because the group is still consi

does not continue into time-step six due to the loss of thre
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The kinematic clustering result for time-step six contains one cluster, which 

contains the remaining three contacts from the larger six-contact cluster in 

step five, is tracked as expected as a kinematic cluster.

Spatiotemporal Clustering Results 

The kinematic clustering results were all as expected from the description of the 

synthetic simulation scenarios. The STC text results are given in Figure 17. 

the two groups of contacts in scenario two are considered moving clusters beginning at 

step one and ending at time-step two when the two combine to form one larger 

cluster. The memberships of the clusters are detailed as cluster 1 and cluster 2. In Figure 

, cluster 3 contains the membership of the contacts in scenario one. They begin as a 

step two and end at time-step four, as expected. Cluster 4, which 

is the combination of clusters 1 and 2, begins at time-step three and ends at time

four, because of the departure of four contacts in time-step five. Cluster five, the six 

contacts that remain from the large group, is described to begin and end at time

This occurs because the group is still considered a moving cluster from time-

step six due to the loss of three of the remaining six contacts.

 

step six contains one cluster, which 

contact cluster in 

ve, is tracked as expected as a kinematic cluster. 

The kinematic clustering results were all as expected from the description of the 

 As expected, 

the two groups of contacts in scenario two are considered moving clusters beginning at 

step two when the two combine to form one larger 

d cluster 2. In Figure 

, cluster 3 contains the membership of the contacts in scenario one. They begin as a 

step four, as expected. Cluster 4, which 

ep three and ends at time-step 

step five. Cluster five, the six 

contacts that remain from the large group, is described to begin and end at time-step five. 

-step four but 

e of the remaining six contacts.
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Figure 17.  The simulation scenario STC text output detailing five moving clusters and multiple contacts of interest.



 

The visual representation of the S

the text output in Figure 17

inspection of Figure 18 it is found that there are indeed five clusters, four 

The fifth moving cluster is a single cyan mark on the plot immediately above the lower

center moving cluster. The moving clusters have been enlarged i

order to further investigate each moving cluster.

Cluster 3, which contains contacts 1 and 2

interactive display of MATLAB has been used to select the middle clustering point, and 

it is shown that the point is a point in Cluster 3 at time

on it are in red, indicating that the moving cluster maintains 100% membership during its 

life, as expected. The straight

created by averaging the position, course and speed of contacts 1 and 2.

Figure 18.  A broad view of 

determined in the synthetic scenario, which is as expected.
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The visual representation of the STC results is given in Figure 18. According

the text output in Figure 17, there should be five moving clusters displayed. Upon 

it is found that there are indeed five clusters, four 

The fifth moving cluster is a single cyan mark on the plot immediately above the lower

center moving cluster. The moving clusters have been enlarged in Figures 19 and 20

order to further investigate each moving cluster. 

ontains contacts 1 and 2, has been enlarged in Figure 19

interactive display of MATLAB has been used to select the middle clustering point, and 

it is shown that the point is a point in Cluster 3 at time-step three. The line and all marks 

red, indicating that the moving cluster maintains 100% membership during its 

life, as expected. The straight-line nature of the moving cluster track in Figure 19

created by averaging the position, course and speed of contacts 1 and 2. 

A broad view of the visual representation of the five moving clusters 

determined in the synthetic scenario, which is as expected.

. According to 

, there should be five moving clusters displayed. Upon 

it is found that there are indeed five clusters, four are red lines. 

The fifth moving cluster is a single cyan mark on the plot immediately above the lower-

n Figures 19 and 20 in 

, has been enlarged in Figure 19. The 

interactive display of MATLAB has been used to select the middle clustering point, and 

step three. The line and all marks 

red, indicating that the moving cluster maintains 100% membership during its 

oving cluster track in Figure 19 is 

 

moving clusters 

determined in the synthetic scenario, which is as expected. 



 

Figure 19.  An enlarged view of the visual representation of moving cluster 3

contains contacts 1 and 2

The other four moving clusters

left and right correspond to C

of the plot it can be seen that bot

two when they combine into one larger moving cluster, 

in Figure 20. Both clusters have red lines and marks associated with them, indicating 

100% membership is maintai

representative of Cluster 4 from Figure 17

moving clusters. Although one mark of the cluster

marker, all marks and the line of 

its two-time-step life, which begins at time

MATLAB interactive plot marker is marki

ends at time-step five after four of the ten contacts depart the large moving cluster. Under 

the MATLAB interactive marker the mark is cyan in color, indicating 

moving cluster’s life. 
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An enlarged view of the visual representation of moving cluster 3

contains contacts 1 and 2 in the synthetic scenario, exists between time

2 and 4, and is as expected. 

The other four moving clusters have been enlarged in Figure 20. The lines on the 

correspond to Clusters 1 and 2 in Figure 17. Through the interactive feature 

of the plot it can be seen that both clusters begin at time-step one and end at time

two when they combine into one larger moving cluster, represented by the center red line 

. Both clusters have red lines and marks associated with them, indicating 

100% membership is maintained for both time steps of their lives. The middle cluster

f Cluster 4 from Figure 17, which is the combination of the two smaller 

. Although one mark of the cluster is hidden by the MATLAB plot 

ine of the cluster are red, indicating 100% membership during 

step life, which begins at time-step three and ends at time-step four. The 

MATLAB interactive plot marker is marking Cluster 5 from Figure 17, which begins and 

e after four of the ten contacts depart the large moving cluster. Under 

the MATLAB interactive marker the mark is cyan in color, indicating the end of the 

 

An enlarged view of the visual representation of moving cluster 3, which 

between time-steps 

The lines on the 

. Through the interactive feature 

step one and end at time-step 

represented by the center red line 

. Both clusters have red lines and marks associated with them, indicating 

of their lives. The middle cluster is 

, which is the combination of the two smaller 

is hidden by the MATLAB plot 

are red, indicating 100% membership during 

step four. The 

, which begins and 

e after four of the ten contacts depart the large moving cluster. Under 
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Figure 20.  An enlarged view of the visual representation of clusters 1, 2,

synthetic scenario

and cluster 5 is tracked during time

C. VALIDATION USING 

After successfully evaluating the synthetic data scenarios, the 

tested on two real-world data

worldwide AIS vessel position reports for the twenty

10 January 2012. The water space of interest for the 

of Malacca. The Strait of Malacca, which is the main shipping channel between the 

Indian Ocean and the Pacific Ocean, is considered one of the most important shipping 

lanes in the world, with more than 60,000 vessels passing through it each year

The purpose of the real

ability to process a robust and relatively large set of data. On 10 January 2012 there were 

slightly more than 1.5 million worldwide AIS vessel position reports, approximately five 

thousand of which occurred in and around the Strait of Malacca. 
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An enlarged view of the visual representation of clusters 1, 2, 4, and 5 i

scenario. Clusters 1 and 2 combine at time-step 3 to form cluster 4, 

and cluster 5 is tracked during time-step five as the remaining six contacts of 

cluster 4. 

VALIDATION USING REAL-WORLD DATA 

After successfully evaluating the synthetic data scenarios, the STC algorithm

world datasets. For the first analysis, the real-world data source is 

vessel position reports for the twenty-four hour period beginning at 0001, 

10 January 2012. The water space of interest for the analysis was chosen to be the Strait 

of Malacca. The Strait of Malacca, which is the main shipping channel between the 

cean and the Pacific Ocean, is considered one of the most important shipping 

more than 60,000 vessels passing through it each year

The purpose of the real-world data analysis is to illustrate the STC 

rocess a robust and relatively large set of data. On 10 January 2012 there were 

slightly more than 1.5 million worldwide AIS vessel position reports, approximately five 

thousand of which occurred in and around the Strait of Malacca. The complete AIS 

 

4, and 5 in the 

step 3 to form cluster 4, 

step five as the remaining six contacts of 

algorithm was 

world data source is 

four hour period beginning at 0001, 

chosen to be the Strait 

of Malacca. The Strait of Malacca, which is the main shipping channel between the 

cean and the Pacific Ocean, is considered one of the most important shipping 

more than 60,000 vessels passing through it each year [26].  

STC algorithm’s 

rocess a robust and relatively large set of data. On 10 January 2012 there were 

slightly more than 1.5 million worldwide AIS vessel position reports, approximately five 

The complete AIS 



 

position report picture is shown in Figure 21

individual AIS position report 

Figure 21.  Visual representation of 

1. AIS Real-wor

To set up the scenario

motor vessel (M/V) Mairini

transfer of cargo or persons on 10 January 2012 in or

Theater strategic decision makers need

traveled with any other ships for any period of time during the 

worldwide AIS dataset for 10 January

are detailed below.  
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rt picture is shown in Figure 21. Each circle on the plot represents an 

position report during the time period of interest. 

isual representation of the Strait of Malacca AIS position report datas

10 January 2012. 

world Data Concerning the Strait of Malacca 

up the scenario, we present a hypothetical report of intelligence 

Mairini, with MMSI number 538003897 has conducted an illicit 

transfer of cargo or persons on 10 January 2012 in or around the Strait of Malacca

Theater strategic decision makers need to determine if M/V Mairini interacted with or 

with any other ships for any period of time during the day in question.

set for 10 January is provided to the STC algorithm, and the 

 

Each circle on the plot represents an 

 

the Strait of Malacca AIS position report dataset for 

of intelligence that the 

has conducted an illicit 

around the Strait of Malacca. 

nteracted with or 

day in question. The 

e STC algorithm, and the results 
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2. AIS Real-world Data Results 

Twelve moving clusters are reported as a result of the STC algorithm analysis 

using the threshold values defined in Table 7. The text output results of the Strait of 

Malacca analysis are presented in Figure 22. Through examination of the text output, we 

can determine that the VOI, MMSI 538003897, appears to interact with another vessel on 

the day in question in the Strait of Malacca. By converting the time steps to time of day, 

we can determine that M/V Mairini began interacting with another vessel around 1936 

UTC on 10 January 2012. The STC algorithm text output reports that the VOI and the 

vessel it is clustered with, MMSI 538002853, are a current cluster as well. The latest 

time-step of data that contains kinematic clusters is time-step 116, which converts to 

2312 UTC. An overview of the visual output is presented in Figure 23. 

The underlay of the Google map on the visual output provides situational 

awareness to the user. The MATLAB interactive capability that was highlighted in the 

synthetic simulation provides further insight into the situation. The moving cluster in 

question, cluster 9, has been selected in Figure 23, and its attributes are displayed. The 

cluster was moving on an average course of  126o
 at a speed of 13 knots at time-step 98, 

and when the two vessels are last clustered at time-step 116, they are moving on an 

average course of  114o
 at a speed of 14 knots. From the visual representation in Figure 

23, it appears that the moving cluster is on a standard transit course through the Strait of 

Malacca. While the results of the real-world data analysis are not conclusive evidence 

that M/V Mairini was involved in illicit behavior, they do offer enough insight as to the 

vessel’s interactions on the day in question for an analyst’s further scrutiny.
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Figure 22.  The STC algorithm text output for the AIS real-world data analysis of the Strait of Malacca on 10 January 2012.



 

Figure 23.  STC algorithm visual output for a

Malacca on 10 January 2012.

travels on average

3. GNSS Real-world Data 

The second real-world data analysis is performed on 

twenty-three minute period 

transmitters mounted on six vehicles driving on Route 3 in Massachusetts

operate in a manner to simulate small boats travel

vehicles dictated three of the 

the span of the exercise. The other three vehicles acted as confuser vehicles and moved in 

and out of the convoy. One of the convoy vehicles was unable to report heading data and 

was, therefore, excluded from STC algorithm analysis. The analysis from the STC 

algorithm reveals that multiple moving clusters are tracked over the twenty

period, which is in keeping with the drive
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STC algorithm visual output for a AIS real-world data analysis of the 

on 10 January 2012. Moving cluster 9 containing two contacts 

travels on average heading 126 at an average speed of 13 knots.

world Data Concerning Vehicles Imitating Small Boats

world data analysis is performed on GPS data gathered over a 

three minute period from 1514 to 1537 UTC on 24 April 2013 

transmitters mounted on six vehicles driving on Route 3 in Massachusetts. The vehicles 

to simulate small boats traveling together. The drive

vehicles dictated three of the them to form a convoy and maintain speed and distance for 

the span of the exercise. The other three vehicles acted as confuser vehicles and moved in 

and out of the convoy. One of the convoy vehicles was unable to report heading data and 

ed from STC algorithm analysis. The analysis from the STC 

reveals that multiple moving clusters are tracked over the twenty-

in keeping with the drive-plan, which is summarized in Table 9

 

world data analysis of the Strait of 

containing two contacts 

at an average speed of 13 knots. 

Concerning Vehicles Imitating Small Boats 

data gathered over a 

from 1514 to 1537 UTC on 24 April 2013 via GNSS 

. The vehicles 

drive-plan for the 

to form a convoy and maintain speed and distance for 

the span of the exercise. The other three vehicles acted as confuser vehicles and moved in 

and out of the convoy. One of the convoy vehicles was unable to report heading data and 

ed from STC algorithm analysis. The analysis from the STC 

-three minute 

arized in Table 9. 
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Table 9.   GNSS real-world data analysis vehicle drive-plan. 

Vehicle Drive Plan 

1 
Confuser: drive alongside/lead/trail/enter/exit convoy, pass other 

confusers 

2 Confuser: drive alongside/lead/trail/enter/exit convoy 

3 Convoy lead: drive at/near speed limit in right lane 

4 
Convoy middle: do not change convoy order, vary follow spacing, 

allow confusers to enter/exit convoy 

5 Confuser: drive alongside/lead/trail/enter/exit convoy 

6 
Convoy tail: do not change convoy order, vary follow spacing, 

allow confusers to enter/exit convoy 

 

4. GNSS Real-world Data Results 

According to the drive-plan, vehicles 3, 4, and 6 form the convoy and should 

regularly be clustered as a moving cluster over the span of the twenty-three minute 

dataset. Vehicle 3 did not transmit heading data, so it was not analyzed by the STC 

algorithm. The remaining vehicles should move in and out of the convoy and form 

various moving clusters during the run. From the visual representation in Figure 24 and 

the text output in Figure 25, it is evident that several moving clusters are tracked in the 

analysis of the dataset. Vehicles 4 and 6, which form the convoy, are not explicitly 

clustered together for the length of the analysis but are detailed in the “Contacts of 

Interest” section as a moving cluster that joins and departs other clusters. This 

designation provides evidence that contacts 4 and 6 move together for much of the 

twenty-three minute run as directed in the drive-plan. With user thresholds set as 

previously detailed, thirteen moving clusters are identified during the analysis. The 

confuser vehicles moving in and out of the convoy account for a majority of these cluster 

changes. In Figure 24 moving cluster 9 consisting of vehicles 1, 2, and 6 is identified. 



 

Figure 24.  STC algorithm visual output for a GNSS

In summary, the implementation of the STC algorithm in the MATLAB 

programming environment was detailed in this chapter. A synthetic scenario was used to 

verify the algorithm’s filtering and clustering logic and user

Two real-world datasets were used to validate the STC algorithm’s performance. The 

first used AIS data and a hypothetical scenario to analyze the interactions of a 

commercial VOI. The second used GNSS data consisting of vehicles simulating small 

boats operating at higher speeds and closer distances than the commercial
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TC algorithm visual output for a GNSS real-world data analysis of vehicles 

imitating small boats on 24 April 2013. 

he implementation of the STC algorithm in the MATLAB 

programming environment was detailed in this chapter. A synthetic scenario was used to 

e algorithm’s filtering and clustering logic and user-provided threshold limits. 

world datasets were used to validate the STC algorithm’s performance. The 

first used AIS data and a hypothetical scenario to analyze the interactions of a 

VOI. The second used GNSS data consisting of vehicles simulating small 

boats operating at higher speeds and closer distances than the commercial AIS

 

world data analysis of vehicles 

he implementation of the STC algorithm in the MATLAB 

programming environment was detailed in this chapter. A synthetic scenario was used to 

provided threshold limits. 

world datasets were used to validate the STC algorithm’s performance. The 

first used AIS data and a hypothetical scenario to analyze the interactions of a 

VOI. The second used GNSS data consisting of vehicles simulating small 

AIS scenario.
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Figure 25.  STC algorithm text output for GNSS real-world data analysis of vehicles imitating small boats on 24 April 2013.
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V. CONCLUSIONS 

The focus of this thesis was to develop a STC algorithm to aid in the Navy’s 

mission of MDA. Specifically, the STC algorithm was designed to autonomously analyze 

vessel interactions to gain behavioral knowledge of a water space. An extension of the 

urban combat environment direction and displacement directivity algorithms was 

proposed as a method of classifying paralleling and following movement which may be 

exhibited by vessels involved in illicit activity. 

The general framework of STC in this thesis was to form clusters kinematically 

and then refine them temporally. Clusters were formed through proximity filtering with 

k-means clustering, kinematically refined by determination of the similarity of vessel 

course, speed, and distance between vessels, and further refined through temporal 

analysis. This methodology was deemed to effectively provide a refined kinematic 

clustering result that carefully balanced user input with mathematical reasoning. The 

kinematic clusters were then temporally analyzed to determine which clusters were 

moving in time and which were not. Spatiotemporal results were then processed to 

produce usable text and visual outputs that result in better understanding of vessel 

interactions and behavioral insight in a water space.  

A. SIGNIFICANT RESULTS 

The work presented in this thesis provides three contributions to the MDA 

problem set. First an STC scheme was developed and applied to the maritime domain to 

identify interactions between vessels at sea in order to gain behavioral knowledge of 

paralleling and following movement in a water space. The scheme was validated using 

multiple data sources that provided a real-world hypothetical scenario in the Strait of 

Malacca and a simulated movement of small boats. 

Second, three filters were designed in support of the operation of the STC 

algorithm. Location filtering enabled a large input dataset to be focused onto a specific 

water space of interest. The proximity filter spatially refined the input dataset by 

grouping contacts via k-means clustering centroid assignment. Kinematic filtering then 
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determined the similarity of vessel course and speed within each k-means cluster and 

further spatially refined the clustering process by comparing the distance between 

vessels. 

Finally, the STC algorithm provided those interested in national or theater 

security decision making the opportunity to quantify the (membership) continuity of a 

moving cluster. A group of vessels deemed to be exhibiting paralleling or following 

behavior by the algorithm were tracked until the continuity fell below the user-defined 

threshold of interest. The opportunity to quantify the continuity allows the user to 

characterize the degree to which a moving cluster may change. 

B. FUTURE WORK 

In this thesis the focus of the STC algorithm was on a water space of interest. Use 

of the VOI identifier as input to determine the water space of interest during the time of 

interest would improve the algorithm’s performance. Future work should extend the 

algorithm to include VOI identity if available.   

An extension of this work would be to focus on countering the knowledgeable 

enemy. In this thesis the assumption was made that vessels will not attempt to prevent 

detection of their behaviors. If, for instance, vessels rendezvoused with other vessels in a 

way that inhibited the algorithm from detection as a moving cluster, the advantage 

provided by the STC algorithm would be nullified. Perhaps the vessels would meet via a 

head-on scenario or would steer headings that were always greater than  90o
 in difference 

in order to avoid detection. Expanding the current algorithm to detect a head-on meeting 

scenario would improve its performance. 

The STC algorithm presented in this thesis does not provide track estimation 

functions. In future work, when a position report is missing or unreadable, the vessel’s 

movement could be tracked through the use of a Kalman filter or a similar method. This 

would prevent negative effects on the formation or tracking of a moving cluster and 

would allow for greater insight and analysis of the water space. 
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The STC algorithm’s scope could be expanded to include more than commercial 

vessels. Given the speed that a small boat swarm might attack with, early detection of 

their formation is an important task. An extension of this thesis work could be applied to 

the detection of such a swarm by applying short time windows and small thresholds for 

distance, heading, and speed differences between contacts. Although the second real-

world dataset was meant to mimic small boats, conducting the STC analysis on actual 

small boat data would be beneficial. 
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APPENDIX 

The MATLAB code used to implement the spatiotemporal clustering analysis is 

provided in the appendix. 

 

function Thesis 
% Thesis    Top-Level Function Call.            
%   Thesis is the function call to access spatiotemporal 
algorithms that support maritime domain awareness. The user will 
select whether their input data is “Synthetic” or “Real-World,” 
and the program will determine which set of functions to use for 
analysis. 
%   Created by LT Kristofer Tester, USN, April 2013 
 
% Function Input: None 
% Function Output: Proper file path alignment 
  
clear all 
close all 
clc 
t = cputime; 
  
% Display a menu offering the user choice of data type 
z = menu(‘Select Source Data Type’,’Synthetic’,’Real-World’); 
  
% Process user selection and choose next function call. Matlab 
directory changes to reflect user selection, and to keep data 
files separated and easily organzied. 
if z == 1  
    oldFolder = cd(‘Thesis Synthetic’); 
    Synthetic; 
    cd(oldFolder); 
else  
    oldFolder = cd(‘Thesis RealWorld’); 
    RealWorld; 
    cd(oldFolder); 
end 
  
% Display the time, in seconds, the program takes to run in its 
entirety 
t = cputime 
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function RealWorld 
  
% REALWORLD    Top-level function call for real-world data 
analysis. 
%   RealWorld is the top-level function call for real-world AIS 
data analysis. This function begins with data pre-processing and 
filtering, and includes all functions required for spatiotemporal 
analysis of the waterspace. Created by LT Kristofer Tester, USN, 
April 2013 
  
% Call function to read data input and perform preprocessing 
duties 
[A,default,climit,spdlimit,dlimit,spdinput,storage] =... 
    InputandPreprocessing; 
  
% Loop through the data by time-step. At each time-step, arrange 
a submatrix, B, of the A matrix, such that all members of B have 
the same time-step assignment. Proximity filter and kinematically 
cluster the contacts in the B matrix using the KDVC function and 
return the results in clusters. Store clusters in the cell array, 
compold. 
[compold,Data,maxtime,clusters1] = 
ProxKin(A,default,climit,spdlimit,... 
    dlimit,spdinput,storage) 
  
% Call function Temporal to perform temporal analysis of the 
kinematic time step snapshots 
[MovingClusters,FuseClusters,DiffClusters,CurrentClusters,timecou
nt] =... 
    Temporal(compold,storage) 
  
% Build the text output by comparing each cell of MovingClusters. 
If the cell is found elsewhere, determine what time-step it 
appears, and what time-step it disappears. Output this 
information, along with the membership details of the moving 
cluster in a text format. 
Postprocessing(MovingClusters,FuseClusters,DiffClusters,CurrentCl
usters,... 
    timecount,Data,maxtime,clusters1) 
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function [A,default,climit,spdlimit,dlimit,spdinput,storage]... 
    = InputandPreprocessing; 
  
% InputandPreprocessing    This function reads the input data 
stream and formats it for use by the algorithm.  
% Created by LT Kristofer Tester, USN, April 2013 
  
% Display push-button menu for user selection of the input data 
file type 
a = menu('Select Data Format:','xlsx Format','.mat Format','csv 
Format'); 
  
% List all files of the type xlsx and .mat in the current 
directory and store the filenames in TestList cell array for user 
selection 
if a == 1; 
    TestFiles = dir('*xlsx'); 
    TestList = {}; 
    for i = 1:length(TestFiles) 
        filename = TestFiles(i).name; 
        TestList{i} = filename; 
    end 
    z = menu('Choose the Source Data File',TestList); 
    Data = xlsread(TestList{z});   
elseif a == 2; 
    TestFiles = dir('*.mat'); 
    for b = 1:length(TestFiles) 
        filename = TestFiles(b).name; 
        TestList{b} = filename; 
    end 
    z = menu('Choose the Source Data File',TestList); 
    Data = load(TestList{z}); 
    cellData = struct2cell(Data); 
    matData = cell2mat(cellData); 
    Data = matData; 
elseif a == 3; 
    TestFiles = dir('*csv'); 
    for j = 1:length(TestFiles) 
        filename = TestFiles(j).name; 
        TestList{j} = filename; 
    end 
    z = menu('Choose the Source Data File',TestList); 
    Data = csvread(TestList{z}); 
end 
  
z =... 
menu('Choose Global Location or Manually Input Area of Interest 
Coordinates',... 
'Strait of Malacca','West Coast of Africa','Panama Canal','Bab Al 
Mandeb',... 
'Manual','Entire Area'); 
if z == 1; 
    locationFiltered = locationFilter(Data,2,102,4,4); 
elseif z == 2; 
    locationFiltered = locationFilter(Data,20,-18,5,5); 
elseif z == 3; 
    locationFiltered = locationFilter(Data,7,-80,5,5); 
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elseif z == 4; 
    locationFiltered = locationFilter(Data,12.5,43.5,5,5); 
elseif z == 5; 
    handles = guihandles(LocationFilt); 
    centlat = get(handles.slider1,'Value'); 
    centlon = get(handles.slider2,'Value'); 
    height = get(handles.slider3,'Value'); 
    width = get(handles.slider4,'Value'); 
    close(handles.figure1); 
    locationFiltered = 
locationFilter(Data,centlat,centlon,width,height); 
elseif z == 6; 
    locationFiltered = Data; 
end 
  
% Store the source data in the Data variable and assign variables 
for the necessary columns of the Data matrix 
Data = locationFiltered; 
Lon = Data(:,6); 
Lat = Data(:,7); 
Cog = Data(:,8); 
Sog = Data(:,5); 
UTC = Data(:,10); 
counter = Data(:,2); 
  
% Create the A matrix - the variables from Data that are 
necessary for analysis 
A = [Lon Lat Cog Sog counter UTC]; 
  
% Format the A matrix using Data_Read 
default = menu('Parameter Selection','Default Values',... 
    'User Selected Values'); 
[A] = Data_Read(A,default); 
  
% Add longitude and latitude component of each contact to the A 
matrix for use in output formats 
A = [A Lon Lat]; 
  
% Initialize looping variables and determine the unique MMSI 
identifiers that are reported in the A matrix 
sizedata = size(A); 
n = 1; 
k = unique(A(:,7)); 
  
% Loop through the unique MMSI identifiers and quiver plot each 
contact. This plot represents all of the individual contacts 
reported in the data set. 
figure(); 
while n <= length(k) 
    j = find(A(:,7)==k(n)); 
    scatter(A(j,9),A(j,10)); 
    title('Example Contact Picture') 
    xlabel('Degrees of Longitude') 
    ylabel('Degrees of Latitude') 
    set(gcf,'color','w'); 
    hold on 
    n = n+1; 
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end 
plot_google_map 
  
% Initialize looping variables 
n = 1; 
  
% Create slider and text input GUI for user input 
if default == 1; 
    climit = 39; 
    spdlimit = 16; 
    dlimit = 8; 
    spdinput = 2; 
    storage = 0.6; 
elseif default == 2; 
    handles = guihandles(SlideFilt); 
    climit = get(handles.slider1,'Value'); 
    spdlimit = get(handles.slider2,'Value'); 
    dlimit = get(handles.slider3,'Value'); 
    spdinput = get(handles.slider4,'Value'); 
    storage = (get(handles.slider5,'Value'))/100; 
    close(handles.figure1); 
end 
  
% Loop through the A matrix to ensure none of the variables have 
a value of exactly zero 
while n <= sizedata(1) 
    if A(n,1) == 0 
        A(n,1) = 0.001; 
    else 
        A(n,1) = A(n,1); 
    end 
    if A(n,2) == 0 
        A(n,2) = 0.001; 
    else 
        A(n,2) = A(n,2); 
    end 
    if A(n,4) == 0 
        A(n,4) = 0.001; 
    else 
        A(n,4) = A(n,4); 
    end 
    if A(n,3) == 0 
        A(n,3) = 0.001; 
    else 
        A(n,3) = A(n,3); 
    end 
    if A(n,5) == 0 
        A(n,5) = 0.001; 
    else 
        A(n,5) = A(n,5); 
    end 
    if A(n,6) <= spdinput; 
        A(n,:) = 0; 
    else 
        A(n,6) = A(n,6); 
    end 
    n = n+1; 
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end 
  
% Assign variables for the columns of the A matrix 
x = nonzeros(A(:,1)); 
y = nonzeros(A(:,2)); 
dx = nonzeros(A(:,3)); 
dy = nonzeros(A(:,4)); 
cse = nonzeros(A(:,5)); 
spd = nonzeros(A(:,6)); 
counter = nonzeros(A(:,7)); 
timestep = nonzeros(A(:,8)); 
Lon = nonzeros(A(:,9)); 
Lat = nonzeros(A(:,10)); 
  
% Store the variables back into the A matrix 
A = [x y dx dy cse spd counter timestep Lon Lat]; 
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function [locationFiltered] = locationFilter(entry,centralLat,... 
    centralLon,width,height) 
  
% LOCATIONFILTER    Filter real-world data by defining a boundary 
box. 
%   [locationFiltered] = 
LOCATIONFILTER(entry,centralLat,centralLon,width,height) filters 
the data provided in entry that is located inside a boundary box 
defined by the centalLat, centralLon, width, and height. Entry is 
a matrix of AIS position reports with latitude and longitude 
stored in tenths of degrees. CentralLat/Lon indicate the center 
of the area of interest in tenths of degrees of latitude and 
longitude. Width and Height indicate teh size of the area of 
interest in tenths of degrees of latitude and longitude. 
%   Created by LT Ashley McAbee, USN, April 2013 
  
% Define the boundary box 
latLowBound = centralLat - height/2; 
latUpBound = centralLat + height/2; 
longLowBound = centralLon - width/2; 
longUpBound = centralLon + width/2; 
  
% Find all datapoints in entry that are positioned inside the 
boundary box, and store them in the output variable, 
locationFiltered. 
locationFilteredIdx = find(entry(:,7) > latLowBound & ... 
    entry(:,7) < latUpBound & entry(:,6) > longLowBound & 
entry(:,6) <... 
    longUpBound); 
locationFiltered = entry(locationFilteredIdx,:); 
end 
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function [A] = Data_Read(A,default) 
  
% DATA_READ    Data conversion file for real-world AIS datasets. 
%   [A] = DATA_READ(A) returns a reformatted A matrix after 
converting latitude and longitude to x and y coordinates where 
the origin is zero degrees latitude and zero degrees longitude. 
The function also converts course and speed into dx and dy 
velocity components. 
% Created by LT Kristofer Tester, USN, April 2013 
  
% Store the incoming data from the A matrix into appropriate 
columns to assist in determining the degrees, minutes, and 
seconds of latitude and longitude. 
Data(:,1) = floor(A(:,2));  
Latmin = (A(:,2)-Data(:,1))*60; 
Data(:,2) = floor(Latmin); 
Latsec = (Latmin-Data(:,2))*60; 
Data(:,3) = floor(Latsec); 
Data(:,4) = floor(A(:,1)); 
Lonmin = (A(:,1)-Data(:,4))*60; 
Data(:,5) = floor(Lonmin); 
Lonsec = (Lonmin-Data(:,5))*60; 
Data(:,6) = floor(Lonsec); 
Data(:,7) = A(:,3); 
Data(:,8) = A(:,4); 
Data(:,9) = A(:,6); 
counter = A(:,5); 
  
% Organize degrees, minutes, and seconds of latitude and 
longitude into components for x and y coordinate plotting. 
y1(:,1) = Data(:,1); 
y1(:,2) = Data(:,2); 
y1(:,3) = Data(:,3); 
x1(:,1) = Data(:,4); 
x1(:,2) = Data(:,5); 
x1(:,3) = Data(:,6); 
c(:,1) = Data(:,7); 
s(:,1) = Data(:,8); 
  
% Initialize looping variables and loop through each row of the 
Data matrix. Determine the degrees of latitude of the contact in 
order to determine the conversion matrix, LatDistConv. Multiply 
the conversion matrix by the y components from above to determine 
a y coordinate on the grid signifying the distance, in nautical 
miles, from zero degrees latitude. 
n = 1; 
while n <= length(Data)     
    if Data(n,1) <= 15 
        variable = Data(n,1)*((110.649-110.574)/15)+110.574; 
        LatDistConv = [variable*0.62 (variable*0.62)/60 
((variable*0.62)/60)/60]; 
        y(n,1) = y1(n,:)*LatDistConv'; 
        n = n+1;         
    elseif Data(n,1) > 15 & Data(n,1) <= 30 
        variable = Data(n,1)*((110.852-110.649)/15)+110.649; 
        LatDistConv = [variable*0.62 (variable*0.62)/60 
((variable*0.62)/60)/60]; 
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        y(n,1) = y1(n,:)*LatDistConv'; 
        n = n+1;         
    elseif Data(n,1) > 30 & Data(n,1) <= 45 
        variable = Data(n,1)*((111.132-110.852)/15)+110.852; 
        LatDistConv = [variable*0.62 (variable*0.62)/60 
((variable*0.62)/60)/60]; 
        y(n,1) = y1(n,:)*LatDistConv'; 
        n = n+1;         
    elseif Data(n,1) > 45 & Data(n,1) <= 60 
        variable = Data(n,1)*((111.412-111.132)/15)+111.132; 
        LatDistConv = [variable*0.62 (variable*0.62)/60 
((variable*0.62)/60)/60]; 
        y(n,1) = y1(n,:)*LatDistConv'; 
        n = n+1;         
    elseif Data(n,1) > 60 & Data(n,1) <= 75 
        variable = Data(n,1)*((111.618-111.412)/15)+111.412; 
        LatDistConv = [variable*0.62 (variable*0.62)/60 
((variable*0.62)/60)/60]; 
        y(n,1) = y1(n,:)*LatDistConv'; 
        n = n+1; 
    elseif Data(n,1) > 75 & Data(n,1) <= 90 
        variable = Data(n,1)*((111.694-111.618)/15)+111.618; 
        LatDistConv = [variable*0.62 (variable*0.62)/60 
((variable*0.62)/60)/60]; 
        y(n,1) = y1(n,:)*LatDistConv'; 
        n = n+1; 
    end   
end 
  
% Initialize looping variables and again loop through each 
element of the Data matrix to determine the proper conversion 
matrix for longitude, LonDistConv. The number of nautical miles 
in a degree of longitude decreases as distance from the equator 
increases. In order to determine the LonDistConv matrix, first 
determine the degree of latitude of the contact, and then 
interpolate to determine the conversion matrix. 
n = 1; 
while n <= length(Data)    
    if Data(n,1) <= 15 
        variable = Data(n,1)*((107.551-111.320)/15)+111.320; 
        LonDistConv = [variable*0.62 (variable*0.62)/60 
((variable*0.62)/60)/60]; 
        x(n,1) = x1(n,:)*LonDistConv'; 
        n = n+1;         
    elseif Data(n,1) > 15 & Data(n,1) <= 30 
        variable = Data(n,1)*((96.486-107.551)/15)+107.551; 
        LonDistConv = [variable*0.62 (variable*0.62)/60 
((variable*0.62)/60)/60]; 
        x(n,1) = x1(n,:)*LonDistConv'; 
        n = n+1; 
    elseif Data(n,1) > 30 & Data(n,1) <= 45 
        variable = Data(n,1)*((78.847-96.486)/15)+96.486; 
        LonDistConv = [variable*0.62 (variable*0.62)/60 
((variable*0.62)/60)/60]; 
        x(n,1) = x1(n,:)*LonDistConv'; 
        n = n+1;         
    elseif Data(n,1) > 45 & Data(n,1) <= 60 
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        variable = Data(n,1)*((55.800-78.847)/15)+78.847; 
        LonDistConv = [variable*0.62 (variable*0.62)/60 
((variable*0.62)/60)/60]; 
        x(n,1) = x1(n,:)*LonDistConv'; 
        n = n+1;         
    elseif Data(n,1) > 60 & Data(n,1) <= 75 
        variable = Data(n,1)*((28.902-55.800)/15)+55.800; 
        LonDistConv = [variable*0.62 (variable*0.62)/60 
((variable*0.62)/60)/60]; 
        x(n,1) = x1(n,:)*LonDistConv'; 
        n = n+1;         
    elseif Data(n,1) > 75 & Data(n,1) <= 90 
        variable = Data(n,1)*((0-28.902)/15)+28.902; 
        LonDistConv = [variable*0.62 (variable*0.62)/60 
((variable*0.62)/60)/60]; 
        x(n,1) = x1(n,:)*LonDistConv'; 
        n = n+1; 
    end     
end 
  
% Initialize looping variables. 
cse = c; 
n = 1; 
loop = length(c); 
  
% Loop through the matrix to convert course headings in degrees 
into units of radians on the unit circle. 
while n <= loop 
    if c(n) == 0 
        c(n) = c(n)*(pi/180)+(pi/2); 
    elseif c(n) == 90 
        c(n) = c(n)*(pi/180)-(pi/2); 
    elseif c(n) == 180 
        c(n) = c(n)*(pi/180)+(pi/2); 
    elseif c(n) == 270 
        c(n) = c(n)*(pi/180)-(pi/2); 
    elseif c(n)>0 & c(n)<90 
        c(n) = (pi/2)-(c(n)*(pi/180)); 
    elseif c(n)>90 & c(n)<180 
        c(n) = (pi/2)-(c(n)*(pi/180)); 
    elseif c(n)>180 & c(n)<270 
        c(n) = (450-c(n))*(pi/180); 
    elseif c(n)>270 & c(n)<360 
        c(n) = (450-c(n))*(pi/180); 
    end 
n = n + 1; 
end 
     
% Determine dx and dy components of velocity as a function of 
time 
dx(:,1) = (s/10).*cos(c); 
dy(:,1) = (s/10).*sin(c); 
  
% Call the TimeFuseReal function to convert the data timestamps 
into time-steps. 
timestep = TimeFuseReal(Data(:,9),default); 
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% Store the finalized data in the A matrix to be sent back to the 
RealWorld function for analysis. 
A = [x y dx dy cse s counter timestep]; 
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function [compold,Data,maxtime,clusters1] = 
ProxKin(A,default,climit,... 
    spdlimit,dlimit,spdinput,storage) 
  
% ProxKin    Proximity and kinematic filtering function. 
%   ProxKin uses k-means clustering to proximity filter the data 
and then kinematically filter those results by determining 
similarity of vessel courses, speeds, and the distance between 
them.  
% Created by LT Kristofer Tester, USN, April 2013 
  
% Determine the maximum time-step that has been assigned to the 
data 
maxtime = max(A(:,8)); 
  
% Initialize looping variables 
k = []; 
compar = []; 
compold = []; 
time = 1; 
Data = []; 
clusters1 = []; 
  
while time <= maxtime 
    clusters = []; 
    B = []; 
    sizeA = size(A); 
    n = 1; 
    while n <= sizeA(1) 
        if A(n,8) == time; 
            B = [B;A(n,:)]; 
        else end 
        n = n+1; 
    end 
    sizeB = size(B); 
    if sizeB(1) >= 2 
         
        % Ensure no global identifier is reported more than one  
  time during each time-step. If one is, use the   
  deconflict function to resolve the issue. 
        B = deconflict(B,time); 
        Data = [Data;B]; 
        [clusters] = 
KDVC(B,clusters,time,climit,dlimit,spdlimit); 
        sizeclusters = size(clusters); 
        clusters1 = [clusters1;clusters]; 
        if any(clusters) 
            sizeclusters = size(clusters); 
            maxcluster = max(clusters(:,8)); 
            j = 1; 
            while j <= maxcluster 
                h = 1; 
                while h <= sizeclusters(1) 
                    if clusters(h,8) == j 
                        k = [k;clusters(h,7)]; 
                    else 
                    end 



 

 73

                    h = h+1; 
                end 
                if time == 1 
                    if j == 1 
                        compar = [compar,k]; 
                    else 
                        sizek = size(k); 
                        sizecompar = size(compar); 
                        if sizek(1) == sizecompar(1) 
                            compar = [compar,k]; 
                        elseif sizek(1) > sizecompar(1) 
                            m = sizek(1)-sizecompar(1); 
                            n = 1; 
                            while n <= m 
                                compar = 
[compar;zeros(1,sizecompar(2))]; 
                                n = n+1; 
                            end 
                            compar = [compar,k]; 
                        else sizek(1) < sizecompar(1) 
                            m = sizecompar(1)-sizek(1); 
                            n = 1; 
                            while n <= m 
                                k = [k;0]; 
                                n = n+1; 
                            end 
                            compar = [compar,k]; 
                        end 
                    end 
                else time ~= 1 
                    if j == 1 
                        compar = [compar,k]; 
                    else 
                        sizek = size(k); 
                        sizecompar = size(compar); 
                        sizecompold = size(compold); 
                        if sizek(1) == sizecompar(1) 
                            compar = [compar,k]; 
                        elseif sizek(1) > sizecompar(1) 
                            m = sizek(1)-sizecompar(1); 
                            n = 1; 
                            while n <= m 
                                compar = 
[compar;zeros(1,sizecompar(2))]; 
                                n = n+1; 
                            end 
                            compar = [compar,k]; 
                        else sizek(1) < sizecompar(1) 
                            m = sizecompar(1)-sizek(1); 
                            n = 1; 
                            while n <= m 
                                k = [k;0]; 
                                n = n+1; 
                            end 
                            compar = [compar,k]; 
                        end 
                        sizecompar = size(compar); 
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                    end 
                end 
                k = []; 
                j = j+1; 
            end 
            compold{time} = compar; 
            compar = []; 
            clc 
        else 
        end 
    else 
    end 
    time=time+1; 
end 
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function B = deconflict(B,time) 
  
% DECONFLICT    Deconflict multiple contact reports. 
%   B = DECONFLICT(B,time) returns the B matrix ensuring that no 
contact global identifier is reported more than one time per 
time-step, which is denoted in the variable time. 
%   Created by LT Kristofer Tester, USN, April 2013 
  
% Note - The B matrix is the A matrix, just named differently 
  
% Determine if any global identi0fiers are repeated in the B 
matrix, and if so, which ones 
uniqueB = unique(B(:,7)); 
if length(uniqueB) > 1 
    countOfB = hist(B(:,7),uniqueB); 
    indexToRepeatedValue = (countOfB~=1); 
    repeatedValues = uniqueB(indexToRepeatedValue); 
else 
    repeatedValues = uniqueB; 
end 
  
% Determine the size of the B matrix 
sizeB = size(B); 
  
% Initialize looping variables 
current = 0; 
m = 1; 
spot = []; 
boom = 0; 
  
% Loop through the repeated global identifiers and either: 
%     1. If the distance between reports is less than 0.5 
nautical miles, average the contacts as one. 
%     2. If the distance between reports is greater than 0.5 
nautical miles, keep the contacts separate and give one of them a 
new global identifier. 
while m <= length(repeatedValues)  
    C = []; 
    spot = []; 
    n = 1; 
    while n <= sizeB(1)     
        if B(n,7) == repeatedValues(m); 
            C = [C;B(n,:)]; 
            spot = [spot;n];        
        else end 
        n = n+1; 
    end    
    sizeC = size(C); 
    if sizeC(1) == 2      
        if sqrt((C(1,1)-C(2,1))^2+(C(1,2)-C(2,2))^2) <= 20; 
             
            % Average the two contacts' components 
            avgxpos = (C(1,1)+C(2,1))/2; 
            avgypos = (C(1,2)+C(2,2))/2; 
            avgdx = (C(1,3)+C(2,3))/2; 
            avgdy = (C(1,4)+C(2,4))/2; 
            avgcse = (C(1,5)+C(2,5))/2; 
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            avgspd = (C(1,6)+C(2,6))/2; 
            avglon = (C(1,9)+C(2,9))/2; 
            avglat = (C(1,10)+C(2,10))/2;                     
            if avgxpos == 0 
                avgxpos = 0.0001; 
            else 
            end 
            if avgypos == 0 
                avgypos = 0.0001; 
            else 
            end 
            if avgdx == 0 
                avgdx = 0.0001; 
            else 
            end 
            if avgdy == 0 
                avgdy = 0.0001; 
            else 
            end 
            if avgcse == 0 
                avgcse = 0.0001; 
            else 
            end 
            if avgspd == 0 
                avgspd = 0.0001; 
            else 
            end 
            if avglon == 0 
                avglon = 0.0001; 
            else 
            end 
            if avglat == 0 
                avglat = 0.0001; 
            else 
            end                       
            B(spot(1),:) = [avgxpos avgypos avgdx avgdy avgcse 
avgspd... 
                repeatedValues(m) time avglon avglat]; 
            B(spot(2),:) = B(spot(2),:)*0;                         
            sizeB = size(B); 
        else 
        end 
        sizeB = size(B); 
    else 
        sizespot = size(spot);         
        a = 1; 
        while a <= sizespot(1) 
            if any(spot(a));                
                b = a+1;                 
                while b <= sizespot(1) 
                    if C(a,7) ~= 0 & C(b,7) ~= 0 
                        dist = sqrt((C(a,1)-C(b,1))^2+(C(a,2)-
C(b,2))^2);                         
                        if dist <= 20; 
                                                         
                            % Average the contacts' components 
                            avgxpos = (C(a,1)+C(b,1))/2; 
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                            avgypos = (C(a,2)+C(b,2))/2; 
                            avgdx = (C(a,3)+C(b,3))/2; 
                            avgdy = (C(a,4)+C(b,4))/2; 
                            avgcse = (C(a,5)+C(b,5))/2; 
                            avgspd = (C(a,6)+C(b,6))/2; 
                            avglon = (C(1,9)+C(2,9))/2; 
                            avglat = (C(1,10)+C(2,10))/2;                       
                            if avgxpos == 0 
                                avgxpos = 0.0001; 
                            else 
                            end 
                            if avgypos == 0 
                                avgypos = 0.0001; 
                            else 
                            end 
                            if avgdx == 0 
                                avgdx = 0.0001; 
                            else 
                            end 
                            if avgdy == 0 
                                avgdy = 0.0001; 
                            else 
                            end 
                            if avgcse == 0 
                                avgcse = 0.0001; 
                            else 
                            end 
                            if avgspd == 0 
                                avgspd = 0.0001; 
                            else 
                            end 
                            if avglon == 0 
                                avglon = 0.0001; 
                            else 
                            end 
                            if avglat == 0 
                                avglat = 0.0001; 
                            else 
                            end                             
                            B(spot(a),:) = [avgxpos avgypos avgdx 
avgdy... 
                                avgcse avgspd repeatedValues(m) 
time... 
                                avglon avglat]; 
                            B(spot(b),:) = B(spot(b),:)*0;                      
                            C(a,:) = B(spot(a),:);                             
                            current = 1; 
                            spot(b) = 0; 
                            if length(nonzeros(spot)) <= 1 
                                a = a+sizeC(1); 
                                b = b+sizeC(1);                                 
                            else 
                            end                             
                            sizeB = size(B);                             
                            b = b+1; 
                        else 
                            b = b+1; 
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                        end 
                    else 
                        b = b+1; 
                    end                     
                end           
                if current == 1 
                    spot(a) = 0; 
                    current = 0; 
                else 
                    current = 0; 
                end                 
                a = a+1; 
            else 
                a = a+1; 
            end             
        end 
         
        % Create a new contact global identifier 
        sizespot = size(spot); 
        j = 1; 
        sizeB = size(B); 
    end 
    m = m+1; 
end 
  
% Redefine the B matrix for output. This B matrix will have no 
repeated global identifier values. 
B = [nonzeros(B(:,1)) nonzeros(B(:,2)) nonzeros(B(:,3))... 
    nonzeros(B(:,4)) nonzeros(B(:,5)) nonzeros(B(:,6))... 
    nonzeros(B(:,7)) nonzeros(B(:,8)) nonzeros(B(:,9))... 
    nonzeros(B(:,10))]; 
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function [clusters] = 
KDVC(A,clusters,time,climit,dlimit,spdlimit) 
  
% KDVC   K-means, distance, and displacement clustering. 
%   [clusters] = KDVC(A,clusters,time,climit,dlimit,spdlimit) 
returns the kinematic clusters at a given time-step based on user 
inputs where A is the input dataset, clusters is the matrix for 
output storage, time is the time-step being evaluated, climit is 
the user defined course limit in degrees, dlimit is the user 
defined distance limit in nautical miles, and spdlimit is the 
user definied speed limit in knots.  
%   Created by LT Kristofer Tester, USN, April 2013 
  
% Determine the size of the input dataset, A 
sizeA = size(A); 
  
% Determine the sample of contacts from A to be used in 
determining the centroids of k clusters using subset-farthest-
first methodology 
sample = round(sizeA(1));  
syms w 
k = round(solve(sample == 2*w*log(w))); 
  
% Call for function sff in which subset-farthest-first 
methodology is implemented. Returns a matrix, kstart, which 
contains the centroids for k-means clustering. 
if sample >= 3 
    eval(['[kstart] = CentroidSff(A,k,sample)']); 
else 
    kstart = A(1:sample,:); 
end 
  
% Conduct k-means clustering on the dataset A using the centroids 
stored in kstart. Store the results as B 
sizekstart = size(kstart); 
if sizekstart(1) == sizeA(1) 
    if kstart ~= A 
        B = kmeans(A,[],'start',kstart,'EmptyAction','drop');   
    else 
        B = ones(sizekstart(1),1); 
    end 
else 
            B = kmeans(A,[],'start',kstart,'EmptyAction','drop');   
end 
  
% Redefine the A matrix to incorporate the results of k-means 
clustering, B 
A = [A(:,1) A(:,2) A(:,3) A(:,4) A(:,5) A(:,6) A(:,7) B A(:,8) 
A(:,9) A(:,10)]; 
  
% Initialize loop variable which aids in titling of the plots 
provided by the function 
h = 1; 
  
% Define the default line style for plotting 
set(0,'DefaultAxesLineStyleOrder',{'-','--',':'})  
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% Begin loop for clustering analysis of A matrix and continue 
loop as long as A has non-zero members 
leginfo = {}; 
while any(A) == 1 
     
    % Determine the row of the A matrix that has the maximum 
speed value.  
    % Use the corresponding contact as the seed contact. 
    [a,b] = max(A(:,6)); 
    c = A(b,:); 
    A(b,:) = A(b,:)*0; 
     
    % Call function Kinematic which is the actual clustering 
algorithm. Returns the A matrix along with those contacts that 
are clustered together in c 
    eval(['[A,c] = Kinematic(A,c,climit,dlimit,spdlimit,h)']); 
     
    % Determine the size of the c matrix 
    sizec = size(c); 
     
    % If contacts were clustered together, drop in and plot those 
contacts. If contacts were not clustered together, plot nothing 
and loop to  
    if sizec(1) > 1 
         
        % Ensure the contacts in c are sorted by global 
identifier in ascending order 
        update = c; 
        update = sortrows(update,7); 
        clusters = [clusters;update]; 
         
        % Quiver plot the contacts that are clustered together in 
each time-step 
        quiver(c(:,10),c(:,11),c(:,3),c(:,4)); 
        title('Kinematic Microclusters') 
        xlabel('Position in miles from the origin') 
        ylabel('Position in miles from the origin') 
        leginfo{h} = ['c_' num2str(h)]; 
        grid on 
        hold on 
        set(gcf,'color','w'); 
        h = h + 1; 
         
        % Determine the size of the matrix clusters and add a row 
of zeros to separate each cluster found in each time-step 
        sizeclusters = size(clusters); 
        clusters = [clusters;zeros(1,sizeclusters(2))];        
    else sizec(1) < 1 
    end     
end 
  
% Provide the legend information for the cluster plot 
if isempty(leginfo) == 0 
    legend(leginfo) 
else 
end 
hold off 
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clc 
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function [kstart] = CentroidSff(A,k,sample) 
  
% SFF    Subset farthest first function 
%   [kstart] = SFF(A,k,sample) returns the centroid positions for 
use in k-means clustering that are determined using subset 
farthest first technology, where A is the input data matrix, k is 
the number of centroids to determine, and sample is the size of 
the subset of the A matrix to be considered. 
%   Created by LT Kristofer Tester, USN, April 2013 
  
% Initialize looping variables 
n = 1; 
j = 1; 
sizeA = size(A); 
z = sizeA(1); 
l = round(sizeA(1)/2-k/2); 
B = A; 
  
% Initialize a looping variable and assign the first centroid to 
kstart 
i = 1; 
kstart(1,:) = B(1,:); 
B(1,:) = B(1,:)*0; 
  
% After assigning the first member of kstart, reconfigure the B 
matrix to exhaust that member 
x = nonzeros(B(:,1)); 
y = nonzeros(B(:,2)); 
dx = nonzeros(B(:,3)); 
dy = nonzeros(B(:,4)); 
cse = nonzeros(B(:,5)); 
spd = nonzeros(B(:,6)); 
counter = nonzeros(B(:,7)); 
t = nonzeros(B(:,8)); 
lon = nonzeros(B(:,9)); 
lat = nonzeros(B(:,10)); 
B = [x y dx dy cse spd counter t lon lat]; 
  
% Loop through the B matrix and assign follow-on members of the 
kstart matrix (centroids) as the contact that is farthest from 
the previous selection. 
while i < k   
    n = 1; 
    sizeB = size(B);     
    while n < sizeB(1) 
        d(n,i) = sqrt((B(n,1)-kstart(i,1)).^2 + (B(n,2)-
kstart(i,2)).^2); 
        n = n+1; 
    end 
    [F,I] = max(d(:,i)); 
    i = i+1; 
    kstart(i,:) = B(I,:); 
    B(I,:) = B(I,:)*0; 
     
    % Reconfigure the B matrix to account for kstart assignment 
and exhaust further possible consideration of the members. 
    x = nonzeros(B(:,1)); 
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    y = nonzeros(B(:,2)); 
    dx = nonzeros(B(:,3)); 
    dy = nonzeros(B(:,4)); 
    cse = nonzeros(B(:,5)); 
    spd = nonzeros(B(:,6)); 
    counter = nonzeros(B(:,7)); 
    t = nonzeros(B(:,8)); 
    lon = nonzeros(B(:,9)); 
    lat = nonzeros(B(:,10)); 
    B = [x y dx dy cse spd counter t lon lat];    
end 
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function [A,c] = Kinematic(A,c,climit,dlimit,spdlimit,h) 
  
% Kinematic    Distance and displacement clustering. 
%   [A,c] = Kinematic(A,c,climit,dlimit,spdlimit,h) returns the 
kinematic clusters at a given time-step based on user inputs 
where A is the input dataset, c is the seed contact, climit is 
the user defined course limit in degrees, dlimit is the user 
defined distance limit in nautical miles, spdlimit is the user 
definied speed limit in knots, and h is the time-step. 
%   Created by LT Kristofer Tester, USN, April 2013 
  
% Determine the size of the A matrix and initialize looping 
variable 
sizeA = size(A); 
n = 1; 
  
% Compare each row of the A matrix to the seed contact in c and 
determine if: 
%     1. They have the same k-means cluster assignment  
%     2. The distance between them is less than the user defined 
threshold  
%     3. The difference in their courses is less than the user 
defined threshold 
%     4. The difference in their speeds is less than the user 
defined threshold 
% If so, cluster them together, set the row in the A matrix to 
zero to exhaust it from further consideration, and store the 
contact in c 
while n <= sizeA(1) 
    if c(1,8) == A(n,8);   
        if sqrt((c(1,1)-A(n,1)).^2 + (c(1,2)-A(n,2)).^2) < 
dlimit;  
            if (A(n,5) >= c(1,5)-climit) & (A(n,5) <= 
c(1,5)+climit); 
                if (A(n,6) >= c(1,6)-spdlimit) & (A(n,6) <= 
c(1,6)+... 
                        spdlimit); 
                    c(n+1,:) = A(n,:); 
                    A(n,:) = A(n,:)*0; 
                else end 
            else end 
        else end 
    else end 
    n = n+1;     
end 
x = nonzeros(c(:,1)); 
y = nonzeros(c(:,2)); 
dx = nonzeros(c(:,3)); 
dy = nonzeros(c(:,4)); 
cse = nonzeros(c(:,5)); 
spd = nonzeros(c(:,6)); 
counter = nonzeros(c(:,7)); 
sizex = size(x); 
h = h*ones(sizex(1),1); 
t = nonzeros(c(:,9)); 
Lon = nonzeros(c(:,10)); 
Lat = nonzeros(c(:,11)); 
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% Redefine the c matrix to account for those contacts deemed to 
be clustered with the seed contact 
c = [x y dx dy cse spd counter h t Lon Lat]; 
end 
  



 

 86

function 
[MovingClusters,FuseClusters,DiffClusters,CurrentClusters,... 
    timecount] = Temporal(compold,storage) 
  
% Temporal    Temporal analysis function of STC algorithm. 
%   Temporal compares the kinematic cluster snapshots from each 
time-step to determine which clusters are moving through time. 
The results are stored in MovingClusters. FuseClusters contains 
the continuity of the moving clusters. DiffClusters contains the 
vessel identifiers of those vessels that join or depart already 
formed moving clusters. CurrentClusters contains the kinematic 
clusters found at the last time-step of data. Created by LT 
Kristofer Tester, USN, April 2013 
  
% A snapshot of each time-step has been analyzed, and the 
kinematic clusters that occur at each time-step are stored in the 
cell array compold. Now initialize looping variables and loop 
through compold to determine if any kinematic clusters were 
stored. If there were, assign a value of one to the variable 
moveon. 
zz = 1; 
moveon = 0; 
timecount = 0; 
timemat = []; 
while zz <= length(compold) 
    if any(compold{zz}) 
        moveon = 1; 
        timecount = timecount+1; 
        timemat = [timemat;zz]; 
        zz = zz+1; 
    else 
        zz = zz+1; 
    end 
end 
  
% With moveon equal to one it is known that there are kinematic 
clusters stored in compold. It is now time to perform temporal 
analysis on those kinematic clusters and determine if any of them 
move together over time. Again, while looping through the time-
steps that contain kinematic clusters, the variable fuse will be 
defined as the intersection of the current time-step's kinematic 
clusters' memberships with the next time-step's kinematic 
clusters' memberships. If fuse is greater than or equal to a user 
defined threshold, store the kinematic cluster as a moving 
cluster. If fuse is less than the threshold or zero, compare the 
current time-step's kinematic clusters' membership to the next 
time-step plus one's clusters' membership in order to recalculate 
fuse. If fuse is still less than the threshold or zero, discard 
the kinematic cluster from consideration of being a moving 
cluster. 
if moveon == 1 
    timemat = sort(timemat); 
    mm = 0; 
    sizetimemat = size(timemat); 
    time = timemat(1); 
    MovingClusters = {}; 
    CurrentClusters = {}; 
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    FuseClusters = {}; 
    DiffClusters = {}; 
    while time <= timemat(sizetimemat(1)) 
        mm = mm+1; 
        if time == timemat(1); 
            B = compold{time}; 
            C = compold{timemat(2)}; 
        else end 
        if time <= timemat(sizetimemat(1)-2); 
            D = compold{timemat(mm+2)}; 
        else end 
        columnB = size(B); 
        columnC = size(C); 
        columnD = size(D); 
        j = 1; 
        while j <= columnB(2) 
            h = 1; 
            sizeB = size(nonzeros(B(:,j))); 
            if time <= timemat(sizetimemat(1)-1); 
                while h <= columnC(2) 
                    sizeC = size(nonzeros(C(:,h))); 
                    Z = 
intersect(nonzeros(B(:,j)),nonzeros(C(:,h))); 
                    sizeZ = size(Z); 
                    if sizeC(1) > sizeB(1); 
                        fuse = sizeZ(1)/sizeC(1); 
                    elseif sizeB(1) > sizeC(1); 
                        fuse = sizeZ(1)/sizeB(1); 
                    else sizeC(1) == sizeB(1); 
                        fuse = sizeZ(1)/sizeB(1); 
                    end 
                    katysnumber = 0; 
                    if fuse >= storage; 
                        MovingClusters{time,j} = B(:,j); 
                         
                        FuseClusters{time,j} = fuse; 
                        if fuse ~= 1 & fuse ~= 0 
                            X = setdiff(B(:,j),C(:,h)); 
                            DiffClusters{time,j} = X; 
                        else 
                        end 
                        h = columnC(2)+1; 
                        katysnumber = 1; 
                    else 
                        if time <= timemat(sizetimemat(1)-2) & h 
<=... 
                                columnD(2); 
                            sizeD = size(nonzeros(D(:,h))); 
                            Z = intersect(nonzeros(B(:,j)),... 
                                nonzeros(D(:,h))); 
                            sizeZ = size(Z); 
                            if sizeD(1) > sizeB(1); 
                                fuse = sizeZ(1)/sizeD(1); 
                            elseif sizeB(1) > sizeD(1); 
                                fuse = sizeZ(1)/sizeB(1); 
                            else sizeD(1) == sizeB(1); 
                                fuse = sizeZ(1)/sizeB(1); 
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                            end 
                            if fuse >= storage; 
                                MovingClusters{time,j} = B(:,j); 
                                 
                                FuseClusters{time,j} = fuse; 
                                if fuse ~= 1 & fuse ~= 0 
                                    X = setdiff(B(:,j),D(:,h)); 
                                    DiffClusters{time,j} = X; 
                                else 
                                end 
                                h = columnD(2)+1; 
                                katysnumber = 1; 
                            else end 
                        else end 
                    end 
                    h = h+1; 
                end 
            else time == timemat(sizetimemat(1)); 
                CurrentClusters{1,j} = B(:,j); 
            end 
            j = j+1; 
        end 
        B = C; 
        C = D; 
        if mm < sizetimemat(1) 
            time = timemat(mm+1); 
        else 
            time = max(timemat)+1; 
        end 
    end 
else 
    return 
end 
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function 
Postprocessing(MovingClusters,FuseClusters,DiffClusters,... 
    CurrentClusters,timecount,Data,maxtime,clusters1) 
  
% Postprocessing    Function to handle the development of usable 
text and visual outputs. 
%   Postprocessing creates user-friendly text and visual outputs 
from the cell array inputs to provide the user an understanding 
of the algorithm’s findings.  
% Created by LT Kristofer Tester, USN, April 2013 
  
clc 
moveon = 0; 
zz = 1; 
sizeMovingClusters = size(MovingClusters); 
while zz <= sizeMovingClusters(1)*sizeMovingClusters(2) 
    if any(MovingClusters{zz}) 
        moveon = 1; 
        zz = sizeMovingClusters(1)*sizeMovingClusters(2)+1; 
    else 
        zz = zz+1; 
    end 
end 
if moveon == 1 
    CompClusters = MovingClusters; 
    occur = []; 
    begin = {}; 
    time = 1; 
    index = 1; 
    B = {}; 
    cluster1 = []; 
    l = 0; 
    str = ('Moving Clusters:'); 
    disp(str) 
    str = (' '); 
    disp(str) 
    while time <= sizeMovingClusters(1) 
        h = 1; 
        while h <= sizeMovingClusters(2) 
            if any(MovingClusters{time,h}) 
                b = nonzeros(MovingClusters{time,h}); 
                index = 1; 
                occur = []; 
                while index <= 
sizeMovingClusters(1)*sizeMovingClusters(2) 
                    if any(intersect(MovingClusters{index},b)) 
                        J = nonzeros(MovingClusters{index}); 
                        sizeindex = size(J); 
                        sizeb = size(b); 
                        if sizeindex(1) == sizeb(1) 
                            if J == b 
                                [I,J] = 
ind2sub(sizeMovingClusters,index); 
                                occur = [occur;I]; 
                                MovingClusters{index} =... 
                                    MovingClusters{index}*0; 
                                index = index+1; 
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                            else 
                                index = index+1; 
                            end 
                        else 
                            index = index+1; 
                        end 
                    else 
                        index = index+1; 
                    end 
                end 
                if any(occur) 
                    l = l+1; 
                    occur = sort(occur); 
                    sizeoccur = size(occur); 
                    b = nonzeros(b); 
                    sizeb = size(b); 
                    sizeCurrentClusters = size(CurrentClusters); 
                    current = 0; 
                    q = 1; 
                    while q <= sizeCurrentClusters(2) 
                        Q = nonzeros(CurrentClusters{q}); 
                        sizeq = size(Q); 
                        if sizeq(1) == sizeb(1) 
                            if nonzeros(CurrentClusters{q}) == 
nonzeros(b) 
                                current = 1; 
                                q = sizeCurrentClusters(2)+1; 
                            else 
                                q = q+1; 
                            end 
                        else 
                            q = q+1; 
                        end 
                    end 
                    if current == 1; 
                        occur = [occur;maxtime]; 
                        if length(occur) == max(occur)-
min(occur)+1; 
                            str = ['Cluster ' num2str(l)... 
                                ' containing contacts 
',num2str(b'),... 
                                ' begins at time 
',num2str(occur(1)),... 
                                ' and is a current cluster']; 
                        else 
                            str = ['Cluster ' num2str(l)... 
                                ' containing contacts 
',num2str(b'),... 
                                ' begins at time 
',num2str(occur(1)),... 
                    ', is a current cluster, but gains or loses 
members']; 
                        end 
                        disp(str) 
                        current = 0; 
                    else 
                        str = ['Cluster ' num2str(l)... 
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                            ' containing contacts 
',num2str(b'),... 
                            ' begins at time ', 
num2str(occur(1)),... 
                    ' and ends at time ', 
num2str(occur(sizeoccur(1)))]; 
                        disp(str) 
                    end 
                     
                    % Average the cluster-contacts into a   
    representative cluster at each timestep  
    they occur in order to store the   
    information for presentation on the visual 
                      output. 
                    sizeoccur = size(occur); 
                    mm = 0; 
                    y = occur(1); 
                    while y <= max(occur) 
                        mm = mm+1; 
                        z = 1; 
                        clust = []; 
                        while z <= sizeb(1) 
                            K = find(Data(:,7)==b(z)); 
                            sizeK = size(K); 
                            if sizeK == 1; 
                                clust = [clust;Data(K,:)]; 
                                z = z+1; 
                            else 
                                clust = [clust;Data(K(mm),:)]; 
                                z = z+1; 
                            end 
                        end 
                        avgxpos = mean(clust(:,1)); 
                        avgypos = mean(clust(:,2)); 
                        avgdx = mean(clust(:,3)); 
                        avgdy = mean(clust(:,4)); 
                        avglon = mean(clust(:,9)); 
                        avglat = mean(clust(:,10)); 
                        avgcse = mean(clust(:,5)); 
                        avgspd = mean(clust(:,6)); 
                        cluster1 = [cluster1;avgxpos avgypos 
avgdx avgdy... 
                            y FuseClusters{time,h} l avglon 
avglat... 
                            avgcse avgspd]; 
                        if mm < sizeoccur(1) 
                            y = occur(mm+1); 
                        else 
                            y = max(occur)+1; 
                        end 
                    end 
                    d = 1; 
                    while d <= length(CurrentClusters) 
                        kk = nonzeros(CurrentClusters{d}); 
                        ll = nonzeros(clust(:,7)); 
                        sizekk = size(kk); 
                        sizell = size(ll); 



 

 92

                        if sizekk == sizell 
                            if length(intersect(nonzeros... 
                                    
(CurrentClusters{d}),nonzeros... 
                                    
(clust(:,7))))/length(nonzeros... 
                                    (clust(:,7))) == 1 
                                f = nonzeros(clust(:,7)); 
                                g = 1; 
                                while g <= length(f) 
                                    row = find(clusters1(:,7) == 
f(g),1); 
                                    clusters1(row,:) = 
clusters1(row,:)*0; 
                                    g = g+1; 
                                end 
                            else end 
                            d = d+1; 
                        else 
                            d = d+1; 
                        end 
                    end 
                    sizecluster1 = size(cluster1); 
                    cluster1 = 
[cluster1;zeros(1,sizecluster1(2))]; 
                end 
            else 
                h = h+1; 
            end 
        end 
        time = time+1; 
    end 
    sizecluster1 = size(cluster1); 
    o = max(clusters1(:,8)); 
    r = 1; 
    b = []; 
    l = l+1; 
     
    % Reorganize the matrix cluster1 for administrative purposes.  
    % Determine the maximum and minimum of the cardinal 
directions for plotting purposes. Call the moneyscatter function 
to create an interactive visual output the function 
plot_google_map will lay the google map representation of the 
area underneath the output plot for better user situational 
awareness. 
    cluster1 = [cluster1(:,8) cluster1(:,9) cluster1(:,3) 
cluster1(:,4)... 
        cluster1(:,5) cluster1(:,6) cluster1(:,7) 
cluster1(:,10)... 
        cluster1(:,11)]; 
    west = min(nonzeros((cluster1(:,1)))); 
    east = max(nonzeros((cluster1(:,1)))); 
    south = min(nonzeros((cluster1(:,2)))); 
    north = max(nonzeros((cluster1(:,2)))); 
    PlotScatter(cluster1) 
    title('Interactive Visual Cluster Representation') 
    xlabel('Degrees of Longitude') 
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    ylabel('Degrees of Latitude') 
    axis([west-0.5 east+0.5 south-0.5 north+0.5]); 
    set(gcf,'color','w'); 
    plot_google_map 
     
    % Using the cell array DiffClusters, determine which contacts 
join and depart other moving clusters throughout the timeline of 
analysis. This information is then output in text format for the 
user to better determine potential contacts of interest. 
    str = (' '); 
    disp(str) 
    disp(str) 
    str = ('Contacts of Interest:'); 
    disp(str) 
    str = (' '); 
    disp(str) 
    h = 1; 
    sizeDiffClusters = size(DiffClusters); 
    sizeDC = sizeDiffClusters(1)*sizeDiffClusters(2); 
    while h <= sizeDC 
        if any(DiffClusters{h}); 
            occur = []; 
            m = nonzeros(DiffClusters{h}); 
            j = 1; 
            sizeCompClusters = size(CompClusters); 
            sizeCC = sizeCompClusters(1)*sizeCompClusters(2); 
            while j <= sizeCC 
                if any(intersect(m,CompClusters{j})); 
                    [I,J] = ind2sub(sizeCompClusters,j); 
                    occur = [occur;I]; 
                    j = j+1; 
                else 
                    j = j+1; 
                end 
            end 
            dep = max(occur);% + 1; 
            current = 0; 
            if length(occur) == timecount-1 
                if length(m) > 1 
                    str = ['Contacts ' num2str(m')... 
    ' are a moving cluster that join and depart other larger 
clusters.']; 
                    disp(str) 
                else 
                    str = ['Contact ' num2str(m')... 
    ' is a moving cluster that joins and departs other larger 
clusters.']; 
                    disp(str) 
                end 
            else 
                kk = 1; 
                sizem = size(m); 
                while kk <= sizem(1) 
                    if any(find((Data(:,7) == m(kk)) & 
(Data(:,8)... 
                            == dep))); 
                        s(kk) = find((Data(:,7) == m(kk)) & 
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(Data(:,8)... 
                            == dep)); 
                        kk = kk+1; 
                        current = 1; 
                    else 
                        kk = kk+1; 
                    end 
                end 
            end 
            if current == 1 
                course = 0; 
                speed = 0; 
                sizes = size(s); 
                kk = kk-1; 
                if sizes(1) == 1; 
                    course = Data(s(1),5); 
                    speed = Data(s(1),6); 
                else 
                    while kk >= 1 
                        course = (course+Data(s(kk),5))/2; 
                        speed = (speed+Data(s(kk),6))/2; 
                        kk = kk-1; 
                    end 
                end 
                if length(occur) == max(occur)-min(occur)+1 
                    str = ['Contact ' num2str(m')... 
                        ' joins a cluster at time ' 
num2str(min(occur))... 
               ' and remains with the cluster until it departs at 
time '... 
         num2str(max(occur)) '. ''The contact departs on average 
course '... 
         num2str(round(course)) ' at average speed of '... 
         num2str(round(speed)) ' knots.']; 
                    disp(str) 
                else 
                    str = ['Contact ' num2str(m')... 
                        ' joins a cluster at time ' 
num2str(min(occur))... 
 ', departs the cluster, and then rejoins it, finally departing 
at time '... 
 num2str(max(occur)) '. ''The contact departs on average course 
'... 
 num2str(round(course)) ' at average speed of ' 
num2str(round(speed))... 
 ' knots.']; 
                    disp(str) 
                end 
            else 
            end 
            h = h+1; 
        else 
            h = h+1; 
             
        end 
    end 
else 
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    return 
end 
  



 

 96

function PlotScatter(cluster1) 
  
% PlotScatter    Interactive scatterplot output 
%   PlotScatter(cluster1) returns an interactive scatterplot of 
the information stored in the cluster1 matrix. The user is able 
to interactively click on the scatterplot to determine 
information from various data points. 
%   Created by LT Kristofer Tester, USN, April 2013 
  
% Set default line style for the scatterplot 
set(0,'DefaultAxesLineStyleOrder',{'-','-','-','-'}) 
  
% Open new figure 
fh = figure(); 
  
% Plot various colors on a far reach of the figure to enable 
labeling in the legend 
h1 = plot(1e6,1e6,'r'); 
hold on 
h2 = plot(1e6,1e6,'color',[1 .5 0]); 
h3 = plot(1e6,1e6,'g'); 
h4 = plot(1e6,1e6,'color',[0 .5 .5]); 
h5 = plot(1e6,1e6,'color',[.25 0 1]); 
  
% Intialize looping variables 
n = 1; 
xy = []; 
  
% Loop through each row of cluster1 and plot each cluster in the 
appropriate color and style according to its attributes 
sizecluster1 = size(cluster1); 
while n < sizecluster1(1) 
    if any(cluster1(n,:))    
        if cluster1(n+1,5) == 0; 
            if n == 1 || (cluster1(n+1,5) == 0 & cluster1(n-1,5) 
== 0) 
                if cluster1(n,6) == 1; 
                    if any(xy) 
                        xy = [xy;cluster1(n,1) cluster1(n,2)]; 
                        plot(xy(:,1),xy(:,2),'rx-'); 
                        hold on 
                        grid on 
                        xy = []; 
                    else end 
                    plot(cluster1(n,1),cluster1(n,2),'ro') 
                    hold on 
                    grid on     
                elseif cluster1(n,6) >= 0.75 & cluster1(n,6) < 1;   
                    if any(xy) 
                        xy = [xy;cluster1(n,1) cluster1(n,2)]; 
                        plot(xy(:,1),xy(:,2),'x-','color',[1 .5 
0]); 
                        hold on 
                        grid on 
                        xy = []; 
                    else end  
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plot(cluster1(n,1),cluster1(n,2),'o','color',[1 .5 0]) 
                    hold on 
                    grid on    
                elseif cluster1(n,6) >= 0.5 & cluster1(n,6) < 
0.75;  
                    if any(xy) 
                        xy = [xy;cluster1(n,1) cluster1(n,2)]; 
                        plot(xy(:,1),xy(:,2),'gx-'); 
                        hold on 
                        grid on 
                        xy = []; 
                    else end 
                    plot(cluster1(n,1),cluster1(n,2),'go') 
                    hold on 
                    grid on    
                elseif cluster1(n,6) >= 0.25 & cluster1(n,6) < 
0.5;  
                    if any(xy) 
                        xy = [xy;cluster1(n,1) cluster1(n,2)]; 
                        plot(xy(:,1),xy(:,2),'x-','color',[0 .5 
.5]); 
                        hold on 
                        grid on 
                        xy = []; 
                    else end 
                    
plot(cluster1(n,1),cluster1(n,2),'o','color',[0 .5 .5]) 
                    hold on 
                    grid on  
                elseif cluster1(n,6) > 0 & cluster1(n,6) < 0.25;  
                    if any(xy) 
                        xy = [xy;cluster1(n,1) cluster1(n,2)]; 
                        plot(xy(:,1),xy(:,2),'x-','color',[.25 0 
1]); 
                        hold on 
                        grid on 
                        xy = []; 
                    else end 
                    
plot(cluster1(n,1),cluster1(n,2),'o','color',[.25 0 1]) 
                    hold on 
                    grid on 
                else cluster1(n,6) == 0    
                    scatter(cluster1(n,1),cluster1(n,2),'ko') 
                    hold on 
                    grid on  
                end 
                n = n+1; 
            else 
                if cluster1(n-1,6) == 1; 
                    if any(xy) 
                        xy = [xy;cluster1(n,1) cluster1(n,2)]; 
                        plot(xy(:,1),xy(:,2),'rx-'); 
                        hold on 
                        grid on 
                        xy = []; 
                    else end 
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                    plot(cluster1(n,1),cluster1(n,2),'ro') 
                    hold on 
                    grid on 
                elseif cluster1(n-1,6) >= 0.75 & cluster1(n,6) < 
1; 
                    if any(xy) 
                        xy = [xy;cluster1(n,1) cluster1(n,2)]; 
                        plot(xy(:,1),xy(:,2),'x-','color',[1 .5 
0]); 
                        hold on 
                        grid on 
                        xy = []; 
                    else end 
                    
plot(cluster1(n,1),cluster1(n,2),'o','color',[1 .5 0]) 
                    hold on 
                    grid on   
                elseif cluster1(n-1,6) >= 0.5 & cluster1(n,6) < 
0.75;   
                    if any(xy) 
                        xy = [xy;cluster1(n,1) cluster1(n,2)]; 
                        plot(xy(:,1),xy(:,2),'gx-'); 
                        hold on 
                        grid on 
                        xy = []; 
                    else end 
                    plot(cluster1(n,1),cluster1(n,2),'go') 
                    hold on 
                    grid on    
                elseif cluster1(n-1,6) >= 0.25 & cluster1(n,6) < 
0.5;  
                    if any(xy) 
                        xy = [xy;cluster1(n,1) cluster1(n,2)]; 
                        plot(xy(:,1),xy(:,2),'x-','color',[0 .5 
.5]); 
                        hold on 
                        grid on 
                        xy = []; 
                    else end 
                    
plot(cluster1(n,1),cluster1(n,2),'o','color',[0 .5 .5]) 
                    hold on 
                    grid on   
                elseif cluster1(n-1,6) > 0 & cluster1(n,6) < 
0.25;    
                    if any(xy) 
                        xy = [xy;cluster1(n,1) cluster1(n,2)]; 
                        plot(xy(:,1),xy(:,2),'x-','color',[.25 0 
1]); 
                        hold on 
                        grid on 
                        xy = []; 
                    else end  
                    
plot(cluster1(n,1),cluster1(n,2),'o','color',[.25 0 1]) 
                    hold on 
                    grid on   
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                else cluster1(n-1,6) == 0    
                    scatter(cluster1(n,1),cluster1(n,2),'ko') 
                    hold on 
                    grid on   
                end 
                n = n+1; 
            end 
        elseif cluster1(n+1,5) ~= 0;    
            xy = [xy;cluster1(n,1) cluster1(n,2)]; 
            n = n+1;   
        end 
    else 
        n = n+1; 
    end  
end 
  
% Define the legend properties and labels for each color 
legend([h1 h2 h3 h4 h5],'100%','75-99%','50-74%;','25-49%','0-
25%'); 
% Enable data cursor mode in the figure and call the function to 
enable interactive use and response from the figure 
dcm = datacursormode(fh); 
datacursormode on 
set(dcm,'displaystyle','window'); 
set(dcm,'UpdateFcn',{@poscluster,cluster1}) 
  
% Function call to provide the information for data points on the 
scatterplot based on where the data cursor is. 
function InfoBox = poscluster(obj,event_obj,cluster1) 
  
% Determine the position of the user mouse click and store in pos 
pos = get(event_obj,'Position'); 
  
% Define the portions of pos that correspond to the x and y 
position values 
x = pos(1); 
y = pos(2); 
  
% Search the cluster1 matrix for the contact in the selected x 
and y posiition 
a = find(cluster1(:,1) == x); 
b = find(cluster1(:,2) == y); 
c = find(cluster1(:,5) ~= 0); 
  
% Set the variable row to the contact in the given x and y 
position 
row = intersect(a,b); 
row = intersect(row,c); 
  
% Set output text accordingly (Could be anything we want it to 
be) 
InfoBox = {['Longitude: ' num2str(pos(1),4)],... 
    ['Latitude: ' num2str(pos(2),4)]... 
    ['Cluster: ' num2str(cluster1(row,7))]... 
    ['Time: ' num2str(cluster1(row,5))]... 
    ['Average Course: ' num2str(round(cluster1(row,8)))]... 
    ['Average Speed: ' num2str(round(cluster1(row,9)))]}; 
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