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ABSTRACT

The estimation of time varying spectra is a complicated one. The use of classical
techniques coupled with the local stationarity assumption is met with only moderate
success. Of the many time-frequency distribution functions used in the signal analysis,
none present fully satisfactory spectra. The performance of the spectrogram, Instanta-
neous Power Spectra (IPS) the Wigner-Ville distribution (WD) and various aspects of
the Rihaczek distribution (RD) for a variety of signal nonstationarities are compared.
WD has the most narrow main-lobes but suffers from spectral cross-terms. IPS, the real
part of the RD consistently shows a bro Jened main-lobe without cross-terms. The
squared magnitude of the RD places sharp peaks along the crest of the main-lobe and
is otherwise very similar to IPS. The imaginary part of the RD shows a sensitjvity to
discontinuous frequency changes i.e., frequencv shuic ' eying.
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I. INTRODUCTION

The analysis of stationary spectra is a w:ll-defined problem. Although from a the-
oretical point of view a true signal spectrum can only be defined in terms of infinite du-
ration data, spectral estimates resulting from the analysis of finite duration data have
proven very useful. In the classical estimation problem, one assumes that

¢ the data length is finite, and

¢ the random process from which it originates is at least wide-sense stationary.

Armed with these assumptions the behavior of spectra derived in this manner can be
accurately predicted. The distortion incurred when analyzing a finite amount of data can
be kept at a minimum given the specific estimation problem. But what happens if the
signal is not at least wide sense stationary? Signals commonly encountered in the real
world are not stationary; they vary in time. Either in amplitude or frequency content
or possibly both, experimental data is rarely truly stationary. To better describe the
variable random process, a time dependence must be included. All the theoretical results
and even the practical application to finite duration data assume that ergodicity applies.
Clearly a nonstationary signal is not an ergodic one, i.e., not one whose time average
is equivalent to the mean realization.

In the analysis of nonstationary phenomena, there are a certain properties of the
resulting spectrum which must be identical to the stationary analog. These properties
include an all-positive spectrum and zero energy in the spectrum when the signal is not
present. Further constraints must be applied to the spectral behavior along the time
dimension, a problem unique to the anaysis of nonstationary phenomena. There have
been many attempts to adequately model the time-varying behavior of norstationary
spectra. In general it appears that each technique has some advantages and disadvan-
tages. Some appear better-suited to the analysis of a certain class of signals. There has
vet to be found a completely satisfactory description of the time dependent spectral es-
timation problem.



Il. SPECTRAL ANALYSIS OF SIGNALS WITH STATIONARY
CHARACTERISTICS

The Wiener-Khinchin theorem states that if x(¢) is a band limited, wide sense sta-
ticnary process, then the power spectral density (PSD), is related to the autocorrelation

function (ACF), through a Fourier transform

Pol) = | R, W

where R,,(t) is the ACF. Using the Fourier inversion formula,

Rl = | Palp e, e

and evaluating the correlation function at lag zero results in the average power in the

process,

. 1 T . %)
tim 5 | e 1501 = f_wpn(f)df, ()

where E denotes statistical averaging and 2T represents the duration of observation.
Equations (1) and (2) describe the relationship between the time dependent data and the
frequency dependent power spectrum. Equation (3) describes the relationship between
a signal’s temporal density and its spectral density. The integrand to the left in (3) re-
presents the instantaneous power of the process. The integrand to the right represents
the power as a function of frequency. Both can be considered power density functions
and both are non-negative everywhere. Because the ACF is always conjugate symmetric,
the power spectral density is always real and the average power in the process is always
real. [Ref. 1, 2] '
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Equation (1) can be rewritten,

R

- X =f2nft 4 12

Pedf) = jum, EL 37 || *WeTTan @
-T

which implies knowledge of the signal for all time. It is clear that in order to compute
the true ACF or PSD, an infinite data set is required. Knowledge of an infinite number
of realizations is also implied. These two theoretical constraints are impractical. Real-
istically one must deduce the power spectrum from a single, finite duration realization.
This chapter examines a variety of estimation techniques, noting the specific advantages
and limitations inherent in each.

A. CLASSICAL TECHNIQUES
The computation of a power spectrum from one, finite set of data serves as an esti-

mate of the true PSD. One common estimation technique is the periodogram. It can
be computed from the data as

T
Prodf)=F | | x0e?ar? (5)

an estimate similar in form to (), except that limiting and statistical averaging oper-
ations have been ignored. This estimate has the advantage of being both real and posi-
tive. Examination of the mean and variance of the periodogram spectral estimate best
describes its deviation from the true PSD,

oo

E[Poy]=| sinc®[T(f~ 6)]Peylo)da, (6)

-0

where it is apparent that the periodogram represents a smeared version of the true PSD.
The smoothing along the frequency axis is caused by the finite observation interval.

Ly i
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Increasing the observation interval T narrows the main lobe of the sinc? function,
thereby minimizing the smoothing effect of the convolution in (6). The variance, on the
other hand, is not so accommodating. [Ref. 3]

The variance of the periodogram spectral estimate for white Gaussian noise is a
constant, with a standard deviation on the order of the mean. With so great a variance,
the utility of the periodogram as described by (5) is questionable. One technique used
to make this estimator more reliable is to compute an average periodogram. This has
_ the effect of scaling down the variance by the number of terms in the average. In prac-
tice, since more than one realization is rarely available, this amounts to segmenting the
data into shorter intervals, which causes a corresponding increase in the bias and loss
of resolution of the estimate.

One variation of the averaged periodogram scheme requires a data window. Look-
ing at smaller segments of the data, the window is applied in an overlapped fashion and
subsequent processing results in a series of periodograms that tend to be correlated and
hence statistically dependent. Conscquently, the actual reduction in variance will gen-
erally be less than the number of terms in the average. Still another variation requires
the data be prewhitened. This has the eflect of reducing spectral bias, which is a prob-
lem compounded by thie averaging process. [Ref. 3]

Increasing the data length increases the resolution of the periodogram. An im-
provement in variance can be realized if, instead of a periodogram, one uses a
Blackman-Tukey spectral estimator. This estimator is derived from a biased ACF esti-
mate,

Rut0=- | Trx(t)x"(r o ™

1894

where T is the duration of the data interval. Taking the Fourier transform of a win-
dowed version of (7),

1/537(/) = Jw w(r)ﬁxxe_ﬂ“f’dr
o . (8)
= f W(f = 0)Ppe(0)do,

-0

leads to an improvement in variance. The type of window indicated by (8) should be
capable of enhancing the spectral characteristics of interest [Ref. 4] An unavoidable




loss in fine spectral detail is the price paid to improve the variance of the spectral esti-
mate. Here 2L and T are the durations of the lag window and the total data observation
respectively. The variance of the Blackman-Tukey estimator is

Var[ Byr]= 25 PL(, )

yersus

Var[ Pre(N]=P21) (10)

for the periodogram. [Ref. 3]

Classical techniques are reliable but have limited resolution and/’or a poor variance.
One assumes that :he data is zero before and beyond the observation interval. This as-
sumption causes the resulting spectral estimates to deviate from the true PSD. Using
modern techniques, this type of error can be minimized. There are however, other Jimi-
tations to consider.

B. MODERN TECHNIQUES

Modern spectral estimation techniques rely on linear filter theory. Parametric
modeling provides the foundation for many modern spectral estimation procedures.
Rather than assuming the data to be zero beyond some arbitrary interval, parametric
models assume statistical knowledge of the underlying process. The data is assumed to
be composed of sinusoids in white noise. The model should accurately estimate filter
coefficients for some linear filter whose output, when driven by white noise, is the
available time data and hence has a spectrum exactly like that of the signal in question.
The power spectral density for such an output is

Po{f) = | H({H)| o2 (11)

It is assumed that the transfer function, H(/), can be written as a rational polynomial
and that the coeflicients of the polynomial are the necessary filter coeflicients with o2 the
variance of the driving noise. Often the resonances of a particular random process are
of interest. In this case an autoregressive (AR) model can be sufficient.

AR modeling of spectra is the most popular modeling method. By solving a set of
linear equations, accurate estimates of the parameters can be determined. Selection of
an AR model results in an all-pole filter, hence the apparent high resolution. Selection
of model order, p, determines the number of poles in the filter. which determines the




number of peaks in the spectral estimate. Once the coefficients {a{¢)}s,, are known, the
AR spectral estimator becomes

P sl = —t—. (12)
1+ ) e
=1

The statistics of the AR spectral estimator are difficult to determine in closed form.
Insight can be gained into its reliability by considering the following fundamental as-
sumptions:

¢ the process to be modeled is truly an AR process,

® the process contains -% real sinusoids or p complex sinusoids, and

o the coeflicients {a(i)}%., are accurate.

The choice of model order obviously requires some knowledge of the signal’s spectral
content. The number of peaks in an AR spectrum, for complex-valued data. is equal to
the model order, p. The spectrum, if the number of sinusoids truly present differs from
p too much, can be unreliable. Furthermore, if the signal-to-noise ratio is poor, the es-
timate can be of poor quality. [Ref. 3]

Other parametric models may be more appropriate to the process under investi-
gation. Moving average (MA) models are used when the valleys or zeros of a spectrum
are important. Unfortunately, MA models require the solution to a set of nonlinear
equations. Although not impossible, it is much more difficult to arrive at accurate pa-
rameter estimates. Still another alternative is to use a combination of AR and MA
modeling, resuiting in what is called an ARMA model.

The minimum variance spectral estimator (Capon’s method) provides reasonable
estimates without making any assumption about the data composition other than it
originates from a wide-sense stationary random process. The classical periodogram
spectral estimate can be interpreted as a bank of narrowband filters, all with identical
passband characteristics. The minimum variance method is based on an adaptive
passband characteristic with the advantage being the ability to adjust sidelobe levels and
hence minimize spectral leakage. The resolution of this method lies somewhere between
that of the periodogram and that enjoved by AR estimates. [Ref. 3]



III. SPECTRAL ANALYSIS OF SIGNALS WITH{ DYNAMIC
. CHARACTERISTICS

A. ADAPTING ESTABLISHED STATIONARY TECHNIQUES

In Chapter 11, classical spectral estimators were found to be limited by the interval
of observation, limiting the spectral resolution. A finite duration signal permits only a
finite duration correlation estimate, with increasingly pcor estimates away from the zero
lag. Modern spectral methods have apparent higher resolution but are sensitive to the
signal-to-noise ratio (SNR). All the estimators discussed thus far assume the data to
be at least wide-sense stationary. The analysis of nonstationary phenomena complicates
the estimation problem.

A wide-sense nonstationary process is one whose statistics or parameters vary with
time [Ref. 5]. The actual nonstationarities of a process may include fluctuating power
magnitude, changing {requency content or a combination thereof. There remains the
problem of a suitable representation. one which appropriately displays the fluctuation
in time and frequency of the instantaneous energy in the signal. To adapt stationary

estimation techniques to the nonstationary case. the concept of local stationarity is in- i
v troduced. A process is considered locally stationary if, over a given interval of time, the :
process appears to be stationary. Determination of the optimum interval depends upon
the most rapidly {luctuating nonstationarity present in the process. If the process is *
observed overly long, the temporal fluctuations will be smeared. If the interval is un-
necessarily short, spectral detail will be Jost. A discussion of the more popular methods
of nonstationary estimation and their limitations follows.
1. Short-time Fourier Transform
Short-time Fourier analysis is a method whereby the observed signal is seg-
mented into a number of shorter intervals. Each segment is Fourier transformed and
then magnitude squared. The resulting spectra are interpreted as cross sections of the
true instantaneous spectrum. These cross sections are pieced together sequentially to
form an estimate of the true time-varving power spectrum [Ref. 5, 6]. This type of
spectrum is called a waterfall display by the signal processing community. Processing
sequential sections of data results in a verv crude estimate of the nonstationarities as a
function of time. Furthermore, using longer segments increases spectral detail but tends

to average or broaden the time-dependent fluctuations. An overly short interval will




tend to enhance the detection of the time transient behavior of the process at the ex-
pense of spectral resolution.
2, Spectrograin
A modified version of the short-time Fourier transform estimation technique is
the spectrogram It is related in that it uses a real, finite duration, sliding window

[Ref. 7] centered at time t. The spectrogram

Pspecneg ) = I J x(epw(e ~)e ™V ar |, (13)

computes a classical estimate of the spectrum for each point in time rather than for
contiguous blocks of data (see for example, Figure 1). Similar to the periodogram, this
spectral estimate is real and positive everywhere. The reliability of the spectrogram
hinges on its ability to represent the signal’s energy in the time-frequency plane. Refer-
ring back to (3), any suitable time-frequency representation should reduce to |x(1)]?
when the frequency dependence is removed. Likewise, the representation should reduce
to |.X()|? when the time dependency is removed. Taking a look at the spectrogram’s

bechavior,
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Figure 1. Behavior of the Spectrogram using an analytic sinusoid
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A . 22
PSpectrog.(f’I)df= fx(0)} ‘W (z ~)dr (14)
* —-00 —00
and
¥
o0 o0
A SINYIETY 2
PSpeclrog.(f’t)d‘ = [ X))~ 0)| do (15)
-00 -0C
we note that the estimate is smeared not only in frequency but in time axis as well, a
result of the sliding window operation. Another indicator of the spectrogram’s reliability
can be found by removing both the time and the frequency dependency. The equality
expressed in (3) for stationary phenomena should have a nonstationary counterpart.
Therefore the volume under the spectrogram should equal the average energy in the
signal:
L oo (Yoo oo Poo
A " 2 2 .
PSpecrrog.U;l)dl'd[ = |x(0) | “w'(r —t)dd. (16)
—OC T =00 -00" =00

The total signal energy requirement is satisfied only if the average energy of the window
is equal to unity. The spectrogram represents a closer approximation of the instanta-
neous energv changes reiative to the short-time Fourier transform; however, temporal
smearing is now unavoidable. [Ref. 7, 8]
3. Correlator/Matchied Filter
The spectrogram estimator can be implemented as a bank of bandpass filters,

2 (17)

Peorlfost) = Ij X(T)hf:(t + 1)de

hy (1) = w( —1)e ! (18)




centered at each frequency of interest, f, and weighted according to some general lowpass
characteristic, w(—r) . The output of each bandpass filter is then magnitude squared,
creating an instantaneous energy representation of the signal as a function of time and
center frequency. Since the signal is known, the general passband characteristic can be
replaced by a matched filter. Commoniy used in a radar environment, each filter tests
for round trip time delay and Doppler shitt. The filters possess finite bandwidth and
hence spectral resolution finer than dictated by the filters is impossible. Similarly, re-
solution along the time axis is limited by the impulse response of the filters [Ref. 3].
4. Autoregressive Modeling

Autoregressive modeling can be adapted to fit slowly-varying spectral charac-
teristics. How slowly the frequency fluctuations must occur depends on the actual
process in question. In general, as the signal rotates away from the pole of the AR filier,
broadening of the peak results. As the correlation function is time-dependent, suitable
accuracy in the AR coefficients requires an embedded time dependence. This particular

modification is discussed in a later section.

B. TIME-DEPENDENT SPECTRAL TECHNIQUES

Adapting stationary techniques to the nonstationary case is only marginally suc-
cessful. There have been many attempts to describe the variation of signal energy, a
function of both time and frequency, as a multivariable density. More appropriately, the
simultaneous distribution of signal energy in time and frequency requires definition.
Each technique has its merits, and each its own peculiarities. In 1966, a generalized
phase-space distribution function was proposed [Ref. 9], which can be used to derive
many of the more popular time-frequency representations. This generalized distribution

function is

C(fr) = j f f D(v, 1)x(t,+-§—)x'(t,—%)eﬁ“(""'""f’)dv di, dr. (19)
—-00 T =00 T —00

The advantage in using the generalized distribution (19) lies in the ability to define
properties belonging to all representations derived in this manner. The distribution de-
pends on the choice of d(v, 7), referred to as the kernel of equation (19). An excelient
presentation of the relationship between particular time-frequency distributions and (19)
can be found in {Ref. 10} and is summarized below.

10



1. The Running Spectrum
a. Using Only the Past and Current Data
In 1952 C.H. Page [Ref. 11] derived a time-frequency presentation arguing
that one has knowledge of the signal up to and inc? ding time t, but its future values are
unknown. He defined a running transform, looning backwards over all previous data
as

! i
0= xwe i, (20)

where the superscript (-) indicates that the signal has been observed over the interval
(= oo, 1). By differentiating the squared magnitude of (20) with respect to time

P =5 17 ()1 o)

the running spectrum suggested by Page results. Substituting (20) into (21) and com-
puting the partial derivative leads to the following alternate form

P~(f1) = 2Re[x (1) X7 (N> (22)

M.H. Ackroyd has argued [Rel. 5] that (22) is a finite duration approximation relative
to the physical measurement of a true time-varving energy distribution. He suggests that
the true time-varying spectrum for a real-valued signal can be expressed as

x(ORe[X(N*™] = x(1) f ” x(z) cos2nflt - 1)ex, (23)

the product of the response of a linear filter driven by the signal and the signal itself.
The implementation suggested by (23) is shown in Figure 2 (a). It requires an infinitely
narrow filter with a noncausal impulse response. To deal with the causality issue, the
impulse response is modified by a unit step function,

.x(l)foo x(t)u(t = ) cos(2nflt — 1))dr = x([)jl x(t) cos(2nf{t — t))dx
= x()Re[ X, (N*™] (24)
=5 P,
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which is a scaled version of (22). Figure 2 (b) suggests a practical means of measuring
a time-dependent spectrum. For ease of comparison, Figure 2 {c) shows the imple-
mentation of a distribution discussed on pages 14-15. The distribution of a signal’s en-
ergy as proposed by Page is limited in spectral resolution; i.e., limited by the finite
bandwidth of the filter. It represents an improvement over the spectrogram which was
found to be smeared in both the time and frequency directions.

Page’s distribution can be generated from the generalized equation (19) us-
ing the kernel function

O, 7) = &1 (25)

which allows one to write (21) in yvet another form.

*o0 ffoc Poo
P(f 1) = ™ e + )% (- 0 )N gy dr e
VeV =Y —00
[Por oo oo -
= x(1, + -;-' (1 =) [ e"zm(" +T-')dv jle"jz"'ﬁdll dr
Y Y,

* oo . l T| (26)
= | *0+ )% (0 =580 + 5 ey, dr
U-OO
adt) o«

—f2zfz dr

= x(Ox(t+1)e*7dr + x(Dx (1 = 1)e

Y

—00 0

= 2Re[x ()7 (N1,

Equation (26) can be interpreted as the Fourier transform of an estimate of the true
time-varying ACF, where

Ru, ) =x()x(t+17) for —co<7t<0

. @7)
=x(x (t—1) for0<1<oo.

The behavior of this distribution can be scen in Figure 3 (a). As time increases, the
amplitude of the signal contmually intreases and the true frequency location becomes
more localized.

13
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Figure 3. Behavior of Page’s distributions using an analytic sinusoid

b. Using Only the Future and Current Data
In 1967, M.J. Levin {Ref. 12] extended the concept of a running transform

to include
Xt = J x(¢)e Py, (28)
I

where the superscript (+) indicates only those data values occurring at or later than time
t are to be considered. The equivalent to (22) is

e O [vreal2
Pi(f) = 31 I’\t(f)l (29)

= 2Re[x ()X (),
and the corresponding kernel function is

D, 1) = ™!, (30)
The behavior of this future term can be seen in Figure 4. Maximum frequency local-

ization occurs early in the distribution, decreasing continually as time progresses.

¢. Using All of the Data
Assigning equal weight to the past and future terins Levin defincd the in-

stantaneous power spectrum (1PS) as the average of the two running spectra,

14
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= Re[x" (0*™' P} () + P71} €1))
= Re[x‘(t)X(/)ei 2ef '].

Figure 2 (c) suggests a method whereby the IPS may be generated. 1PS, like Page’s
distribution, requires a noncausal infinitely narrow bandwidth filter. Modifying the im-
pulse response in order to create a realizable filter [Ref. 13, 14 ] causes both temporal
and spectral smoothing, [Ref. 15, pp. 26-28]. The two terms of IPS can be interpreted
as follows.” The past term contains information of the energy and energy flow to create
the signal up to time t. The future term contains the information about the energy and
energy flow of the signal after time t [Ref. 6).
2. Instantaneous Power Spectrum (1PS)
IPS can be derived from the generalized time-frequency distribution using the

kernel function:
M(v, 1) = cos(nvr). (32)

This kernel, cos nvt, can be formed by taking one half the sum of the kernels for the past

and futnre running spectra. Substituting (32) into (19) and simplifying gives

15
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It is important to note that the terms m the integrand of (33) do not bear a direct re-
lationship to the past and future spectra defined previously by (31). In this form, each
term in the sum spans all the data and therefore contains contributions from both run-
ning spectra [Ref. 15]. The ACF estimate as defined by IPS is

Ripstt, ) =5 (05" (0= + KO xt+9)) for —eo<t<00.  (39)

By comparing Figure 3 and Figure 4, the behavior of IPS as shown in Figure §, dem-

onstrates an improvement in end-point resolution where the main ridge is most narrow

at the center of the duration.
3. Rihaczek Distribution (RD)
Denved from physical considerations {Refl 5,16}, the complex encrgy or

Rihaczek distribution (RD) is

16
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RD(f,1) = x(DX (e >, (35)

Since the real part of a complex function is equal to the real part of the complex conju-
gate of that function, it is obvious the IPS as defined in (31) is equivalent (33), the real
part of (35). This relationship is depicted in . igure 2 (c). As vet, there is no satisfactory
interpretation of the imaginary part of the Ribaczek distribution (ImRD), although its
computation leads to an increase in spectral localization over that of IPS for certain
signals. A closer look at the behavior of IPS and RD can be found in Chapter 1V. _

There exists a relationship between the spectrogram estimate and the RD. Re-
writing (13)

o0
ﬁSP"C"Os-U:’)= J‘ x(t)w(z — e ¥ qr |

—o0
oo (*oo
= x@wr—=0e?T | X @)w (- T ar de
:J_oo Yoo
[* oo (*oo
=1 x(Ou@-0e Y X ()W (F- o)™ Vdo dr (36)
Yoo Voo
[*oc Moo
= x(0)X (@) 7 w(t — "W (F= 0) PN
J_ e
[*o0 [Pco
= RD(o,1) RD(f— 0, T —1)do dr,
Voo

where RD(f,1) is defined by (33). Equation (36) shows the spectrogram to be the 2-D
convolution of the RD of the data with the RD of the window function. [Ref. 6, 15]

The compiex energy distribution can be generated from (19) using the kernel
func:ion

O, 1) = ™. (37)

Substituting (37) into (36) results in

17




foo (Foo Men
RD(f1) = j &7 x(1, + —72- )x (4 — —%— )2 =gy i, de
VooV oV =00
foo (Poo o0
= x(1, + —;— ) (1 — —;— )U St ")do:]e‘”"f’dz, dr
*o . (38)
= | x(4+ -%— x (4 — -%— )o(r, + -%— ~0e P dr dr
Vo0
[*oo
=| x()x (-1 T ar

=x(DX" (N7,
Equation (38) can aiso interpreted as the Fourier transform of an ACF estimate, where
R, 7)=x()x" (1 =1) for —co<1< o0 (39)

Because RD is complex, this ACF estimate cannot be an even function of the shift var-
iable, 7. This suggests that it is the nonstationarities of a process which lead to an ACF
which is partially odd. The behavior of this particular distribution is shown in Figues 5
and 6. Figure 5 shows the behavior of IPS for an analytic sinusoid. IPS is equivalent
to the real part of the RD. The imaginary part, shown in Figure 6 (a) and (b), demon-
strates an improved sensitivity to rapid changes in signal energy as a function of {re-
quency. The behavior of the RD is discussed in more detail in Chapter IV.
4. Wigner-Ville Distribution (WD)

Originally introduced by Wigner in a quantum mechanical context [Ref. 17} and
extended to signal analysis applications by Ville [Ref. 18], the Wigner-Ville distribution
(WD) is another valid representation of a signal’s energy as a function of both time and

frequency. The WD can be generated from (19) using
D, 1)=1 (40)

as the kernel function. Substituting (40) into (19) results in
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The WD can be interpreted as the Fourier transform of an ACF estimate defined by
IQWD(’»T)=X‘(‘—'%‘)XU+';—) Jor —co <1< 00. (42)

Since the WD is always real, this ACF estimate possesses even symmetry about the
point of zero lag. An exminple of the WD is shown in Figure 7.
5. Time-varying Autoregressive Models
An appropriate AR model for time-varying spectra contains an embedded time
dependency. In so doing, the model would be able to track a spectral peak minimizing

the effects of broadening. Rewriting equation (12) to reflect this time dependence,

Panlf) =~ (43)
D alne
=0

where the coefficients are given by
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The {a,}%, represent the weights of a sum of ortho-normal basis functions. An appro-
priate selection of ortho-normal basis set ideally uses some a priori knowledge of the
spectrum under investigation. The time-varying AR model order is (K + 1)P, requiring
the estimation of (K + 1) times more coeflicients relative to the stationary analog.
Whether one can accurately model the process with a manageable number of coefficients

will depend on the particular process at hand.
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IV. COMPARISON OF T-F DISTRIBUTIONS

A. THEORETICAL RELATIONSHIPS

Equation (36) shows that the spectrogram can be represented as the 2-D convo-
lution of the RD of the signal with the RD of the window. A similar expression can be
derived relating the spectrogram to the WD. Both RD and WD can be derived from the
generalized distribution formula (19), as can many cther t-f representations. It turns out
that any particular distribution, C(f;t), whose kernel function satisfies

O, 1) D(—v,7) = 1, (45)

can be related to the spectrogram in the following way [Ref. 10],

o0 00
ﬁSpeclrog.(f’[) = J Jv CX(D, T) Cw(f"‘ v, T —t)dv dr, (46)

-0 —00

where C, and C, are the generalized distribution functions of the signal and window re-
spectivelv. The spectrogram itself, can be represented through the generalized equation
using a kernel function

oo

O, 1) = J w(t + -;— )w (1 + -5— ) gy (47)

The right side of the equality in equation (47) is the ambiguity function (AF) of the
window, w(z) [Ref. 6]. For clarity, the AF is defined as [Ref. 8]

o0 . i
Xxx(0+7) =J X0 x (4 1)

-0

|7 =5 w0+ e

«(t
L J x(1, + g— ) x (1 - —;— )e"Z””"qu‘.




So far, we have seen that a relationship exists between the spectrogram and certain
other distribution functions (46), and that the spectrogram can be generated using a
modified form of the AF as its kernel. In fact, all the distributions discussed thus far can
be related through the AF. Rewriting (19) in a slightly different form,

) = f ” f > f ” v, Ox(, + 00 =5 )P Py dy de

-—00 T =00

_ Radll lhae o0 TN Ty Amey ~f2n{vrtft)
= J_J-w[w(o, 7) j_wx(:,+ =) (-3 )e dt,]e dv dr @)

=F, {00,917 F, [ J Xt + X (6 = o )P d,l}

—00

where the generalized distribution is shown to be the 2-D convolution of the double
Fourier transform of the kernel with the double Fourier transform of the complex con-
jugate of the AF. Table 1 lists the distributions discussed thus far, along with their re-
spective kernels,

Table 1, DISTRIBUTIONS AND CORRESPONDING KERNEL FUNCTIONS

Distributions C(f. Kernel - ®(u,7)
Spectrogram I ) = x(z) w(z =) e~ dz I 2 f oW+ -%- yw'(t— -:?:- ) e=2migy
Page '»67 | X7 |2 et

Levin - _(;5_’_ | X712 e-;nv-'-;—l—

IPS Re [x(1) X'{f) e~*/1] oS 7TuT

RD x(1) X'(f) ews2ft e-imt

WD ) f o x(t+ —;'— yx'(t— —;—-()e'/z"f'd-z 1

B. GENERAL PROPERTIES
Comparing Figure 1 and Figures 3 through 7, it is apparent that the particular
kernel function has a tremendous influence on the particular properties of the resulting
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distribution. From a cpectral point of view, an appropriate t-f spectral representation,
hence appropriate kerncl {.nction, should ensure certain properties. These properties
and corresponding kernel restrictions, if any, are listed in Table 2 below.
[Ref. 10, 15, 19, 20, 21]

Of the many distributions discussed, none possess all the desired characteristics. The
choice of a particular t-f representation depends on the application at hand. For prac-
tical applications, the properties ascribed to the various distributions in Table 2 must
be re-evaluated. When using windowed data, the resulting WD is referred to as the
pseudo-Wigner distribution (PWD). Similarly modified versions of IPS and RD are in-
dicated by the subscript (y), where y = x(1) w(s) is the product of the data with some
window function. Considering the linear operation of filtering, predictable distortion of
the signal’s true spectrum is encountered. In Table 3 a summary of the effects of four
linear operations as they relate to time-dependent spectra is given. [Ref. 10, 15, 19]

C. RELATIVE PERFORMANCE
In the previous section it was shown that the spectrogram is related to certain gen-

eralized distributions through a 2-D convolution. It was further shown that any gener-
alized distribution is the 2-D convolution of the double Fourier transform of the kernel
function with the double Fourier transform of the complex conjugate of the ambiguity
function (AF). All these inter-relationships are interesting. By looking at the relative
performance of certain t-f distributions, insight into the benefits and disadvantages
characteristic of a specific representation are easily seen. The distributions compared in
this section are:

¢ Spectrogram

e IPS

¥

* ImRD,, the imaginary part of RD,

¢ 2 linear, magnitude combinations of the real and imaginary parts of
RD
¥

e PWD,

where the subscript (v) indicates the use of windowed data.
1. Experimental Analysis
Seven test signals, in the absence of noise, where considered. What follows is
a brief description of the true time frequency behavior of the analytic signals and a list
of the particular processing parameters of the digital implementations. Unless otherwise
specified, all data is 128 points in duration, using a 1024 point I'FT algorithm. Two
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Table 2. GENERAL PROPERTIES OF T-F DISTRIBUTIONS

Properties

kernel constraints

Distributions

x() — C(fy)

Zero energy

x(t) =0 = C(f,t)=0

X()=0-> C(fp.)=0 XIx|x|x
Time shift X(t=1t) = Cfit= &) | @, 1) must be independent
of absolute time and fre- x|x|x|x
Freq. shift x(t) ehot = C(f = fo. 1) quency
Positive Ci) = 0 VSt F . [®v,7)]=20
Real Cihi) = C(=f) D, 1) = O (~v,—1) xf{x|x
Marginal in t f:C(f,t)df= [x(0)]? ®v,0) = 1 Yv x|x|x|x
Marginal in f fj;C(f,t)dl = | X(N]? ®0,7) =1 Vr x|x]x{x
0 ! U] 0, =0V
Group delay J S Clhoat =T ( T)and ’ X
X()12 o 8
(’) E(D(U'T)ltmo = 0
Instantaneous [ fCfndf O(v,0)=0 Yo
frequency —S =/ and *
Ix(0)]? )
_(D(D,T)|,=o = 0
ot
. 1= Specirogram, 2= Page, 3= Levin,
Legend: 4=IPS, S5=RD, ,6=WD

1 Analytic signals only
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Table 3. LINEAR OPERATIONS

. Fouricr TP
signal transform Distributions
Ideal x(1) A IPS.(f.1) RD, (/1) WD, (1)
time shift | x{t ~ ) | X{Ne~*M IPS,(fit = tg) RD(fit - 1) WD,(fit — 1)
modu- x(neiat | X(f—fy) IPS,(f = fout) RD(f = fpul) WDAf = fut)

fation

ing

window- | x()wlt) | X0 W) | Re [RDL)SRDL(FT | RDf4VRDLGa) | WDL(03WDLif

fitering | x(1) * (1) | X() W) Re [RD, (/1) RD(f))| RDf4)RD1) | WD(ft)* WD, (/)

different Hamming window functions are used depending on the type of spectra ana-

lyzed, stationary, non-stationary, or a combination of both. Except for the spectrogram,

all distributions have been smoothed in the time direction using a 5-cell box-car average,

centered at the time of interest. The test signals used were:

1.

2.

« . . . 363 »
Single component., analytic sinusoid computed as "% *, where 1 < n < 128, using

a 127 point Hamming window,

. . 83 380
Two component., analytic signal computed as e 7" + e?5% ", Where

1 < n< 128, using a 127 point Hamming window,

Single component, analytic lizearly chirped signal computed as

e 75 ($0-1055)) | where 1 < n < 138, using a 55 point Hamming window,

Two  parallel,  analytic, linearly  chirped signals computed as
e 7 (39-100p) + ey (150-1033), where 1 < » < 128, using a 55 point Hamming
window,

Single component, analytic, quadratically chirped signal computed as
ey (S0- M55 Y) | where 1 < n < 128, using a 55 point Hamming window,

Multi-component signal comprised of a stationary sinusoid, a linearly chirped and
a quadratically chirped component computed as

o5 n +L"2"_|§§(25‘0'1.(ﬁ"€>) + e,zqm(z.o-u(-l-’z'?)z) , Where 1 <n<128, u5ing a 55
point Hamming window,

Frequency shift keyed (FSK) signal computed as evin, for 1<n<24 anc
56 < n <128, and e*3x " for 24 < n < 56, using a 55 point Hamming window.



2. Highlights of the Analysis
To judge the accuracy of component placement along the frequency axis, the
performance of IPS, is compared to that of the spectrogram in Figure 8. Using 2 sta-
tionary, single component, analytic signal both spectra have good end-point resolution.

TINE s

. C FAOUCT AsjS

(b) Spectrogram

Figure 8. Amplitude plots of a stationary analytic sinusoid

Where the spectrogram presants a stationary spectral ridge with increasing amplitude
near the center of the t-f plane, IPS, shows a fairly constant amplitude, stationary
spectral ridge which is wider by comparison. Equation (36) describes the spectrogram
as a 2-I) convolution of the R1) of the signal and the RD of the window. The apparent
superior resolution of the spectrogram over IPS,, the real part of the RD, indicates that
the imaginary part of the RD contains some important spectral information. The im-
aginary part is formed as

(.r(l) x (1= 1) — x (1) x(t+ r))e—ﬁ"f “dr. (50)

-00

ImRD(f,1) = -;—

Using the kernel function
®(v, 1) =4 sin nor, (51

equation {50) can be derived from (19). It is obvious that the kernel for the RD is the
sum of the kernels for IPS and ImRD. As to the behavior of ImRD,, a windowed version
of (50), demonstrates an improved sensitivity to spectral change relative to PWD and
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Figure 9. ImRD, for a stationary, analytic sinusoid

IPS, which is shown in Figure 9. In particular, using a single-component, linearly
chirped signal, the zero crossings of ImRD, occur near the true frequency location. In
Figure 10, the relative performance between PVWD, IPS, and ImRD, for a single-
component, linearly chirped, analytic signal can be compared. One can see that IinRD,
has an improvement in resolution over that of IPS, comparable to that achieved by
PWD. Where both IPS, and PWD rely on the sharpness of the spectral ridge for resol-
ution, ImRD, relies on the zero crossings.

The ImRD, has large values near the time of frequency change, with the ampli-
tude approaching zero otherwise. This behavior is clearly demonstrated in Figure 9
where a si.ngle component stationary signal is shown to have a nonzero imaginary
spectra, greatest in amplitude near the beginning and end of the life of the signal. In
Figure 8 (a), IPS, presents a spectral ridge which, although rounded at the endpoints,
grows increasingly more narrow toward the center of time. By forming a linear combi-
nation of IPS, and ImRD,, an overall improvement in spectral resolution for some

signals can be achieved. One such linear combination is
[RD,(f0)* = [1PS,(f)]* + [ImRD,(f,n))>. (52)
Another combination can be formed taking the difference of magnitudes,

[RDf) |2 = LIPS(f0)* = [ ImRD(fn) |2 (53)




INC - M1y

b

FRLOLICE - ALY |

(a) Contour plot of PWD

e - A

oLt - rory

(b) Contour piot of IPS,

T - mis

FACOOCT - ALty

(c) Contour plot of ImRD,
Figure 10. Contour plots of a single-component linear chirp

Equation (52) results in a nonnegative spectrum. Equation (53), unfortunately, can have
negative values.

For stationary data, ji.D,|? represents an improvement in the end-point resol-
ution relative to IPS, as can be seen in Figure 11. When two stationary components
are present IPS,, ImRD, and both linear combinations produce modulated spectra. The
modulation effect is related to the difference frequency. PWD produces a spectrum
having cross-terms midway.between the true components. The cross-terms are also re-
lated to the difference frequency. The relative behavior of IPS,, |RD,|? and PWD for
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Figure 11.  Contour plots of a single-component, stationary analytic sinusoid

a two-component analytic signal is shown in Figure 12. Using 128 point data sets at a
sampling frequency of 128, classical analysis predicts component resolution where the
separation is at least 0.89 Hz [Ref. 4]. IPS, is capable of resolving two components
scparated by at least 1.25 Hz. |RD,|2 and PWD are able to resolve two components
separated by at least 0.6 1z, an improvement over classical analysis. Figure 13 is a
graph depicting the relative location of the spectral peaks as a function of frequency and
time. [PS,, alter an initial settling, consistently places the spectral peaks demonstrating
a bias which is not symmctric. | RD, |2, similar to IPS,, consistently places the spectral
peaks but with a symmetric bias. PWD succeeds in making the nearest approximation
to the true component locations demonstrating a bias which is not symmetric. The
placement of these spectral peaks does not appear to settle at one location as appears
to be the case for the Rihaczek-derived distributions; however in a mean-squared error
comparison, PWD appears to be superior.

The ImRD, is also capable of resolving two closely-spaced, narrow-band, sta-
tionary components. Instead of scarching for spectral peaks, ImRD, characteristically
detects the zero crossings which yield information in this spectrum. In Figure 14, the
behavior of ImRD, using two closcly-spaced stationary sinusoids can be seen.

To study the behavior of any spectral estimator of nonstationary phenomena
we begin by considering a single-component, linearly chirped, analytic test signal. The
relative perlormance of /PS,, ImRD, and PWD was discussed previously, see also

Figure 10. The behavior of the two linear magnitude combinations can be seen in Fig-
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Figure 12. Amplitude plots of a two component stationary, analytic sinusoid

urc 15. Forming the difference, | RD,|? creates a spectral ridge comparable in width
to IPS, but with a better defined peak. Detection using | RD, |2 should be thus be im-
proved. Forming the sum, | RD,|? completely resolves IPS into its past and future terms,
the distributions defined by Page and Levin, Component location using | RD, ]2 requires
detection of the minimum occurring between the two resolved ridges, making detection
using | RD, 12 questionabie. In the presence of noise, the separation IPS, into compo-
nent parts will lead to difficulty in interpretation. The ability of /PS, to properly locate

the instantancous frequency for a lineas chirped signal is shown in Figure 16. The lo-
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Figure 13.  Graph depicting accuracy of stationary component placement

cation of the peaks in 11§, coincide with the true instantaneous spectral locations for a
slow chirp. Eaily in the spectrum, when the future term in dominant, /7S, tends to place
the instantancous frequency higher than truth. On the other hand, late in tae spectra
when the past term is dominant, /PS, tends to place the instantancous {requency lower
than truth. Doubling the chirp rate results in a greater frequency ambiguity as seen by
the two terms which compose IPS,. Looking at Figure 16, this is demonstrated by the
apparent random placement by IS, of the spectral peaks, ncither the futuge nor past
term seems to be favored as the maximuvm peax location.

Next, a test signal composed of two, parallel, linearly chirped, analytic signals

is considered. The spectra resulting from /PS, and PWD is shown in Figure 17, Similar
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Figure 14. ImRD, for a two-component stationary, analytic sinu. d

3t

TOIRe Y]

ks

Faiss s o,



TinC mis

1] reaeace Aris . ouncT mis

] .
(a) Amplitude plot of | RD,|2 (b) Amplitude plot of |RD,|?
Figure 15. Relative performance for a single-component linear chirp

to the stationary, two-component case, modulation and cross-terms fluctuating at the
difference [requency are present in IPS, and PWD, respectively. Neither of the two lin-
ear combinations of magnitudes of the component parts of the Rihaczek distribution,
was able to improve on the resolution achieved by IPS,. Moving from the peaks to the
valicys, ImRD, can be seen to discriminate between the two chirps as a function of the
zero crossings. This is demonstrated in Figure 18 where a pattern of zero crossings al-

lows the eye to discern the two components.
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Figure 16.  Graph depicting accuracy of IPS in locating the instantaneous frequency
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Figure 17.  Behavior of IPS, and PWD for 2 parallel linear chirps

Examination of the spectra for more complicated signal suggests a relative
ranking in terms of resolution among the diflerent power distributions discussed thus far.
The test signal is composed of a high frequency stationary component and two chirped
components, one a linear chirp and the other a quadratic chirp. Considering first those
spectra which estimate [requency location as the point of maximum power, PWD
produces the most narrow ridges; see Figure 19 (a). It sullers from poor end-point re-
solution and spectral cross-terms. | RD, |2, seen in Figure 19 (b), produces well-defined
periodic peaks along the instantancous frequency path of the nonstationary compo-

nents. The stationary component ridge is broadened, with the modulation effect most
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Figure I18.  ImRD, of two parallel linear chirps
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Figure 19. A combination of stationary and nonstationary spectral components

apparent near the end-points. | RD,|? would be diflicult to interpret as it resolves the
past and future terms for the nonstationary components. Looking for the zeros, ImRD,
accurately describes the location of the nonstationary components, but provides little
information during parts of the stationary signals existence. Again, Figure 19 (c) re-
quires pattern recognition to be able to discern the individual, dynamic components.
Considering a pulsed spectra, such as in FSK modulation, |RD,|? presents a
narrow ridge with good resolution throughout the duration of cach pulse. The ridge

width for each pulse in the PWD spectral description is dependent upon the pulse du-
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Figure 20. Contour plots for a complex anlaytic FSK signal

ration. The longest puise showing the most narrow ridge, one which is slightly inore
narrow than what is found with | RD,|2. These two spectra are shown in Figure 20.
PWD has a slow build up and decay at the ends of each pulse. There appears to be a
trade-ofl between the width of a spectral tidge and end-peint resolution.
3. Test Case Results

Figures of the spectral dist.ibutions resulting from the six t-f representations are
contained in this section. They are ordered by the type of test signal under analysis.

a. Single-component, Analptic Sinusoid

Using the spectiogram as the reference, the resolution ability of five addi-

tional t-f distributions is compared in Figure 21 - Figure 24. PWD presents a well-
defined spectral ridge near mid-plane, but suffers from a sluggish built-up and decay. IPS,
presents a wider main-lobe relative to WD which is compensated somewhat by an in-
crease in end-point resojution. | RD,|? provides the best end-point resolution, main-
taining constant amplitude throughout the plane. |RD,|? proves to be more sluggish
than PWD and ImRD, demonstrates an improved response near the time of spectral
change.
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b. Two-component, Analytic Signal
The spectrogram and all five t-f distributions shown in Figure 235 through
Figure 28 display a distorted spectrum. This distortion exists for a minimal time in the
spectrogram estimaie. In the case of IPS, and PWD, the distortion is related to the
difference frequency. IPS, shows modulation of each component; PWD contains addi-
tional peaks oscillating at the difference frequency. The modulation effect characteristic
of Rihaczek-derived distributions makes the spectra using | RD,|? and ImRD, extremely
difficult to interpret. |RD,|? suffers also from the modulation effect; however, this
magnitude combination enhances resolution relative to [PS,, making it easier to detect
the presence of two components.
¢. Single-component, Analytic, Linearly Chirped Signal
The inadequacy of assuming local stationarity is clearly demonstrated in
Figure 29 (a) and Figure 30 (a) for the spectrogram. where the slope of the instantane-
ous frequency line is distorted and broadened near the end-points. Both I7’S, and PWD
shown in Figure 29 (b) and (c¢), and Figure 30 (b) and (c) maintain a better approxi-
mation to the instantaneous frequency slope neat the end-points. Characteristically,
IPS, presents a broadened spectral ridge whereas PWD decays to zero at the start and
stop of the chirp. Looking at the spectrum created by |RD,|? Figure 31 (a) and
Figure 32 (a), the future and past terms which make up the RD are clearly visible., Al-
though [RD,|? is an all-positive distribution possessing many desirable properties, this
characteristic resolution quality makes it difficult to interpret more complicated spectra.
The two remaining Rihaczek-related distributions represent improvements over the
ability of /PS, to pinpoint the instantaneous frequency as a function of time. |RD,|2
in Figure 31 (b) and in Figure 32 (b) shows a spectral ridge more narrow than that for
PWD. ImRD,. while accurately locating the instantaneous frequency, requires the de-
tection of zero crossings. For particular detection schemes information thus provided
may be appropriate.
d. Two Parallel, Analytic, Linearly Chirped Signals
For this test signal, the spectrogram spectral estimates shown in Figure 33
(a) and Figure 34 (a) is unacceptable. The comments made previously concerning the
distortion in the spectra when when two closely spaced, parallel, stationary components
can also be applied to this nonstationary case (see Figure 33 - Figure 36). In the case
of PWD, not only are cross-terms oscillating between the true components present but
the spectral ridges themselves show the effects of modulation. |RD,|? and ImRD, do
not show promise as estimation tools for closels-spaced frequency components. It is
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Figure 25, Test signal 2: amplitude plots for Spectrogram, IPS, and P¥WD

interesting to note however, that |RD,|? resolve the past and future terms for each
component similar to the behavior shown in Figure 31 (a). |RD,|2 shows very sharp
peaks along the modulated instantancous frequency lines of the two linear chirps. Be-
cause these peaks are the largest peaks in the plane, | RD,|2 from a practical view point,
appears to be more suited toward the analysis of this type of signal than PWD whcie e

cross terms periodically represent the dominant peak.
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e. Single-component, Analytic, Quadratically Chirped Signal
The ability of the spectrogram and these 5 t-f distributions to accurately
display more rapid spectral dynamics can be compared in Figure 37 to Figure 40. Not
surprisingly, the spectrogram presents a poor estimate. IPS, demonstrates a spectral
ridge which tends to broaden as a function of time, making it difficult to ascertain the
actual instantaneous frequency curve. PWD, although zero at the end-points, tracks the
chirp closely presenting a ridge along the line of instantaneous frequency as narrow as
that found for the linear chirp. |RD,|? appears to be provide the most narrow ridge.
Both PWD and |RD, |2 show amplitude modulation along the peak of the curve. As to
the remaining spectra, |RD,1? and ImRD, behave in a manner similar to the case of the
linear chirp and thus do n. appear particularly suited to this class of signal.
J- Multi-component Analytic Signal
How the various spectral estimation techniques perform when confronted
with a mixture of stationary and nonstationary dynamics is demnonstrated in Figure 41
through Figure 44. This test signal is composed a high frequency stationary component
and two chirped components, a linear chirp and a quadratic chirp. Their relative per-
formance suggests a ranking in terms of desirability as an estimator of continuously
changing spectral components. The spectrogram is predictably, the worst, followed by
|RD,|? and ImRD, in ascending order of desirability. Only IPS, ,|RD,|2 and PWD
present spectra which closely resemble the true signal components. All three show a
broadened ridge for the stationary component relative to the single stationary compo-
nent case examined previously. This results from using a shorter window. As expected,
| RD,|? sharpens the modulation peaks found in its own spectrum and that of /PS,. A
comparison of |RD,]2 and PWD is also quite characteristic. The price paid for in-
creased end-point resolution and elimination of the spectral cross-terms is a broadening
of the spectral ridge and the appearance of modulation along the crest of the spectral
ridges.
g. Complex FSK signal
In contrast to the continuously-varying frequency dynamics of the previous
test case, a very different order of desirability is suggested in the case of pulsed spectral
dynamics. Comparison of Figure 45 - Figure 48 shows |RD,|? to possess superior
end-point resolution ability coupied with a rapid build-up and decay of the spectral ridge
reiative 1o the true puisc dynamics. /PS5, and | RD, 2 produce simiial specira: however,
the end-point build up is slower. /mRD,, with its heightened sensitivity to detect spectral
change appears to be an excellent indicator of the time and location of frequency
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change. PWD presents a sluggish build-up and decay, with the width of each spectral

ridge dependent on the duration of the pulse. Furthermore, cross-terms can be seen

between the two higher frequency pulses.
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D. ALTERNATE METHODS OF COMPUTING IPS
Equation (33), the defining equation for IPS, can be rewritten as the Fourier trans-
form of an ACF estimate (34). namely

IPS(fy1) = J Ryps(r,n)e ™" dr

T o (54)
= -;— J (x(t)x‘(t —1) + x (Dx(r + ‘t))e_ﬂ”fT dr.
IPS for finite-duration discrete signals is
IPS(6, n) = —} > (xx (1= k) + 5 ()x(n + k), (55)

k=~on

where the signal sequence x(») is finite and zero outside the known samples, and AT is
a constant. Equation (53) can be expressed as [Ref. 13]

= IPS(,) = |xn)|? = 1 X(6)1* = 1X(6)1", (56)
where
X0) = x(re?’
';” (57)
X,6)= Z x(re ™.
r==0

For use later in the derivation, let the Fourier transform of the pcint of interest be

D{6) = x(n)e ™"

58
| D)% = | x(n))°. (58)

By neglecting | x(x)|? in (56) a modified version of IPS is defined. The behavior of this
modified IPS for a single-component. analytic sinuscid is shown in Figure 49 (a).
Comparing this with an unwindowed version of IPS for the id2ntical data sequence in
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Figure 49 (b), shows the two methods of computing IPS to be very similar. The greatest
difference can be seen when comparing maximum amplitudes, Modified IPS is on the
order of 10-% and IPS is on the order of 10. Both methods were computed using a five-
cell-box-car averaging procedure along the t axis.

The question arises concerning the implementation of modified 1PS using a window

function. One method of windowing can be written as

oC

1PS(0,n) = -’3-21‘"— Z (x()x"(n = k) + x"(m)x(n + K))wik) e %%, (59)

=00

Applying the definitions in (57),

IPS(6,1) == Z{X(n)e'jo"(X (0)*11/(9)) + x (n)e"’"(X(e)*W(e))}

{D(9) (x (e)*n: 9)) + D(6)( (0)--=W(9))}

{D(f’) Z X (p)(6-p) + D(0) Z X —p)},

p==co

(60)

]
>
Nl_‘i Nl"‘] ()

]

p=—0

where :‘ denotes convolution in the frequency variable. Moving everything inside the
summation sign and substituting X;(p) + D'(p) for X"(p) and X"(8) — X;(0) for D'(0) gives
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p==20

== Z [X'(0)X() — X:(O)X()]W(E - p).

(61)

A straight-forward relationship between IPS and the spectral contribution of any single
point in the data set is given by equation (56). Equation (61) defines an analogous re-
lationship between (57) and (59). Unfortunately, this relationship is not so straight-
forward and requires additional analysis to determine the benefits, if any, to be gained

from processing data in this manner.
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V. RECOMMENDATIONS AND CONCLUSIONS

The comparative behavior of the spectrogram, IPS, WD and three novel t-f distrib-
utions was explored in Chapter 1V. Of the three, ImR D, rroves to ve particularly sen-
sitive to discontinuous changes in frequency. This characteristic behavior may b useful
in certain detection applications. When confronted with more complicated spectra, one
containing closely-spaced stationary components or continuously-varying nenstationary
components, ImRD, does not appear particularly useful. Similarly | RD,}? provides an
improvement in end-point resclution when used for the estime'ion of stationary or
pulsed spectra. Taking the square root of JRD}? results in a t-f distribution, denoted
by |RD(f1)], which satisfies many of the desirable properties lisied in Table 2. In
particular | RD{/f,1)] :

1. Satisfies both zero cnergy requirements
2. Obeys the time and frequency shift properties

3. Is positive and real for all time and frequencies.

How weil {RD,|? can track a rapidly fluctuating puised signal, similar to something
found in frequency hopped communications, is an area worth investigating.

For detection of continuously changing spectral dynainics. {RD,12 appears to be a
viable processing scheme, however the performance of this estimator in noise needs still
to be examined. Using |RD,)? as an estimator is not without problems. Unlike
|RD1, taking the square root of | AD]? does not produce an estimator which satisfies
the marginal requitemems. it does however comply with the zero energy and
time frequency shift properties desirable for time-dependent estimation problems. Used
with stationary spectra {RD,12 appcars to improve the resolution of closely spaced
components beyond that currently zchieved by classical methods. For stationary
spectra, JRD, {2 is a biased estimator, i.2., the true spectral peaks occur at a given fixed
offset from their true frequency location, PWD) also provides a resolution improvement;
however the estimate it provides never settles down to one frequency location. For short
duration data | RD, |2 may prove supericr in the detection of multiple stationary com-
panents.

In addition to the experimental results presented in Chapter 1V, IPS, demonstrates
a 3-dB noise advantage relative to PWD [Ref. 15]. Coupled with superior end-point
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resolution IPS may be the desirable method in practical analysis problems. All the re-
sults presented were derived from noise-free data sequences using digital implementa-
tions (see Appendix A). Because ImRD,, | RD,|? and | RD, |2 all show advantages when
applied to the appropriate signal type, analysis of their noise performance is an open
issue. As they are derived from the RD, as is IPS, it is likely that they enjoy a similar
robustness.

Looking to practical applications of IPS, a brief discussion of performance in a
mutiti-sensor environment can be found in Appendix B. The initial resuits look promis-
ing, but more extensive research needs to be conducted. A second practical application
scheme involves the use of a cumulant or third-order moment. Typically associated with
the sonar environment, this scheme secks to take advantage of the fact that the odd
moments of a zero-mean, gaussian noise process are identically zero. An initial investi-
gation using IPS to compute cumulants can be found in Appendix C.

In general, WI) produces very narrow spectral ridges but suffers form poor end-
point resolution and spectral artifacts. IPS provides an improvement over these short-
comings at the cost of spectral broadening. Recently appearing in the literature is
another t-f distribution [Ref. 10, 22]. Defined by H.I. Choi and W.J. Williams, this t-{
distribution minimizes the effects of the spectral cross-terms. Closer examination of the
resultant spectra, which uses the kernel function

2.2

Qv. 1) = e%-,

where ¢ is a constant, shows that the spectral ridges are broadened, similar in behavior
to IPS. In classical estimation, i.e., the periodogram, one maximizes spectral resolution
using nothing but the raw finite data set. The price paid is a large, slow roll-off sidelobe
structure that can mask a true component. In time-frequency distributions, i.e., in the
generalized phase-space equation (19), one maximizes spectral detail using a constant
kernel of unit amplitude. The price paid is poor end-point resolution and spectral
artifacts across time and frequency. In the classical analog, using any other window
results in improved sidelobe behavior at a corresponding loss in detail along the fre-
quency axis. IPS,, the Rihaczek derived distributions and the distribution suggested by
Choi and Willimas all improve or eliminate the disturbing spectral cross terms charac-
teristic of WD. The price paid is loss in spectral detail.
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APPENDIX A. COMPUTER CODE

To conserve space only the read file and four of the si.. Fortran codes have been
included. Data was generated and read by tiiwe basic programs as required. The data
generation file is not included here. The read file aliows easy change of processing pa-
rameters. Further, IPS, and ImRD, are generated by code that difiers in a minus sign
in line code. IPS, requires a plus sign; ImRD, requires a minus sign. Similarly |RD, |?
and [RD,|? are simply related. The location of the sign change is indicated in the re-
spective algorithms. Graphics are produced using DISSPLA.

1. Parameter File

1 1 031 039 08 MODE PLTR BWLEN EWLEN WINC
HAMMING WINDOW ($' WTYPE

B CONTR

IPs:§' TTL

FS=1/128, 40 POINTS OF DATA$' SIGNAL

5 CELL TIME SMOOTHINGS' TSMTH
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2. Spectrogram

THIS FORTRAN FILE COMPUTES THE SPECTROGRAM OF

A DATA SEQUENCE

INPUT DATA SEQUENCE IS READ USIN
ARRAY DATA(L).

G FILEDEF 4, AS THE COMPLEX

L IS THE LENGTH OF THE DATA SEQUENCE AND IS ADJUSTED FROM THE

PARAMETER STATEMENT. L MUS
ANALYSIS PARAMETERS ARE READ USI

ARE:
ARGUMENT TYPE A
MODE - I1 1
2
PLTR - I1 0
1
BWLEN~- 13 3
EWLEN- I3 3
WINC - 12 2
WIYPE- A19 19
CONTR~- Al 1
TTL - A43 43
SIGNAL- A43 43

OUT  REAL

QUTPUT ARRAY OF DIMENSION
COEF COMPLEX

ARRAY OF DATA AFTER IT HAS

SLIDING WINDOW FUNCTION.

72

T NOT EXCEED 128.
NG FILEDEF 41. THE PARAMETERS
LLOWED VAULUES

PLOT 0 TO PI
PLOT PI TO PI

SHERPA LASER PRINTER
IMB79 GRAPHICS TERMINAL

DIGIT INITIAL WINDOW LENGTH,
MUST BE AN ODD INTEGER
DIGIT FINAL WINDOW LENGTH
DIGIT WINDOW INCREMENT, MUST
BE AN EVEN INTEGER

CHARACTER STRING USED IN THE
PLOT HEADER DISCRIBING THE
WINDOW USED. THE CURRENT

WINDOW LENGTH IS AUTOMATICALLY

INCLUDED

CHARACTER STRING INDICATING
TYPE OF PLOT DESIRED

A AMPLITUDE PLOT ONLY
C CONTOUR PLOT ONLY

dedesk

*
A
L R I A A B

3 Sk ook

£

%
e
£ 3

%

e

L

B BOTH AMPLITUDE AND CONTOUR **

CHARACTER STRING USED IN THE
HEADING WHICH DESCRIBES THE
ALGORITHM AND THE CLASS OF
SIGNAL USED

CHARACTER STRING DESCRIBING
TEST SIGNAL

512 BY L

BEEN WEIGHTED WITH A




C %
C FT COMPLEX w*
c ARRAY OF THE 1024 POINT TRANSFORM COEF *
C e
C A INTEGER hd
C LENGTH OF CURRENT WINDOW *
5 c *
C M INTEGER %
C MID-POINT OF THE CURRENT WINDOW *
» C *
c AMAX REAL *
c MAXIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS *
C %
C AMIN REAL %
C MINIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS %
C *
C *
Cededededededededededededededededededeiededededededededededededededededododededededetodedededededededertdevededododededededodedededesevede

PARAMETER(L= 32)

INTEGER I,J,N,M,MODE,Z,BWLEN,EWLEN,WINC,PLTR
REAL OUT(512,L),AMAX,AMIN

CHARACTER WTYPE*19,TTL*43,SIGNAL*43,CONTR*1
COMPLEX DATA(L),FT(1024),COEF(1024)

CALL EXCMS('FILEDEF & DISK TEST IN A (PERM')
CALL EXCMS('FILEDEF 41 DISK PARAM IN A (PERM')

C
Crmomee- READ IN PARAMETER LIST =e=~cescccccccaccranrncnenrecunccccnna
. READ(41,400)MODE,PLTR, BWLEN,EWLEN,WINC,WTYPE ,CONTR, TTL,
+ SIGNAL
400 FORMAT (1X,I1,3X,I1,3X,I3,3X,13,3X,12/1X,A19/1X,A1/1X,A43/

+ 1X,443)
CermecmcmcdcccmccrracmecmceccammcemcamresnmessesseesnanUneanmm e e—————.
C
C
Cowmmvecnen TEST TO ENSURE WINDOW LENGTH IS APPROPRIATE =~==w=w~cecew--

I=L-1

IF ((BWLEN .GT. I) .OR. (EWLEN .GT.I)) THEN

WRITE(*,69)

GO TO 99
ENDIF
I=MOD(BWLEN, 2)
=MOD(WINC,2)
IF (I .EQ. 0) THEN

IF (K .EQ. 1) THEN
WRITE(*,68)

GO TO 99
ELSE
WRITE(*,67)
GO TO 99
ENDIF
ENDIT

69 FORMAT (X, 'WINDOW LENGTH EXCEEDS LENGTH OF THE DATA')
68 FORMAT (1X,'WINDOW INCREMENT MUST BE EVEN')
67 FORMAT (1X,'INITIAL WINDOW LENGTH MUST BE 0DD')




-----

40

50

-~ PLOTTING DEVICE CALL ====me-ce==secccccanacacoaaammanaaancnan

IF (PTTR .EQ. 0) THEN
CALL COMPRS
ELSE
CALL IEM79
ENDIF .

R e O R X X T N L L L L L L T Y T X RN Py

PI=4"ATAN(1. ) .
READ(4,*)(DATA(I),I=1,L)

DO 111 Z=BWLEN,EWLEN,WINC
M=(2-1)/2
CALL ANGLE(0.0)
AMAX=0
AMIN=AMAX
DC 10 J=1,L

DO 20 N=-H,M

IF ( ((I+N) .GE. 1) .AND. ((I+N) .LE. L) ) THEN
COEF(M+N+1)=DATA(I+N) .

+ (0. 54+0. 46*COS(2*PI*N/(2*M)))

ELSE
COEF(M+N+1)=(C. ,0.)
ENDIF
CONTINUE
DG 30 N=-2%M+2,1024
COEF(N)=(0.,0.)
CONTINUE
CALL FFT(1024,COEF,FT)
iIF ( MODE.EQ. 2) THEN
DO 40 N=1,513,2
OUT{ INT({N+1)/2+255),1)=ABS(FT(N))*%2/(2*M+1)
IF (QUT{INT((N+31)/2+255),1) .GT. AMAX) THEN
AMAX=0UT( INT((N+1>/2+255),1;
ENLTF
17 (O TCINT((N+1)/2+255),I) .LT. AMIN) THEN
AMIN=CUT( INT((N+1)/2+255),1)
ENDIF
CONTINUE
DO 50 N=515,1024,2
OUT(INT((N=1)/2-256),1)=ABS(FT(N))*¥%2/(2*M+1)
1F (OUL(INT((W-1)/2-256),1) .GT. AMAX) THEN
AMAY=0UT( INT((N-1)/2-256),1)
ENDIF
IF (OUT(INT((N 1)/2-256),I) .LT. AMIN) THEN
AMIN=OUT(INT({N-1)/2~25€),1)
ENDIF
CONTINUE
ELSE
DO 51 N=1,512
OUT(N,I)=ABS(FT(N))¥¥*2/(2¥M+1)
IF (OUT(N,I) .GT. AMAX) THEN
AMAX=0UT(N, I)
ENDX.;
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IF (QUT(N,I) .LT. AMIN) THEN
AMIN=QUT(N,I)
ENDIF
51 CONTINUE
ENDIF
10  CONTINUE
IF (CONTR .EG. 'C') THEN
GO TO 98
ENDIF
CALL AREA2D(8.,9.)
CALL VOLM3D(10.,10.,8.)
CALL HEADIN(TTL,100,1.,2)
CALL HEADIN(SIGNAL,100,1.,3)
CALL HEADIN('NO TIME SMOOTHING, 1024 FFT$',100,1.,3)
CALL MESSAG(WIYPE,100,2.5,9.3)
CALL INTNO(2*M+1, 'ABUT','ABUT')
CALL MESSAG(' POINTS)$',100,'ABUT','ABUT')
CALL X3NAME('FREQUENCY AXIS$',100)
CALL Y3NAME('TIME AXISS',100)
CALL Z3NAME(' $',100)
CALL VUANGL(-65.,70.,700.)
CALL XNONUM
c CALL ZNONUM
CALL MX1ALF('STANDARD','#')
CALL MX2ALF('L/CGREEK','+")
CALL ANGLE(-25.0)
IF ( MODE .EQ. 1 ) THEN
CALL MESSAG(' +0# ',5,0.,2.3)
ELSE
CALL MESSAG(' +-P# ',6,0.,2.3)
ENDIF
CALL ANGLE(-25.0)
CALL MESSAG(' +P# ',5,4.9,0.15)
CALL GRAF3D(-256,256,256,0,L,L,1. 0*AMIN,
+ 0. 5%(AMAX+AMIN), 1. 0*AMAX)
CALL SURMAT(OUT,512,512,1,L,0.)
CALL ENDPL(0)

C
98 IF (CONTR .NE. 'A') THEN
CALL CONTOR(OUT,512,L,TTL,SIGNAL,WTYPE,Z,AMAX)
ENDIF
C .....................................................................
C

111 CONTINUE
CALL DONEPL

99  §TOP

END
C
C
CS5855858555885S8S:85855858585885585588888885888S88S
C

SUBROUTINE CONTOR(A,NX,NY,TITLE,SIGNL,WNDW,WLEN,AMAX)
C THTS SUBROUTTNE CONTOURS AN NX BY NY ARRAY OF REGULARLY SPACED POINTS.
C NOTE: THE ARRAY MUST BE REAL¥4.
C
C A : SINGLE PRECISION NX BY NY ARRAY OF REGULARLY SPACED POINTS
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NX: NUMBER OF POINTS IN THE X-DIRECTION
NY: NUMBER OF POINTS IN THE Y-DIRECTION
ZINC: CONTOUR INTERVAL

aaoaQa

DIMENSION A(NX,NY)
COMMON WORK(50000)

(X9 ]

SET PARAMETERS FOR AXES:
XORIG=-256.
XSTP=256.

XMAX=256.
YORIG=0.
YSTP=NY
YMAX=NY

SET CONTOUR LEVEL
ZINC=AMAX/10.

CALL SETCLR('CYAN')

aan (9} aa

SET PAGE AND PLOT SIZES, SET UP AXES FOR PLOT:
CALL PAGE(8.5,11.0)
CALL BCOMON(50000)
CALL AREA2D(6.0,8.0)

(>N}

> LABEL AXES:
CALL XNAME( 'FREQUENCY - AXIS §$',100)
CALL YNAME('TIME - AXIS $',100)

C .
CALL GRAF(XORIG,XSTP,XMAX,YORIG,YSTP,YMAX)
CALL FRAME
c
C TITLE:
CALL HEADIN('CONTOUR PLOTS$',100,1.,3)
CALL HEADIN(TITLE,100,1.,3)
CALL HEADIN(SIGNL,100,1.,3)
CALL ANGLE(O0.0)
CALL MESSAG(WNDW,100,1.5,-.7)
CALL INTNO(WLEN ,'ABUT','ABUT')
CALL MESSAG(' POINTS)S$',100,'ABUT','ABUT')
c
C MAKE CONTOURS AND DRAW:
CALL SETCLR('RED')
CALL CONMIN(3.0)
CALL CONANG(60. )
CALL CONLIN(O,'MYCON','NOLABELS',2,10)
CALL CONMAK(A,NX,NY,ZINC)
CALL CONTUR(1,'LABELS','DRAW')
c
CALL ENDPL(0)
RETURN
END
c
CSSSS5SSS5S5SSS55555SS5S55S5S5SSS5S5S5SS5S85SSSSS8S8S
c

SUBROUTINE MYCON(RARAY,IARAY)
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DIMENSION RARAY(2),IARAY(1)

C
C THIS ROUTINE MAKES NEGATIVE CONTOURS DASHED AND THE ZERO LINE HEAVIER.
C
CALL RESET( 'DASH')
. IF (RARAY(1l) .GE. 0.) GC TO 10
CALL DASH
10 RARAY(2) = 1.
IARAY(1) =1
’ IF (RARAY(1) .EQ. 0.) IARAY(1l) = 2
RETURN
END
C
CS S S S S5 5SS 5855558588555 S8SS5S585S5858SsSS5s8588Ss8858685S
C
Cc e dederedese e dedlededert e st dedb b Aok daledede s e v dede e deriene ok sk e e e ek el e e e et e
C * *
C * CALL F¥T(N,XTEMP,X) *
C % %
C % X - OUTPUT COMPLEX ARRAY CONTAINING FFT (1024)
C * N - NUMBER OF POINTS *
C * XTMP - COMPLEX ARRAY CONTAINING DATA SAMPLES W
C o* (starting at 1l,up to 1024) *
C Fedlererledededesedb et e vedk vk e dedke vk se dede e v e akab vk e sk deak v de vedle ek b e kbt
C
SUBROUTINE FFT(N,XTMP,X) FFT00130
COMPLEX X(1024),XTMP(1024) ,WTFAC, TP FFT00140
. M=INT{LOG10(FLOAT(N))/L0G10(2. )+0.5)
EN =N FFT00210
PI = 4. 0%ATAN(1.0) FFT00270
DO 10 K=0,N-1 FFT00320
) NEWADR = 0 FFT00330
MADDR = K FFT00340
DO 20 I=0,M-1 FFT00350
LRMNDR = MOD(MADDR, 2) FFT0C360
NEWADR = NEWADR + LRMNDR*2%¥*(M-1-1) ¥FFT00370
. MADDR = MADDR/2 FFT00380
20 CONTINUE FFT00390
X(NEWADR+1) = XTMP(K+1) ’ FFT00400
10 CONTINUE FFT00410
DO 50 L=1,M FFT00530
ISPACE = 2%, FFT0V610
S = N/ISPACE FFT00620
IWIDTH = ISPACE/2 FFT00630
DO 40 J=0,(IWIDTH-1) F¥T00670
R = §%J FFTC0720
ALPHA = 2.*PI*R/EN FFT00730
WTFAC = CMPLX( COS(ALPHA), ~-SIN(ALPHA)) FFT00740
DO 30 ITOP=J,N-2,ISPACE 00750
IBOT = ITOP + IWIDTH FFT008¢C0
TMP = X(IBOT+1)*WTFAC Fr100810
. X(IBOT+1) = X(ITOP+1) - TMP FFT00820
. X(ITOP+1) = X(ITOP+1) + TMP FFT00830
30 CONTINUE FFT00840
40 CONTINUE FFT00850
50 CONTINUE FFT00860
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RETURN
END
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3. IPS

Q
b3
+

ARRAY X(N).

SIGNAL- A43

TSMTH- A25

OUT  REAL

oo ivisieieioioioieieieie el ivivivieisiv v ke ke ke v iR KekvErRe o e ReNoNoNoNo oo o RalooRoRo oo o RoRe N o)

SAMp COMPLEX

THIS FORTRAN FILE COMPUTES THE IPS OF A DATA SEQUENCE

INPUT DATA SEQUENCE IS READ USING FILEDEF 4, AS THE COMPLEX

N IS THE LENGTH OF THE DATA SEQUENCE AND IS ADJUSTED FROM THE
PARAMETER STATEMENT. N HMUST NOT EXCEED 128.

HEADING WHICH DESCRIBES THE
4LGORITHYM AND THE CLASS OF
SIGNAL USED

43 CHARACTER STRING DESCRIBING
TEST SIGNAL

25 CHARACTER STRING DESCRIBING
TYPE OF TIME SHOOTHING USED

QUTPUY ARRAY COF DLMENSIUN D12 BY N

79

dedede

v
%
e
ve
o
e

%

ANALYSIS PARAMETERS ARE READ USING FILEDEF 41. THE PARAMETERS
ARE: %*
ARGUMENT TYPE ALLOWED VAULUES s

ki

MODE - I1 1 PLOT O TO PI %
2 PLOT PI TO PI %

%

PLTR - 11 0 SHERPA LASER PRINTER e
1 IMB79 GRAPHICS TERMINAL U F

*

BWLEN- I3 3 DIGIT INITIAL WINDOW LENCTH, *
MUST BE AN ODD INTEGER 4

EWLEN- 13 3 DIGIT FINAL WINDOW LENGTH v
WINC - 12 2 DIGIT WINDOW INCREMENT, MUST *
BE AN EVEN INTEGER W

5t

WTYPE- A19 19 CHARACTER STRING USED IN THE *
PLOT HEAUER DISCRIBING THE i

WINDOW USED. THE CURRENT ¥

WINDOW LENGTH 1S AUTOMATICALLY *

INCLUDED %

Yo

CONTR- Al 1 CHARACTER STRING INDICATING  *
TYPE OF PLOT DESIRED %

A ANMPLITUDE PLOT ONLY %

C CONTOUR PLOT ONLY W

B BOTH AMPLITUDE AND CONTOUR *

ki

TTL - A43 43 CHARACTER STRING USED IN THE  *



oo aoaaoaoaoaaaaoaooOooaaoQao

SAM

FT

AMAX

AMIN

NX
DATA

SHIFTED VERSION OF X

COMPLEX
SHIFTED AND CONJUGATED VERSION OF X

COMPLEX

ARRAY OF SUM OF PRODUCTS OF DIMENSION 1 BY 1025
POSITIONS 1 - 512 ARE CONJUGATE SYMMETRIC WITH
POSITIONS 514 - 1025. POSITION 513 = (0.,0.)

COMPLEX
ARRAY OF THE 1024 FOINT TRANSFORM C

INTEGER
LENGTH OF CURRENT WINDOW

INTEGER
MID-POINT OF THE CURRENT WINDOW

REAL "
MAXIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS

REAL
MINIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS

HORIZONTAL DIMENSION OF OUT WHICH IS ALWAYS 512

CAN BE OUTPUT USING FILEDEF 61. POINTS OF INTEREST MUST
BE DEFINED IN THE APPROPRAITE SECTION OF CODE. BECAUSE
OF SPACE CONSTRAINTS, THE DATA OUTPUT FILE IS WRITTEN TO
THE B DISK.

PARAMETER(N= 64)

COMPLEX X(N),C(1025),SAMP,SAM,FT(1024)

REAL OUT(512,N),AMAX,AMIN

INTEGER NX,K,I,J,MODE,Z,M,BWLEN,EWLEN,WINC,PLTR
CHARACTER WTYPE*19,TTL*43,SIGNAL*43,TSMTH*25,CONTR*1
CALL EXCMS('FILEDEF 4 DISK TEST 1IN (PERM')

CALL EXCMS('FILEDEF 41 DISK PARAM IN (PERM')

CALL EXCMS('FILEDEF 61 DISK DATA OUT B (PERM')

---------- READ IN PARAMETER LIST =-=====m--ce=-e=ecemmaeccmccnnacos

READ(41,400)MODE, PLTR,BWLEN,EWLEN,WINC ,WTYPE ,CONTR, TTL,
+ STGNAL,TSMTH

400 FORMAT (1X,I11,3X,I1,3X,13,3X,13,3X,12/1X,A19/1X,A1/1X,A43

+ /iX,A43/1X,A25)

---------- TEST TO ENSURE WINDOW LENGTH IS APPROPRIATE =====-==-----

I=N-1

IF

((BWLEN .GT. I) .OR. (EWLEN .GT.I)) THEN

CINMTTT/ e £V N
NALIL{Y,05)

GO TO 99

ENDIF
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I=MOD(BWLEN, 2)
K=MOD(WINC,2)
IF (I .EQ. 0) THEN

IF (K .EQ. 1) THEN

WRITE(*,68)
GO TO 99
ELSE
WRITE(*,67)
GO TO 99
ENDIF
ENDIF

69 FORMAT (1X,'WINDOW LENGTH EXCEEDS LENGTH OF THE DATA')
68 FORMAT (1X,'WINDOW INCREMENT MUST BE EVEN')
67 FORMAT (1X,'INITIAL WINDOW LENGTH MUST BE ODD')

C
Come=onmn- PLOTTING DEVICE CALL ~=-veseavccmccvcccceccnucnccccccnncncnan
IF (PLTR.EQ. 0)THEN
CALL COMPRS
ELSE
CALL IBM79
ENDIF
(rmememcacmseeccccaccereenanneerasamcereerercre e m e memm—me————————
C
C

PI=4*ATAN(1.)
NX=512
READ (&,*)(X(J),J=1,N)
DO 111 Z= BWLEN,EWLEN,WINC
WRITE(61,600)TTL,SIGNAL, TSMTH,WTYPE,Z
600  FORMAT (1X,A43/1X,A43/1X,A25/1X,A19,13,' POINTS)')
CALL ANGLE(O.,0.)
M=(Z2-1)/2
AMAX=0.
AMIN=AMAX
DO 10 I=1,N
DO 20 K=0,512
SAMP=(0.,0.)
SAM=SAMP
IF ( (14K) .LE. N ) THEN
SAMP=X(I+K)
ENDIF
IF ( (I-K) .GT. 0 ) THEN
SAM=CONJG(X(I-K))
ENDIF
C
Ct =+ =4+ =+ =+ =4 =t ot od et et 4a-4+4+«+«+-+
C+-+-+-+ sum of product is IPS difference of product is IMRD =-+-+-+
IF (K .LE. M) THEN
C(R+1)=(X(I)*SAM + CONJG(X(I))*SAMP)
+ #*(0. 5440. 46*COH(2%PI*K/(2%M)))
ELSE
C(K+1)=0
ENDiF
C+ -+ e+ ~+ =+ ot et edecdeed+oeote-++t«+ec++=+=-+-4+
c
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C(1024-K+1)=CONJG(C(K+1))
20 CONTINUE
€(513)=(0. ,0.)
CALL FFT(1024, :.FT)
DO 40 K=1,MODE*_12,MODE
IF (REAL(FT(K)) .GT. AMAX) THEN
AMAX=REAL(FT(K))
ENDIF
IF (REAL(FT(K)) .LT. AMIN) THEN
AMIN=REAL(FT(K))
ENDIF
IF ( (K .LT: 514) .AND. (MODE .EQ. 2)) THEN
OUT( INT( (K+1)/2+255) ,1)=REAL(FT(K)}
ELSE
IF ( MODE .EQ. 2 ) THEN
OUT( INT( (K+1)/2-257),1)=REAL(FT(K))

ELSE
OUT(K,I)=REAL(FT(K))
ENDIF
ENDIF
40 CONTINUE
10 CONTINUE

------- FOR TIME SMOOTHING PURPOSES ---<-es-vewemcccccanccccnanncacan
DO 48 K=1,512
DO 4€ I=1,N-2
OUr(K,I)=(0UT(K,I)+0UT(K,I+1)+0UT(K I+2))/3
46 CONTINUE
DO 47 I=N,3,-1
OUT(K,I)=(0UT(K,I)+0UT(K,I-1)+0UT(K,I-2))/3
47 CONTINUE

---------- DATA OUTPUT =====v==e-eveececcaceneccmccccceccenceensaanan
IF( (K. GE. 208). AND. (K. LT. 370) )THEN
IF(((K.GE. 120). AND. (K. LT. 140)).OR. ((K.GE. 370). AND.
+ (K. LT. 390)))THEN
WRITE(61,601)
DO 81 I=1,N-1,14
WRITE(61,602)K,I,0UT(K,I)
81 CONTINUE
ENDIF
601 FCRMAT ('FREQ BIN=',8X,'TIME BIN=',7X,'AMPLITUDE=')
602 FORMAT (10X,I4,13X,14,14X,E14.7)

Cmmmmmmmomemne PLOTTING ~ =====wec-c-cecesccmccccccccacaaos
IF(CONTR. EQ. 'C' )THEN
GO TO 50

ENDIF
CALL BSHIFT ( -0.2 ,-.25)
CALL AREA2D(8,9)
CALL VOLM3D(10,10,8)
CALL HEADIN(TIL,100,1.,3)
CALL HEADIN(SIGNAL,100,1.,3)
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CALL HEADIN(TSMTH,100,1.,3)
CALL MESSAG(WIYPE,100,2.5.9.3)
CALL INTNO(Z,'ABUT' 'ABUT')
CALL MESSAG(' POINT. )$',100f'ABUT’,‘ABUT')
CALL X3NAME('FKEQUENCY AXISS',100)

CALL Y3NAME('TIME AXISS',100)
CALL Z3NAME(' $',100)
CALL VUANGL(-65,70,700)
CALL XNONUM
CALL ZNONUM
CALL MX1ALF('STANDARD','#")
CALL MX2ALF('L/CGREEK','+")
CALL ANGLE(~25.0)
IF ( MODE .EQ. 2 ) THEN

CALL MESSAG(' +-P# ',6,0.,2.3)
ELSE

CALL MESSAG(' +0# ',5,0.,2.3)
ENDIF
CALL ANGLE(-25.0)
CALL MESSAG(' +P# ',5,4.9,0.15)
CALL GRAF3D(~-256,256,256,1,N,N, 1. O*AMIN,

+ 0. 5%(AMAX-AMIN), 1. O*AMAX)

CALL SURMAT(OUY,512,512,1,N,0.)
CALL ENDPL(0)

50 IF (CONTR.NE. 'A')THEN
DO 49 I=1,N
DO 51 K=1,512
IF (OUT(K,I) .LT. 0) THEN

OUT(K,1)=0
ENDIF
51 CONTINUE
49 CONTINUE
CALL CONTOR(OUT,NX,N,TTL,SIGNAL,WTYPE,TSMTH,Z,AMAX)

ENDIF

---------------------------------------------------------------------

WRITE(61,603)AMAX,AMIN
603 FORMAT (1X,'MAXIMUM AMPLITUDE=',E14.7
+ /'MINIMUM AMPLITUDE=',E14.7)
111 COWTINUE
CALL DONEPL

99  STOP
END
S 5555885555858 5859555588855SS5S88858888858S
SUBROUTINE CONTOR(A,NX,NY,TITLE.SIGNL,WNDW,TAVG,WLEN, AMAX)
THIS SUBROUTINE CONTOURS AN NX BY NY ARRAY OF REGULARLY SPACED POINTS.
NOJE: THE ARRAY MUST BE REAL*&.
A : SINGLE PRECISION NX BY NY ARKAY OF REGULARLY SPACED POINTS
NX: NUMBER OF POINTS IN THE X-DIRECTION
NY: NUMBER OF FOINTS 1IN THE Y-DIRECTION
ZINC: CONTQUR INTERVAL
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DIMENSION A{NX,NY)
COMMON WORK(50000)

C SET PARAMETERS FOR AXES:
XORIG=~256.
XSTP=256.

XMAX=256. -

YORIG=0.
YSTP=NY
YMAX=NY

SET CONTOUR LEVEL
ZINC=AMAX/10.

CALL SETCLR('CYAN')

Qa O ao

SET PAGE AND PLOT SIZES, SET UP AXES FOR PLOT:
CALL PAGE(8.5,11.0)
CALL BCOMON(S50000)
CALL AREA2D(6.0,8.0)

aa

LABEL AXES:
CALL XNAME('FREQUENCY - AXIS §',100)
CALL YNAME('TIME - AXIS §$',100)
CALL GRAF(XORIG,XSTP,XMAX,YORIG,YSTP,YMAX)
CALL FRAME

aa

TITLE:
CALL HEADIN('CONTOUR PLOTS$',100,1.,4)
CALL HEADIN(TITLE,100,1.,4)
CALL HEADIN(SIGNL,100,1.,4)
CALL HEADIN(TAVG,100,1.,4)
CALL ANGLE(O0. 0)
CALL MESSAG(WNDW,100,1.5,~.7)
CALL INTNO(WLEN ,'ABUT','ABUT')
CALL MESSAG(' POINTS)$',100,'ABUT','ABUT')

aqy

MAKE CONTOURS AND DRAW:
CALL SETCLR('RED')
CALL CONMIN(3.0)
CALL CONANG(60. )
CALL CONLIN(O,'MYCON','NOLABELS',2,10)
CALL CONMAK(A,NX,NY,ZINC)
CALL CONTUR(1,'LABELS','DRAW')

C
CALL ENDPL(0)
RETURN
END

C

CS S5 85558SSS5S88855858558558S888S885558585888S8°Ss
c

SUBROUTINE MYCON(RARAY,IARAY)
DIMENSION RARAY(2),IARAY(1)

THIS ROUTINF MAK. NEGATIVE CONTOURS LASHED AND THE ZERO LINE HEAVIER.

QM
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CALL RESET('DASH')
IF (RARAY(1) .GE. 0.) GO TO 10

CALL DASH
10 RARAY(2) = 1.
IARAY(1) =1
IF (RARAY(1) .EQ. 0.) IARAY(1l) =2
RETURN
END

5 S5 855 855555858585 S85855858585S8S858S58588S8S888S
e L o T L O R SR
%*
t CALL FFT(N,XTEMP,X)
k)
* X = OUTPUT COMPLEX ARRAY CONTAINING FFT (1024)
* N - NUMBER OF POINTS
¥ XTMP - COMPLEX ARRAY CONTAINING DATA SAMPLES

% (starting at 1l,up to 1024)
Fdedrkdedertbleded ekt s bbbk sk ke ek Trab bbbk e e e oo

* % % k%

o2,
b

SUBROUTINE FFT(N,XTMP,X)
COMPLEX X(1024),XTMP(1024),WTFAC,TMP
M=INT(LOG10(FLOAT(N))/L0G10(2. )+0.5)
EN =N
PI = 4, 0*ATAN(1.0)
DO 10 K=0,N-1
NEWADR = 0
MADDR = K
DO 20 I=0,M-1
LRMNDR = MOD(MADDR,2)
NEWADR = NEWADR + LRMNDR*2¥%*(M-1-1)
MADDR = MADDR/2
20 CONTINUE
X(NEWADR+1) = XTMP(K+1)
10 CONTINUE
DO 50 I=1,M
ISPACE = 2%*[L
S8 = N/ISPACE
IWIDTH = ISPACE/2
DO 40 J=0,(IWIDTH-1)
R = §%J
ALPHA = 2.*PI*R/EN
WIFAC = CMPLX( COS(ALPHA), -SIN(ALPHA))
DO 30 ITOP=J,N-2,ISPACE
IBOT = ITOP + IWIDTH

TMP = X(IBOT+1)*WTFAC

X(IBOT+1) = X(ITOP+1) - TMF

X(ITOP+1) = X(ITOP+1) + TMP
30 CONTINUE

490 CONTINUE
50 COWTINUE
RETURN
END
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4. PWD

o
3
<

THIS FORTRAN FILE COMPUTES THE PWD OF A DATA SEQUENCE

c

c

C

c ARRAY X{N).
C

C

C PARAMETER STATEMENT.
C

C

C ARE:

C ARGUMENT TYPE
C

C MODE - I1
C

C

C PLTR =~ 11
c

c

C BWLEN- I3
C

c EWLEN- I3
C WINC - 12
C

C

C WTYPE~ A19
C

C

C

C

Cc

c CONTR~- Al
C

C

C

C

C

C

C TTL - A43
c

C

C

C

c SIGNAL~- A43
c

C

C TSMTH- A25
C

c

C

C OUT REAL

c

c

c SAMP COMPLEX

INPUT DATA SEQUENCE IS READ USING FILEDEF 4, AS THE COMPLEX

N IS THE LENGTH OF THE DATA SEQUENCE AND IS ADJUSTED FROM THE
N MUST NOT EXCEED 128.

ANALYSIS PARAMETERS ARE READ USING FILEDEF 41. THE PARAMETERS

ALLOWED VAULUES

PLOT 0 TO PI
PLOT PI TO PI

SHERPA LASER PRINTER
IMB79 GRAPHICS TERMINAL

- O [\

DIGIT INITIAL WINDOW LENGTH,
MUST BE AN ODD INTEGER

DIGIT FINAL WINDOW LENGTH
DIGIT WINDOW INCREMENT, MUST
BE AN EVEN INTEGER

DWW

19 CHARACTER STRING USED IN THE
PLGT HEADER DISCRIBING THE
WINDOW USED. THE CURRENT
WINDOW LENGTH IS AUTOMATICALLY
INCLUDED

1 CHARACTER STRING INDICATING
TYPE OF PLOT DESIRED

A AMPLITUDE PLOT ONLY
C CONTOUR PLOT ONLY
B BOTH AMPLITUDE AND CONTOUR

43 CHARACTER STRING USED IN THE
HEADING WHICH DESCRIBES THE
ALGORITHM AND THE CLASS OF
SIGNAL USED

43 CHARACTER STRING DESCRIBING
TEST SIGNAL

25 CHARACTER STRING DESCRIBING
TYPE OF TIME SMOOTHING USED

OUTPUT ARRAY OF DIMENSION 512 BY N

86
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DATA CAN BE OUTPUT USING FILEDEF 61. POINTS OF INTEREST MUST *
BE DEFINED IN THE APPROPRAITE SECTION OF CODE. BECAUSE *
OF SPACE CONSTRAINTS, THE DATA OUTPUT FILE IS WRITTEN TO
THE B DISK. *

dedeealdedededere i dedk s deda ok edbak vl vk ek aede e sk v e de b e s s e de v sl e s sk e st e s sk e sk e ek ek ea e e e ke ok

c SHIFTED VERSION OF ¥ *
C *%
c SAM  COMPLEX ¥
C SHIFTED AND CONJUGATED VERSION OF X *
C %
C C COMPLEX *
C ARRAY OF SUM OF PRODUCTS OF DIMENSION 1 BY 1025 *
c POSITIONS 1 - 512 ARE CONJUGATE SYMMETRIC WITH ¥
C POSITIONS 514 - 1025. POSITION 513 = (0.,0.) ¥*
C %
c FT COMPLEX %*
C ARRAY OF THE 1024 POINT TRANSFORM C *
C %
c Z INTEGER *
C LENGTH OF CURRENT WINDOW *
C %
C M INTEGER *
c MID-POINT OF THE CURRENT WINDOW o
C *
C AMAX REAL *
C MAXIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS *
C %
c AMIN REAL *
C MINIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS o
C *
C NX HORIZONTAL DIMENSION OF OUT WHICH IS ALWAYS 512 ¥
C

c

C

C

c

C

C

C

PARAMETER(N= 64)

COMPLEX X(512),C(1025),SAMP,SAM,FT(1024)

REAL OUT(512,N),AMAX,AMIN

INTEGER NX,K,I,J,MODE,Z,M,BWLEN,EWLEN,WINC,PLIR
CHARACTER WTYPE*19,TTL*43,SIGNAL*43, TSMTH*25 CONTR*1
CALL EXCMS('FILEDEF &4 DISK TEST IN (PERM')

CALL EXCMS('FILEDEF 41 DISK PARAM IN (PERM')

CALL EXCMS('FILEDEF 61 DISK DATA OUT B (PERM')

Commmmommcncnan READ IN THE PARAMETER LIST =--=r~=wwecccccrcaccccnanun-
READ(41,400)MODE, PLTR,BWLEN,EWLEN,WINC,WTYPE,CONTR, TTL,
+ SIGNAL,TSHMTH
400 TFORMAT(1X,I1,3X,I1,3X,I3,3X,I3,3X,12/1X,A19/1X,A1/1X,A43
+ /1X,A43/1X,A25)

Comonmecne- TEST TO ENSURE WINDOW LENGTH IS APPROPRIATE --~=--vecc-e--
I=N-1
IF ((BWLEN .GT. I) .OR. (EWLEN .GT.I)) THEN
WRITE(% 69)
GO TO 99
ENDIF
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69

68

67
c

I=MOD( BWLEN.2)
K=MOD(WINC,2)
IF (I .EQ. 0) THEM
IF (K (EQ. 1) THEN
WRITE(*,68)
GO TO 99

WRITE(*,67)
80 70 99
ENDIF

ELSE

ENDIF

FORMAT (1X,'WINDOW LENGTH EXCEEDS LENGTH OF THE DATA')
FORMAT (1X,'WINDOW INCREMENT MUST BE EVEN')

FORMAT (1X,'INITIAL WINDCW LENGTH MUST BE ODD')

Correcencncanne cenmmuannans cocene resmemnssncasuacconnetancnane .

C

Gummeeemmacecee PLOTTING DEVICE CALL ~=eev=- emeemumemecccana. ————

IF(rLTR. EQ. Q)THEN
CALL COMPRS
ELSE
CALL IBM79
ENDIF

Crmceorconrenn mr memmeenmnn . memcccnannan

C

C

C-o

10

20

30
C.‘

600

PI=4*ATAN(1.)
NX=512
READ(4,*)(X(J),J=1,2*N,2)

----------- DATA INTERPOLATION ===wseseomeeeneeecsnnecae

DO 5 5=2,2%N,2
X(J)=(0.,0.)

CONTINUE

CALL FFT(2*N,X,FT)

DO 10 J=N/2+2,2"N-N/2+1
FT(J)=(0.,0.)

CONTINUE

O 20 J=1,2*N
FT(J)=CONJG(FT(J))

CONTINUE

CALL FFT(2%N,FT,X)

DO 30 J=1,2*N
X(J)=CONJG(X(J))/N

CONTINUE

L R R L N PR YR X R LR LY TN PR Y L L R Y YY)

DO 111 Z=BWLEN,EWLEN,WINC
WRITE(61,600)TTL, SIGNAL, TSMTH,WTYPE, Z

FORMAT( 1X,A43/1X,A37/1X,A25/1X,419,13,"' POINTS)')
M=(Z-1)/2

AMAX=0

MUTA I AVL AN
PILIVA1sAn

DO 40 I=1,2*N,2
DO 50 K=0,512
SAMP=(0. ,0. )
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adn

SAM=(0.,0.)

IF ( (I+K) .LE. 2*N ) THEN
SAMP=X( I+K)

ENDIF

IF ( (I-K) .GT. 0 ) THEN
SAM=CONJG(X(I-K))

ENDIF

IF (K .LE. 2%*M) THEN
C(K+1)=SAMP*SAM*( 0. 54+0. 46*%COS( 2*PI*K/(4*M)))
ELSE
C(K+1)=0
ENDIF

C(1024-K+1)=CONJG(C(K+1))
50 CONTINUE
C(513)=(0.,0.)
CALL FFT(1024,C,FT)
DO 60 K=1,MODE*512,MODE
IF (REAL(FT(K)) .GT. AMAX) THEN
AMAX=REAL(FT(K))
ENDIF
IF (REAL(FT(K)) .LT. AMIN) THEN
AMIN=REAL(FT(K))
ENDIF
IF ( (K.LT.514) .AND. (MODE .EQ. 2)) THEN
OUT(INT((K+1)/2+255),(I+1)/2)=REAL(FT(K))
ELSE
IF( MODE .EQ. 2 ) THEN
OUT(INT((K+1)/2-257),(I+1)/2)=REAL(FT(K))
ELSE
OUT(K,(I+1)/2)=REAL(FT(K))
ENDIF
ENDIF
60 CONTINUE
40  CONTINCE

------- FOR TIME SMOOTHING PURPOSES ~=-=======-=wececcceccnoncncecncan-
DO 48 K=1,512
DO 46 I=1,N-2
OUT(K,I)=(0OUT(K,I)+0UT(K,I+1)+0UT(K,I+2))/3
46 CONTINUE
DO 47 I=N,3,-1
OUT(K,I)=(0UT(K,I)+0UT(K,I~1)+0UT(K,I-2))/3
47 CONTINUE

----------- DATA QUTPUT -~=-=====cccccecmcccnccccccnrcncacccancancaan

IF((K. GT. 285). AND. (K. LT. 310) )THEN

WRITE(61,601)

DO 81 I=1,N

WRITE(61,602)K,1,0UT(K,I)

81 CONTINUE

ENDIF
601 FORMAT('FREQ BIN=',8X,'TIME BIN=',7X,'AMPLITIDE=')

89
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602 TFORMAT(10X,14,13X,14,14X,E14.7)

Cewecncmcccecenanacanarescnacsacncecarecesrnrarcrcacscanaceneneannamnan
c
48  CONTINUE
(mececarccccunnvnasnnrrernereccnrvenanaceraanananerrnratasnnacncasnunee
C
C weemcnee- PLOTTING =~=-==~~- memesssesccsccsccccccacecsansssaranacan.

IF (CONTR.EQ. 'C')THEN

GO TO 52
ENDIF

CALL BSHIFT ( -0.2 , -0.25)
CALL AREA2D(8,9)
CALL VOLM3D(10,10,8)
CALL HEADIN(TTL,100,1.,3)
CALL HEADIN(SIGNAL,100,1.,3)
CALL HEADIN(TSMTH,100,1.,3)
CALL ANGLE(O.,0.)
CALL MESSAG(WTYPE 100,2.5,9. 3)
CALL INTNO(Z ,'ABUT' ABUT')
CALL MESSAG(' POINTS )$' ,100, 'ABUT', "ABUT')
CALL X3NAME(' ' FREQUENCY AXIS$ ,100)
CALL Y3NAME('TIME AXIqs 100)
CALL Z3NAME(' $' 100)
CALL VUANGL(-65,70; 700)
CALL XNONUM
c CALL ZNONUM

CALL MX1ALF('STANDARD','#')
CALL MX2ALF('L/CGREEK','+')
CALL ANGLE(-25.0)
IF ( MODE .EQ. 2 ) THEN

CALL MESSAG(' +-P# ',6,0.,2.3)
ELSE

CALL MESSAG(' +0# ',5,0.,2.3)
ENDIF
CALL ANGLE(- =25. 0)
CALL MESSAG(' +P# ',5,4.9,0.15)
CALL GRAF3D(-256, 256 256 1 N,N, 1. O*AMIN,. 5*( AMAX-AMIN),

+1, 0%AMAX)

CALL SURMAT(OUT,512,512,1,N,0.)
CALL ENDPL(0)

52 IF(CONTR.NE.'A')THEN
DO 49 I=1,N
DO 51 K=1,512
IF((OUT(K,I).LT. 5.0).AND. (OUT(K,I) .GT. =5.0))THEN
OUT(K,I)=0
ENDIF
51 CONTINUE .
49 CONTINUE
CALL CONTOR(OUT,NX,N,TTL,SIGNAL,WTYPE ,TSMTH,2)
ENDIF

WRITE(61,603)AMAX,AMIN
603 FORMAT(1X,'MAXIMUM AMPLITUDE=',E14.7
+ /1X,'MINIMUM AMPLITUDE=',6El4.7)
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111 CONTINUE
CALL DONEPL
99  8TOP
END

S SS555S8585585558558558555558888888865688S

SUBROUTINE CONTOR(A,NX,NY,TITLE,SIGNL,WNDW,TAVG,WLEN)
THIS SUBROUTINE CONTOURS AN NX BY NY ARRAY OF REGULARLY SPACED POINTS.
NOTE: THE ARRAY MUST BE REAL¥4.

A : SINGLE PRECISION NX BY NY ARRAY OF REGULARLY SPACED POINTS
NX: NUMBER OF POINTS IN THE X-DIRECTION

NY: NUMBER OF POINTS IN THE Y-DIRECTION

ZINC: CONTOUR INTERVAL

DIMENSION A(NX,NY)
COMMON WORK(50000)

aaaaoaoaaaoa aaaaa

Qg

SET PARAMETERS FOR AXES:
XORIG=-256.
XSTP=256.

XMAX=256.
YORIG=0.
YSTP=NY
YMAX=NY

SET CONTOUR LEVEL
ZINC=AMAX/10

CALL SETCLR('CYAN')

aa Q ao

SET PAGE AND PLOT SIZES, SET UP AXES FOR PLOT:
CALL PAGE(8.5,11.0)
CALL BCOMON(50000)
CALL AREA2D(6.0,8.0)
c
C LABEL AXES:
CALL XNAME('FREQUENCY - AXIS §',100)
CALL YNAME('TIME - AXIS §',100)
CALL XNONUM
c
p CALL GRAF(XORIG,XSTP,XMAX,YORIG,YSTP,YMAX)
CALL FRAME
c

C TITLE:
CALL HEADIN('CONTOUR PLOTS$',100,1.,4)
CALL HEADIN(TITLE,100,1.,4)
CALL HEADIN(SIGNL,100,1.,4)
CALL HEADIN(TAVG,100,1.,4)
CALL ANGLE(O.0)
. CALL MESSAG(WNDW,100,1.5,-.7)

PLITPN L, 177 0 : Annml

CALL mxm’J(wumw ,'AB "I" ABUT)
CALL MESSAG('POINTS)$',100,'ABUT','ABUT')
. C
C MAKE CONTOURS AND DRAW:
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aag

[sXoXoloNoNoNoNoRo oo No N

S S

THIS ROUTINE MAKES NEGATIVE CONTOURS DASHED AND THE ZERO LINE HEAVIER.

10

SS

20
10

CALL SETCLR('RED')

CALL CONMIN(3.0)

CALL CONANG(60. )

CALL CONLIN(O,'MYCON','NOLABELS',2,10)
CALL CONMAK(A,NY,NY,'SCALE')

CALL CONTUR(1,'LABELS','DRAW')

CALL ENDPL(0)

RETURN

END

§ 5585855855555 585858588588885858888888s88

SUBROUTINE MYCON(RARAY,IARAY)
DIMENSION RARAY(2),IARAY(1)

CALL RESET('DASH')
IF (RARAY(1l) .GE. 0.) GO TC 10

CALL DASH

RARAY(2) = 1.

IARAY(1) = 1

IF (RARAY(1) .EQ. C.) IARAY(1) =2
RETURN

END

S SSSSS5585885855858585558858885585888888S8

FedevevestedededevedevedeveredededededevledededeFeoaevedeveleve e devedevevedeve dedevovedededeviedede veddediede
¥

¥ CALL FFT(N,XTEMP,X)

* X - OUTPUT COMPLEX ARRAY CONTAINING FFT (1024)
v N - NUMBER OF PCINTS
¥ XTMP - COMPLEX ARRAY CONTAINING DATA SAMPLES

* (starting at l,up to 1024)
Fedededdedededeiclevedededeiefediedeloldeinitedoeioiohdeioldoileioioinieiocleiolo el doiiloielo

FEFEFIFD

SUBROUTINE FFT(N,XTMP,X)
COMPLEX X(1024),XTMP(1024),WTFAC,TMP
M=INT(LOG10(FLOAT(N))/L0G10(2, )+0.5)
EN =N
PI = 4, C*ATAN(1.0)
DO 10 K=0,N-1
NEWADR = 0
MADDR = K
DO 20 I=0,M-1
LRMNDR = MOD(MADDR,2)
NEWADR = NEWADR + LRMNDR#*2¥%*(M-1-1)
MADDR = MADDR/2
CONTINUE
X(NEWADR+1) = XTMP(K+1)
CONTINUE '
DO 50 I~=1,M
ISPACE = 2¥**[,
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S = N/ISPACE
IWIDTH = ISPACE/2
DO 40 J=0,(IWIDTH-1)

R = S*J
ALPHA = 2,+*PI*R/EN
WIFAC = CMPLX( COS(ALPHA), -SIN(ALPHA))

DO 30 ITOP=J,N-2,ISPACE
IBOT = ITOP + IWIDTH
THP = X(IBOT+1)*WTFAC
X(IBOT+1) = X(ITOP+1) -~ TMP
X(ITOP+1) = X(ITOP+1) + TMP
30 CONTINUE
40 CONTINUE
5C CONTINUE
RETURN
END
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5. |RD,|*

THIS FORTRAN FILE COMPUTES THE SQUARED MAGNITUDE OF THE

RIHACZEK DISTRIBUTION

INPUT DATA SEQUENCE IS READ USING FILEDEF 4, AS THE COMPLEX

ARRAY X(N).

N IS THE LENGT. OF THE DATA SEQUENCE AND IS ADJUSTED FROM THE

PARAMETER STATEMENT.

N MUST NOT EXCEED 128.

ANALYSIS PARAMETERS ARE READ USING FILEDEF 41. THE PARAMETERS

ARE:
ARGUMENT TYPE
MODE - Il
PLIR - I1
BWLEN- I3
EWLEN- I3
WINC - I2
WTYPE- Al9
CONTR- Al
TTL - A43
SIGNAL- A43
TSMTH- A25
OUTR REAL

INITIALLY USED AS STORAGE FOR THE TIME SMOOTHED IPS, THEN

ALLOWED VAULUES

PLOT 0 TO PI
PLOT PI TO PI

SHERPA LASER PRINTER
IMB79 GRAPHICS TERMINAL

DIGIT INITIAL WINDOW LENGTH,
MUST BE AN ODD INTEGER
DIGIT FINAL WINDOW LENGTH
DIGIT WINDOW INCREMENT, MUST
BE AN EVEN INTEGER

PDW W O N

19 CHARACTER STRING USED IN THE
PLOT HEADER DISCRIBING THE
WINDOW USED., THE CURRENT

WINDOW LENGTH IS AUTOMATICALLY

INCLUDED

1 CHARACTER STRING INDICATING
TYPE OF PLOT DESIRED

A AMPLITUDE PLOT ONLY
C CONTOUR PLOT ONLY

B BOTH AMPLITUDE AND CONTOUR

43 CHARACTER STRING USED IN THE
HEADING WHICH DESCRIBES THE
ALGORITHM AND THE CLASS OF
SIGNAL USED

43 CHARACTER STRING DESCRIBING
TEST SIGNAL

25 CHARACTER STRING DESCRIBING
TYPE OF TIME SMOOTHING USED

AS OUTPUT ARRAY OF DIMENSION 512 BY N
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OUTI REAL
ARRAY USED TO HOLD THE THE TIME SMOOTHED IMRD
SAMP COMPLEX
SHIFTED VERSION OF X
SAM  COMPLEX
SHIFTED ANC CONJUGATED VERSION OF X
RE COMPLEX

ARRAY OF SUM OF PRODUCTS OF DIMENSION 1 BY 1025,
POSITIONS 1 - 512 ARE CONJUGATE SYMMETRIC WITH
POSITIONS 514 - 1025, POSITION 513 = (0.,0.).

IM COMPLEX
ARRAY OF DIFFERENCE OF PRODUCTS OF DIMENSION 1 BY 1025,
POSITIONS 1 - 512 ARE CONJUGATE SYMMETRIC WITH
POSITIONS 514 -~ 1025, POSITION 513 = (0.,0.).

FTR  COMPLEX
ARRAY OF THE 1024 POINT TRANSFORM RE

EE I I A A A I S A A

FTI  COMPLEX

ARRAY OF THE 1024 POINT TRANSFORM IM & 3

Z INTEGER 5
LENGTH OF CURRENT WINDOW

M INTEGER
MID-POINT OF THE CURRENT WINDOW

AMAX REAL
MAXIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS

AMIN REAL

MINIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS
NX HORIZONTAL DIMENSION OF OUT WHICH IS ALWAYS 512

DATA CAN BE OUTPUT USING FILEDEF 61. POINTS OF INTEREST MUST
BE DEFINED IN THE APPROPRAITE SECTION OF CODE. BECAUSE
OF SPACE CONSTRAINTS, THE DATA OQUTPUT FILE IS WRITTIEN TO
THE B DISK.

EIE I R B N I R N B

Sedededededededololelvoliioiioleoleloloideiefededeiolededededededederededevedededt dedle e dedlededenk dededededodedledle el dedede e dedede e

OO aooaaoOOoOOaOaGoaoQaoaaOaoaaooOoOOaOaQaooaOoOoOaaoOQn

PARAMETER(N= 64)

COMPLEX X(N),RE(1025),SAMP,SAM,FTR(1024)

COMPLEX IM(1025),FTI(1024)

REAL OUTR(512,N),OUTI(512,N),AMAX,AMIN

INTEGER NX,K,1,J,MODE,Z,M,BWLEN,EWLEN .WINC,PLTR
CHARACTER WTYPE*19,TTL*43,SIGNAL*37,TSMTH#*25,CONTR*1
CALL EXCMS('FILEDEF 4 DISK TEST IN (PERM')

CALL EXCMS('FILEDEF 41 DISK PARAM IN (PERK )
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CALL EXCMS('FILEDEF 61 DISK DATA OUT B (PERM')
c
Commnacccacacn READ IN PARAMETER LISITNG=ewe-=c~ewmeecnccccccnac. recees
READ (41,400)MODE,PLTR,BWLEN,EWLEN,WINC,WTYPE, CONTR TTL,
+ SIGNAL, TSMTH
400 FORMAT (1X,Il,3X,Il,SX,13,3X,I3,3X,12/1X,A19/1X,A1/1X,A43
+ /1X,A37/1X,A25)

c.---.- ...... LY R L Y L ] LYY R R T LN 2 XY TN YR LY

c
c
Comemmonce- TEST TO ENSURE WINDOW LENGTH IS APPROPRIATE ---ces~cscccce-
I=N-1
IF ((BWLEN .GT. I) .OR. (EWLEN .GT.I)) THEN
WRITE(*,69)
GO TO 99
ENDIF

I=MOD(BWLEN, 2)
K=MOD(WINC,2)
IF (1 .EQ. 0) THEN

IF (K .EQ. 1) THEN

WRITE(*,68)
GO TO 99
ELSE
WRITE(*,67)
GO TO 99
ENDIF
ENDIF

69 FORMAT (1X, WINDOW LENGTH EXCEEDS LENGTH OF THE DATA')
68 FORMAT (1X,'WINDOW INCREMENT MUST BE EVEN')
67 FORMAT (1X,'INITIAL WINDOW LENGTH MUST BE ODD')

c
o PLOTTING DEVICE CALL -~==e--==scenecccecasmcacacraacacaax
IF (PLTR. EQ. 0)THEN
CALL COMPRS
ELSE
CALL TBM79
ENDIF
c
C .....................................................................
C

PI=4*ATAN(1.)
NX=512
READ (4,%)(X(J),J=1,N)
DO 111 Z= BWLEN,EWLEN,WINC
WRITE (61,600)TTL,SIGNAL, TSMTH,WTYPE,Z
600 FORMAT (1X, A43/1x A37/1X,A25/1X,A19,13," POINTS)')
CALL ANGLE(O. ,0.)
M=(Z-1)/2
AMAX=0.
AMIN=AMAX
DO 10 I=1,N
DO 20 K=0,512
SAMP=(0. ,0.)
SAM=SAMP
IF ( (I+K) .LE. N ) THEN
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SAMP=X( I+K)
ENDIF
IF ( (I-K) .GT. 0 ) THEN
SAM=CONJG(X(I-K))
ENDIF

* IF (K .LE. M) THEN
RE(K+1)=(X(I)*SAM + CONJG(X(I))*SAMP)
+ *(0. 54+0. 46*COS(2*PI*K/(2*M)))

IM(K+1)=(X(I)*SAM - CONJG(X(I))*SAMP)
+ %*( 0. 54+0. 46*COS(2*PI*K/(2*M)))
ELSE 3
RE(K+1)=0
IM(K+1)=0
ENDIF

RE(1024-K+1)=CONJG(RE(K+1))

IM(1024~K+1)=CONJG(IM(K+1))
20 CONTINUE

RE(513)=(0.,0.)

IM(513)=(0.,0.)

CALL FFT(1024,RE,FIR)

CALL FFT(1024,IM,FTI)

DO 40 K=1,MODE*512,MODE

IF ( (K .LT. 514) .AND. (MODE .EQ. 2)) THEN
) OUTR( INT( (K+1)/2+255) , 1)=REAL(FTR(K))
OUTI(INT((K+1)/2+255),1)=REAL(FTI(K))
ELSE
IF ( MODE .EQ. 2 ) THEN
- OUTR(INT( (K+1)/2-257),1)=REAL(FTR(K))
OUTI(INT((K+1)/2-257),1)=REAL(FTI(K))
ELSE
OUTR(K, I)=REAL(FIR(K))
OUTI(K,I)=REAL(FTI(K))
ENDIF
ENDIF
40 CONTINUE
10 CONTINUE

Coenone- FOR TIME SMOOTHING =~==-e==cscececcncccccccnsncccrccnccnuncnnn
DO 48 K=1,512
DO 46 I=1,N-2
OUTR(K, I)=(OUTR(K,I)+0UTR(K,I+1)+0UTR(K,I+2))/3
OUTI(K,I)=(OUTI(K,I)+OUTI(K,I+1)+0UTI(K,I+2))/3
46 CONTINUE
DO 47 I=N,3,-1

OUTR(K,I)=(OUTR(K,I)+OUTR(K,I~1)+0UTR(K,I1-2))/3
OUTI(K,I)=(OUTI(K,I)+OUTI(K,I-1)+0UTI(K,I-2))/3
47 CONTINUE
. 48 CONTINUE
¢
Co-mmevemomccumccmemcaaacaccccctamcean:  smmmcmscssccescncoeccneocan- ]
. C+ =+ =+t odt et ecdadteotadte aded-4-+-+-4+-4+ s

C+~+- the sum of magnitudes is |RD|*#2 Difference is |RD-|*%2 +-+

97




DO 200 K=1.512
DO 201 I=1,N
OUTR(K,1)=ABS(OUTR(K,I))
OUTI(K,I)=ABS(OUTI(K,I))
OUTR(K, I)=0UTR(K,I) + OUTI(K,I)

IF (OUTR(K,I) .GT. AMAX) THEN
AMAX=OUTR(K,I)
ENDIF -
IF (OUTR(K,I) .LT. AMIN) THEN
AMIN=OUTR(K,I)
ENDIF
201 CONTINUE
200  CONTINUE
C+ =4 o b o b nod nd od aodadtaoadodtodondtedadeadtd=d+44+

c----n..-u -------- CX T T TN T P Y L P Y P P P P Y Y P Y Y LE L LT T TR T

C
Coeonnae PLOTTING  ==ewccec-- Semescccscacoce meceoncn seseccccccons
IF (CONTR.EQ. 'C')THEN
GO TO 50
ENDIF
C CALL HEIGHT(O.28)

CALL BSHIFT ( -0.2,-.25)

CALL AREA2D(8,9)

CALL VOLM3D(10,10,8)

CALL HEADIN(TTL,100,1.,3)

CALL HEADIN(SIGNAL,100,1.,3)

CALL HEADIN(TSMTH,100,1.,3)

CALL MESSAG(WTYPE,100,2.5,9.3)
CALL INTNO(Z ,'ABUT', ABUT'?

CALL MESSAG('POINTS)S',100,'ABUT', 'ABUT')
CALL X3NAME('FREQUENCY AXIS$',100)
CALL Y3NAME('TIME AXIS$',100)

CALL 2Z3NAME(' $',100)
CALL VUANGL(-65,70,700)
CALL XNONUM

C CALL ZNONUM

CALL MX1ALF('STANDARD','#')
CALL MX2ALF('L/CGREEK','+')
CALL ANGLE(-25.0)
IF ( MODE .EQ. 2 ) THEN
CALL MESSAG(' +-P# ',6,0.,2.3)
ELSE
CALL MESSAG(' +0# ',5,0.,2.3)
ENDIF
CALL ANGLE(-25.0)
CALL MESSAG(' +P# ',5,4.9,0.15)
CALL GRAF3D(-256,256,256,1,N,N, 1. 0*AMIN, 0. 5*( AMAX~AMIN),
+ 1. 0%AMAX)
CALL SURMAT(OUTR,512,512,1,N,0.)
CALL ENDPL(0)
CONTINUE
50 IF (GONTR.NE.'A')THEN
CALL CONTOR(OUTR,NX,N,TTL,SIGNAL,WTYPE,TSMTH,Z)
ENDIF
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| WRITE(61,603)AMAX,AMIN
| 603 FORMAT (1X,'MAXIMUM AMPLITUDE=',6E14.7
+ /1X,'MINIMUM AMPLITUDE=',E14.7)
111 CONTINUE
CALL DONEPL
|

99  STOP
. END
c
| CSSS5S55S5555555555S555SS555SSS8S8S8S
. c
‘ SUBROUTINE CONTOR(A,NX,NY,TITLE,SIGNL,wiOW, TAVG,WLEN)
‘ C THIS SUBROUTINE CONTOURS AN NX BY NY ARRAY OF REGULARLY SPACED POINTS.
C NOTE: THE ARRAY MUST BE REAL*4,
c
C A : SINGLE PRECISION NX BY NY ARRAY OF REGULARLY SPACED POINTS
C NX: NUMBER OF POINTS IN THE X-DIRECTION
c NY: NUMBER OF POINTS IN THE Y-DIRECTION
c ZINC: CONTOUR INTERVAL
c

DIMENSION A(NX,NY)
COMMON WORK(50000)

an

SET PARAMETERS FOR AXES:
XORIG=-256.
XSTP=256.

XMAX=256.
YORIG=0.
YSTP=NY
YMAX=NY

SET CONTOUR LEVEL i
ZINC=AMAX/10 ]

CALL SETCLR('CYAN")

aa Q an

SET PAGE AND PLOT SIZES, SET UP AXES FOR PLOT:
CALL PAGE(S.5,11.0)
CALL BCOMON(50000)
CALL AREA2D(6.0,8.0)

C
C LABEL AXES:
CALL XNAME('FREQUENCY - AXIS $',100)
CALL YNAME('TIME - AXIS $',100)
C
CALL XNONUM
CALL GRAF(XORIG,XSTP,XMAX,YORIG,YSTP,YMAX)
CALL FRAME
C
C TITLE:

CALL HEADIN( 'CONTOUR PLOTS$',100,1.,4)
CALL HEADIN(TITLE,100,1.,4)
. CALL HEADIN(SIGNL,100,1.,4)
CALL HEADIN(TAVG,100,1.,4)
CALL ANGLE(O0.0) e
CALL MESSAG(WNDW,100,1.5,-.7)
CALL INTNO(WLEN ,'ABUT','ABUT')
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CALL MESSAG('POINTS)$',100,'ABUT','ABUT')

MAKE CONTOURS AND DRAW:
CALL SETCLR('RED')
CALL CONMIN(3.0)
CALL CONANG(60. )
CALL CONLIN(O,'MYCON','NOLABELS',2,10)
CALL CONMAK(A,NX,NY,'SCALE')
CALL CONTUR(1,'LABELS','DRAW')

C END PLOT:
CALL ENDPL(O0)
RETURN
END

aQaa

§ 5558585585855 558585585588S5S855S88S58588888S

SUBROUTINE MYCON(RARAY,IARAY)
DIMENSION RARAY(2),IARAY(1)

aaa

C
C THIS ROUTINE MAKES NEGATIVE CONTOURS DASHED AND THE ZERO LINE HEAVIER.
C
. CALL RESET( 'DASH')
IF (RARAY(1l) .GE. 0.) GO TO 10
CALL DASH
10 RARAY(2) = 1,

JARAY(1) =1

IF (RARAY(1) .EQ. 0.) IARAY(1) =2

RETURN

END
C
CSS5S85558855SSSSSS5S5S585S555S55S5SS8SS8SSS8S8S888S8S
C
c Fededededeioicieioideleideloiloleideleleloeloloioloioieincdodedelodoidedoiclohdedoieok dedeleds
C * *
c * CALL FFT(N,XTEMP,X) *
C % *
C ¥ X - OUTPUT COMPLEX ARRAY CONTAINING FFT (1024) *
c * N - NUMBER OF POINTS ¥
c ¥ XTMP - COMPLEX ARRAY CONTAINING DATA SAMPLES *
c * (starting at 1l,up to 1024) *
c dededetedeledededededelofeieneiieinicdendeleideleioletefoletodedolel dodolteloiodeloiodedoleletoledede
C

SUBROUTINE FFT(N,XTMP,X)
COMPLEX X(1024),XTMP(1024),WTFAC,TMP
M=INT(LOG10(FLOAT(N))/L0G10(2. )+0.5)
EN =N
PI = 4. 0%ATAN(1.0)
DO 10 K=0,N-1
NEWADR = 0
MADDR = K
DO 20 I=0,M-1
LRMNDR = MOD(MADDR, 2)
NEWADR = NEWADR + LRMNDR¥2¥%¥(M-1-1)
MADDR = MADDR/2
20 CONTINUE
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X(NEWADR+1) = XTMP(K+1)
10 CONTINUE
DO 50 L=1,M
ISPACE = 2%+,
S = N/ISPACE
IWIDTH = ISPACE/2
DO 40 J=0,(IWIDTH-1)
R = §*%J
ALPHA = 2,*PI*R/EN
WIFAC = CMPLX( COS(ALPHA), ~-SIN(ALPHA))
DO 30 ITOP=J,N-2,ISPACE
IBOT = ITOP + IWIDTH
TMP = X(IBOT+1)*WTFAC
X(IBOT+1) = X(ITOP+1) - TMP
X(ITOP+1) = X(ITOP+1) + TMP
30 CONTINUE
40 CONTINUE
50 CONTINUE
RETURN
END
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APPENDIX B. CROSS IPS

Up to this point only autospectra have been discussed. Analysis of cross spectral
characteristics of nonstationary phenomena can provide valuable information about the
process. Equivalent to (1), a cross power spectral density is defined

P = J * R, rx}(t)e"ﬁ“f’dr. (63)

For the case when x, and x; are uncorrelated then

P x,xl(n = 2muo(f)
-p (64)
- x}x,(f)’

where g4, is the mean value. If the data is correlated the energy resulting from cross
spectral analysis can be complex. By examining Parseval’s theorem in a more general
context,

—

[7 205 0a= |~ xpsorar

= Rx,xj(o)v

= J ” P x,x,(f)df (65)

where R,,(0) is not necessarily real nor is the cross correlation function (CCF) neces-
sarily conjugate symmetric about R,‘,J(O). [Ref. 1]

All the spectral estimators previously discussed are applicable if the ACF estimate
is replaced by with the CCF estimate. The bias for cross spectra may be much larger
than an equivalent autospectra where the point of maximum overlap occurs at lag zero.
In practice, the location of maximum overlap is unknown for CCF’s. One interpretation
of cross PSD are of importance, the case where x, and x; are two channels of a multi-

channel system. The |P,,{f)| contains information concerning relative amplitudes at

]
specific frequencies where the 4P, contains information concerning the lead or lag in

phase between the two channels. [Ref. 3]
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Applying IPS in a multi-sensor environment leads to the following defining
equation,

IPSyf)=% | (@'~ + '@+ ) e e, (66)

=00

where signal y could be a delayed, noisy version of sigral x. Using a rapidly changing,
linearly chirped pulse er( 755~ 757) and implementing a windowed version of IPS, o
two sample cross spectra are shown in Figure 50 and Figure 51.

The first spectra was created by beating the pulsed chirp x(s) against a delayed ver-
sion of itself. The cross spectrum is shown in Figure 50 (a). In this case the delay is
18 samples for a pulse 63 samples in duration. The cross spectrum can be seen in
Figure 50 (b) and (c), where the spectral ridge over the interval corresponding to the
absolute time of overlap. The maximum ampiitude achieved on the cross-spectral sur-
face is nearly the same as for the autospectra. The minimum however, is approximately
44% greater in magnitude than that found on the corresponding auto-spectral surface.
IPS,, does not appear to provide information which can estimate delay in reception for
this class of signal.

The second cross spectrum considered examines the ability of IPS,, to indicate cor-

relation between a pulsed chirp and a Doppler-shifted version of itself. In this case,

10 t\2
x(1) = (T g Y)

15 (67)
() = & o 7 ),

representing a shift of 50%. Figure 51 (c) shows an overlay of the two pulses.
Figure 51 (b) is the contour for the cross spectrum. The peaks of the characteristically
modulated ridge correspond to the line of overlap shown in (c). It is not clear if the cross
spectrum of a linear chirp with a Doppler shifted version of itself vields information
concerning the degree of coherence. The cross spectrum in Figure 51 could easily be
interpreted as an autospectrum in which two, closely-spaced paraliel chirps are present.
This initial investigation into the behavior of /PS,, suggests that a more detailed exam-
ination of its behavior is in order.
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Figure 50.  Cross spectral analysis of a pulsed linear chirp
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Figure 51.  Cross spectral analysis for a Doppler-shifted linear pulse
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APPENDIX C, CUMULANT

Assuming the received signal is corrupted by zero mean, Gaussian noise, examining
the third-order moment or cumulant may yield information about the signal while sup-
pressing the contributions of the noise. This potential processing gain is realized because
the odd moments of a Gaussian process are identically zero. One way to implement 1PS

as an estimator of the cumulant is

Cum. IPSgp) (1) = ‘%‘J‘ (lx(l) 12x(e—1) + |x"(0)] (e + 1')) e,

—00

Looking only at the effect on noiseless signal data, some preliminary results can be
seen in Figure 52. All signals are analytic, therefor the magnitude squared term is al-
ways unity. A comparison of the treatment of IPS, can be made by referring to Chapter
IV, Section C (3): Test Case Results. This method of processing the cumulant of an
analytic signal does not appear to provide any useful results. Further research should
examine the behavior using real signals or possibly forming the approximation of the

cumulant in a different fashion.
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