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ABSTRACT

The estimation of time varying spectra is a complicated one. The use of classical

techniques coupled with the local stationarity assumption is met with only moderate

success. Of the many time-frequency distribution functions used in the signal analysis,

none present fully satisfactory spectra. The performance of the spectrogram, Instanta-

neous Power Spectra (IPS) the Wigner-Ville distribution (WD) and various aspects of
the Rihaczek distribution (RD) for a variety of signal nonstationarities are compared.

WD has the most narrow main-lobes but suffers from spectral cross-terms. IPS, the real

part of the RD consistently shows a bro Jened main-lobe without cross-terms. The

squared magnitude of the RD places sharp peaks along the crest of the main-lobe and
is otherwise very similar to IPS. The imaginary part of the RD shows a sensitivity to

discontinuous frequency changes i.e., frequen,.v slti. eying.
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I. INTRODUCTION

The analysis of stationary spectra is a v ll-defined problem. Although from a the-

oretical point of view a true signal spectrum can only be defined in terms of infinite du-

ration data, spectral estimates resulting from the analysis of finite duration data have

proven very useful. In the classical estimation problem, one assumes that

* the data length is finite, and

* the random process from which it originates is at least wide-sense stationary.

Armed with these assumptions the behavior of spectra derived in this manner can be

accurately predicted. The distortion incurred when analyzing a finite amount of data can

be kept at a minimum given the specific estimation problem. But what happens if the

signal is not at least wide sense stationary? Signals commonly encountered in the real

world are not stationary; they vary in time. Either in amplitude or frequency content

or possibly both, experimental data is rarely truly stationary. To better describe the

variable random process, a time dependence must be included. All the theoretical results

and even the practical application to finite duration data assume that ergodicity applies.

Clearly a nonstationary signal is not an ergodic one, i.e., not one whose time average

is equivalent to the mean realization.

In the analysis of nonstationary phenomena, there are a certain properties of the

resulting spectrum which must be identical to the stationary analog. These properties

include an all-positive spectrum and zero energy in the spectrum when the signal is not

present. Further constraints must be applied to the spectral behavior along the time

dimension, a problem unique to tl-e anaysis of nonstationary phenomena. There have

been many attempts to adequately model the time-varying behavior of nonstationary

spectra. In general it appears that each technique has some advantages and disadvan-

tages. Some appear better-suited to the analysis of a certain class of signals. There has

yet to be found a completely satisfactory description of the time dependent spectral es-

timation problem.



II. SPECTRAL ANALYSIS OF SIGNALS WITH STATIONARY

CHARACTERISTICS

The Wiener-Khinchin theorem states that if x(r) is a band limited, wide sense sta-

tionary process, then the power spectral density (PSD), is related to the autocorrelation

function (ACF), through a Fourier transform

-00

Px O = ?oR.,,(-Te- 2 fdr,(I

where R,,(T) is the ACF. Using the Fourier inversion formula,

R(T)= f p(/) 2 .f, (2)
-00

and evaluating the correlation functionl at lag zero results in the average power in the

process.

him-i. fE[ I x(t)!]=J P,(df (3)

where E denotes statistical averaging and 2T represents the duration of observation.

Equations (1) and (2) describe the relationship between the time dependent data and the

frequency dependent power spectrum. Equation (3) describes the relationship between

a signal's temporal density and its spectral density. The integrand to the left in (3) re-

presents the instantaneous power of the process. The integrand to the right represents

the power as a function of frequency. Both can be considered power density functions

and both are non-negative everywhere. Because the ACF is always conjugate symmetric,

the power spectral density is always real and the average power in the process is always

real. [Ref, 1, 2]
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Equation (1) can be rewritten,

Pa(f) =;Am E[F x (t)e-.radt 2] (4)
T'-oo 2 x

which implies knowledge of the signal for all time. It is clear that in order to compute

the true ACF or PSD, an infinite data set is required. Knowledge of an infinite number
of'realizations is also implied. These two theoretical constraints are impractical. Real-

istically one must deduce the power spcctrum from a single, finite duration realization.

This chapter examines a variety of estimation techniques, noting the specific advantages

and limitations inherent in each.

A. CLASSICAL TECHNIQUES
rhe computation of a power spectrum from one, finite set of data serves as an esti-

mate of the true PSD. One comnmon estimation technique is the periodogram. It can

be computed from the data as

P," " x(t)e-j2.,f1dt 2, (5)

an estimate similar in form to (4). except that limiting and statistical averaging oper-

ations have been ignored. This estimate has the advantage of being both real and posi-
tive. Examination of the mean and variance of the periodogram spectral estimate best

describes its deviation from the true PSD,

E[Ppe,(I)] -- sinc2IT(f- o)]Pax(a)da, (6)

where it is apparent that the periodogram represents a smeared version of the true PSD.

The smoothing along the frequency axis is caused by the finite observation interval.

3



Increasing the observation interval T narrows the main lobe of the sinc2 function,
thereby minimizing the smoothing effect of the convolution in (6). The variance, on the
other hand, is not so accommodating. [Ref. 31

The variance of the periodogram spectral estimate for white Gaussian noise is a
constant, with a standard deviation on the order of the mean. With so great a variance,

the utility of the periodogram as described by (5) is questionable. One technique used
to make this estimator more reliable is to compute an average periodogram. This has
the effect of scaling down the variance by the number of terms in the average. In prac-
tice, since more than one realization is rarely available, this amounts to segmenting the
data into shorter intervals, which causes a corresponding increase in the bias and loss

of resolution of the estimate.

One variation of the averaged periodogram scheme requires a data window. Look-

ing at smaller segments of the data, the window is applied in an overlapped fashion and
subsequent processing results in a series of periodograms that tend to be correlated and
hence statistically dependent. Consequently, the actual reduction in variance will gen-
erally be less than the number of terms in the average. Still another variation requires
the data be prewhitened. This has the effect of reducing spectral bias, which is a prob-

lem compounded by tle averaging process. [Ref. 3]
Increasing the data length increases the resolution of the periodogram. An im-

provement in variance can be realized if, instead of a periodogram, one uses a
Blackman-Tukey spectral estimator. This estimator is derived from a biased ACF esti-

mate,

R ..T JX(t)X*(t + T)dt, (7)
-T

where T is the duration of the data interval. Taking the Fourier transform of a win-

dowed version of(7),

A 00 -jr
PB7 (I) = w r xe a

P B W f - W T) x e J " f d ( 8 )
; l(f - a)Pper(a)da,

leads to an improvement in variance. The type of window indicated by (8) should be
capable of enhancing the spectral characteristics of interest [Ref. 4]. An unavoidable

4



loss in fine spectral detail is the price paid to improve the variance of the spectral esti-

mate. Here 2L and T are the durations of the lag window and the total data observation

respectively. The variance of the Blackman-Tukey estimator is

VAr[ O] 31L 2
PV0wLIB7VJ 2T Xf, (9)

versus
^2

Var[ Peper.f]" (10 )

for the periodogram. [Ref 31

Classical techniques are reliable but have limited resolution and/or a poor variance.

One assumes that The data is zero before and beyond the observation interval. This as-

sumption causes the resulting spectral estimates to deviate from the true PSD. Using

modern techniques, this type of error can be minimized. There are however, other limi-

tations to consider.

B. MODERN TECHNIQUES

Modern spectral estimation techniques rely on linear filter theory. Parametric

modeling provides the foundation for many modern spectral estimation procedures.

Rather than assuming the data to be zero beyond some arbitrary interval, parametric

models assume statistical knowledge of the underlying process. The data is assumed to

be composed of sinusoids in white noise. The model should accurately estimate filter

coefficients for some linear filter whose output, when driven by white noise, is the

available time data and hence has a spectrum exactly like that of the signal in question.

The power spectral density for such an output is

P: ,W -= I1()22 (I I)

It is assumed that the transfer function, H(f), can be written as a rational polynomial

and that the coefficients of the polynomial are the necessary filter coefficients with a, the
variance of the driving noise. Often the resonances of a particular random process are

of interest. In this case an autoregressive (AR) model can be sufficient.
AR modeling of spectra is the most popular modeling method. By solving a set of

linear equations, accurate estimates of the parameters can be determined. Selection of

an AR model results in an all-pole filter, hence the apparent high resolution. Selection

of model order, p, determines the number of poles in the filter. which determines the



number of peaks in the spectral estimate. Once the coefficients {a(O)f! are known, tile

AR spectral estimator becomes

A = 
(12)

i +I + La(i)e -jJ *

The statistics of the AR spectral estimator are difficult to determine in closed form.

Insight can be gained into its reliability by considering the following fundamental as-

sumptions:

* the process to be modeled is truly an AR process,

* the process contains - real sinusoids or p complex sinusoids, and
2

* the coefficients (a(i)), are accurate.

The choice of model order obviously requires some knowledge of the signal's spectral
content. The number of peaks in an AR spectrum, for complex-valued data. is equal to

the model order, p. The spectrum, if the number of sinusoids truly present differs from
p too much, can be unreliable. Furthermore, if the signal-to-noise ratio is poor, the es-

timate can be of poor quality. [Ref. 31
Other parametric models may be more appropriate to the process under investi-

gation. Moving average (MA) models are used when the valleys or zeros of a spectrum

are important. Unfortunately, MA models require the solution to a set of nonlinear
equations. Although not impossible, it is much more difficult to arrive at accurate pa-

rameter estimates. Still another alternative is to use a combination of AR and MA

modeling. resulting in what is called an ARMA model.
The minimum variance spectral estimator (Capon's method) provides reasonable

estimates without making any assumption about the data composition other than it

originates from a wide-sense stationary random process. The classical periodogram
spectral estimate can be interpreted as a bank of narrowband filters, all with identical

passband characteristics. The minimum variance method is based on an adaptive

passband characteristic with the advantage being the ability to adjust sidelobe levels and

hence minimize spectral leakage. The resolution of this method lies somewhere between
that of the periodogram and that enjoyed by AR estimates. [Ref. 31

6



III. SPECTRAL ANALYSIS OF SIGNALS WITH DYNAMIC

CHARACTERISTICS

A. ADAPTING ESTABLISHED STATIONARY TECHNIQUES

In Chapter II, classical spectral estimators were found to be limited by the interval

of observation, limiting the spectral resolution. A finite duration signal permits only a

finite duration correlation estimate, with increasingly poor estimates away from the zero

lag. Modern spectral methods have apparent higher resolution but are sensitive to the

signal-to-noise ratio (SNR). All the estimators discussed thus far assume the data to

be at least wide-sense stationary. The analysis of nonstationary phenomena complicates

the estimation problem.

A wide-sense nonstationary process is one whose statistics or parameters vary with

time [Ref. 5]. The actual nonstationarities of a process may include fluctuating power

magnitude, changing frequency content or a combination thereof. There remains the

problem of a suitable representation. one which appropriately displays the fluctuation

in time and frequency of the instantaneous energy in the signal. To adapt stationary

estimation techniques to the nonstationary case. the concept of local stationarity is in-

troduced. A process is considered locally stationary if, over a given interval of time, the

process appears to be stationary. Determination of the optimum interval depends upon

the most rapidly fluctuating nonstationarity present in the process. If the process is

observed overly long, the temporal fluctuations will be smeared. If the interval is un-

necessarily short, spectral detail will be lost. A discussion of the more popular methods

of nonstationary estimation and their limitations follows.

1. Short-time Fourier Transform

Short-time Fourier analysis is a method whereby the observed signal is seg-

mented into a number of shorter intervals. Each segment is Fourier transformed and

then magnitude squared. The resulting spectra are interpreted as cross sections of the

true instantaneous spectrum. These cross sections are pieced together sequentially to

form an estimate of the true time-varying power spectrum [Ref 5, 6]. This type of

spectrum is called a waterfall display by the signal processing community. Processing

sequential sections of data results in a very crude estimate of the nonstationarities as a

function of time. Furthermore, using longer segments increases spectral detail but tends

to average or broaden the time-dependent fluctuations. An overly short interval will

7



tend to enhance the detection of the time transient behavior of the process at the ex-

pense of spectral resolution.

2. Spectrogram

A modified version ol the short-time Fourier transform estimation technique is

the spectrogram It is related in that it uses a real, finite duration, sliding window

[Ref. 7] centered at time t. The spectrogram

P f ) = x(r)w( -t)e- 2  fdr 2, (13)

computes a classical estimate of the spectrum for each point in time rather than for

contiguous blocks of data (see for example, Figure 1). Similar to the periodogram, this

spectral estimate is real and positive everywhere. The reliability of the spectrogram

hinges on its ability to represent the signal's energy in the time-frequency plane. Refer-

ring back to (3), any suitable time-frequency representation should reduce to Ix(I)l1
when the frequency dependence is removed. Likewise, the representation should reduce

to IX1) 2 when the time dependency is removed. Taking a look at the spectrograf's

behavior,

(a) amplitude (b) contour
Figure 1. Behavior of the Spectrogram using an analytic sinusoid



..;Id Ix(T) I2w2(r -)dr (14)
f PsPec ro g. f; df f J-oo

and

J'PSPecrog.(j)dt = { X(a) 12I 1'(f- a)I2da (15)

we note that the estimate is smeared not only in frequency but in time axis as well, a

result of the sliding window operation. Another indicator of the spectrogram's reliability

can be found by removing both the time and the frequency dependency. The equality

expressed in (3) for stationary phenomena should have a nonstationary counterpart.

Therefore the volume under the spectrogram should equal the average energy in the

signal:

J' PSPectrog.(fi)ddt f I x(T) I 2w2(r -t)drdt. (16)

The total signal energy requirement is 5atisfied only if the average energy of the window

is equal to unity. The spectrogram represents a closer approximation of the instanta-

neous energy changes reiative to the short-time Fourier transform; however, temporal

smearing is now unavoidable. [Ref. 7, 8]

3. Correlator/Matched Filter

The spectrogram estimator can be implemented as a bank of bandpass filters,

Pcrt = J X(T)hfo(t + T)dT 2 (17)

-f00

o U 1 L
,

= w(i)~i~fot (18)

9



centered at each frequency of interest,f and weighted according to some general lowpass

characteristic, w( -t) . The output of each bandpass filter is then magnitude squared,

creating an instantaneous energy representation of the signal as a function of time and

center frequency. Since the signal is known, the general passband characteristic can be

replaced by a matched filter. Commonly used in a radar environment, each filter tests

for round trip time delay and Doppler shift. The filters possess finite bandwidth and

hence spectral resolution finer than dictated by the filters is impossible. Similarly, re-

solution along the time axis is limited by the impulse response of the filters [Ref. 5].

4. Autoregressive Modeling

Autoregressive modeling can be adapted to fit slowly-varying spectral charac-

teristics. How slowly the frequency fluctuations must occur depends on the actual

process in question. In general, as the signal rotates away from the pole of the AR filter,

broadening of the peak results. As the correlation function is time-dependent, suitable

accuracy in the AR coefficients requires an embedded time dependence. This particular

modification is discussed in a later section.

B. TIME-DEPENDENT SPECTRAL TECHNIQUES

Adapting stationary techniques to the nonstationary case is only marginally suc-

cessful. There have been many attempts to describe the variation of signal energy, a

function of both time and frequency, as a multivariable density. More appropriately, the

simultaneous distribution of signal energy in time and frequency requires definition.

Each technique has its merits, and each its own peculiarities. In 1966, a generalized

phase-space distribution function was proposed [Ref. 9], which can be used to derive

many of the more popular time-frequency representations. This generalized distribution

function is

C(f() =T , J_ o  + --L -T )e12=(t -u'-f-)dv dt1 dr. (19)
r.f. 0

The advantage in using the generalized distribution (19) lies in the ability to define

properties belonging to all representations derived in this manner. The distribution de-

pends on the choice of c1(u, r), referred to as the kernel of equation (19). An excellent

presentation of the relationship between particular time-frequency distributions and (19)

can be found in [Ref. 101 and is summarized below.

10



1. The Running Spectrum
a. Using Only the Past and Current Data

In 1952 C.H., Page [Ref. 11] derived a time-frequency presentation arguing
that one has knowledge of the signal up to and incl' ding time t, but its future values are
unknown. He defined a running transform, looting backwards over all previous data

as

A7(0 =f x(t)e fi (20)

where the superscript (-) indicates that the signal has been observed over the interval

( 0, ). By differentiating the squared magnitude of(20) with respect to time

p-f 6

- "(21)

the running spectrum suggested by Page results. Substituting (20) into (21) and com-
puting the partial derivative leads to the following alternate form

P-(fi) = 2Re[x*(t)A 7 ()e 2,fl]. (22)

M.H. Ackroyd has argued [Rel' 5] that (22) is a finite duration approximation relative
to the physical measurement of a true time-varying energy distribution. He suggests that
the true time-varying spectrum for a real-valued signal can be expressed as

00
x(t)Re[Xbc)f'- ' 1 -- x(I~ 0 X(T) cos(27rt - "T))dr, (23)

the product of the response of a linear filter driven by the signal and tile signal itself.
The implementation suggested by (23) is shown in Figure 2 (a). It requires an infinitely

narrow filter with a noncausal impulse response. To deal with the causality issue, the
impulse response is modified by a unit step function,

x()j x(T)u(t - T) cos(2nrJ(t - T))dr = x(t)f X(T) cos(2rJ(t - T))dT

= x(t)Re[AfeI2,'f ] (24)

2
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(a) Ideal

(b) Page

hxt =t)n~

(c) IPS

Figure 2. Time-Frequency Distribution Models
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which is a scaled version of (22). Figure 2 (b) suggests a practical means of measuring

a time-dependent spectrum. For ease of comparison. Figure 2 (c) shows the imple-

mentation of a distribution discussed on pages 14-15. The distribution of a signal's en-

ergy as proposed by Page is limited in spectral resolution; i.e., limited by the finite

bandwidth of the filter. It represents an improvement over the spectrogram which was

found to be smeared in both the time and frequency directions.

Page's distribution can be generated from the generalized equation (19) us-

ing the kernel function

t(V, T) = ef'r I (25)

which allows one to write (21) in yet another form.

P-(f _ ) JjfITJ ' Ix,(1, + * - )e12.1(vt -ot-f?)do dt, dr

= + -L )x*(/! - T) [{00r( V1+ do ]e-J2ifdti d,

r r Ir l(26)
= x(t1 + + )x*(r -(r )6(t, + 1jT1 -t)e-J'""f=dt, d(

= x*(t)x(t + T)e-' 2q'dr + x(t)x*(t - T)e-j2"f~dr

00 f

= 2Re[x*(t)AT70e" 2"1 ].

Equation (26) can be interpreted as the Fourier transform of an estimate of the true

time-varying ACF, where

R(, ) = x (t)x(t + ) for - oo < T < 0 (27)
=x()x (t-T) fo'0<T<oo.

The behavior of this distribution can be seen in Figure 3 (a). As time increases, the

amplitude of the signal continually irI)reases and the true frequency location becomes

more localized.

13
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(a) amplitude (b) contour

Figure 3. Behavior of Page's distributions using an analytic sinusold

b. Using Only the Future and Current Data

In 1967, M.J. Levin [Ref. 121 extended the concept of a running transform

to include

C.- -- = . d.X(t,)e (28)

where the superscript (+ ) indicates only those data values occurring at or later than time

t are to be considered. The equivalent to (22) is

P+(f'I) = IXW12

:.6 t
-. -- , - --- -1 o 1

= 2Re[x*(t).V,0 e12,,fl],

and the corresponding kernel function is

N (, T) = e (30)

The behavior of this future term can be seen in Figure 4. Maximum frequency local-

ization occurs early in the distribution, decreasing continually as time progresses.

c. Using All of the ta Data

Assigning equal weight to the past and future rns Levin defind the In-

stantaneous power spectrum (IPS) as the average of the two running spectra,

14
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(a) amplitude (b) contour

Figure 4. Behavior of Levin's distribution for an analytic sinusoid

IPSVz) = -1 WX + XTOW}

= Re~x*(t)e 2"f[P,+(/) + P-(f)]} (31)

= Re[x*(t)X(fe 2"'f].

Figure 2 (c) suggests a method whereby the IPS may be generated. IPS, like Page's

distribution, requires a noncausal infinitely narrow bandwidth filter. Modifying the im-

pulse response in order to create a realizable filter [Ref. 13, 14 ] causes both temporal

and spectral smoothing, [Ref. 15, pp. 26-28]. The two terms of IPS can be interpreted

as follows., The past term contains information of the energy and energy flow to create

the signal up to time t. The future term contains the information about the energy and

energy flow of the signal after time t [Ref. 61.

2. Instantaneous Power Spectrum (IPS)

IPS can be derived from the generalized time-frequency distribution using the

kernel lWnction:

(1)(0, r) = cos(rVT). (32)

This kernel, cos nor, can be formed by taking one half the sum of the kernels for the past

and futire running spectra. Substituting (32) into (19) and simplifying gives

15
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(a) amplitude (b) contour
Figure 5. Behavior of IPS for an analytic sinusoid

IPS(]t) = J J cosn? x(:1 + )x (v -tf')dv di1 dr

=2J00 (x(t) x'(t - ) + X*(t) X(t + T))e-j 2 fd(

--O

=Re [x(t) X*( " e"f']

It is important to note that the terms in the integrand or"(33) do not bear a direct re-

lationship to the past and future spectra defined previously by (31). In this form, each

term in the sum spans all the data and therefore contains contributions from both run-

ning spectra [Ref. 151. The ACF estimate as defined by IPS is

R (t, ()= X(t) X*(t- T) + x*(t)x(I + T) ) for -o<T<oo. (34)

By comparing Figure 3 and Figure 4, the behavior of IPS as shown in Figure 5, dem-

onstrates an improvement in end-point resolution where the main ridge is most narrow

at the center of the duration.

3. Rihaczek Distribution (RD)

Derived from physical considegaions [Rcf. 5,16j, the complex cncrgy or

Rihaczek distribution (RD) is

16



RD(ft) = x(t)X (0e (35)

Since the real part of a complex function is equal to the real part of the complex conju-

gate of that function, it is obvious the IPS as defined in (31) i, equivalent (33), the real

part of(35). This relationship is depicted in, igure 2 (c). As yet, there is no satisfactory

interpretation of the imaginary part of the Rihaczek distribution (ImRD), although its

computation leads to an increase in spectral localization over that of IPS for certain

signals. A closer look at the behavior of IPS and RD can be found in Chapter IV.

There exists a relationship between the spectrogram estimate and the RD. Re-

writing (13)

A (TI( ~e- fd 2
Pspecirog.ft) 

=f

= x()IV(r - t)e-J -'' J x*(t)w*(r, - T)e12 f"d dr

= x(r)w(r - t)e-2.'/ J)e 2 t'-C'da dr (36)

-- {0x(T)X*(o)e-J2"fw(r - !'1H"(f- a)e 2 -)( IT)d dr

f RDx(a, T) RD,(f -a, -t)da dr,

where RD(ft) is defined by k35). Equation (36) shows the spectrogram to be the 2-D

convolution of the RD of the data with the RD of the window function. [Ref. 6, 15]

The complex energy distribution can be generated from (19) using the kernel

func'ion

(I(u, T) = e . (37)

Substituting (37) into (36) results in

17



RD(£t) = f ''of x(t I + I )x*(t1 - I )e12 "f--)dv dtI dr

f J (t, + 2 )x *(t, - T ) 2 )d eJ2fdt

([I + -L )x*(t, - T )6(t 1 + T -t)e - 2 -dr 1 dT 
(38)

- xQ)x*(t - r dT

00
=x()X*(]We j 2-ft.

Equation (38) can aiso interpreted as the Fourier transform of an ACF estimate, where

A

R(t, T) = X()X* (I - T) for - 00 < T < 0o. (39)

Because RD is complex, this ACF estimate cannot be an even function of the shift var-

iable, r. This suggests that it is the nonstationarities of a process which lead to an ACF

which is partially odd. The behavior of this particular distribution is shown in Figues 5

and 6. Figure 5 shows the behavior of IPS for an analytic sinusoid. IPS is equivalent

to the real part of the RD. The imaginary part, shown in Figure 6 (a) and (b), demon-

strates an improved sensitivity to rapid changes in signal energy as a function of fre-

quency. The behavior of the RD is discussed in more detail in Chapter IV.

4. Wigner-Ville Distribution (WD)

Originally introduced by Wigner in a quantum mechanical context [Ref. 17] and

extended to signal analysis applications by Ville [Ref. 18], the Wigner-Ville distribution

(WD) is another valid representation of a signal's energy as a function of both time and

frequency. The WD can be generated from (19) using

t(t, r) = 1 (40)

as the kernel function. Substituting (40) into (19) results in

18
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(a) amplitude of imaginary part (b) contour of imaginary part

Figure 6. Behavior of InRD for an analytic sinusoid

x (t - -L) x(t + T ) e-J" f'dT" (41)

The WD can be interpreted as the Fourier transform of an ACF estimate defined by

A

R vn(t,r) =x*(t- )x(+t ) for -o0 <T< . (42)2(42

Since the WD is always real, this ACF estimate possesses even symmetry about the

point of zero lag. An exomple of the WD is shown in Figure 7.

5. Time-varying Autoregressive Models

An appropriate AR model for time-varying spectra contains an embedded time

dependency. In so doing, the model would be able to track a spectral peak minimizing

the effects of broadening. Rewriting equation (12) to reflect this time dependence,

A 1 (43)
Za(t)e- J2l2(

1=0

where the coefficients are given by
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(a) amplitude (b) contour

Figure 7.. Behlavior of WD for an analytic sinusoid

Kalt) = L akJ Ok(t)" (44)

k=O

The {a ,,,},c represent the weights of a sum of ortho-normal basis functions. An appro-

priate selection of ortho-normal basis set ideally uses some a priori knowledge of the

spectrum under investigation. The time-warying AR model order is (K + I)P , requiring

the estimation of (K + 1) times more coefficients relative to the stationary analog.
Whether one can accurately model the process with a manageable number of coefficients

will depend on the particular process at hand.
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IV. COMPARISON OF T-F DISTRIBUTIONS

A. THEORETICAL RELATIONSHIPS
Equation (36) shows that the spectrogram can be represented as the 2-D convo-

lution of the RD of the signal with the RD of the window. A similar expression can be

derived relating the spectrogram to the WD. Both RD and WD can be derived from the

generalized distribution formula (19), as can many other t-f representations. It turns out

that any particular distribution, Cft), whose kernel function satisfies

(V, T) (( -v, T) = 1, (45)

can be related to the spectrogram in the following way [Ref. 10],

Pspe,,rogff,t) = _Cx(V, T) Cw(]'- V, T -t)d) dr, (46)

where C, and C. are the generalized distribution functions of the signal and window re-

spectively. The spectrogram itself, can be represented through the generalized equation

using a kernel function

(1)(V, T) w(t + T ) w(, + 2 (47)

The right side of the equality in equation (47) is the ambiguity function (AF) of the

window, w(t) [Ref. 6]. For clarity, the AF is defined as [Ref. 8]

XXX(V, T) = f0 x(t) x*(t r +
-00

= I_ -- It ) x*(t, + - )e-J2=vtdt (48)

= + + ) x'(t - L )ej"."Idi]

21



So far, we have seen that a relationship exists between the spectrogram and certain

other distribution functions (46), and that the spectrogram can be generated using a

modified form of the AF as its kernel. In fact, all the distributions discussed thus far can

be related through the AF. Rewriting (19) in a slightly different form,

-00 -00 -00

= f (J(v, ) 00X(t+ " )x'(t1 - ")2 dtj e-J2"(vt+f dv d r (
00

L-00 .OC f001 2 2 j(49)

, D(vF + )x'Q - )e " dt,

where the generalized distribution is shown to be the 2-D convolution of the double

Fourier transform of the kernel with the double Fourier transform of the complex con-

jugate of the AF. Table I lists the distributions discussed thus far, along with their re-

spective kernels.

Table 1. DISTRIBUTIONS AND CORRESPONDING KERNEL FUNCTIONS

Distributions C(fj Kernel - 4)(u, T)

Spectrogram j ft-x(-) w(- -t) -, 2 f"'(t + -2) ,(, - ) - 'dt

Page 5 T2  In,

Levin 6 XTI2 *

6t2

IPS Re [x(t) X'() e",2"f'] COS ,VT

RD x(t) X'() e", 2,1' e-ju r

WD fox(t + x*(t - -I")ej 2
vfd1

2

B. GENERAL PROPERTIES
Comparing Figure 1 and Figures 3 through 7, it is apparent that the particular

kernel function has a tremendous influence on the particular properties of the resulting
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distribution. From a spectral point of view, an appropriate t-f spectral representation,

hence appropriate kerncl f..nction, should ensure certain properties. These properties
and corresponding kernel restrictions, if any, are listed in Table 2 below.

[Ref. 10, 15, 19, 20, 21]

Of the many distributions discussed, none possess all the desired characteristics. The
choice of a particular t-f representation depends on the application at hand. For prac-
tical applications, the properties ascribed to the various distributions in Table 2 must

be re-evaluated. When using windowed data, the resulting WD is referred to as the
pseudo-Wigner distribution (PWD). Similarly modified versions of IPS and RD are in-

dicated by the subscript (y), where y -x(t) w(t) is the product of the data with some

window function. Considering the linear operation of filtering, predictable distortion of

the signal's true spectrum is encountered. In Table 3 a summary of the effects of four

linear operations as they relate to time-dependent spectra is given. [Ref. 10, 15, 19]

C. RELATIVE PERFORMANCE
In the previous section it was shown that the spectrogram is related to certain gen-

eralized distributions through a 2-D convolution. It was further shown that any gener-
alized distribution is the 2-D convolution of the double Fourier transform of the kernel
function with the double Fourier transform of the complex conjugate of the ambiguity

function (AF). All these inter-relationships are interesting. By looking at the relative

performance of certain t-f distributions, insight into the benefits and disadvantages
characteristic of a specific representation are easily seen. The distributions compared in

this section are:

* Spectrogram

* IPS,

* ImRD,, the imaginary part of RD,

* 2 linear, magnitude combinations of the real and imaginary parts of
RD,

* PWD,

where the subscript (y) indicates the use of windowed data.

1. Experimental Analysis
Seven test signals, in the absence of noise, where considered. What follows is

a brief description of the true time frequency behavior of the analytic signals and a list

of the particular processing parameters of the digital implementations. Unless other-xise
specified. all data is 128 points in duration, using a 1024 point FFT algorithm. Two
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Table 2. GENERAL PROPERTIES OF T-F DISTRIBUTIONS

Properties kernel constraints Distributions

x(t) -. Ct) 1 2 3 4 5 6

x(to)=O - C(fto)=0 x x x xx

Zero energy
X(f) =0 -- C(fo. t) = 0 x x x x

Time shift x(t - to) - C(f t - (o) O(v. r) must be independent
of absolute time and fre- x x x x x x

Freq. shift x(t) ei2Plo' -. C(f -fo. t) quency

Positive Cft) > 0 Vf, I F,,[1'(o, T)] > 0 x

Real Ct) = C'(-ft) D(u, T) = (I(-o, - T) x x x X x

Marginal int f C(ft)df= Ix(t) 2  ()(V, 0) = 1 VV x x x x x

Marginal in f f4)(C0, )d= IX(T)2  (0,)= I VT x x x x

Group delay f. t C(ft)dt 0(0, T) = 0 VT
G iX I T,6 and x x

IX() 6t CO(, T)1I=o = 0

Instantaneous1  frfC(fIt)df q)(u,O) = 0 VV
frequency x(t) _ f and x X

-' (V, T) 1=.0 = 0

Legend: I M Spectrogram, 2 = Page, 3 = Levin,
4 IPS, 5 RD, ,6= WD

I Analytic signals only
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Table 3. LINEAR OPERATIONS
Fourier

signal transform Distributions

Ideal x(1) XcI) IPS'(t) RD.(ft) WD (f,t)

time shift x(t - o) X(e - 27fo IPS'(ft - to) RD (ft - to) WD,(f[t - to)

modu- x(toe2'!o' X(f - Jo) 1PS(f - Jo.t) RD.([ - jo,t) WD,(f - fo,t)
lation
window- x(t) w() X(V)* V(/) Re [RD,(ft)*RD.(ft)] RDfft)*RD.(ft) WD5(];t) WDjff,t)ing I / I

filtering x(t) * h(t) X) Wv) Re [RD~qft.)RD.(ft)] RDjt)*RD.(ft) WD,(ftf.)* JID.V(t)

different Hamming window functions are used depending on the type of spectra ana-
lyzed, stationary, non-stationary, or a combination of both. Except for the spectrogram,

all distributions have been smoothed in the time direction using a 5-cel] box-car average,

centered at the time of interest. The test signals used were:
- 3631. Single component., analytic sinusoid computed as e,2" 1.'8 , where I < n < 128, using

a 127 point I-lanming window,

2. Two component., analytic signal computed as eJa'"61 n + e,'3'n, where
I < n < 128, using a 127 point Hamming window,

3. Single component, analytic linearly chirped signal computed as
e:-"', 2-(.°--)) , where 1 < n < 128, using a 55 point Hamming window,

4. Two parallel., analytic., linearly chirped signals computed as
e,'211218 (5.--IN + e28. (1 I .O-IN io '), where ! < n < 128, using a 55 poiPt Hamming
window,

5. Single component, analytic, quadratically chirped signal computed as
" ' 1 (- o- "28(

2) , where I < n _< 128, using a 55 point Hamming window,

6. Mlulti-component signal comprised of a stationary sinusoid, a linearly chirped and
a quadratically chirped component computed as
e ,18 + e- ,12S (.o 128 ) + ej2 (.o-s( 328) , where I < n < 128, using a 55
point lamming window,

7. Frequency shift keyed (FSK) signal computed as e",0282", for 1 < n < 24 and
56_ i < 128, and e; ,' US , for 24 _< n < 56, using a 55 point Hamming window.
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2. Highlights of the Analysis

To judge the accuracy of component placement along the frequency axis, the
performance of IPS, is compared to that of the spectrogram in Figure 8. Using a sta-

tionary, single component, analytic signal both spectra have good end-point resolution.

Crft3sVcr A-IS. t0J Is

(a) IPS, (b) Spectrogram

Figure '8. Amplitude plots of a stationary analytic sinusoid

Where the spectrogram presents a stationary spectral ridge with increasing amplitude

near the center of the t-f plane, IPS, shows a fairly constant amplitude, stationary
spectral ridge which is wider by comparison. Equation (36) describes the spectrogram

as a 2-1) convolution of the R) of the signal and the RD of the window. The apparent

superior resolution of the spectrogram over IPS,, the real part of the RD, indicates that

the imaginary part of the RD contains some important spectral information. The im-

aginary part is formed as

ImRD(ft) (x(t) x*(t -T) - x*(t) x(t + T))e -J2rJdT. (50)

Using the kernel function

(V, t) =j sin iwT, (51)

equation (50) can be derived from (19). It iq obvious that the kernel for the RD is the

sum of the kernels for IPS and ImRD. As to the behavior of ImRD,, a windowed version

of (50), demonstrates an improved sensitivity to spectral change relative to PWD and
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(a) Amplitude (b) Contour

Figure 9. ImtRD, for a stationary, analytic sinusoil

IPS, which is shown in Figure 9. In particular, using a single-component, linearly

chirped signal, the zero crossings of IinRD, occur near the true frequency location. In

Figure 10, the relative performance between PWD, IPS, and ImRD, for a single-

component, linearly chirped, analytic signal can be compared. One can see that IrnRD,

has an improvement in resolution over that of IPS, comparable to that achieved by

PWD. Where both IPS, and PWD rely on the sharpness of the spectral ridge for resol-

ution, ImRD, relies on the zero crossings.

The ImRD, has large values near the time or firequency change, with the ampli-

tude approaching zero otherwise. This behavior is clearly demonstrated in Figure 9

where a single component stationary signal is shown to have a nonzero imaginary

spectra, greatest in amplitude near the beginning and end of the life of the signal. In

Figure 8 (a), IPS, presents a spectral ridge which, although rounded at the endpoints,

grows increasingly more narrow toward the center of time. By forming a linear combi-

nation of IPS, and InRD,, an overall improvement in spectral resolution for some

signals can be achieved. One such linear combination is

I RDy(f,t) 2 = I IPSY(ft) I2 + I ImRD(f,t) 12.  (52)

Another combination can be formed taking the difference of magnitudes,

I RDy~ft) I- = I IPSfft) 12 - I ImRDy(ft) 2 (53)
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(a) Contour plot of PWD

(b) Contour plot of IPS,

(c) Contour plot of ImRD,

Figure 10. Contour plots of a single-component linear chirp

Equation (52) results in a nonnegative spectrum. Equation (53), unfortunately, can have

negative values.

For stationary data, 1 1,2 represents an improvement in the end-point resol-

ution relative to IPS, as can be seen in Figure 11. When two stationary components

are present IPS,, ImRD, and both linear combinations produce modulated spectra. The

modulation effect is related to the difference frequency. PWD produces a spectrum

having cross-terms midway:between the true components. The cross-terms are also re-

lated to the difference frequency. The relative behavior of IPS,, I RD, I!. and PWD for
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(a) Contour plot of IPS, (b) Contour plot.of I RD, 2

Figure II. Contour plots of a single-component, stationary analytic sinusoid

a two-component analytic signal is shown in Figure 12. Using 128 point data sets at a

sampling frequency of 128, classical analysis predicts component resolution where the

separation is at least 0.89 lz IRef. 41. IPS, is capable of resolving two components

separated by at least 1.25 liz. I RD, I! and PWI) are able to resolve two components

separated by at least 0,6 Ilz, an improvement over classical analysis. Figure 13 is a
graph depicting the relative location of the spectral peaks as a function of frequency and

time. IPS,, after an initial settling, consistently places the spectral peaks demonstrating

a bias which is not symmetric. I RD,1I_, similar to IPS,, consistently places the spectral
peaks but with a symmetric bias. PWD succeeds in making the nearest approximation

to the true component locations demonstrating a bias which is not symmetric. The

placement of these spectral peaks does not appear to settle at one location as appears
to be the case for the Rihaczek-derived distributions; however in a -ean-squared error

comparison, PWD appears to be superior.

The ImRD, is also capable of resolving two closely-spaced, narrow-band, sta-

tionary components. Instead of searching for spectral peaks, ImRD, characteristically

detects the zero crossings which yield information in this spectrum. In Figure 14, the

behavior of InRD, using two clostly-spaced stationary sinusoids can be seen.

To study the behavior of any spectral estimator of nonstationary phenomena
we begin by considering a single-component, linearly chirped, analytic test signal. The

relative perlormance of IPS,, lnRD, and PID was discussed previously, see also

Figure 10. The behavior of the two linear magnitude combinations can be seen in Fig-
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(a) Amplitude plot of PWD

I

(b) Amplitude plot of IPS,

(c) Amplitude plot of I RD, _

Figure 12. Amplitude plots of a two component stationary, analytic sinusoid

ure 15. Forming the difference, I RDI _ creates a spectral ridge comparable in width

to IPS, but with a better defined peak. Detection using I JRDjI should be thus be in-

proved. Forming the sum, I RDI 2 completely resolves IPS into its past and future terms,

the distributions defined by Page and Levin. Component location using I RD,I 2 requires

detection of the minimum occurring between the two resolved ridges, making detection

using I RI),2 questionable. In the presence of noise, the separation IPS, into compo-

nent parts will lead to difficulty in interpretation. The ability of IPS, to properly locate

the instantaneous frequency for a linear chirped signal is shown in rigure 16. The lo-
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Figure 13. Graph depicting accuracy of stationary component placement

cation of' the peaks in IPS, coincide with the true instantaneous spectral locations for a

slow chirp. Eaily in the spectrum, when the future term in dominant, IPS, tends to place

the instantaneous frequency higher than truth. On the other hand, late in tuc spectra

when the past term is dominant, IPS, tends to place the instantaneous fiequency lower

than truth. Doubling the chirp rate results in a greater frequency ambiguity as seen by

the two terms which compose II'S. Looking at Figure 16, this is demonstrated by the

apparent random placement by IPS, of the spectral peaks, neither the futuve nor past

term seems to be favored as the maxinm'n, peak location.

Next, a test signal composed of two, parallel, linearly chirped, analytic signals

is considered. The spectra resulting from IPS, and PWD is shown in Figure 17. Simi!ar

~~1

!I

Figure 14. ImRDY for a tWo-component stationary, analytic sinu.. d
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(a) Amplitude plot of I RD, I (b) Amplitude plot of I RD, 2

Figure 15. Relative performance for a single-component linear chirp

to the stationary, two-component case, modulation and cross-terms fluctuating at the

difference frequency are present in IPS, and PWD, respectively. Neither of the two lin-

ear combinations of magnitudes of the component parts of the Rihaczek distribution,

was able to improve on the resolution achieved by IPS,. Moving from the peaks to the

valleys, ImRD, can be seen to discriminate between the two chirps as a function of the

zero crossings. This is demonstrated in Figure 18 where a pattern of zero crossings al-

lows the eye to discern the two components.
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Figure 16. Graph depicting accuracy of IPS in locating the instantaneous frequency
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(a) Amplitude plot of IPS, (b) Amplitude plot of PWD

Figure 17. Behavior of IPS and PWD for 2 parallel linear chirps

Examination of the spectra for more complicated signal suggests a relative

ranking in terms of resolution among the dilferent power distributions discussed thus far.

The test signal is composed of a high frequency stationary component and two chirped

components, one a linear chirp aitd the other a quadratic chirp. Considering first thoqe

spectra which estimate frequency location as the point of maximum power, PWD

produces the most narrow ridges; see Figure 19 (a). It suffiers from poor end-point re-

solution and spectral cross-terms. I RD, I1, seen in Figure 19 (b), produces well-defined

periodic peaks along the instantaneous frequency path of the nonstationary compo-

nents. The stationary component ridge is broadened, with the modulation effect most

6 .E

Figure 18. JmRD of tNo parallel linear chirps
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(a) PWD 0-).

0 a

0

+ . a(b) IRD,I_

(c) ImRD,

Figure 19. A combination of stationary and nonstationary spectral components

apparent near the end-points. I RD 12 would be diflicult to interpret as it resolves the
past and future terms for the nonstationary components. Looking for the zeros, lnRD,
accurately describes the location of the nonstationary components, but provides little

information during parts of the stationary signals existence. Again, Figure 19 (c) re-

quires pattern recognition to be able to discern the individual, dynanic components.
Considering a pulsed spectra, such as in FSK modulation, I RDI 2 presents a

narrow ridge with good resolution throughout the duration of each pulse. "lhe ridge
width for each pulse in the PWI) spectral description is dependent upon the pulse du-
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(a) IRDI 2  (b) PWD
Figure 20. Contour plots for a complex anlaytic FSK signal

ration. The longest pulse showing the most narrow ridge, one which is slightly iore

narrow than what is found with I RI), 2. These two spectra are shown in Figure 20.
IWI) has a slow build up and decay at the ends of each pulse. There appears to be a
ttade-olf betwcen the width of a spc'tral ridge and cud-pint resolution.

3. Test Case Results

Figures of the spectral dist, ibutions resulting firom :he six t-f representations are
contained in this section. They are oideied by the type of test signal under analysis.

a. Single-component, Anali'tic Sintisoid
Using the spectiogram as the reference, the resolution ability of five addi-

tional t-f distributions is compared in Figure 21 - Figure 24. IIWD presents a well-

defined spectral ridge near mid-plane, but sullers from a sluggish built-up and decay. IPS,

presents a wider main-lobe relatike to PWI) which is compensated somewhat by an in-

crease in end-point resolution. I RID.2 provides the best end-point resolution, main-

taining constant amplitude throughout the plane. I R/), I2 f.roves to be more sluggish

than PWD and lmRD, demonstrates an improved response near the time of spectral

change.
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Il

(a) Spectrogram

(b) IPS

0~

((b) IPS

Figure 21. Test signal 1: amplitude plots for Spectrogramn, IPS,, and PWD
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rRrEXMNCr - AXIS

(a) Spectrcgram

fRCOXNCT - AXIS

(b) II'S,

FREUXNCYI AXIS

(c) PWD

Figure 22. Test signal 1: contour plots for Spectrogram, IPSY and PWD
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(a) IRD,1

(b) IRD, 2

(c) ImRD,

Figure 23. Test signal 1: aniplitde plots for I RD,,I2, 1IRD, I! and ImnRD7
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(a) IRD, 11

- UOt~ !- ~l

fREOACI AXIS

(b) IRDI 2

fRMECT -AXIS

(c) ImRD,

Figure 24. Test signal 1: contour plots for I RD. 2, I RD, I _ and ImRD,
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b. Two-component, Analytic Signal
The spectrogram and all five t-f distributions shown in Figure 25 through

Figure 28 display a distorted spectrum. This distortion exists for a minimal time in the

spectrogram estimate. In the case of IPS, and PWD, the distortion is related to the

difference frequency. IPS, shows modulation of each component; PWD contains addi-

tional peaks oscillating at the difference frequency. The modulation effect characteristic

of Rihaczek-derived distributions makes the spectra using I RD. I2 and ImRD, extremely

difficult to interpret. I RD, II suffers also from the modulation effect; however, this

magnitude combination enhances resolution relative to IPS, making it easier to detect

the presence of two components.

c. Single-component, Analytic, Linearly Chiped Signal

The inadequacy of assuming local stationarity is clearly demonstrated in

Figure 29 (a) and Figure 30 (a) for the spectrogram. where the slope of the instantane-

ous frequency line is distorted and broadened near the end-points. Both IUS, and PWD

shown in Figure 29 (b) and (c), and Figure 30 (b) and (c) maintain a better approxi-

mation to the instantaneous frequency slope neat the end-points. Characteristically,

IPS, presents a broadened spectral ridge whereas PWD deca,s to zeio at the start and

stop of the chirp. Looking at the spectrum created by IRD.I2, Figure 31 (a) and

Figure 32 (a), the future and past terms which make up the RD are clearly visible. Al-

though I RDI2 is an all-positive distribution possessing many desirable properties, this

characteristic resolution quality makes it difficult to interpret more complicated spectra.

The two remaining Rihaczek-related distributions represent improvements over the

ability of IPS to pinpoint the instantaneous frequency as a function of time. I RD I_

in Figure 31 (b) and in Figure 32 (b) shows a spectral ridge more narrow than that for

PWD. ImRD. while accurately locating the instantaneous frequency, requires the de-

tection of zero crossings. For particular detection schemes information thus provided

may be appropriate.

d. Two Parallel, Analytic, Linearly Chirped Signals

For this test signal, the spectrogram spectral estimates shown in Figure 33

(a) and Figure 34 (a) is unacceptable. The comments made previously concerning the

distortion in the spectra when when two closely spaced, parallel, stationary components

can also be applied to this nonstationary case (see Figure 33 - Figure 36). In the case

of PWD, not only are cross-terms oscillating between the true components present but

the spectral ridges themselves show the effects of modulation. I RDl 2 and bnRD, do

not show promise as estimation tools for closel,-spaced frequency components. It is
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(a) Spectrogram

I 0 M*JDCI AXIS

(b) lPS,

(c) PIWD

Figure 25. Test signal 2: amplitude plots for Spectrogram, IPSv and PWD

interesting to note however, that I RD, 12 resolve the past and future terms for each

component similar to the behavior shown in Figure 31 (a). I RD, I shows very sharp

peaks along the modulated instantaneous frequency lines of the two linear chirps. Be-

cause these peaks are the largest peaks in the plane, I RID,I I from a practical view point,

appears to be more suited to ard the analy sis of this type of signal than PWD N. i Ic the

cross terms periodically represent the dominant peak.
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fRCCtLtNCY A

(a) Spectrogram

(b) IPs5

(c) PWD

Figure 26. Test signal 2: contour plots for Spectrogram, IPS, and PWD
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(a) I RI),11

0 
t
POMMY Ali$

(c) ImRD,

Figure 27. Test signal 2: amplitude plots for IRD,, j ~RD, 1 and lmRDY
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rPE:OkXKT A XIS

(a) IRD, 12

rR rouQV4CI-- REIS

(b) IRD, I

FRCMXICI "~Is

(c) iRD,
Figure 28. Test signal 2: coitour plots for I RD, 2, RD, I and tiRD
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(a) Spectrogrami

(b) IPSY

(c) PWD

Figure 29. Test signil 3: amplitude plIots for Spectrograin, II'S, and PWD
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(a) Spectrograml

-. J

rnomvcy - AXIS

(c) PWD

Figurie 30, Test signall 3: coif our plots for Spectrogram, IPS, and IPWD
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(a) I R!)P1

-II.
(b) IRD3I12

0 ,acc P113

(c-) ImRI),

Fiue 3 1. Test signal 3: amplitude plots for tRD, 12, IRD, and ImiRDY
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(b I/1 Y

(a rREDx,12 - MXI3 I

(c I' RD
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(a) Spectrogram

/(b) IS

(c) P\VD
Figure 33. Test signal 4: amplitude plots for Spectrogram, II'S, and PWD
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rR~cxNcy - Axis

(a) Spectrogram 0

aV

R Aft

FPWVLXCY AX!S

(C) PWD

Figure 341. Test signal 4: contour plots for Spectrogram, II'S, and PWD
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(a) R,1

__ (b) I RDY12

(c) ImRDY

Figure 35. 1 est signal 4: amplitude plots for IRDY 2 RDY ~ and ImRDY
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r~trcx~cy - MK0

(a) IRD, I

rpt~4c"- RXIS

0(b) 
IRDyI'-

r:toPC - nIS

(c) InR!1),

Figuire 36. Test signal 4: contour plots for IRD, 2, RD, 1 and ImRDy
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e. Single-component, Analytic, Quadratically Chirped Signal

The ability of the spectrogram and these 5 t-f distributions to accurately

display more rapid spectral dynamics can be compared in Figure 37 to Figure 40. Not

surprisingly, the spectrogram presents a poor estimate. IPS,, demonstrates a spectral

ridge which tends to broaden as a function of time, making it difficult to ascertain the

actual instantaneous frequency curve. PWD, although zero at the end-points, tracks the

chirp closely presenting a ridge along the line of instantaneous frequency as narrow as

that found for the linear chirp. I RD J.[ _ appears to be provide the most narrow ridge.

Both PWD and I RD, I _ show amplitude modulation along the peak of the curve. As to

the remaining spectra, I RD, 12 and ImRD, behave in a manner similar to the case of the

linear chirp and thus do n,. appear particularly suited to this class of signal.
f Aulti-component Analytic Signal

How the various spectral estimation techniques perform when confronted

with a mixture of stationary and nonstationary dynamics is demonstrated in Figure 41

through Figure 44. This test signal is composed a high frequency stationary component

and two chirped components, a linear chirp and a quadratic chirp. Their relative per-

formance suggests a ranking in terms of desirability as an estimator of continuously

changing spectral components. The spectrogram is predictably, the worst, followed by

I RD, I2 and ImRD., in ascending order of desirability. Only IPS , RD, I I and PWD
present spectra which closely resemble the true signal components. All three show a

broadened ridge for the stationary component relative to the single stationary compo-

nent case examined previously. This results from using a shorter window. As expected,

[RD, 2 sharpens the modulation peaks found in its own spectrum and that of IPS,. A

comparison of I RD, I and PWD is also quite characteristic. The price paid for in-

creased end-point resolution and elimination of the spectral cross-terms is a broadening

of the spectral ridge and the appearance of modulation along the crest of the spectral

ridges.

g. Conplex FSK signal

In contrast to the continuously-varying frequency dynamics of the previous

test case, a very different order of desirability is suggested in the case of pulsed spectral

dynamics. Comparison of Figure 45 - Figure 48 shows I RD, 12 to possess superior

end-point resolution ability coupled with a rapid build-up and decay of the spectral ridge
reiati'e to the true pulse dwnamics. IPS, and I RDJI produ2 "'- .,ectra; how...r,

the end-point build up is slower, MiRt), with its heightened sensitivity to detect spectral

change appears to be an excellent indicator of the time and location of frequency
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(a) Spectrogram

-P"2

(b) IPS,

0 0-~cP13

(c) PWD
Figure 37. Test signal 5: amplitude plots for Spectrograin, IPS, and PWD

change. PWD presents a sluggish build-up and decay, with the width of each spcctral

rldge dependlent on the duration of the pulse. Furthermore, cross-terms can be seen

between thle two higher frequency pulses.
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/ '7 /1T

(a) Specctrogram "

FADXC - AxI

(b) IPSy

(C) PWL)
Figuire 38. Test signal 5: conltour plots for Spectrogram, IPS, and PIN D
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(c) hnRD,
Figue 3. Tst sgna 5:ampltud plts fr R ,, D., nd mR-
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(a) Spectrogramn

(b) IPS

(c) l'WI

Figure 4 1. Test signal 6: amiplitude plots for Spectrogramn, II'S, and PWD



00 0

(a) Spcctrogrami

(b) IPS,

(c) PWI)

rigurie 42. "lest signal 6: contour p~lots for Spectrogram, IP'S, and PWD

* 59



(a) I RD, 11

0 r*tfCO AIMI

(b) RD1),

0n~cc AXIS

(c) IniRD,

Figure 43. Test signal 6: amplitude plots for IRD, RD, ! and InaRD,,
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00

(a) RD,~x:

00
;~ 0

00

0

rRCoMANT - AXIS

(c) J,,zRDI,

Figure 44. Test signal 6: contour plots for I RD, 12, 1RDy 11~ and ImnRDY
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(a) Spectrogramn

____(b) IPS.,

(c) PWD

Figure 45. Test signal 7: amplitude plots for Spectrogram, IPS, and PWVD
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FREOXNCT -AXIS

(a)S SPccrograv'

fRtM t - XC

C (b) IPSY
I,

-PMXC AXIS

(C) PWI)'
Figure 46. Test signal 7: contour plots for Spectrograim, IPS., and PWD
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(a) IRD,11

(b) IRDYV

0 4nxl i

(c) InRD,

Figure 47. Test signal 7: amplitude plots for IRD~ , RD, 1 and IinRD,
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() I
-- 0

*ROXI AXIS

(a) IRDJ I2

nrCOXNCr - AXS

~~(b) I RD, V2

rREoL.NCr - AlxIS

(c) ImRD,

Figure 48. Test signal 7: contour plots for I RD, 12, I RD, I!- and ImRD,
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D. ALTERNATE METHODS OF COMPUTING IPS

Equation (33). the defining equation for IPS, can be rewritten as the Fourier trans-

form of an ACF estimate (34). namely

IPS(ft) = { Rp(r,t)e dr

=++x ,x,00 (54)

± ,f(X(I)X( - T) + x*(t)x(t + T))e 2 7:f- dr.
_00

IPS for finite-duration discrete signals is

-JO

IPS(G, n) = 4 (x(,,)x(n - k) + x*(n)x(n + k))e -l k, (55)
2

where the signal sequence x(n) is finite and zero outside the known samples, and AT is

a constant. Equation (55) can be expressed as [Ref. 151

-T IPS(G,n) - x(n)= I - (56)

where

X(O) = Z x(r)e"-jot

(57)
X(0) = 4r)e-"0 .

r=-oc

For use later in the derivation, let the Fourier transform of the pcint of interest be

D(O) = x(n)e- f.n10,(o) I2 I I x(n) 12 . 8

By neglecting I x(n) 12 in (56) a modified version of IPS is defined. The behavior of this

modified IPS for a single-component, analytic sinusoid is shown in Figure 49 (a).

Comparing this with an unwindowed version of IPS for the idzntical data sequence in
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1 1

0 .lCOCT AIlS 0 rltr"CCI AIS

(a) Modified IPS (b) IPS
Figure 49. IPS

Figure 49 (b), shows the two methods of computing IPS to be very similar. The greatest

difference can be seen when comparing maximum amplitudes. Modified IPS is on the

order of 10-1 and IPS is on the order of 10. Both methods were computed using a five-

cell-box-car averaging procedure along the t axis.

The question arises concerning the implementation of modified IPS using a window

function. One method of windowing can be written as

00

IP(1)= AT Z (X(n)x*(n - )+ x*(tz)x(n + k))w(k) e Jok. (59)koo ,9

Applying the definitions in (57),

IPS(O,n) =4 fx(n)eJOl(X*(o)* V(o)) + x*(n)eo,( (0)*W(0o))}

AT {D(O)(X*(O)*W(O)) + D*()(X(O)oW(OI)} (60)
2 ~00 00(0

A_ T D D(O) X/(p) I(O -p) + D'(O) X(P)I(O-p)2 i
p=-00

where * denotes convolution in the frequency variable. Moving everything inside the
I

summation sign and substituting X,(p) + IY(p) for X() and A'(O) - X'(O) for D'(O) gives
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00

+ AT 
-(0

IPs(o,n)- 62 ( 2(p) + D'(p))D(6)IV(O-p~**)

P=-00
O0(X'(O) - Xz(O))X(p)V(O- p)

I 0 Y (61)
A2 3 [D(O)X; (p) + D(O)D'(p)] W(O-p)

p=002 -7 x( 0)-X'(o)X(P)]11(o - p).

A straight-forward relationship between IPS and the spectral contribution of any single

point in the data set is given by equation (56). Equation (61) defines an analogous re-

lationship between (57) and (59). Unfortunately, this relationship is not so straight-
forward and requires additional analysis to determine the benefits, if any, to be gained

from processing data in this manner.
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V. RECOMMENDATIONS AND CONCLUSIONS

The comparative behavior of the spectrogram, IPS, WD and three novel t-f distrib-
utions was explored in Chapter IV. Of the three, TmiRD, proves to be particularly sen-
sitive to discontinuous changes in frequency. This characteristic behavior may be useful
in certain detection applications. When confronted with more complicated spectra, one
containing closely-spaced stationary components or continuously-var) ing nonstationary
components, ImRD, does not appear particularly useful. Similarly I RD, 12 provides an
improvement in end-point resolution when used for the estii.nsion of stationary or
pulsed spectra. Taking the square root of I RDI 2 reults in a t-f distribution, denoted
by I RD,(ft) I, which satisfies many of the desirable properties listed in 'Fable 2. In

particular I RD(t) I :

1. Satisfies both zero energy requirements

2. Obeys the time and frequency shift properties

3. Is positive and real for all time and frequencies.

How well 1RD, [2 can track a rapidly fluctuating pulsed signal, similar to something

found in frequency hopped conmmunications, is an area worth investigating.
For detection of continuously changing spectral dy naiaics, I RD, I! appears to be a

viable processing scheme, however the performance of this estimator in noise needs still
to be eminmined. Using I RDI, 1. as an estimator is not without problems. Unlike

I RD , taking the square root of I RDI _ does not produce an estimator which satisfies
the marginal requitements. It does however comply with the zero energy and

time frequency shift properties desirable for timc-dependent estimation problems. Used

with stationary spectra I RDI, J appears to improve the resolution of closely spaced

components beyond that currently achieved by classical methods. For stationary
spectra, I RD., f _ is a biased estimator, i.e., the true spectral peaks occur at a given fixed
offset from their true frequency location, PWD also provides a resolution improvement;
however the estinate it provides never settles down to one frequency location. For short
duration data I RDI, I may prove superior in the detection of multiple stationary com-

p3nents.

In addition to the experimental results presented in Chapter IV, IPS, demonstrates
a 3-dB noise advantage relative to PWD lRef. 151. Coupled with superior end-point
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resolution IPS may be the desirable method in practical analysis problems. All the re-

sults presented were derived from noise-free data sequences using digital implementa-
tions (see Appendix A). Because ImRD,, I RD, 2 and I RD., 1_ all show advantages when
applied to the appropriate signal type, analysis of their noise performance is an open

issue. As they are derived from the RD, as is IPS, it is likely that they enjoy a similar

robustness.
Looking to practical applications of IPS, a brief discussion of performance in a

multi-sensor environment can be found in Appendix B. The initial results look promis-

ing, but more extensive research needs to be conducted. A second practical application
scheme involves the use of a cumulant or third-order moment. Typically associated with
the sonar environment, this scheme seeks to take advantage of the fact that the odd

moments of a zero-mean, gaussian noise process are identically zero. An initial investi-

gation using IPS to compute cumulants can be found in Appendix C.
In general, WD produces very narrow spectral ridges but suffers form poor end-

point resolution and spectral artifacts. IPS provides an improvement over these short-

comings at the cost of spectral broadening. Recently appearing in the literature is
another t-f distribution [Ref. 10, 221. Defined by H-.I. Choi and W.J. Williams, this t-f

distribution minimizes the effects of the spectral cross-terms. Closer examination of the

resultant spectra, which uses the kernel function

2 2
((V. T) =- e 2a,

where a is a constant, shows that the spectral ridges are broadened, similar in behavior
to IPS. In classical estimation, i.e., the periodogram, one maximizes spectral resolution

using nothing but the raw finite data set. The price paid is a large, slow roll-off sidelobe

structure that can mask a true component. In time-frequency distributions, i.e., in the
generalized phase-space equation (19), one maximizes spectral detail using a constant

kernel of unit amplitude. The price paid is poor end-point resolution and spectral

artifacts across time and frequency. In the classical analog, using any other window
results in improved sidelobe behavior at a corresponding loss in detail along the fre-

quency axis. IPS,, the Rihaczek derived distributions and the distribution suggested by
Choi and Willimas all improve or eliminate the disturbing spectral cross terms charac-
teristic of WD. The price paid is loss in spectral detail.
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APPENDIX A. COMPUTER CODE

To conserve space only the read file and four of the si.. Fortran codes have been

included. Data was generated and read by the basic programs as required. The data
generation file is not included here. The read file allows easy change of processing pa-

rameters. Further, IPS, and !rRD, are generated by code that diflers in a minus sign
in line code. IPS, requires a plus sign; lnRD, requires a minus sign. Similarly I RD, I2
and I RD, I I are simply related. The location of the sign change is indicated in the re-
spective algorithms. Graphics are produced using DISSPLA.

1. Parameter File

1 1 031 039 08 MODE PLTR BWLEN EWLEN WINC
HAMMING WINDOW ($' WTYPE
B CONTR
IPS: $ ' TTL
FS=1/128, 40 POINTS OF DATA$' SIGNAL
5 CELL TIME SMOOTHING$' TSMTH
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2. Spectrogram

C** THIS FORTRAN FILE COMPUTES THE SPECTROGRAM OF
C** A DATA SEQUENCE
C *

C INPUT DATA SEQUENCE IS READ USING FILEDEF 4, AS THE COMPLEX *
C ARRAY DATA(L). *
C *
C L IS THE LENGTH OF THE DATA SEQUENCE AND IS ADJUSTED FROM THE *
C PARAMETER STATEMENT. L MUST NOT EXCEED 128. *
C *
C ANALYSIS PARAMETERS ARE READ USING FILEDEF 41. THE PARAMETERS *
C ARE: *
C ARGUMENT TYPE ALLOWED VAULUES *
C *
C MODE - Il 1 PLOT 0 TO PI *
C 2 PLOT PI TO PI *
C *
C PLTR - Ii 0 SHERPA LASER PRINTER
C 1 IMB79 GRAPHICS TERMINAL *
C
C BWLEN- 13 3 DIGIT INITIAL WINDOW LENGTH, *
C MUST BE AN ODD INTEGER *
C EWLEN- 13 3 DIGIT FINAL WINDOW LENGTH *
C WINC - 12 2 DIGIT WINDOW INCREMENT, MUST *
C BE AN EVEN INTEGER *
C *
C WTYPE- A19 19 CHARACTER STRING USED IN THE *
C PLOT HEADER DISCRIBING THE *
C WINDOW USED. THE CURRENT *
C WINDOW LENGTH IS AUTOMATICALLY *
C INCLUDED *
C *
C CONTR- Al 1 CHARACTER STRING INDICATING *
C TYPE OF PLOT DESIRED *
C *
C A AMPLITUDE PLOT ONLY *
C C CONTOUR PLOT ONLY *
C B BOTH AMPLITUDE AND CONTOUR *
C
C TTL - A43 43 CHARACTER STRING USED IN THE *
C HEADING WHICH DESCRIBES THE *
C ALGORITHM AND THE CLASS OF *
C SIGNAL USED *
C *
C SIGNAL- A43 43 CHARACTER STRING DESCRIBING *
C TEST SIGNAL
C
C
C OUT REAL
C OUTPUT ARRAY OF DIMENSION 512 BY L *
C *
C COEF COMPLEX
C ARRAY OF DATA AFTER IT HAS BEEN WEIGHTED WITH A *
C SLIDING WINDOW FUNCTION.
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C *

C FT COMPLEX *
C ARRAY OF THE 1024 POINT TRANSFORM COEF *
C *
C Z INTEGER *
C LENGTH OF CURRENT WINDOW *
C *
C K INTEGER *
C MID-POINT OF THE CURRENT WINDOW *
C *
C AMAX REAL *
C MAXIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS *
C *
C AMIN REAL *
C MINIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS *
C *
C *

PARAMETER(L= 32)
INTEGER I,J,N,M,MODE,Z,BWLEN,EWLEN,WINC,PLTR
REAL OUT(512,L),AMAX,AMIN
CHARACTER WTYPE*19,TTL*43,SIGNAL*43,CONTR*1
COMPLEX DATA(L),FT(1024),COEF(1024)
CALL EXCMS('FILEDEF 4 DISK TEST IN A (PERM')
CALL EXCMS('FILEDEF 41 DISK PARAM IN A (PERM')

C
C ------- READ IN PARAMETER LIST -------------------------------------

READ(41,400)MODE,PLTR,BWLEN,EWLEN,WINC,WTYPE,CONTR,TTL,
+ SIGNAL

400 FORMAT (IX,I1,3X,I1,3X,13,3X,13,3X,12/IX,A19/1X,Al/1X,A43/
+ IX,A43)

C ----------------------------------------------------------------
C
C
C ---------- TEST TO ENSURE WINDOW LENGTH IS APPROPRIATE --------------

I=L-1
IF ((BWLEN .GT. I) .OR. (EWLEN .GT.I)) THEN

WRITE(*,69)
GO TO 99

ENDIF
I=MOD(BWLEN,2)
K=MOD(WINC,2)
IF (I .EQ. 0) THEN

IF (K .EQ. 1) THEN
WRITE(*,68)
GO TO 99

ELSE
WRITE(*,67)
GO TO 99

ENDIF
ENDIF

69 FORMAT (!X,'WINDOW LENGTH EXCEEDS LENGTH OF THE DATA')
68 FORMAT (IX,'WINDOW INCREMENT MUST BE EVEN')
67 FORMAT (iX,'INITIAL WINDOW LENGTH MUST BE ODD')
C ---------------------------------------------------------------
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C
C ------ PLOTTING DEVICE CALL---------------------------------------

IF (PT.TR .EQ. 0) THEN
CALL COMPRS

ELSE
CALL I179

END IF
C..-----------------------------------------------------------------
C

PI=4*ATAN( 1.)
READ(4,*)(DPTA(I) ,I=1,L)

C
C

DO 111 Z=BWLEN,EWLEN,WINC
M=(Z-1)/2
CALL ANGLE(O.0)
AMAX=O
AMIN=AMAX
DO 10 1=1,L

DO 20 N=-?1,M
IF ( ((14-N) .GE. 1) .AND. ((14-N) .LE. L) )THEN

COFF(M+N+1)=DATA(I14N)
+ , (0. 54+0. 46*COS(2*PI*N/(2*M)))

ELSE
COEF(M+N+1)=(,. ,0.)

ENDIF
20 CONTINUE

DO 30 Nr-2*M+2,j.O24
COEF(N)=(O. ,O. )

30 CONTINUE
CALL FFT( 1024,COEF,FT)
IF ( MODE.EQ. 2) THEN
DO 40 N=1,513,2

OUf(INT((N+1)/2+255) ,I)=ABS(FT(N))**2/(2*M+1)
IF (OUT(INT((N+3)/2+255),I) .GT. AMAX) THEN

AMAX=OU(INT( (N*-1'/2+255) ,I)
EN T7rF
iF:, (o,>T(INT((N4-1)/2+255),I) .LT. AMIIN) THEN

A~N=OVT(IN\T((N+1)/2+255) ,I)
ENDIF

40 CONTITNUE
DO 50 N:-515,1024,2

OUT(INT((N- )/2-256) ,I)=ABS(FT(N))**?I(2*M+1)
IF (OU',(INT((N-1)/2-256),l) .GT. AMAX) THEN

AMAX.=OUT(lNT((N-1)/2-256) ,I)
END IF
IF (OUJT(INT((N 1)/2-256),1) .LT. AMIN) THEN

AMIN=OUTlNT(CN-1)/2-256) ,I)
ENDIF

50 CONTINUE
ELSE
DO 51 N=1,512

IF (OUT(N,I) .GT. AMAX) THEN
AMAX=OUT , I)

END.',&

OUT( 
,I) ABS 

FT( 

')) 
*'L 

(2,M 
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IF (OUT(N,I) .LT. AMIN) THEN
AMIN=OUT(N, I)

ENDIF
51 CONTINUE

END IF
10 CONTINUE

IF (CONTR .EQ. 'C') THEN
GO TO 98

ENDIF
CALL AREA2D(8. ,9.)
CALL VOLM3D(1O. ,10. ,8.)
CALL HEADIN(TTL,100,1. ,3)
CALL HEADIN(SIGNAL,100,1. ,3)
CALL HEADIN('NO TIME SMOOTHING, 1024 FFT$',10O,1.,3)
CALL MESSAG(WTYPE ?100,2.5,9.3)?
CALL INTNO(2*1M+1, ABUT','ABUT )
CALL MESSAG(' POINTS)$' ,100,'ABIUT','ABUT')
CALL X3NAME('FREQUENCY AXIS$',100)
CALL Y3NAME( TIME AXIS$',100)
CALL Z3NARE(' $ '100)
CALL VUANGL(-65. ,70. ,700.)
CALL XNONUM

C CALL ZNONUM
CALL MX1ALF('STANDARD',l)
CALL MX2ALF('L/CGREEK' ,+)
CALL ANGLE(-25.O)
IF ( MODE .EQ. 1 ) THEN
CALL MESSAG(' +0# '1 5,Q* ,2.3)

ELSE
CALL MESSAG(' +-P#f ',6,0.s,2. 3)

END IF
CALL ANGLE(-25.O)
CALL MESSAG(' +P#I ',5,4.9,0. 15)
CALL GRAF3D(-2456,256,256,O,L,L,1. 0*AMIN,

+ 0. 5*(AM1AX+AM4IN) ,1. 0*AMAX)
CALL SURMATJ(OUT,512,512,1,L,0.)
CALL ENDPL(0)

C
98 IF (CONTR .NE. 'A') THEN

CALL CONTOR(OUT,512,L,TTL,SIGNAL,WTYPE,Z,AMAX)
ENDIF

C -----------------------------------------------------------------
C
111 CONTINUE

CALL DONEPL
99 STOP

END
C
C
C SS S SS S S SSS SI-S S S SSS SS S SS S S S S SS SS SS S
C

SUBROUTINE CONTOR(A,NX,NY,TITLE,SIGNL,WINDW,WLEN,AMAX)
C THTS STIBROUTTNE CONTOURS AN NX BY NY ARRAY OF PEGULARLY SPACEDl POINTS.
C NOTE: THE ARRAY MUST BE REAL'4.
C
C A :SINGLE PRECISION NX BY NY ARRAY OF REGULARLY SPACED POINTS
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C NX: NUMBER OF POINTS IN THE X-DIRECTION
C NY: NUMBER OF POINTS IN THE Y-DIRECTION
C ZINC: CONTOUR INTERVAL
C

DIMENSION A(NX,NY)
COMMON WORK(50000)

C
C SET PARAMETERS FOR AXES:

XORIG=--256.
XSTP=256.
XMAX256.
YORIG=0.
YSTP=NY
YMAX=NY

C
C SET CONTOUR LEVEL

ZINC=AMAX/ 10.
C

CALL SETCTJR( 'CYAN')
C
C SET PAGE AND PLOT SIZES, SET UP AXES FOR PLOT:

CALL PAGE(8.5,11.O)
CALL BCOMON(50000)
CALL AREA2D(6.0,8.0)

C
C LABEL AXES:

CALL XNAME('FREQUENCY - AXIS $',100)
CALL YNANE('TIME - AXIS $',100)

C
CALL GRAF(XORIG,XSTP,XMAX,YORIG,YSTP,YMAX)
CALL FRAME

C
C TITLE:

CALL HEADIN( CONTOUR PLOT$',100,1. ,3)
CALL HEADIN(TITLE,100,1. ,3)
CALL HEADIN(SIGNL,100,1. ,3)
CALL ANGLE(0.0)
CALL MESSAG(WNDW,100,1.5,-. 7)
CALL INTNO(WLEN ,'ABUT','ABUT')
CALL MESSAG(' POINTS)$' I100,'ABUT' ,'ABUT')

C
C MAKE CONTOURS AND DRAW:

CALL SETCLR( 'RED')
CALL CONMIN(3.0)
CALL CONANG( 60.)
CALL CONLIN(0, 'MYCON' ,'NOLABELS' ,2,1O)
CALL CONMAK(ANX,NY,ZINC)
CALL CONTUR(1,'LABELS' ,'DRAW')

C
CALL ENDPL(0)
RETURN
END

C SS SSsS S SS sS S SsS S SS S SS SS SS SS S S SS SsS
C

SUBROUTINE MYCON(RARAYJ ARAY)
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DIMENSION RARAY(2),IARAY(1)
C
C THIS ROUTINE MAKES NEGATIVE CONTOURS DASHED AND THE ZERO LINE HEAVIER.
C

CALL RESET('DASH')
IF (RARAY(1) .GE. 0.) GO TO 10
CALL DASH

10 RARAY(2) = 1.
IARAY(1) = 1
IF (RARAY(1) .EQ. 0.) IARAY(1) = 2
RETURN
END

C
CS S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S
C
C
C * *
C * CALL FFT(N,XTEMP,X) *
C * *
C * X - OUTPUT COMPLEX ARRAY CONTAINING FFT (1024) *
C * N - NUMBER OF POINTS *
C * XTMP - COMPLEX ARRAY CONTAINING DATA SAMPLES *
C * (starting at 1,up to 1024) *
C
C

SUBROUTINE FFT(N,XTMP,X) FFTO0130
COMPLEX X(1024),XTMP(1024),WTFACT P FFT00140
M=INT(LOG10(FLOAT(N))/LOG10(2.)+0.5)
EN = N FFT00210
PI = 4.0*ATAN(I. 0) FFT00270
DO 10 K=0,N-1 FFT00320

NEWADR = 0 FFT00330
MADDR = K FFT00340
DO 20 l=0,M-1 FFT00350

LRMNDR = MOD(MADDR,2) FFT00360
NEWADR = NEWADR + LRMNDR*2**(M-1-I) FFT00370
MADDR = MADDR/2 FFTO0380

20 CONTINUE FFT00390
X(NEWADR+1) = XTMP(K+1) FFT00400

10 CONTINUE FFT00410
DO 50 L1I,M FFT00530

ISPACE = 2**L FFT00610
S = N/ISPACE FFT00620
IWIDTH = ISPACE/2 FFTO0630
DO 40 J=O,(IWIDTH-1) FFTO0670

R = S*J FFT00720
ALPHA = 2.*PI*R/EN FFT00730
WTFAC = CMPLX( COS(ALPHA), -SIN(ALPHA)) FFT00740
DO 30 ITOP=J,N-2,ISPACE FFTo00750

IBOT = ITOP + IWIDTH FFT00800
TMP = X(IBOT+1)*WTFAC FFT00810
X(IBOT+1) = X(ITOP+I) - TMP FFT00820
X(ITOP+I) = X(ITOP+I) + TMP FFT00830

30 CONTINUE FFT0040
40 CONTINUE FFT00850
50 CONTINUE FFT00860
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RETURN FFT0 1000
END FFT01010
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3. IPS

C** THIS FORTRAN FILE COMPUTES THE IPS OF A DATA SEQUENCE
C *
C *
C INPUT DATA SEQUENCE IS READ USING FILEDEF 4, AS THE COMPLEX *
C ARRAY X(N). *
C
C N IS THE INGTH OF THE DATA SEQUENCE AND IS ADJUSTED FROM THE *
C PARAMETER STATEMENT. N MUST NOT EXCEED 128. *
C
C ANALYSIS PARAMETERS ARE READ USING FILEDEF 41. THE PARAMETERS *
C ARE: *
C ARGUMENT TYPE ALLOWED VAULUES *
C *
C MODE - Il 1 PLOT 0 TO PI *
C 2 PLOT PI TO PI *
C *
C PLTR - Ii 0 SHERPA LASER PRINTER *
C 1 IMB79 GRAPHICS TERMINAL *
C *
C BWLEN- 13 3 DIGIT INITIAL WINDOW LENGTH, *
C MUST BE AN ODD INTEGER *
C EWLEN- 13 3 DIGIT FINAL WINDOW LENGTH *
C WINC - 12 2 DIGIT WINDOW INCREMENT, MUST *
C BE AN EVEN INTEGER
C *
C WTYPE- A19 19 CHARACTER STRING USED IN THE *
C PLOT HEADER DISCRIBING THE
C WINDOW USED. THE CURRENT *
C WINDOW LENGTH IS AUTOMATICALLY *
C INCLUDED *
C *
C CONTR- Al I CHARACTER STRING INDICATING *
C TYPE OF PLOT DESIRED *
C *
C A AMPLITUDE PLOT ONLY *
C C CONTOUR PLOT ONLY *
C B BOTH AMPLITUDE AND CONTOUR *
C *
C TTL - A43 43 CHARACTER STRING USED IN THE *
C HEADING WHICH DESCRIBES THE *
C ALGORITHM AND THE CLASS OF *
C SIGNAL USED *
C
C SIGNAL- A43 43 CHARACTER STRING DESCRIBING *
C TEST SIGNAL
C *
C TSMTH- A25 25 CHARACTER STRING DESCRIBING
C TYPE OF TIME SMOOTHING USED *
C" *
C *
C OUT REAL
2 UUTFUT ARRAY CF DbINSIUN '12 8Y N
C *
C SAMp COMPLEX *
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C SHIFTED VERSION OF X *
C *
C SAM COMPLEX
C SHIFTED AND CONJUGATED VERSION OF X *
C *
C C COMPLEX *
C ARRAY OF SUM OF PRODUCTS OF DIMENSION 1 BY 1025 *
C POSITIONS 1 - 512 ARE CONJUGATE SYMMETRIC WITH *
C POSITIONS 514 - 1025. POSITION 513 = (0.,0.) *
C *
C FT COMPLEX *
C ARRAY OF THE 1024 POINT TRANSFORM C *
C *
C Z INTEGER *
C LENGTH OF CURRENT WINDOW *
C *
C M INTEGER *
C MID-POINT OF THE CURRENT WINDOW *
C *
c AMAX REAL
C MAXIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS *
C *
C AMIN REAL *
C MINIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS *
C
C NX HORIZONTAL DIMENSION OF OUT WHICH IS ALWAYS 512 *
C *
C DATA CAN BE OUTPUT USING FILEDEF 61. POINTS OF INTEREST MUST *
C BE DEFINED IN THE APPROPRAITE SECTION OF CODE. BECAUSE *
C OF SPACE CONSTRAINTS, THE DATA OUTPUT FILE IS WRITTEN TO *
C THE B DISK.
C *

C
PARAMETER(N= 64)
COMPLEX X(N),C(1025),SAMP,SAM,FT(1024)
REAL OUT(512,N),AMAX,AMIN
INTEGER NX,K,I,J,MODE,Z,M,BWLEN,EWLEN,WINC,PLTR
CHARACTER WTYPE*19,TTL*43,SIGNAL*43,TSMTH*25,CONTR*1
CALL EXCMS('FILEDEF 4 DISK TEST IN (PERM')
CALL EXCMS('FILEDEF 41 DISK PARAM IN (PERM')
CALL EXCMS('FILEDEF 61 DISK DATA OUT B (PERM')

C
C ---------- READ IN PARAMETER LIST ----------------------------------

READ(41,400)MODE,PLTR,BWLEN,EWLEN,WNC,WTYPE,CONTR,TTL,
+ SIGNAL,TSMTH

400 FORMAT (IX,I1,3X,I1,3X,13,3X,13,3X,12/1X,A19/1X,A1/1X,A43
+ /!X,A43/1X,A25)

c -----------------------------------------------------------------

C ---------- TEST TO ENSURE WINDOW LENGTH IS APPROPRIATE --------------
I=N-1
IF ((BWLEN .GT. I) .OR. (EWLEN .GT.I)) THEN

GO TO 99
ENDIF
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I=MOD( BWLEN, 2)
K=MOD( WING ,2)
IF (I .EQ. 0) THEN

IF (K .EQ. 1) THEN
WRITE (*, 68)
GO TO 99

ELSE
WRITE(*,67)
GO TO 99

ENDIF
END IF

69 FORMAT (lX,'WINDOW LENGTH EXCEEDS LENGTH OF THE DATA')
68 FORMAT (1X,'WINDOW INCREMENT MUST BE EVEN')
67 FORMAT (1X,'INITIAL WINDOW LENGTH MUST BE ODD')
C ----------------------------------------------------------------
C
C-------- PLOTTING DEVICE CALL-------------------------------------

IF (PLTR.EQ.0)THEN
CALL COMPRS

ELSE
CALL IBM79

ENDIF
C ----------------------------------------------------------------
C
C

PI=4*ATAN( 1.)
NX=-512
READ (4,*)(X(J),J=1,N)
DO 111 Z= BWLEN,EWLEN,WINC
WRITE(61 ,600)TTL,SIGNAL,TSMTH,WTYPE,Z

600 FORMAT (1X,A43/1X,A43/1X,A25/1X,A19,I3,' POINTS)')
CALL ANGLE(0. ,0.)
M=(Z-1)/2
AMAX=0.
AMIN=AMAX
DO 10 I=1.N

DO 20 K=0,512
SAMP=(O. 0.)
SAM=SAMP
IF ( (!+K) .LE. N )THEN

SAMP=X( I+K)
END IF
IF ( (I-K) .GT. 0 )THEN

SAM=CONJG(X( I-K))
ENDIF

C

C+-+-+-+ sum of product is IPS difference of product is IMRD -+-+-+
IF (K .LE. M) THEN
C(K+1)=(X(I)*SAM + CONJG(X(I))*SAIP)

+ *(0. 54+0. 46*CO,'i(2*PI*K/(2*M)))
ElS E
C(K+1)0O

k.NUik
C+- - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + -+-+

C
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C(1024-K+1)=CONJG(C(K+1))
20 CONTINUE

C(513)=(O.,O.)
CALL FFT(1024, ,FT)
DO 40 K=1,MODE*j12,MODE
IF (REAL(FT(K)) .GT. AMAX) THEN
AMAX=REAL(FT(K))

ENDIF
IF (REAL(FT(K)) .LT. AMIN) THEN
AMIN=REAL(FT(K))

ENDIF
IF ( (K .LT; 514) .AND. (MODE .EQ. 2)) THEN

OUT( INT((K+1)/2+255), I)=REAL(FT(K))
ELSE

IF ( MODE .EQ. 2 ) THEN
OUT(INT((K+1)/2-257),I)=REAL(FT(K))

ELSE
OUT(K,I)=REAL(FT(K))

ENDIF
ENDIF

40 CONTINUE
10 CONTINUE
C ------- FOR TIME SMOOTHING PURPOSES --------------------------------

DO 48 K=1,512
DO 4( I=1,N-2

OUf(K,I)=(OUT(K,I)+OUT(K,I+1)+OUT(K.I+2))/3
46 CONTINUE

DO 47 I=N,3,-1
OUT(K,I)=(OUT(K,I)+OUT(K,I-1)+OUT(K,I-2))/3

47 CONTINUE
C
C ---------- DATA OUTPUT ---------------------------------------------

IF((K. GE.208).AND.(K. LT. 370))THEN
C IF(((K.GE. 120).AND.(K.LT.140)).OR.((K.GE.370).AND.
C + (K.LT.390)))THEN

WRITE(61,601)
DO 81 I=I,N-1,14

WRITE(61,602)K,I,OUT(K,I)
81 CONTINUE

ENDIF
601 FORMAT ('FREQ BIN=',8X,'TIME BIN=',7X,'AMPLITUDE=')
602 FORMAT (1OX,14,13X,14,14X,E14.7)
C -----------------------------------------------------------------
C
48 CONTINUE
C -----------------------------------------------------------------
C
C ------------- PLOTTING

IF(CONTR.EQ.'C')THEN
GO TO 50

ENDIF
CALL BSHIFT ( -0.2 ,-.25)

CALL AREA2D(8,9)
CALL VOLM3D(10,10,8)
CALL HEADIN(TrL,100,1.,3)
CALL HEADIN(SIGNAL,100,1,,3)
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CALL HEADIN(TSMTH,100,1.,3)
CALL MESSAG(WTYPE,100,2.519.3)
CALL INTNO(Z,'ABUT' 'ABUT )
CALL MESSAG(' POINT. )$1000'ABUT','ABUT')
CALL X3NAME('FREQUENCY AXIS$ ,100)
CALL Y3NAME('TIME AXIS$',10)
CALL Z3NAME( $1',00)
CALL VUANGL(-65,70,700)
CALL XNONUM

C CALL ZNONUM
CALL MXlALF('STANDARD' ,'')
CALL MX2ALF('L/CGREEK',' ')
CALL ANGLE(-25.0)
IF ( MODE .EQ. 2 ) THEN
CALL MESSAG(' +-P# ',6,0.,2.3)

ELSE
CALL MESSAG(' +0# ',5,0.,2.3)

ENDIF
CALL ANGLE(-25.0)
CALL MESSAG(' +P# ',5,4.9,0.15)
CALL GRAF3D(-256,256,256,1,N,N,I. 0*AMIN,

+ 0.5*(AMAX-AMIN),1.0*AMAX)
CALL SURIIAT(OUT,512,512,1,N,O.)
CALL ENDPL(O)

C
50 IF (CONTR.NE.'A')THEN

DO 49 I=1,N
DO 51 K=1,512
IF (OUT(K,I) .LT. 0) THEN

OUT(K,I)=O
ENDIF

51 CONTINUE
49 CONTINUE

CALL CONTOR(ObT,NX,N,TTL,SIGNAL,WTYPE,TSMTH,Z,AMAX)
ENDIF

C -----------------------------------------------------------------
C

WRITE(61,603)AMAX,AMIN
603 FORMAT (lX,'MAXIMUM AMPLITUDE=',EI4.7

+ /'MINIMUM AMPLITUDE=',EI4.7)
111 COiNTINUE

CALL DONEPL
99 STOP

END
C
CSSS S SSS SSSSSS SSS SSSSSS SSSSS SSSSSS
C

SUBROUTINE CONTOR(A,NX,NY,TITLE.SIGNL,WNDW,TAVG,WLEN,AMAX)
C THIS SUBROUTINE CONTOURS AN NX BY NY ARRAY OF REGULARLY SPACED POINTS.
C NOi7E: THE ARRAY MUST BE REAL*4.
C
C A : SINGLE PRECISION NX BY NY ARRAY OF REGULARLY SPACED POINTS
C NX: NUMBER OF POINTS IN THE X-DIRECTION
G NY: NUMBER OF POINTS IN THE Y-DIRECTION
C ZINC: CONTOUR INTERVAL
C
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DIMENSION A(NX,NY)
COMMON WORK(50000)

C
C SET PARAMETERS FOR AXES:

XORIG=-256.
XSTP=256.
XMAX=25 6.
YORIG=O.
YSTP=NY
YMAX=NY

C
C SET CONTOUR LEVEL

ZINC=AMAX/ 10.
C

CALL SETCLR( 'CYAN')
C
C SET PAGE AND PLOT SIZES, SET UP AXES FOR PLOT:

CALL PAGE(8.5,11.O)
CALL BCOMON(50000)
CALL AREA2D)(6.0,8.O)

C
C LABEL AXES:

CALL XNAME('FREQUENCY - AXIS $',100)
CALL YNAME( TIME - AXIS $',100)
CALL GRAF(XORIG,XSTP,XMAX,YORIG,YSTP,YMAX)
CALL FRAME

C
C TITLE:

CALL HEADIN('CONTOUR PLOT$',100,1. ,4)
CALL HEADIN(TITLE,100,1. ,4)
CALL HEADIN(SIGNL,100,1. ,4)
CALL HEADIN(TAVG,100,1. ,4)
CALL ANGLE(O.Q)
CALL MESSAG(WNDW,100,1.5,-. 7)
CALL INTNO(WLEN ,'ABUT','ABUT')
CALL MESSAGCt POINTS)$',100,'ABUT' ,'ABUT')

C
C MAKE CONTOURS AND DRAW:

CALL SETCLR( RED')
CALL CONMIN(3.0)
CALL CONANG(60.)
CALL CONLIN(O,'MYCON' ,'NOLABE LS' ,2,1O)
CALL CONMAK(A,NX,NY, ZINC)
CALL CONTUR(l,'LABELS','DRAW')

C
CALL ENDPL(O)
RETURN
END

C
CS S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S
C

SUBROUTINE MYCON(RARAY, IARAY)
DIMENSION RARAY(2) ,IARAY( 1)

C
C TIS ROUTINE MAK. NEGATIVE CONTOURS DASHED AND THE ZERO LINE HEAVIER.
C
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CALL RESET('DASH')
IF (RARAY(1) .GE. 0.) GO TO 10
CALL DASH

10 RARAY(2) = 1.
IARAY(1) = 1
IF (RARAY(1) .EQ. 0.) IARAY(1) = 2
RETURN
END

C
CS S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S
C
C * *
C * CALL FFT(N,XTEMP,X) *
C * *
C * X - OUTPUT COMPLEX ARRAY CONTAINING FFT (1024) *
C * N - NUMBER OF POINTS *
C * XTMP - COMPLEX ARRAY CONTAINING DATA SAMPLES *
C * (starting at 1,up to 1024) *
C
C

SUBROUTINE FFT(N,XTMP,X) FFT00130
COMPLEX X(1024),XTMP(1024),WTFAC,TMP FFT00140
M=INT(LOG10(FLOAT(N))/LOG10(2.)+0.5)
EN = N FFT00210
PI = 4.0*ATAN(1. 0) FFT0027
DO 10 K=O,N-1 FFT0032O

NEWADR = 0 FFT00330
MADDR = K FFT00340
DO 20 I=0,M-1 FFT00350

LRMNDR = MOD(MADDR,2) FFT00360
NEWADR = NEWADR + LRMNDR*2**(M-1-I) FFT00370
MADDR = MADDR/2 FFT00380

20 CONTINUE FFT00390
X(NEWADR+1) = XTMP(K+1) FFT00400

10 CONTINUE FFT00410
DO 50 L=I,M FFT00530

ISPACE = 2**L FFT00610
S = N/ISPACE FFT00620
IWIDTH = ISPACE/2 FFT00630
DO 40 J=0,(IWIDTH-1) FFT00670

R = S*J FFT00720
ALPHA = 2.*PI*R/EN FFT00730
WTFAC = CMPLX( COS(ALPHA), -SIN(ALPHA)) FFT00740
DO 30 ITOP=J,N-2,ISPACE FFT00750

IBOT = ITOP + IWIDTH FFT00800
TMP = X(IBOT+1)*WTFAC FFT00810
X(IBOT+1) = X(ITOP+1) - TH'p FFTO0820
X(ITOP+I) = X(ITOP+1) + TMP FFT00830

30 CONTINUE FFT00840
40 CONTINUE FFT00850
50 CONTINUE FFT00860

RETURN FFT01000
END FFT01010
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4. PWD

C** THIS FORTRAN FILE COMPUTES THE PWD OF A DATA SEQUENCE
C *
C *
C INPUT DATA SEQUENCE IS READ USING FILEDEF 4, AS THE COMPLEX *
C ARRAY X(N). *
C *
C N IS THE LENGTH OF THE DATA SEQUENCE AND IS ADJUSTED FROM THE *
C PARAMETER STATEMENT. N MUST NOT EXCEED 128.
C *
C ANALYSIS PARAMETERS ARE READ USING FILEDEF 41. THE PARAMETERS *
C ARE: *
C ARGUMENT TYPE ALLOWED VAULUES *
C *
C MODE - Il 1 PLOT 0 TO PI *
C 2 PLOT PI TO PI
C *
C PLTR - II 0 SHERPA LASER PRINTER *
C 1 IMB79 GRAPHICS TERMINAL *
C *
C BWLEN- 13 3 DIGIT INITIAL WINDOW LENGTH, *
C MUST BE AN ODD INTEGER *
C EWLEN- 13 3 DIGIT FINAL WINDOW LENGTH *
C WINC - 12 2 DIGIT WINDOW INCREMENT, MUST *
C BE AN EVEN INTEGER
C
C WTYPE- A19 19 CHARACTER STRING USED IN THE *
C PLOT HEADER DISCRIBING THE *
C WINDOW USED. THE CURRENT *
C WINDOW LENGTH IS AUTOMATICALLY *
C INCLUDED *
C *
C CONTR- Al 1 CHARACTER STRING INDICATING *
C TYPE OF PLOT DESIRED
C *
C A AMPLITUDE PLOT ONLY *
C C CONTOUR PLOT ONLY *
C B BOTH AMPLITUDE AND CONTOUR *
C
C TTL - A43 43 CHARACTER STRING USED IN THE *
C HEADING WHICH DESCRIBES THE *
C ALGORITHM AND THE CLASS OF *
C SIGNAL USED *
C *
C SIGNAL- A43 43 CHARACTER STRING DESCRIBING *
C TEST SIGNAL *
C
C TSMTH- A25 25 CHARACTER STRING DESCRIBING
C TYPE OF TIME SMOOTHING USED *
C *
C *
C OUT REAL
C OUTPUT ARRAY OF DIMENSION 512 BY N
C *
C SAMP COMPLEX *
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C SHIFTED VERSION OF X *
C *
C SAM COMPLEX *
C SHIFTED AND CONJUGATED VERSION OF X *
C *
C C COMPLEX *
C ARRAY OF SUM OF PRODUCTS OF DIMENSION 1 BY 1025
C POSITIONS 1 - 512 ARE CONJUGATE SYMMETRIC WITH *
C POSITIONS 514 - 1025. POSITION 513 = (0.,0.) *
C *
C FT COMPLEX *
C ARRAY OF THE 1024 POINT TRANSFORM C *
C *
C Z INTEGER *
C LENGTH OF CURRENT WINDOW *
C *
C M INTEGER *
C MID-POINT OF THE CURRENT WINDOW *
C *
( AMAX REAL *
C MAXIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS *
C *
C AMIN REAL
C MINIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS
C *
C NX HORIZONTAL DIMENSION OF OUT WHICH IS ALWAYS 512 *
C *
C DATA CAN BE OUTPUT USING FILEDEF 61. POINTS OF INTEREST MUST *
C BE DEFINED IN THE APPROPRAITE SECTION OF CODE. BECAUSE
C OF SPACE CONSTRAINTS, THE DATA OUTPUT FILE IS WRITTEN TO *
C THE B DISK. *C *

C
PARAMETER(N= 64)
COMPLEX X(512),C(1025),SAMP,SAM,FT(1024)
REAL OUT(512,N),AMAX,AMIN
INTEGER NX,K,I,J,MODE,Z,M,BWLEN,EWLEN,WINC,PLTR
CHARACTER WTYPE*19,TT'L*43,SIGNAL*3 ,TSMTH2,= .C)NTR*1
CALL EXCMS('FILEDEF 4 DISK TEST IN (PERM')
CALL EXCMS('FILEDEF 41 DISK PARAM IN (PERM')
CALL EXCMS('FILEDEF 61 DISK DATA OUT B (PERM')

C
C ------------- READ IN THE PARAMETER LIST ---------------------------

READ(41,400)MODE,PLTR,BWLEN,EWLEN,WINC,WTYPE,CONTR,TTL,
+ SIGNAL,TSMTH

400 FORMAT(IX,I1,3X,I1,3X,13,3X,13,3X,12/1X,A19/1X,A/1X,A43
+ /IX,A43/1X,A25)

C -----------------------------------------------------------------
C

C ---------- TEST TO ENSURE WINDOW LENGTH IS APPROPRIATE --------------
I=N-1
IF ((BWLEN .GT. I) .OR. (EWLEN .GT.I)) THEN

WR!T(*,69)

GO TO 99
ENDIF
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I=MOD( BWLEN.2)
K=MOD(WIN",2)
IF (I .EQ. 0) THEF

IF (K ,EQ. 1) THEN
WRITE(*,68)
GO TO 99

ELSF
WRI'tE(*,67)
GO 10 99

ENDIF
ENDIF

69 FORMAT (1X,'WINDOW LENGTH EXCEEDS LENGTH OF THE DATA')
68 FORMAT (1X,'WINDOW INCREMENT MUST BE EVEN')
67 FORMAT (X,'INITIAL WINDCW LENGTH MUST BE ODD')

C
C------------------------------------------------------------------
C
C ------------- PLOTTING DEVICE CALL ---------------------------------

IF(ULTR. EQ. O)THEN
CALL COMPRS

ELSE
CALL IBN179

ENDIF
C -------------- -------------------------------------------
C

PI=4*ATAN( 1.)
NX=512
READ(4,*)(X(J) ,J=1,2*N,2)

C
C ------------- DATA INTERPOLATION ------------------------

DO 5 J=2,2*N,2
X(J)=(O. ,0. )

5 CONTINUE
CALL FFT(2*N,X,FT)
DO 10 J=N/2+2,2*N-N/2+1

FT(J)=(0. ,O.)
10 CONTINUE

DO 20 J=1,2*N
FT(J)=CONJG(FT(J))

20 CONTINUE
CALL FFT(2*N,FT,X)
DO 30 J=1,2*N

X(J)=CONJG(X(J) )/N
30 CONTINUE

C--------------------------------------------------------------------j

C

DO 111 Z=BWLEN,EWLEN,WINC
WRITE( 61,600)TTL, SIGNAL,TSIMTH,WTYPE, Z

600 FORMAT(1X,A43/IX,A37/1X,A25/IX,A19,I3,' POINTS)')
M=(Z-1)/2
AMAX=O

DO 40 I=1,2*N,2
DO 50 K=0,512

SAMP=(0. 0.)
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SAM=(0. ,0.)
IF ( (I+K) .LE. 2*N )THEN

SAMP=X( I+K)
END IF
IF C (I-K) .GT. 0 ) THEN

* SAM=CONJG(X( I-K))
ENDIF

C
C

* IF (K .LE. 2*M) THEN
C(K+1)=SAMP*SAM*(0. 54+0. 46*COS(2*PI*K/C4*M)))

ELSE
C(K+1)=O

ENDIF
C
C

CC 1024-K+1)=CONJG(C(K+1))
50 CONTINUE

C(513)=(O. 0O.)
CALL FFTC 1O24,C,FT)
DO 60 K=1,MODE*512,MODE
IF (REAL(FT(K)) .GT. AMAX) THEN
AMAX=REAL(FT(K))

ENDIF
IF (REAL(FT(K)) .LT. AMIN) THEN
AMIN=REAL(FT(K))

END IF
IF ( (K.LT.514) .AND. (MODE .EQ. 2)) THEN
OUT( INT( (K+1)/2+255) ,(CI+1)/2)=REAL(FT(K))

ELSE
IF( MODE .EQ. 2 ) THEN
OUTCINT((K+1)/2-257) ,CI+1)/2)=REAL(FT(K))

ELSE
OUT(K,( I+1)/2)=REAL(FT(K))

ENDIF
END IF

60 C011TINUE
40 CONTINUE
C
C -------FOR TIME SMOOTHING PURPOSES -----------------

DO 48 K=1,512
DO 46 1=1,N-2

OUT(K,I)=(OUT(K,I)+OUT(K,I+I)+OUT(K,I+2))/3
46 CONTINUE

DO 47 I=N,3,-1
OUT(K,I)=(OUT(K,I)+OUT(K,I-1)+OUT(K, I-2))/3

47 CONTINUE
C
C ----------- DATA OUTPUT-------------------------------------------I

IF(CK. GT. 285).AND. (K. LT. 310))THEN
WRITE(61,601)
DO 81 I11,N

WRITE(61,602)K, I,OUT(K,I)
81 CONTINUE

ENDIF
601 FORMAT( FREQ BIN=t ,8X,'TIME BIN=' ,7X, 'AMPLITIDE=1 )

89



602 FORMAT(1OX,I4,13X,14,14X,E14.7)
C-------------------------------------------------------------------
C
48 CONTINUE
C -------------------------------------------------------------------
C
C --------- PLOTTING ----------------------------------------------

IF (CONTR.EQ.'C')THEN
GO TO 52

ENDIF
CALL BSHIFT ( -0.2 , -0.25)
CALL AREA2D(8,9)
CALL VOLM3D(10,10,8)
CALL HEADIN(TTL,100,1.,3)
CALL HEADIN(SIGNAL,100,1.,3)
CALL HEADIN(TSMTH,100,1.,3)
CALL ANGLE(O. 0..)
CALL MESSAG(WTYPE,100,2.5,9.3)
CALL INTNO(Z ,'ABUT','ABUT')
CALL MESSAG(' POINTS )$' ,l00'ABUT','ABUT')
CALL X3NAME('FREQUENCY AXIS$ ,100)
CALL Y3NAME('TIME AXIS$',100)
CALL Z3NAME(' $',100)
CALL VUANGL(-65,70; 700)
CALL XNONUM

C CALL ZNONUM
CALL MX1ALF('STANDARD','#')
CALL MX2ALF('L/CGREEK' ,+
CALL ANGLE(-25.0)
IF ( MODE .EQ. 2 ) THEN
CALL MESSAG(' +-P#j ',6,0.,2.3)

ELSE
CALL MESSAGC' +0# ',5,0.,2.3)

ENDIF
CALL ANGLE(-25.0)
CALL MESSAG(' +P# ',5,4.9,0.15)
CALL GRAF3D(-256,256,256,1,N,N,1.0*AMIN,.5*(AMAX-AMIN),
+1. 0*AMAX)
CALL SURMAT(OUT,512,512,1,N,0.)
CALL ENDPL(O)

C
52 IF(CONTR. NE.'A')THEN

DO 49 I=I,N
DO 51 K=1,512

IF((OUT(K,I).LT. 5.0).AND.(OUT(K,I) •GT. -5.0))THEN
OUT(K, I)=O

ENDIF
51 CONTINUE
49 CONTINUE

CALL CONTOR(OUT,NX,N,TTL,SIGNAL,WTYPE,TSMTH,Z)
ENDIF

C-------------------------------------------------------------------
C

WRITE 61 ,603)AMAX,AMIN
603 FORMAT(IX,'MAXIMUM AMPLITUDE=' ,E14. 7

+ /IX,'MINIMUM AMPLITUDE=',EI4.7)
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111 CONTINUE
CALL DONEPL

99 STOP
END

C
CSSSSssS SSSSSSSSSSssS SS S SssSSSS
C

SUBROUTINE CONTOR(A,NX,NY,TITLE,SIGNL,WNDW,TAVG,WLEN)
C THIS SUBROUTINE CONTOURS AN NX BY NY ARRAY OF REGULARLY SPACED POINTS.
C NOTE: THE ARRAY MUST BE REAL*4.
C
C A : SINGLE PRECISION NX BY NY ARRAY OF REGULARLY SPACED POINTS
C NX: NUMBER OF POINTS IN THE X-DIRECTION
C NY: NUMBER OF POINTS IN THE Y-DIRECTION
C ZINC: CONTOUR INTERVAL
C

DIMENSION A(NX,NY)
COMMON WORK(50000)

C
C SET PARAMETERS FOR AXES:

XORIG=-256.
XSTP=256.
XMX=256.
YORIG=O.
YSTP=NY
YMAX=NY

C
C SET CONTOUR LEVEL

ZINC=AMAX/10
C

CALL SETCLR('CYAN')
C
C SET PAGE AND PLOT SIZES, SET UP AXES FOR PLOT:

CALL PAGE(8.5,11.O)
CALL BCOMON(50000)
CALL AREA2D(6.0,8.0)

C
C LABEL AXES:

CALL XNAME('FREQUENCY - AXIS $',100)
CALL YNAME('TIME - AXIS $',100)
CALL XNONUM

C
CALL GRAF(XORIG,XSTP,XMAX,YORIG,YSTP,YMAX)
CALL FRAME

C
C TITLE:

CALL }{EADIN('CONTOUR PLOT$',100,1.,4)
CALL HEADIN(TITLE,100,1.,4)
CALL HEADIN(SIGNL,100,1.,4)
CALL HEADIN(TAVG,100,1.,4)
CALL ANGLE(O.O)
CALL MESSAG(WNDW,1O0,1.5-. 7)
CA L L IATIN LEN |'ABUT ABUT')
CALL MESSAG('POINTS)$ ,100,'ABUT ,'ABUT')

C
C MAKE CONTOURS AND DRAW:
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CALL SETCLR('RED')
CALL CONMIN(3.0)
CALL CONANG(60.) , .
CALL CONLIN(0,'MYCON ,'NOLABELS ,2,10)
CALL CONMAK(ANX,NY,'SCALE')
CALL CONTUR(1,'LABELS','DRAW')

C
CALL ENDPL(O)
RETURN
ENDC

CSSSSsSSSSSsssssSssSSsssSSsSS SSSSS

C
SUBROUTINE MfCON(RARAY, IARAY)
DIMENSION RARAY(2),IARAY(1)

C
C THIS ROUTINE MAKES NEGATIVE CONTOURS DASHED AND THE ZERO LINE HEAVIER.
C

CALL RESET('DASH')
IF (RARAY(1) .GE. 0.) GO TO 10
CALL DASH

10 RARAY(2) = 1.
IARAY(1) = 1
IF (RARAY(1) .EQ. C.) IARAY(1) = 2
RETURN
END

C
CSSSSSS SSSS SSSS SSSSSSSSSSS SS SSSS SSS
C
C
C *
C * CALL FFT(N,XTEMP,X) ,
C * *
C . X - OUTPUT COMPLEX ARRAY CONTAINING FFT (1024) *
C * N - NUMBER OF POINTS *
C * XTMP - COMPLEX ARRAY CONTAINING DATA SAMPLES *
C * (starting at 1,up to 1024)
C
C

SUBROUTINE FFT(N,XTMP,X) FFT00130
COMPLEX X(1024) ,XTMP(1024) ,WTFAC ,TMP FFTO0140
M=INT(LOG10(FLOAT(N))/LOG10(2. )+0.5)
EN = N FFT00210
PI = 4.0*ATAN(1. 0) FFTO0270
DO 10 K=0,N-1 FFT00320

NEWADR = 0 FFTO0330
MADDR = K FFT00340
DO 20 I=0,M-1 FFT00350

LRMNDR = MOD(MADDR,2) FFT00360
NEWADR = NEWADR + LRMNDR*2**(M-I-I) FFT00370
MADDR = MADDR/2 FFT00380

20 CONTINUE FFT00390
X(NEWADR+I) = XTMP(K+1) FFT00400

10 CONTINUE FFT00410
DO 50 L1I,M FFT00530

ISPACE = 2**L FFT00610
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S = N/ISPACE FFT00620
IWIDTH = ISPACE/2 FFT00630
DO 40 J=0,(IWIDTH-1) FFT00670

R = S*J FFT00720
ALPHA = 2.*PI*R/EN FFT00730
WTFAC = CMPLX( COS(ALPHA), -SIN(ALPHA)) FFT00740
DO 30 ITOP=J,N-2,ISPACE FFT00750

IBOT = ITOP + IWIDTH FFTOO800
TMP = X(IBOT+1)*WTFAC FFTOO81O
X(IBOT+1) = X(ITOP+l) - TMP FFT00820
X(ITOP+1) = X(ITOP+l) + TMP FFT00830

30 CONTINUE FFT00840
40 CONTINUE FFT00850
50 CONTINUE FFT00860

RETURN FFT01000
END FFTO010
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5. IRDI 2

C** THIS FORTRAN FILE COMPUTES THE SQUARED MAGNITUDE OF THE **e
C** RIHACZEK DISTRIBUTION
C *o *
C INPUT DATA SEQUENCE IS READ USING FILEDEF 4, AS THE COMPLEX *
C ARRAY X(N). *
C *
C N IS THE LENGT., OF THE DATA SEQUENCE AND IS ADJUSTED FROM THE *
C PARAMETER STATEMENT. N MUST NOT EXCEED 128. *
C *
C ANALYSIS PARAMETERS ARE READ USING FILEDEF 41. THE PARAMETERS *
C ARE: *
C ARGUMENT TYPE ALLOWED VAULUES *
C *
C MODE - Il 1 PLOT 0 TO PI *
C 2 PLOT PI TO PI *
C *
C PLTR - If 0 SHERPA LASER PRINTER *
C 1 IMB79 GRAPHICS TERMINAL *
C *
C BWLEN- 13 3 DIGIT INITIAL WINDOW LENGTH, *
C MUST BE AN ODD INTEGER *
C EWLEN- 13 3 DIGIT FINAL WINDOW LENGTH *
C WINC - 12 2 DIGIT WINDOW INCREMENT, MUST *
C BE AN EVEN INTEGER *
C *
C WTYPE- A19 19 CHARACTER STRING USED IN THE *
C PLOT HEADER DISCRIBING THE *
C WINDOW USED. THE CURRENT *
C WINDOW LENGTH IS AUTOMATICALLY *
C INCLUDED *
C *
C CONTR- Al 1 CHARACTER STRING INDICATING *
C TYPE OF PLOT DESIRED
C *
C A AMPLITUDE PLOT ONLY *
C C CONTOUR PLOT ONLY *
C B BOTH AMPLITUDE AND CONTOUR *
C *
C TTL - A43 43 CHARACTER STRING USED IN THE *
C HEADING WHICH DESCRIBES THE *
C ALGORITHM AND THE CLASS OF
C SIGNAL USED *
C *
C SIGNAL- A43 43 CHARACTER STRING DESCRIBING *
C TEST SIGNAL *
C *
C TSMTH- A25 25 CHARACTER STRING DESCRIBING
C TYPE OF TIME SMOOTHING USED *
C *
C
C OUTR REAL *
C INITIALLY USED AS STORAGE FOR THE TIME SMOOTHED IPS, THEN *
C AS OUTPUT ARRAY OF DIMENSION 512 BY N *
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C *
C OUTI REAL *
C ARRAY USED TO HOLD THE THE TIME SMOOTHED IMRD *
C *
C SAMP COMPLEX *
C SHIFTED VERSION OF X *
C *
C SAM COMPLEX *
C SHIFTED AND CONJUGATED VERSION OF X *
C *
C RE COMPLEX
C ARRAY OF SUM OF PRODUCTS OF DIMENSION 1 BY 1025, *
C POSITIONS 1 - 512 ARE CONJUGATE SYMMETRIC WITH *
C POSITIONS 514 - 1025, POSITION 513 = (0. ,O.). *
C *
C IM COMPLEX *
C ARRAY OF DIFFERENCE OF PRODUCTS OF DIMENSION 1 BY 1025,
C POSITIONS 1 - 512 ARE CONJUGATE SYMMETRIC WITH *
C POSITIONS 514 - 1025, POSITION 513 = (0. ,0.). *
C *
C FTR COMPLEX *
C ARRAY OF THE 1024 POINT TRANSFORM RE *
C *
C FTI COMPLEX *
C ARRAY OF THE 1024 POINT TRANSFORM IM
C *
C Z INTEGER *
C LENGTH OF CURRENT WINDOW *
C *
C M INTEGER *
C MID-POINT OF THE CURRENT WINDOW *
C *
C AMAX REAL *
C MAXIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS *
C *
C AMIN REAL *
C MINIMUM AMPLITUDE, USED TO SCALE VERTICAL AXIS
C *
C NX HORIZONTAL DIMENSION OF OUT WHICH IS ALWAYS 512 *
C *
C DATA CAN BE OUTPUT USING FILEDEF 61. POINTS OF INTEREST MUST *
C BE DEFINED IN THE APPROPRAITE SECTION OF CODE. BECAUSE *
C OF SPACE CONSTRAINTS, THE DATA OUTPUT FILE IS WRITTEN TO *
C THE B DISK. *
C *

C

PARAMETER(N= 64)
COMPLEX X(N),RE(1025),SAMP,SAM,FTR(1024)
COMPLEX IM(1025) ,FTI(1024)
REAL OUTR(512,N),OUTI(512,N),AMAX,AMIN
INTEGER NX,K,1 ,J,MODE,Z.M,BWLEN,EWLENWINC,PLTR
CHARACTER WTYPE*19, TIL*43, SIGNAL*37 ,TSMTH*25, CONTR*1
CALL EXCMS('FILEDEF 4 DISK TEST IN (PERM')
CALL EXCMS('FILEDEF 4i DISK PARAM IN (PER )

95



CALL EXCMS('FILEDEF 61 DISK DATA OUT B (PERM')
C
C ------------- READ IN PARAMETER LISITNG ------------------------------

READ (41,400)MODE,PLTR,BWLEN,EWLEN,WINC ,WTYPE,CONTR,TTL,
+ SIGNAL,TSMTH

400 FORMAT (1X,I1,3X,I1,3X,I3,3X,I3,3X,I2/IX,A19/IX,Al/1X,A43
+ /IX,A37/1XA25)

C ---------------------------------------------------------------
C
C
C ---------- TE ST TO ENSURE WINDOW LENGTH IS APPROPRIATE --------------

I=N-1
IF ((BWLEN .GT. I) .OR. (EWLEN .GT.I)) THEN

WRITE(*,69)
GO TO 99

ENDIF
I=MOD( BWLEN, 2)
K=MOD(WINC, 2)
IF (I .EQ. 0) THEN

IF (K .EQ. 1) THEN
WRITE(*,68)
GO TO 99

ELSE
WRITE(*,67)
GO TO 99

ENDIF
ENDIF

69 FORMAT (1X,'WINDOW LENGTH EXCEEDS LENGTH OF THE DATA')
68 FORMAT (1X,'WINDOW INCREMENT MUST BE EVEN')
67 FORMAT (IX,'INITIAL WINDOW LENGTH MUST BE ODD')
C -----------------------------------------------------------------
C
C ----------- PLOTTING DEVICE CALL -----------------------------------

IF (PLTR.EQ.O)THEN
CALL COMPRS

ELSE
CALL IBM79

ENDIF
C
C -----------------------------------------------------------------
C

PI=4*ATAN(1.)
NX=512
READ (4,*)(X(J),J=1,N)
DO 111 Z= BWLEN,EWLEN,WINC
WRITE (61,600)TrL,SIGNAL,TSMTH,WTYPE,Z

600 FORMAT (1X,A43/1X,A37/1X,A25/1X,A19,13,' POINTS)')
CALL ANGLE(O. ,O.)
M=(Z-1)/2
AMAX=O.
AMIN=AMAX
DO 10 I=1,N
DO 20 K=0,512

SAMP=(O. ,O.)
SAM=SAMP
IF ( (I+K) .LE. N ) THEN
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SAMP=X( I+K)
ENDIF
IF ( (I-K) .GT. 0 )THEN
SAM=CONJG(X( I-K))

ENDIF
C

IF (K .LE. M) THEN
RE(K+1)=CX(I)*SAI + CONJG(XCI))*SAMP)

+ *( 0. 54+0. 46*COS( 2*PI*K/( 2*14)))
* C

IM(K+1)=CX( I)*SAN - CONJG(X( I) )*SAMP)
+ *(0. 54+0. 46*COS(2*PI*K/(2*M)))

ELSE
RE(K+1)0O
IM(K+1)=O

ENDIF
C

REC 1024-K+1)=CONJG(RE(K+1))
IM( 1024-K+1)=CONJG(IM(K+1))

20 CONTINUE
RE(513)=(O. ,0.)
IM(513)C0O.,0. )
CALL FFT(1024,RE,FTR)
CALL FFT(1024,IM,FTI)
DO 40 K1-lMODE*512,MODE

CI
IF ( (K .LT. 514) .AND. (MODE .EQ. 2)) THEN

OUTR(INT((K+1)/2+255) ,I)=REAL(FTR(K))
OUTI(INT((K+1)/2+255) ,I)=REAL(FTI(K))

ELSE
IF ( MODE .EQ. 2 ) THEN

OUTR(INT(CK+1)/2-257) ,I)=REAL(FTR(K))
OUTI(INT((K+1)/2-257) ,I)=REAL(FTI(K))

ELSE
OUTR(K,I)=REAL(FTR(K))
OUTI(K,I)=REAL(FTI(K))

ENDIF
ENDIF

40 CONTINUE
10 CONTINUE

C
C------- FOR TIME SMOOTHING-----------------------------------------

DO 48 K=1,512
DO 46 I=1,N-2

OUTR(K,I)=(OUTR(K,I)+OUTR(K,I+1)+OUTR(K, 1+2) )/3
OUTI(K,I)j=(OUTI(K,I)+OUTI(K,I+1)+OUTI(K,I+2))/3

46 CONTINUE
DO 47 I44,3,-i

OUTR(K, I)=(OUTR(K, I)+OUTR(K,I-1)+OUTR(K,I-2))/3
OUTI(K,I)=(OUTI(K,I.)+OUTI(K,I-1)+OUTI(K,I-2))/3

47 CONTINUE
*48 CONTINUE

C-------------------------------------- ----------------------------

C+-+- the sum of magnitudes is IRDV**2 Difference is IRD-I**2 +-+
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DO 200 K-1,512
DO 201 I-1,N

OUTR(K,I)=ABS(OUTR(K,I))
OUTI(K,I)=ABS(OUTI(K,I))
OUTR(K,I)=OUTR(K,I) + OUTI(K,I)

C
IF (OUTR(K,I) .GT. AMAX) THEN

AMAX=OUTR(K, I)
ENDIF
IF (OUTR(K,I) .LT. AMIN) THEN

AflIN=OUTR(K,I)
ENDIF

201 CONTINUE
2.00 CONTINUE
C- + - + - + - + -+ - + - + - + - + -+ -+ -+ -+ -+ -+-+-+

Caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa----
C
C ---------- PLOTTING -----------------------

IF (CONIR. EQ. 'C' )THEN
GO TO 50

ENDIF
C CALL HEIGHT(0. 28)

CALL BSHIFT ( -0. 2,-. 25)
CALL AREA2D(8,9)
CALL VOLM3)( 10,10,)
CALL HEADIN(TrL,100,1. ,3)
CALL HEADIN(SIGNAL,100,1. ,3)
CALL HEADIN(TSMTH,100,1. ,3)
CALL ME43SAG(WTYPE,100O;2. 5,9. 3)
CALL INTNO(Z ,'ABUT', ABUT')?
CALL MESSAG('POINTS)$',100, ABT','ABUT')
CALL X3NAME('FREQLIENCY AXIS$',100')
CALL Y3NAME( 'TIME AXIS$',100)
CALL Z3NAME(' $,,100)
CALL VUANGL(-65,70,700)
CALL XNONUM

C CALL ZNONUM
CALL MXlALF('STANDARD,1'
CALL MX2ALF('L/CGREEK' ''
CALL ANGLE(-25.0)
IF ( MODE .EQ. 2 ) THEN
CALL MESSAG(' +-P# ',6,0.,2.3)

ELSE
CALL MESSAG(' +0 ',5,0. ,2.3)

ENDIF
CALL ANGLE(-25.0)
CALL MESSAG(' +P#A ',5,4.9,0.15)
CALL GRAF3D(-256,256,256,1,N,N,1.0*A4IN,0.5*(ANiAX-AMIN),

+ 1.0*'AMAX)
CALL SURMAT(OUTR,512,512,1,N,O. )
CALL ENDPL(0)

CONTINUE
50 IF (CONTR.NEAA)THEN

CALL CONTQOR(OUTR,NX,N,TL,SIGNAL,WTYPE,TSMTH,Z)
ENDIF

C--------------------------------------------------------------------
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WRITE(61,603)AMAX,AMIN
603 FORMAT (1X,'MAXIMUM AMPLITUDE=',E14.7

+ /IX,'MINIMUM AMPLITUDE=',EI4.7)
111 CONTINUE

CALL DONEPL
99 STOP

END
C
CSSS SSSSSSSSSSSSSSSSSSSSSSS SSSSSS S
C

SUBROUTINE CONTOR(A,NX,NY,TITLE,SIGNL,WNDW,TAVG,WLEN)
C THIS SUBROUTINE CONTOURS AN NX BY NY ARRAY OF REGULARLY SPACED POINTS.
C NOTE: THE ARRAY MUST BE REAL*4.
C
C A : SINGLE PRECISION NX BY NY ARRAY OF REGULARLY SPACED POINTS
C NX: NUlIBER OF POINTS IN THE X-DIRECTION
C NY: NUMBER OF POINTS IN THE Y-DIRECTION
C ZINC: CONTOUR INTERVAL
C

DIMENSION A(NX,NY)
COMMON WORK(50000)

C
C SET PARAMETERS FOR AXES:

XORIG=-256.
XSTP=256.
XMAX=256.
YORIG=O.
YSTP=NY
YMAX=NY

C
C SET CONTOUR LEVEL

ZINC=AMAX/10
C

CALL SETCLR('CYAN')

C
C SET PAGE AND PLOT SIZES, SET UP AXES FOR PLOT:

CALL PAGE(8.5,11.0)
CALL BCOMON(50000)
CALL AREA2D(6.0,8.0)

C
C LABEL AXES:

CALL XNAME('FREQUENCY - AXIS $',100)
CALL YNAME('TIME - AXIS $',100)

C

CALL XNONUM
CALL GRAF(XORIG,XSTP,XMAX,YORIG,YSTP,YMAX)
CALL FRAME

C
C TITLE:

CALL HEADIN('CONTOUR PLOT$',100,1.,4)
CALL HEADIN(TITLE,100,1.,4)
CALL HEADIN(SIGNL,100,1.,4)
CALL HEADIN(TAVG,100,1.,4)
CALL ANGLE(O.0)
CALL MESSAG(WNDW,100,1.5,-.7)
CALL INTNO(WLEN ,'ABUT','ABUT')
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CALL MESSAG('POINTS)$',100,'ABUT','ABUT')
C
C MAKE CONTOURS AND DRAW:

CALL SETCLR('RED')
CALL CONMIN(3.O)
CALL CONANG(60.)
CALL CONLIN(O,'MYCON' ,'NOLABELS' ,2,10)
CALL CONMAK(A,NX,NY,'SCALE')
CALL CONTUR(1,'LABELS' ,'DRAW')

C
C END PLOT:

CALL ENDPL(O)
RETURN
END

C
CSSSS SSSS SSS SS SS SS S SSSSSSS SSSSS SS SS
C

SUBROUTINE MYCON(RARAY, IARAY)
DIMENSION RARAY(2) ,IARAY(1)

C
C THIS ROUTINE MAKES NEGATIVE CONTOURS DASHED AND THE ZERO LINE HEAVIER.
C

CALL RESET('DASH')
IF (RARAY(1) .GE. 0.) GO TO 10
CALL DASH

10 RARAY(2) = 1.
IARAY(1) = 1
IF (RARAY(1) .EQ. 0.) IARAY(1) = 2
RETURN
END

C
CSSSSSS SS SSSSS SS SSSSSSSSSS SS SSSSSSSS
C
C
C * *
C * CALL FFT(N,XTEMP,X) *
C * *
C * X - OUTPUT COMPLEX ARRAY CONTAINING FFT (1024) *
C * N - NUMBER OF POINTS *
C * XTMP - COMPLEX ARRAY CONTAINING DATA SAMPLES *
C * (starting at 1,up to 1024) *
C
C

SUBROUTINE FFT(N,XTMP,X) FFTO0130
COMPLEX X(1024) ,XTMP(1024) ,WTFAC ,TMP FFTO0140
M=INT(LOG1O(FLOAT(N))/LOG1O(2. )+0.5)
EN = N FFTO0210
PI = 4. O*ATAN(1. 0) FFTO0270
DO 10 K=O,N-1 FFTO0320

NEWADR = 0 FFTO0330
MADDR = K FFTO0340
DO 20 I=O,M-1 FFTO0350

LRMNDR = MOD(MADDR,2) FFTO0360
NEWADR = NEWADR + LRMNDR*2**(M-I-I) FFTO0370
MADDR = MADDR/2 FFTO0380

20 CONTINUE FFTO0390
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X(NEWADR+l) = XTMP(K+1) FFT00400
10 CONTINUE FFT00410

DO 50 L=1,M FFT00530
ISPACE = 2**L FFT00610
S = N/ISPACE FFT00620
IWIDTH = ISPACE/2 FFT00630
DO 40 J=0,(IWIDTH-1) FFT00670

R = S*J FFT00720
ALPHA = 2.*PI*R/EN FFT00730
WTFAC = CMPLX( COS(ALPHA), -SIN(ALPHA)) FFT00740
DO 30 ITOP=J,N-2,ISPACE FFT00750

IBOT = ITOP + IWIDTH FFT00800
TMP = X(IBOT+1)*WTFAC FFT00810
X(IBOT+l) = X(ITOP+1) - TMP FFT00820
X(ITOP+l) = X(ITOP+l) + TMP FFT00830

30 CONTINUE FFT00840
40 CONTINUE FFT00850
50 CONTINUE FFT00860

RETURN FFT01000
END FFT01010
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APPENDIX B. CROSS IPS

Up to this point only autospectra have been discussed. Analysis of cross spectral
characteristics of nonstationary phenomena can provide valuable information about the

process. Equivalent to (1), a cross power spectral density is defined

Px1 (I = J RxX(T)e-J 21fdT. (63)
-00

For the case when x, and x are uncorrelated then

Px.x4f) = 2nurpj6(/) (4= PxA(f), (64)

where p, is the mean value. If the data is correlated the energy resulting from cross

spectral analysis can be complex. By examining Parseval's theorem in a more general

context,

00 0
fo 00X(t)x; (t)dt f 00 X0X (d

J00 (65)

-00
=RX'Xj(O),

where R,,,(O) is not necessarily real nor is the cross correlation function (CCF) neces-

sarily conjugate symmetric about R,:,(O). [Ref. 1]
All the spectral estimators previously discussed are applicable if the ACF estimate

is replaced by with the CCF estimate. The bias for cross spectra may be much larger

than an equivalent autospectra where the point of maximum overlap occurs at lag zero.

In practice, the location of maximum overlap is unknown for CCF's. One interpretation

of cross PSD are of importance, the case where x, and x, are two channels of a multi-

channel system. The I P,,,j) I contains information concerning relative amplitudes at

specific frequencies where the 4P,, contains information concerning the lead or lag in

phase between the two channels. [Ref. 31
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Applying IPS in a multi-sensor environment leads to the following defining

equation,

IPSXY(f,tr) =- ( ,f_(x(I)Y*( - T) + x*(t)y(t + r)) e --ar'dT, (66)

where signal y could be a delayed, noisy version of signal x. Using a rapidly changing,

linearly chirped pulse ej".(-112- 12" s P) and implementing a windowed version of IPS,,

two sample cross spectra are shown in Figure 50 and Figure 51.

The first spectra was created by beating the pulsed chirp x(t) against a delayed ver-

sion of itself. The cross spectrum is shown in Figure 50 (a). In this case the delay is

18 samples for a pulse 63 samples in duration. The cross spectrum can be seen in

Figure 50 (b) and (c), where the spectral ridge over the interval corresponding to the

absolute time of overlap. The maximum amplitude achieved on the cross-spectral sur-

face is nearly the same as for the autospectra. The minimum however, is approximately

44% greater in magnitude than that found on the corresponding auto-spectral surface.

IPSza does not appear to provide information which can estimate delay in reception for

this class of signal.

The second cross spectrum considered examines the ability of IPSz., to indicate cor-

relation between a pulsed chirp and a Doppler-shifted version of itself. In this case,

x /)e2,( -j0f I+20( ' i)(7
x(,= "( 128 1 ),28

y(t))) 
(67)

A - 1" 20 1 2 ,

representing a shift of 50%. Figure 51 (c) shows an overlay of the two pulses.

Figure 51 (b) is the contour for the cross spectrum. The peaks of the characteristically

modulated ridge correspond to the line of overlap shown in (c). It is not clear if the cross

spectrum of a linear chirp with a Doppler shifted version of itself yields information

concerning the degree of coherence. The cross spectrum in Figure 51 could easily be

intcrprctcd as an autospectrum in which two, ciosel*-sp,,.Wd parallel dfirps are present.

This initial investigation into the behavior of 1PS1., suggests that a more detailed exam-

ination of its behavior is in order.
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(a) IPS, amplitude plot of original pulse
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rACILINCT AXIS

(b)lIPS,, contour plot

(c) JPSZ, amplitude plot

Figure 50. Cross spectral analysis of a pulsed linear chirp]
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(a) IPS,,, amplitude plot
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(b) IPS,, contour plot

(c) IPS, overlayed contour plots of the original and Doppler-shifted pulse

Figure 5 1. Cross spectral analysis for a Doppler-shifted linear pulse
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APPENDIX C. CUMULANT

Assuming the received signal is corrupted by zero mean, Gaussian noise, examining

the third-order moment or cumulant may yield information about the signal while sup-

pressing the contributions of the noise. This potential processing gain is realized because

the odd moments of a Gaussian process are identically zero. One way to implement IPS

as an estimator of the cumulant is

Cumn. IPS I RD I -(o) ix~)I x r) + x)jx@+ Tr)) e 2 t dr.

Looking only at the effect on noiseless signal data, some preliminary results can be

seen in Figure 52. All signals are analytic, therefor the magnitude squared term is al-

ways unity. A comparison of the treatment of IPS can be made by referring to Chapter

IV, Section C (3): Test Case Results. This method of processing the cumulant of an

analytic signal does not appear to provide any useful results. Further research should

examine the behavior using real signals or possibly forming the approximation of the

cumulant in a different fashion.
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(c) Quadratic chirp
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Figure 52. The cumulant of various analytic signals
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