
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2007-06

Human and Software Factors for

Successful System Adaptation

Lange, Douglas S.

Human and Software Factors for Successful System Adaptation, Douglas S. Lange -

SPAWARSYSCEN San Diego; Michael Carlin - SPAWARSYSCEN San Diego; Volodymyr

Ivanchenko - Naval Postgraduate School; Luqi - Naval Postgraduate School; Valdis Berzins -

Naval Postgraduate School, papers

http://hdl.handle.net/10945/37474

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36729925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PAL Boot Camp: Preparing Cognitive Assistants for Deployment 
 

Submitted for the Emerging Applications Track 
 

Douglas S. Lange and Michael Carlin Volodymyr Ivanchenko, Valdis Berzins, and Luqi 
Space and Naval Warfare Systems Center 

San Diego, CA, USA 
92152 

Naval Postgraduate School 
Department of Computer Science 

Monterey, CA, USA 93943 
{doug.lange, michael.carlin}@navy.mil {vivanche, berzins, luqi}@nps.edu 

Telephone for Douglas S. Lange : 619-553-6534 
Michael Carlin 619-553-4681 

Telephone for Volodymyr Ivanchenko: 831-656-7060 
Valdis Berzins: 831-656-2610 

Luqi: 831-656-2735 
Fax for Douglas S. Lange: 619-553-3931 

Michael Carlin: 619-553-3650 
Fax for Volodymyr Ivanchenko: 831-656-3681 

Valdis Berzins: 831-656-3681 
Luqi: 831-656-3681 

 
Application Domain: Cognitive Assistant 

 
Issues Addressed: Software Engineering issues for deploying machine 

learning technology, and preparation of cognitive assistant software for 
successful deployment. 

 
Application Status: Research Prototype of the Boot Camp 

 
Abstract 

Most visions for decision support and information technology anticipate the use of machine learning to enable software to 
respond to an adapting environment, including the ability to learn capabilities while on-the-job. Currently, systems and 
software engineering processes hinder employment of task learning technology, because the adaptation it provides runs 
counter to our notions of stability. Similarly, systems must typically demonstrate satisfaction of requirements before 
deployment, rather than learn tasks while on the job. This paper introduces new problems for the field of software 
engineering and discusses an approach for preparing cognitive systems for deployment. We describe one approach to a boot 
camp for cognitive systems and present the results of simulations of the boot camp. The results of our experiments provide 
thresholds and patterns for knowledge, and the requirement for specific patterns of human use of cognitive systems. These 
results are then used to infer requirements for a boot camp and measures for the prediction of successful employment of the 
assistant. 



PAL Boot Camp: Preparing Cognitive Assistants for Deployment 

Douglas S. Lange and Michael Carlin Volodymyr Ivanchenko, Valdis Berzins, and Luqi 
Space and Naval Warfare Systems Center 

San Diego, CA, USA 
92152 

Naval Postgraduate School 
Department of Computer Science 

Monterey, CA, USA 93943 
{doug.lange, michael.carlin}@navy.mil {vivanche, berzins, luqi}@nps.edu 

 
 
 

Abstract 
Most visions for decision support and information 
technology anticipate the use of machine learning to enable 
software to respond to an adapting environment, including 
the ability to learn capabilities while on-the-job. Currently, 
systems and software engineering processes hinder 
employment of task learning technology, because the 
adaptation it provides runs counter to our notions of 
stability. Similarly, systems must typically demonstrate 
satisfaction of requirements before deployment, rather than 
learn tasks while on the job. This paper introduces new 
problems for the field of software engineering and discusses 
an approach for preparing cognitive systems for 
deployment. We describe one approach to a boot camp for 
cognitive systems and present the results of simulations of 
the boot camp. The results of our experiments provide 
thresholds and patterns for knowledge, and the requirement 
for specific patterns of human use of cognitive systems. 
These results are then used to infer requirements for a boot 
camp and measures for the prediction of successful 
employment of the assistant. 

Software Engineering Meets Machine 
Learning   

The Defense Advanced Research Projects Agency's 
(DARPA) Personalized Assistant that Learns (PAL) 
program is an attempt to develop a class of cognitive 
systems that serve as assistants. What sets this program 
apart is the emphasis on the integration of a variety of 
machine learning techniques in order to allow learning of 
new tasks after the capability is deployed (Brachman 
2007). 
 The U.S. Navy and presumably other organizations 
responsible for developing and deploying mission critical 
systems, uses a structured engineering process for deciding 
when a new capability is ready for deployment. Systems 
must pass a cost versus benefit analysis, where one 
measures benefit by the ability to meet documented 
requirements. Installing software that is going to learn to 
meet user requirements only after being deployed for some 
unspecified time is problematic. 

                                                 
Copyright © 2006, American Association for Artificial Intelligence 
(www.aaai.org). All rights reserved. 
 

 Software and system engineers will need a new way to 
analyze capabilities that will learn after deployment. 
Likewise, we will need to learn how to prepare such 
systems and their users to ensure success. 

Possible Outcomes 
The PAL program is developing software to be used as part 
of a human-computer team. This is natural in the decision 
support area, and we can use metrics relevant to such 
systems. 
 Figure 1 illustrates notional performance curves for the 
human-computer team for each of three scenarios that we 
will call expected, abandonment, and disaster. From the 
introduction of a PAL at point ‘A’, we see a natural 
degradation of performance initially. We might see a 
bottoming or at least slowing of this cost by the time 
labeled ‘B’. If the user sees improvement early on, we may 
be on the expected curve, and performance could continue 

to improve and overtake previous levels of performance at 
point ‘E’. Learning tends to plateau at some point, which 
for the graph below we label as ‘F’. If performance does 
not begin to improve quickly enough, the user is likely to 
abandon the attempt to use the assistant and resume 
performing the task alone. The point ‘D’ shows 
performance resuming pre-deployment levels after the 
assistant is abandoned. In the final scenario, while 
performance never improves, the user continues to try to 
use the assistant and performance continues to deteriorate. 
This is represented by the disaster curve in Figure 1.  
 

Figure 1 Notional Performance Curves (Lange 2007)



Goals of the Boot Camp 
Anthropomorphic descriptions are difficult to avoid when 
thinking about the PAL program. The inspiration behind 
the program, quite literally, is the benefit gained by those 
fortunate enough to have a human assistant. There are 
however, differences that immediately come to mind when 
one delves deeper into the possible capabilities of a PAL 
when compared with a human assistant. An example is that 
two or more PAL should be able to transfer knowledge 
among one another, rather than first describing that 
knowledge in some language that can only provide an 
approximation of the needed information with the hope 
that the receiver correctly interprets the message. 
 However, there are many similarities between a PAL 
and a human assistant. For example, both must learn how 
their boss wants to conduct business, their performance is 
best measured by the change in their boss’s performance, 
and if not found useful will get cut out of processes where 
the boss feels that it is more expedient to just do it him or 
herself. Because of the many similarities, it is useful to 
consider how the military deals with the introduction of 
humans into the operational environment and decide if 
similar processes are useful for PAL.  
 Structured training is one technique used by the military 
to prepare humans for their jobs. Most famous is basic 
training, also known as boot camp. New recruits in the 
military already have been to school (e.g., high school), but 
need to learn the basics of the military domain. For a PAL, 
it may be easier to have it learn from experiencing the 
military domain within a training setting rather than having 
an engineer decide how to program it. 
 Another technique used in the military for training 
humans is simulation. Officers moving to a joint staff tour 
are taught crisis action planning (CAP) processes in 
training driven by simulation systems. To be successful, 
the officers need to have certain amounts of prior 
knowledge. Officers are tested in their knowledge before 
leaving. There is no thought that the real life situations will 
exactly mirror those they have encountered in training. 
Rather it is believed that the skills they gain will allow 
them to learn the rest of what they need to know while on-
the-job.  
 This approach parallels the goals of the in-the-wild 
learning by PAL. The assistant must learn within its 
operational environment, but in order to do so, must have 
some basic knowledge about its domain and the basic 
processes that are likely to be encountered.  

Boot Camp Model 
Our approach has three phases, with the transition points 
offering opportunities for measurement. The phases are 1) 
pre-boot camp programming of the knowledge base, 2) 
boot camp training, and 3) operational use (Lange 2006a). 
 In the pre-boot camp phase, we add knowledge through 
programming. This can be either using traditional 
programming languages or as statements in a logic-based 

knowledge base, or by any number of means. The 
distinction is that the method is one of designed and 
engineered programming. Learning algorithms may be 
employed, but through a controlled method, and through 
training data sets. 

Boot Camp for Command and Control 
Prior to entry into the boot camp there is an opportunity to 
measure the knowledge currently held in the assistant. In 
the PAL program, an adaptation of traditional standardized 
tests for human students is used (Cohen and Pool 2005). 
PAL is meant to interact with human users, so using test 
techniques that are applied to humans seems appropriate.  
 The consequences of inadequate programming are that 
the assistant will not function well enough to learn in the 
simulation environment of the boot camp. This is the same 
issue we are hoping to avoid in operational use. Therefore, 
the measurements that support the decision process are 
equally valid in both environments. It will be a simpler 
matter to measure performance changes in the boot camp 
environment than in the operational environment and if we 
can use it to approximate the operational environment, we 
will be well off. 
 The next phase, the boot camp, is characterized by the 
use of simulation systems, just as they are used for training 
humans. We intend to use the Joint Semi-Automated 
Forces (JSAF) and the Composeable FORCEnet (CFn) 
command and control capability to provide a simulated 
operations environment for the assistant to observe and 
participate in. JSAF can be used to pose problems for 
decision makers to respond to. CFn allows the users to 
collaborate with PAL observing, participating, and 
learning. Decisions are enacted within the JSAF 
environment and results observed. 
 The questions in devising this boot camp capability are: 
how much training needs to be provided, and how broad 
and how deep does the resulting knowledge need to be at 
the end of the training to suggest that successful 
deployment will result? The remainder of this paper 
discusses an exploration of these questions. 

Boot Camp Simulation for Experimentation 
In preparation for developing training plans for use with 
humans and PAL software, we created a simulation of the 
boot camp in order to determine the patterns of learning 
that were needed. The simulation incorporated models of 
the task environment, the assistants, operations, and 
models of the human behavior for using the cognitive 
systems (Lange 2006b). 
 We model the environment using the tasks and concepts 
available to be known and performed. This approach uses a 
model that is commonly used in agent scheduling research 
(Chandrasekaran 1992) and was close to what was used in 
the PAL program for task learning (Meyers 2006). Figure 2 
illustrates the basic structure using Unified Modeling 
Language (UML). 



 
Figure 2 Task Structure in UML (Lange 2007) 

Tasks and methods form bipartite trees, where tasks are 
made of methods, and methods are composed of tasks. One 
executes all tasks of a method, but only needs one method 
to perform a task. Tasks at the leaf nodes are associated 
with concepts from a hierarchy of concepts. This is an 
implementation of the Task-Method-Knowledge (TMK) 
approach (Murdock 2000). The association represents that 
a concept is needed to be known in order to perform the 
task, in addition to knowing the steps of the task. A forest 
of task-method trees, associated with a concept tree form 
an environment model. Tasks, methods, and concepts are 
marked with whether or not they are observable, and with 
the cost to perform or learn the task, method, or concept. 
Various rules are required for the semantics of these 
objects that are described in (Lange 2007). 
 The knowledge held by an assistant is modeled as a 
marked environment model, where the marks indicate 
which elements of the model the assistant has learned. 
Operations are modeled as lists of instances of tasks. The 
tasks are taken from the roots of the task trees. Each 
instance has a deadline and a reward value for finishing the 
task before the deadline. Task instances are also associated 
with a small number concepts from the concept tree. These 
concepts are independent of the concepts that the tasks are 
already associated with from the TMK model. When 
deployed, PAL will face this situation frequently. A task 
that researches the casualty status of a piece of shipboard 
equipment requires knowledge of how to research the 
information, but may also need some knowledge of the 
particular ship involved. 
 The human is modeled in the execution of the 
simulation. We are interested in the decisions made by the 
human as to what method to use when performing a task. 
The human must decide when to expend effort to provide 
training for the assistant and when to perform the task 
without help. Any task that the assistant can perform 
without additional training costs the human no time. 
Training the assistant to perform a task costs some factor 
more than the time it would take the human to perform the 
task alone. Training the assistant to know concepts related 
to a task has a cost associated as well.  

Experiment Design 
PAL aims to use multiple learning strategies to enable an 
assistant to be successfully utilized. The experiments using 
the simulation were designed to help identify the roles and 
requirements for different learning strategies and the level 

of preparation the assistant needed prior to deployment to 
take advantage of them. In order to accomplish that, 
experiments were run against ten different human behavior 
algorithms with variations in the complexity of the 
environment, the amount and type of preparation of the 
assistant and the ability of the assistant to learn by 
observation rather than more costly training. Table 1 shows 
the ways the experiments differed. 
 
Number of 
Operations 

Observability Max 
Depth 

Coverage 

5 10% 5 0% 
5 10% 5 10% 
5 10% 5 20% 
5 10% 5 30% 
5 10% 5 100% 
5 10% 5 10% 

focused 
5 10% 5 10% 

focused 
10% 
additional 

5 10% 5 10% 
focused 
20% 
additional 

5 10% 5 10% 
focused 
30% 
additional 

5 10% 3 0% 
5 10% 3 10% 
5 10% 3 20% 
5 10% 3 30% 
5 10% 3 100% 
5 10% 3 10% 

focused 
5 10% 3 10% 

focused 
10% 
additional 

5 10% 3 10% 
focused 
20% 
additional 

5 10% 3 10% 
focused 
30% 
additional 

5 10% 9 0% 
5 10% 9 10% 
5 10% 9 20% 
5 10% 9 30% 
5 10% 9 100% 
5 10% 9 10% 

focused 



Number of 
Operations 

Observability Max 
Depth 

Coverage 

5 10% 9 10% 
focused 
10% 
additional 

5 10% 9 10% 
focused 
20% 
additional 

5 10% 9 10% 
focused 
30% 
additional 

5 0% 5 20% 
5 0% 5 10% 

focused 
10% 
additional 

5 10% 5 20% 
5 10% 5 10% 

focused 
10% 
additional 

5 20% 5 20% 
5 20% 5 10% 

focused 
10% 
additional 

5 30% 5 20% 
5 30% 5 10% 

focused 
10% 
additional 

5 100% 5 20% 
5 100% 5 10% 

focused 
10% 
additional 

Table 1Experiment Parameters 

 Parameters and fixed environment generation settings 
were chosen in part by observations made in an earlier set 
of experiments in which Crisis Action Planning processes 
were executed by military personnel as part of a role-
playing simulation (Wong et al. 2006). Training in the boot 
camp consisted of either random training, or a combination 
of focused and random training. Focused training provided 
that a small number of tasks would be completely known 
to the assistant. Maximum depth of the concept tree 
provides differing levels of complexity for the operational 
environment being modeled, and observability indicates 
the amount of the environment that can be learned by the 
assistant without explicit help from the human.  
 Five operations of 100 tasks were generated for each set 
of experiments. Each operation was repeated for ten 
different human behavior algorithms (see Table 2), and 

data was collected on the effectiveness (reward collected) 
and efficiency (reward collected divided by time used). 
Analysis of variance was then used to determine the 
contribution of each of the variables towards the results. 
Graphical analysis was also performed to better understand 
the results. 
Human-only 
Greedy-Fast 

Human performs the task alone, using 
most efficient method. 

Greedy-Fast Human chooses method that with 
assistant will be most efficient, without 
being willing to train the assistant 
during the operation. 

Greedy-
Enlightened 

Similar to greedy-fast, but the human 
will consider methods that require task-
instance dependent concept training for 
the assistant if it will result in a faster 
completion. 

Realistic #1 First choice will be the fastest method 
that involves teaching task instance 
related concepts so that the assistant’s 
knowledge is built up, but that will be 
fast enough even with teaching to meet 
the deadline. 

Realistic #2 Similar to Realistic #1, but consider 
teaching new tasks and their concepts as 
well as task instance related concepts. 

Realistic #3 Same as Realistic #2, but now if there is 
any spare time built up, use it to further 
train the assistant. 

Human-
Favorite 

The human performs the task alone 
using one path through the TMK tree 
that represents a favorite way to perform 
the task. 

Human 
Favorite with 
Assistance 

Same as Human Favorite, but now the 
assistant can help if it knows any of the 
tasks on the favorite path and knows the 
associated task instance related 
concepts. Teaching is in accordance 
with Realistic #3 

Smart Human 
Favorite 

Same as Human Favorite, but if the 
favorite method is not fast enough to 
earn a reward, the next time this task is 
performed a new method will be tried. 

Smart Human 
Favorite with 
Assistance 

Same as Smart Human Favorite, but 
now the assistant can help if tasks and 
concepts are known. Teaching is in 
accordance with Realistic #3. 

Table 2 Human Behavior Algorithms 

Experimental Results 
The results showed that the environment complexity had 
little to do with changes in performance relative to other 
factors. While statistical significance was found in the data, 
the relative contribution to the change was small. The F 
test was run for each variable as part of an Analysis of 
Variance (ANOVA) and was significant for the tree shape 
factor.  



F(2,747) = 4.110, p < 0.02 
However, the proportion of the total variance that 
attributed to this effect is low. Partial Eta Squared is 0.01. 
The interpretation of this result relative to the results that 
will be in the sections on assistant training and human 
behavior is that it is of less importance than how the 
assistant is trained in the boot camp and the manner in 
which the assistant is employed and trained by its user. 
 Observability appears to contribute positively to the 
effectiveness of the assistant. However, it does not appear 
to contribute much until the observable percentage gets 
very high. ANOVA  showed the following main effects of 
observability. 

F(4, 495) = 123.1 , p < 0.01, 
Partial Eta Squared = 0.53 

Further analysis shows that observability above 30% was 
significantly better than if it was below 30%. Graphs from 
this analysis is in (Lange 2007). 
 Analysis varying the amount of knowledge that the 
assistant gained in the boot camp yielded significant 
results. Tests were performed with 0%, 10%, 20%, 30%, 
and 100% knowledge of the task-method and concept 
trees. ANOVA was performed to see if the factor was 
significant in determining effectiveness of the human-
computer team. The results showed that not only was this a 
significant factor, but that it accounted for a large portion 
of the variation seen in the experiments. 

F(4, 745) =  137.7, p < 0.01 
Partial Eta Squared = 0.429 

The quantity of the knowledge is an important factor. The 
question suggested is how much is needed? The 
experiments here can only answer definitively for the 
particular environments and operations used, but can 
suggest patterns that can inform boot camp development. 
In order to get those patterns, we turned to time series data 
from the experiments. Graphical analysis suggests that for 
the weaker human behavior strategies, there is a threshold 
value somewhere in the 20-30% range where an assistant 
can avoid abandonment. 
 Results for the type of training provided (random or 
manipulated) were ambiguous. The Realistic #3 algorithm 
curves demonstrated most clearly what is happening. There 
are situations where the assistant with 20% manipulated 
knowledge, performs better than the assistant with 30% 
manipulated knowledge. Since the two assistants can know 
about a different set of tasks, there is always a chance that 
the 20% manipulated assistant just happens to know the 
tasks that appeared early in the operation. What is also 
apparent is that if an assistant is unlucky enough not to 
know the early tasks, then having broad knowledge is an 
advantage, since it saves time that allows for teaching. This 
implies that if a boot camp is to be successful, the tasks 
selected for the training the assistant must be chosen 
carefully to be the ones most likely seen early in its 
employment. If that is not the case, then random 
instruction may do better. 

 Statistical analysis with ANOVA showed that the human 
behavior algorithm was a significant and powerful factor in 
the results.  

F(9, 740) =  256.2, p < 0.01 
Partial Eta Squared = 0.759 

The Realistic #3 algorithm is the superior approach (based 
on graphical analysis) for employing the assistant. There 
are also instances where Realistic #2 outperforms the 
others, but no result is more obvious than the benefits of 
using Realistic #3 and this clearly must explain the power 
demonstrated in the ANOVA results. 
 The primary difference in Realistic #3 is the addition of 
spare-time training. Each of the algorithms builds on the 
previous one adding opportunities for training, but only 
this addition causes such a large leap in results. 
 The human-favorite series of algorithms were dismal 
failures. This was regardless of the amount of or type of 
training provide to the assistant in the simulated boot 
camp. Only the assistant with the manipulated learning 
with an additional 30% coverage of random learning 
showed promise. It would likely avoid abandonment with a 
patient user as it in general kept the user’s performance 
above the baseline of the human-only favorite 
effectiveness. The fault lies not with the assistant in this 
case. This is a failed human strategy for getting work done, 
regardless of the assistant. These experiments show that 
with enough learning, an assistant might be able to bail out 
a poor human strategy. 

Conclusions 
The research presented here, demonstrates that a capability 
that must learn on-the-job, requires some prior knowledge 
before being deployed. The information discovered in this 
research can inform the design of a boot camp for 
assistants that learn. The results clearly demonstrate that 
more training is better, which is not surprising. What was 
less expected was the lack of contribution of fully known 
tasks to the results. The manipulated assistants that knew a 
small number of tasks completely rather than having broad 
incomplete knowledge were at a disadvantage in an 
environment that can include surprises and where the 
operations cannot be well predicted. Spare time graphs 
provide evidence that if one can determine some set of 
known tasks that the assistant can execute early in its 
deployment, thus saving time for the user, this can result in 
ultimate success provided the spare time generated is used 
for further training. However, if the guess of which tasks 
are important to start with is wrong, the assistant is 
immediately put at a disadvantage to ones with broad 
random knowledge. 
 Some of the operations and conditions showed a 
considerable jump at the 20% level. Since knowledge in 
real world domain is for all intents and purposes infinite, 
what does it mean to have 20% coverage after the boot 
camp. In these experiments the knowledge that was 
available to be known was about the possible tasks for the 
operations. Therefore, providing an assistant with 20% of 



the knowledge needed associated with some list of tasks 
that are likely to occur should be sufficient to give the 
assistant a strong chance of not being abandoned.  
 Of less significance than expected was observability. 
When thinking about this factor, we can think of it in two 
ways. The experimental results show that learning by 
observation was a useful contributor to success. However, 
without other factors contributing, observability needs to 
be quite high before it by itself can prevent abandonment 
or disaster with the assistant. Explicit teaching was more 
beneficial, because it can be targeted to areas where it is 
more likely to help the cause, for instance the one 
remaining subtask that prevents an assistant from 
completely automating a method.. 
 The environment was also looked at as a factor in 
success or failure of assistant deployment. The complexity 
of the domain (in terms of tree depth in the simulation) 
made no difference in the outcome. This means that the 
results found are likely valid for a broad range of 
environments. 
 Of considerable significance was the human behavior 
contribution. The results quite clearly show that learning 
capabilities require a different approach by the user. 
Success was only assured in all of the tests if the user 
followed an approach where spare time generated by the 
assistant was reinvested in the form of teaching the 
assistant about its environment and about tasks it might 
encounter in the future (represented by the Realistic #3 
algorithm). Combined with sufficient knowledge from the 
boot camp to give a reasonable probability of early spare 
time, such a strategy provides significant confidence in 
success. Use of this strategy, significantly reduced 
variation, caused by random factors, in the likelihood of 
successful employment in our simulation, and could 
reasonably be assumed to do the same in an actual PAL 
deployment. This implies that in addition to finding ways 
of preparing the assistant, considerable attention must be 
paid to preparing the users before deployment. 
 The results of the human-favorite series of algorithms 
did show that a knowledgeable enough assistant might be 
able to prevent a user from failing despite a poor human 
work strategy. Analytically, one could see that if the 
human’s favorite way of doing things corresponded to the 
assistant’s knowledge, the human might not fall so far 
behind. This suggests a boot camp strategy that is very 
consistent with the PAL program vision. Users and their 
assistants must be together as early as possible, perhaps 
attending the boot camp together. If a well thought out plan 
for learning included the tasks most likely to be seen early 
in deployment was conducted so that the manner in which 
the user preferred to address the problem was the same as 
was taught to the assistant, one might have an optimal 
approach. This requires though, that the boot camp be able 
to set up conditions that allow the assistant to be taught in 
this way. 

References 
Brachman, R., 2007. (AA)AI More than the Sum of Its 
Parts. AI Magazine 27(4): 19-34. 
 
Chandrasekaran, B.; Johnson, T.; and Smith, J. 1992. Task-
structure Analysis for Knowledge Modeling, 
Communications of the ACM 35(9): 124-139. 
 
Cohen, P. and Pool., M. 2005. The CALO 2005 
Experiment Data Analysis. http://calo.sri.com. Accessed 
15 January 2007. 
 
Lange, D.S., 2006a. PAL Boot Camp: Acquiring, Training, 
and Deploying Systems with Learning Technology. In 
Proceedings of the 2006 Command and Control Research 
and Technology Symposium, San Diego, Calif.: DOD 
CCRP. 
 
Lange, D.S., 2006b. Boot Camp for Cognitive Systems. In 
Proceedings of the Twenty-First National Conference on 
Artificial Intelligence, 1889-1890. Boston, Mass.: AAAI 
Press. 
 
Lange, D.S., 2007. Boot Camp for Cognitive Systems: A 
Model for Preparing Systems with Machine Learning for 
Deployment. Ph.D. diss.: Dept. of Computer Science, 
Naval Postgraduate School. 
 
Meyers, K., 2006. Building an Intelligent Personal 
Assistant: The CALO Project. Proceedings of the Twenty-
First National Conference on Artificial Intelligence,  xliii. 
An Invited Talk. Boston, Mass.: AAAI Press. PowerPoint 
presentation found on 19 January 2007 at 
http://caloproject.sri.com/publications/downloads/AAAI06
myers.ppt. 
 
Murdock, J. 2000. Semi-Formal Functional Software 
Modeling with TMK, Technical Report GIT-CC-00-05, 
College of Computing, Georgia Institute of Technology. 
 
Wong, L.; Lange, D.S.; Sebastyn, J.T.; and Roof, W.H. 
2006. Command World. In Proceedings of the 2006 
Command and Control Research and Technology 
Symposium, San Diego, Calif.: DOD CCRP. 


