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WAVELETS AND MULTIGRID

WILLIAM L. BRIGGS* AND VAN EMDEN HENSON'!

1. Introducton. The last few years have seen a remarkable amount of activity
and interest in the field of wavelet theory and multiresolution analysis. With this
heightened level of interest, researchers in diverse fields have begun to consider wavelet-
based methods. The work presented in this paper was done in an exploratory spirit,
by investigating the very suggestive similarities between multiresolution analysis and
multigrid methods. The results are preliminary and only point to several avenues of
future work.

Like many mathematical topics that suddenly gain currency, wavelet theory has
origins that are not all that recent. Both the history and the theoretical foundations
of wavelets can be found in several recent and outstanding papers [2, 4, 5, 7, 8, 11].
By all accounts, the definitive treatise will be a forthcoming book by Y. Meyer [10].
In this paper we have neither the space nor the audacity to duplicate the excellent
presentations that already exist in these sources. Instead, we will review the essential
features of multiresolution analysis that seem to pertain to multigrid algorithms.

2. Multiresolution Analysis. A multiresolution analysis is a framework
that consists of of a sequence of nested closed subspaces (typically of L?(R))
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whose union is dense in L?(R). The important features of these subsets are that:

a. Vp is spanned by an orthonormal set consisting of integer translations of a single
scaling function ¢. For each integer 7, V; is spanned by an orthonormal set
consisting of translations of scaled versions of ¢:

V; = span {(b(Q_jw — k) }k.

b. For each integer j, V; = V; 41 ®©W,11, where each W; is spanned by an orthonormal
set consisting of translations of scaled versions of a single wavelet function

[k
W; = span {277z — k)}1.
c. The doubly indexed set {¢)(277z — k)}; » spans L?(R).

Once a scaling function ¢ is found, the associated wavelet function v with all of the
required orthogonality properties can be found directly. However, ¢ is clearly a rather
extraordinary function and the discovery of such functions has been a major effort.
Computationally, there are several ways to produce a scaling function, among them to
compute its Fourier transform first. An important property of scaling functions and
the associated wavelet functions is that they are highly localized in both the spatial
and the frequency domain. Summarizing a wealth of fascinating work, there appear
to be three general classes of scaling functions:
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2 WILLIAM L. BRIGGS AND VAN EMDEN HENSON

a. C* scaling functions due to Meyer [9] that have non-compact support and poly-
nomial decay,
. C* scaling functions due to Battle [1] and Lemarie [6] that have non-compact

o

support, exponential decay and are generated by orthogonalization of classical
splines, and

c. the Daubechies scaling functions Doy [2] that have compact support, but smooth-
ness that increases slowly with k.

In practice, when dealing with discrete problems such as image processing or signal
analysis, the problem is posed on (or projected onto) the space Vi which represents
the highest level of resolution that is desired. Given a function u € Vj, the subspaces
Vi,..., Vi, for some M, give representations of u on increasingly coarse levels. At
each level, the difference between the projection of u in the spaces V;;; and V; is
given by the projection of u in the space W;,;. The V; projection retains the smooth
features of u, while the W; projection captures the detail (or oscillatory) components
of u.

Within the multiresolution framework it is possible to do a very efficient decom-
position of a function over all of the subspaces of interest. Given a function u € Vg,
we may use the orthogonality of ¢ and v to find coefficients cgx such that

(1) u(z) = Z corp(z — k).
k

This may be regarded as a fine grid representation of u. Furthermore, coefficients ¢y
and dy may be found for a coarse grid representation of u on Vi and Wy of the form

2) w(z) =3 clkqb(g — k) dmp(g — k).
k

This process may be continued by decomposing each V; representation of u on the next
coarser pair of grids V4 and W,y until the coarsest grid is reached. The efficient
Pyramid Algorithm for performing this decomposition (and the inverse synthesis) has
been proposed by Mallat [8, 7]. The full decomposition of an N = 2M
of u over M levels requires O(N) operations.

-point sample

3. The Multigrid Connection. With this brief survey, we turn to possible
connections between multiresolution analysis and classical multigrid algorithms. We
will consider a general operator equation of the form Lu = f where L is a self-adjoint
operator representing, for example, an elliptic boundary value problem. The notation
can be simplified by letting

dik = ¢(277x — k) and ;5 = (277 — k).

In addition, (u,v) will denote the appropriate inner product for the problem.

On the fine grid V, and the first coarse grid (Vi, Wy), the solution u may be
represented as in (1) and (2). The data f also have a representation on V, and
(Vi, Wy) with respective coefficients for, fir and g1x. The fine grid problem after
using orthogonality in a standard Galerkin way has the form

(3) Z cor{®ojs Ldok) = foj, VJ.
k
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Fig. 1. The hat functions (left) span Vi and the range of interpolation, while the teeth functions
(right) span Wy and the null space of fullweighting.

The known wavelets appear to have no special orthogonality properties with respect to
standard elliptic operators so (3) represents a system of linear equations with generally
narrow band width, but with no obvious advantages over known discretizations.

In a similar way, the problem may also be represented on the coarse grid. Substi-
tuting the (Vi, Wy) representations for u and f and using orthogonality leads to

(4) > er(dij, Lowg) + din(ong, Libig) = frj, V)
%

and

(5) > ey, Lore) + dur(rj, Lbir) = g1, V5.
%

The problem given in (4) may be regarded as the coarse grid problem for the smooth
components of the solution, while (5) gives the coarse grid problem for the oscillatory
components.

In classical multigrid algorithms, a solution is sought on the fine grid Q". The
fine grid solution may be represented in terms of a basis consisting of piecewise linear
hat functions ¢gr. The hat functions lack the required orthogonality to be genuine
scaling functions. Nevertheless, an associated “wavelet” function 4 may be found for
the hat functions (Figure 1) that allows for an orthogonal decomposition of the fine
grid space. The functions ¢y span the range of the interpolation operator Izhh and the
functions 11 span the nullspace of the full weighting operator I}?h.ln multiresolution
terms, we would write

Vo = span {¢1x} & span {¢1} = Vi & Wy,

while in multigrid terms we would write
Q" = span {¢13} ® span {¢1;} = Range {I},} & Nullspace {I?"}.

Thus multigrid produces the same orthogonal decomposition of the fine grid Q" that
multiresolution produces of the space Vj.

Classical multigrid deals only with the coarse grid equation for the smooth com-
ponents (4). The second term representing oscillatory components is dropped and the
matrix given by (¢1;, L¢yy) is precisely the multigrid coarse grid operator I}?thIth.
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The entire coarse grid equation for the oscillatory components is also dropped in
multigrid. The rationale for neglecting the oscillatory components is that relaxation
(iteration) is an extremely effective way to isolate or eliminate them. In summary,
multigrid formulations use simple, near-orthogonal basis functions that still allow for
an orthogonal decomposition of the fine grid space. Furthermore, multigrid does not
attempt to solve for the oscillatory (W;) components of the solution directly, but
rather lets relaxation handle them indirectly. This choice of departing from orthogo-
nality and incorporating relaxation (as well as the residual equation) accounts for the
extreme efficiency of multigrid algorithms.

In closing, it should be said that preliminary work on wavelet-based multigrid
algorithms has been done [3]. It appears that accuracy comparable to multigrid algo-
rithms can be obtained using the Dy compact wavelets on boundary value problems.
However, a comparison of computational effort is not given. Considerable work on
wavelet-based multilevel methods remains to be done.
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