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A Table of Analytical Discrete Fourier Transforms

William L. Briggs* Van Emden Henson'

January 14, 1995

Abstract

While most people rely on numercal methods (most notably the fast
Fourier transform) for computing discrete Fourier transforms (DFTs),
there it is still an occasional need to have analytical DFTs close at
hand. Such a table of analytical DFTs is provided in this paper, along
with comments and observations, in the belief that it will serve as a
useful resource or teaching aid for Fourier practioners.

1 Introduction

The table of discrete Fourier transforms (DFTs) that comprises most of this
paper was assembled using analytical methods. The table is not exhaustive,
since a good symbolic package or additional patience could certainly produce
a few more DFT pairs. However it does include many commonly encountered
input sequences.

A few words of explanation are in order. We assume that a function f is
sampled on the interval [—A/2, A/2] at N equally spaced points to produce
the sequence fp, where n = —N/2 + 1 : N/2. Of utmost importance is
the fact that, when extended, the sequence f, is N-periodic. This means
that if the A-periodic extension of f is continuous at z = +A/2, then
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2 WILLIAM L. BRIGGS AND VAN EMDEN HENSON

finy2 = f(£A/2). On the other hand, if the A-periodic extension of f is not
continuous at z = £A/2, then f, ~/2 must be defined as the average value
of f(£A/2). Similarly, at any point of discontinunity in [—A/2, A/2], the
sequence of samples f,, must be assigned the average of the function values
across the discontinuity. This proviso is given the name AVED: average
values at endpoints and discontinuities, and is noted in the table.

We can now define the DFT. The forward DFT is given by

N

12 o

Fk = ﬁ z]; fann
2

for k = —N/2 + 1 : N/2, where i is the imaginary unit and wy = e?™/N,

which defines another N-periodic seqeunce Fj. The choice of using a cen-
tered interval is somewhat arbitrary. Because of the periodicity of f, and
Fy,, the DFT can be defined on any NV consecutive points. For the record,
the corresponding inverse DF'T is given by

N
2
Jn = Z ka?Vk
_N
2

for n = —N/2+1: N/2. The table also lists the Fourier coefficients of each
input function on the interval [—A/2, A/2],

| A |
Ck = Z/ZA Flx)e™ 2R A dy for k=0,4+1,42,...,
-3

in order to compare Fj with cy.

Each entry of the table is arranged as follows.

Discrete input name frn, n €N
Graph of f, Fr, keN Graph of F}
lek — Fx|, ke N
Continuum input name fx), z el
Graph of f(z) cr, k€Z Graph of |c, — Fi|
Comments max |cr — F|
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The first column has two boxes. The upper box gives the name of the input,
below which are graphs of the real and imaginary parts of the discrete input
sequence. The lower box contains the name of the continuum input, and the
corresponding continuum input graphs. The middle column has six boxes
containing, in order from top to bottom, the formula of the input sequence
fn; the analytic N-point DFT output Fj; a measure of the error |c, — F}|; the
formula of the continuum input function f(z); the formula for the Fourier
coefficients cg; an entry for comments, perhaps the most important of which
is the AVED warning. This means that average values at endpoints and
discontinuities must be used if the correct DFT is to be computed. The
third column consists of two boxes. The upper box displays graphically the
real and imaginary parts of the DFT. The lower box gives the maximum
error max |c, — Fi|, and displays graphically the error |c; — Fj| for a small
(24-point) example.

A few comments and observations on the entries of the table might be useful.

e Symmetry. The well-known symmetries of the DFT and the Fourier
coefficients are evident in the entries of the table: if f, is a real, even
sequence (f_, = fp), then the resulting DFT sequence is also real and
even; if f, is a real, odd sequence (f_, = —f,), then the resulting
DFT sequence is pure imaginary and odd.

e Exact DFTs. The DFT is exact, meaning it reproduces the first NV
Fourier coefficients exactly, in several entries of the table. As shown
in cases 14, if the input sequence is periodic and does not consist of
frequencies greater than wy,,; = N/A cycles per unit length (or time),
then the DFT is exact. This condition is just the Nyquist sampling
condition.

e Errors. The table gives estimates of the difference |c, — Fj| which
should be interpreted in an asymptotic sense. If |c, — Fj| is given as
C NP the meaning is that

ek — Fi|

lim

N—oo NP c,

where 0 < C' < oo is a constant. These estimates are obtained by
a liberal use of Taylor series for large N. This asymptotic measure
of error conforms with the pointwise errors in the DFT which can be
obtained from the Poisson summation formula. Roughly speaking, if
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the periodic extension of f has p — 1 continuous derivatives, and f®)
is bounded and piecewise monotone, then

o N N
|Ck—Fk|SW for ]{7:—?4-1?,
where C' is a constant for all N [1]. The case p = 0 corresponds to
functions f whose periodic extension is only piecewise continuous. A
similar bound holds for DFT approximations of the Fourier transform
of compactly supported functions.

For example, cases 5, 6, 6¢c, 7, 9, 10, 10a, 11, 13, 14, and 15b of
the table are piecewise continuous functions (p = 0), and all show
asymptotic errors of the form CN~! or CkN 2. The latter term means
that for the low frequency coefficients (|k| ~ O(1)), the error can
decrease as C'N~2; however, for the high frequency coefficients (|k| ~
O(N/2)), the error decreases as CN L. In cases 6b, 6d, 7, 8, 12,
and 15a, the derivative of the input function is piecewise continuous
(p = 1), and the errors decrease as C N~ 2. For input functions with
higher degrees of smoothness, analytical DF'Ts are difficult to compute,
however numerical experiments confirm the error estimates for larger
values of p.

2 The Table of DFTs

The following notational conventions hold throughout the Table of DF Ts:

N A A
=< -—"—+1 — IT=|——,—= 7 = +1,£2,...};
N { + 9 72}7 |: 272:|7 {07 9 9 }7
‘on 27k 1 if k=0
— 12— _ _ bl
wy =€ = ‘5(’“)_{0 ik £0;
R [ 1 if k=0or amultiple of N,
5N(k)_{ 0 otherwise.

AVED = average values at endpoints and discontinuities,
C' is a constant independent of k£ and N.



A TABLE OF ANALYTICAL DFTSs

TABLE OF DFTs

Discrete input name fr, nEN
Graph of f, F,, ke N Graph of Fj,
|C;C — Fk|7 keN
Continuum input name flz), zel
Graph of f(z) ck, k€ Z Graph of |c, — Fi|
Comments max |cr — F|
1. Impulse d(n —no) Fy:
S B I U_W_AJJ_U_W_LU
R: Lwyrok R:
T: Exact T:
1. None -
nog € N
2a. Paired impulses 2(0(n—no) +6(n+mo)) | F:
o bl
R: L cos( 2ok R:
T: Exact T:
2a. None -
nog € N
2b. Paired impulses 2(0(n+no) —6(n —mno)) | F:
R: < sin( 27’;(,0]“) R:
T: Exact T:
2b. None -
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3. Complex harmonic w;f,ko F}, and c:
) I B B
R : on(k — ko) (periodic) R :
T: Exact T:
2nkgw
3. Complex harmonic e A
R ;\/\/ 5(k — ko)
I:/\/\/ ko € Z max |cp — Fj| =0
3a. Constant 1 F}, and c:
LU . R B
R : on (k) (periodic) R :
I: Exact A
3a. Constant 1
R : o(k)
Z: Case 3: ko =0 max |cp — Fj| =0
4a. Cosine harmonic cos(2kon ) F}, and cy:
. ) o
R: 10N (k — ko) +on(k+ko)) | R:
I: Exact A
4a. Cosine harmonic cos(%)
’R,;\/\/ %(5(]{,‘—]{,‘0)4—5(]{:-{—]@‘0))
7Z: ko € Z max |cp — F| =0
4b. Critical mode cos(mn) = (—1)" F}, and cy:
) ]
R: on(k—%) R:
T: Exact T:
4b. Critical mode cos(Zz)
r: WV s - 2y 50+ 3
7Z: Case 4a: ko = 5 max |cp — F| =0
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4c. Sine harmonic
R :

T:

sin( —2”]];0" )

L(0n (k + ko) — dn (k — ko))

Exact

4c. Sine harmonic

R:/\/\/

sin( —2”2‘” )

$(6(k + ko) — 6(k — ko))

g et

sin(w(k—ko)) sin(2m(k—ko)/N)

T: ko € Z max |cy — Fr| =0
5. Complex wave whko Fy and cy:

N N U

2N sin2 ( (k—ko)/N) R:
T: ~ C(k — ko)N2 T:
2mkge
5. Complex wave e A lek — Fi|, ko=24
W
. sin(w(k—ko))
R: w(k—ko)
I :/\/\/ AVED, ko ¢ Z max ~ 1072, N = 24
6a. Cosine cos(’r?v—o") Fy, and cy:
cos(mk) sin(mwkg/2)
W'_AM_UJ_A_W AN ‘_J_,_L_i
R: sin 64 sin@_ R:
X\ sz 64/2  sin26_/2
T: ~ CkoN™? T:
6a. Cosine cos(”—’i?ﬂ) lek — Fi|, ko=24
/\/
. 2kg cos(mwk) sin(mwko/2)
R: - m(4k2—k2) ‘
7: ko ¢ Z,0, = T2hEko) max ~ 1072, N =24
6b. Half cosine cos(5#) F}, and cy:
cot L e ‘_AL?
. (k) sin 6 sin@_ .
R: COZN (sin2€:/2_sin2€,/2) R:
7: ~CN—? 7:
6b. Half cosine cos(mz) on (—1,1] |k — F|
T (INNETITITIRTHNANINNIIR
. 2 cos(mk)
R: - 71'((;10]:2—1)
7: Case 6a: 04 = “CFED k) — 1 4 =1 | max~ 1073, N =24
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6¢. Sine

. il

sin(%’ﬂ)

. cos(mk)sin(mwkp/2)
¢ IN

sinf sinf_
X (sin29+/2 + sin207/2)

Fy and cg:

R :

I;AJT*_

7: ~ CkN—2

6c. Sine sin(ZE0) ek — Fil, ko = 2.4
\/\ Wil
. -4k cos(wk)sin(mwko/2)

R: P r@kr kD) :

T: AVED, ko ¢ Z,0+ = 725k | max ~ 1072, N =24

6d. Even sine

| sin(27n/N)|

Fy and cg:

s I B
. 1+ (k) sin @ sin@_ .
R: CZ]SV (sin2 6‘_:—/2 " sin2 9_/2) R:
T: ~CN™? T:
6d. Even sine |sin(2mz/A)| lek — Fl
PN IR
. 1 1tcos(mk)
R: e
T: 0+ = 2Z(k+1),cx1 =F; =0 | maxx107°, N =24
7. Linear n/N Fj and cp:
R: Fy =0, F), = St R:
T: ~CkN~? T:
7. Linear z/A |k — Fr|
. Wt
R: / co = 0, [ %
Z: AVED, f_y =0 max ~ 1072, N =24
8. Triangular wave 1—2|n|/N Fj, and cy:
. T T
T: ~CN™? T:
8. Triangular wave 1-—2Jz|/A lek — Fl
— T ENNERIEEEE]
R: co = %,Ck = 1_70,375,\(;]6)
T: max ~ 1073, N =24
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9. Rectangular wave { _1: (;]<V/7?<<]7\1f/<2 0 Fj, and cy:
R WWWMM Fy=0,F, = ilggolonle | R
T: ~ CEN™? T: —l—
9. Rectangular wave { _1: (;ﬁ/:f << £/<2 0 lcx — F|
co = 0, cp = ileostri)=) bt L

Re

AVED, f, = 0 for n = 0,£N/2

max ~ 1072, N =24

1, |n|< M/2 .
10. Square pulse { 0, M/2< |n| < N/2 Fi and cg:
PP 4 4 R P
R: Fo=% F. = 7&“(27;\??:{{2]\‘;)’;/';9’“ R:
T: ~ CkN™? T:
1, |z|<a/2
10. Square pulse { 0, a/2<|z| < AJ2 |k — Fr|
R co = %7ck _ sln(trkka/A)
7: AVED,0< 4 =4 <1 max ~ 1077, N = 24
1, |n| <N/4 :
10a. Square pulse { 0, N/4<|n|<N/2 Fi and cg:
Iy | N
. _ 1 __ sin(wk/2)sinf .
R: Fo =35, Fe = Syaze, e | R
T: ~ CEN™? T:
1, |z|<1/2
10a. Square pulse { 0 1/2<z| <1 |k — Fr|
] | ) sin(nk/2) Ll oot
R: C0=35:Ch=""rp =

7:

AVED, Case 10: A=2a=1

max ~ 1072, N =24
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11. Exponential e AN g<n< N—1 Fi, and cg:
Wy o . b
. o(l—en )—i20en sinfy .
R: 2N(1—J\‘;eN cosGk-&-e?\]) R:
T: ~CN™! T:
11. Exponential e << A ek — Fx|l, a =2, A=3
(TR L
. oc(aA—i27k)
R: QT ATTanTRE
T: AVED,oc=1—ec¢ ey = Y | max~ 1072, N =24
12. Even exponential e—aAlnl/N F}, and c:
MJJJMJJ_\_UJJJJJJJJ_I 2 4J_‘;
. (1—e%, )(1—ea cos(mk)) .
R: N(liv2eN CosﬂkJrei,) R:
T: ~CN™? I:
12. Even exponential e"ol®l z) < A/2 ek — F|, a=2, A=1
e e NAANAAANANE
. 20A(1— (k)
T: e = e 2 ey = 70N max &~ 1073, N =24
13. Odd exponential (n/|n|)e=*AI/N F, and cy:
) WWWTML . 2(e v sin 03 ) (ea cos(rk)—1) )
R: t ]<7V(1—2ekN cisGk-&-e?\]) R:
T: ~CN™! T:
13. Odd exponential (z/|z)e=!) |x] < A/2 lek — Fi|, a=2, A=1
LAML\J
- \/\ i4wl;(zejzciz(:21v£;l)
I: AVED, ey = ¢ %4/2 ey = ¢ @A/N max~ 1072, N =24
14. Linear/exponential (nA/N)e=AIRl/N F}, and cg:
2A sin 0y, (o (€3 —en)+-
R - L N2(e§—4cosﬂk(e}3v+5N)+... R
’ ---+Negen cos(mk)(l—en cos b)) ’
---+2eZ; (cos(20,)+2)+1)
T: ~CN™* I:
14. Linear/exponential ze~olel lek — Fi|, a =2, A=3
R \/\ Z‘%(QQ Cos(ﬂ'k)+ MJJ_LA_A_‘_‘_A_A_L‘M
424 (e, cos(k) — 1))
or =1+ (§ —1)es cos(mk)
7: er = e A2 ey = eTaA/N max ~ 1073, N =24
d=a’A? +47°K?, AVED
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15a. Cosine/exponential e~ AIM/N cos(mn/N) Fj, and cy:
(l—e?\,)+25231\r cos(mk) sin 6
__‘_‘_A_AJJJJ_UJ_A_A_‘_‘_‘ b
R 2N(1—225N cos 04 +eZ) R
(1—ex)—2ezen cos(mk)sinf_
+ 2N (1—2epn cos€,+e?\,)
T: ~CN™? T:

15a. Cosine/exponential

A
R :

e~®l cos(mx/A)

egky cos(mk)+a
A(k3_+a2)

esk_ cos(mk)—a
A(k2 +a2)

N
0= Z(2k+1), ki=Z(2kx1)
AVED

max ~ 1073, N =24

15b. Sine/exponential

R;“WWM

7:

e~ @AM/ N gin(n/N)

i 1—en cosf +eocen cos(mk)sinf
N(1—2ep cos 9++e%v)

_l—encosf_—esen cos(mk)sinf_
N(1-2en cosG_Jre?v)

~CN™!

Fy and cg:

15b. Sine/exponential

eIzl sin(mz/A)

ieoky sin((2k+1)7/2))+a

——s
R: \/\ _iegi(f:i:;(2ic—1)7r/2))+a
A ¥a?)
€3 = e “A/2 en — e AN
T: b+ =Z(2k+1), kx=2(2k+1) | max~10"° N =24
AVED
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