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ABSTRACT

The reliability of a system is the probability that the

system will survive or complete an intended mission of

certain duration.

Describing all possible ways that a system can survive a

mission in reliability shorthand gives a simple approach to

reliability computations. Reliability computation for a

system defined by shorthand notation is greatly dependent

upon the convolution problem.

Assuming constant component failure rates, this paper

presents an analytical approach and a computer program for

computing the reliability of any convolution of independent

and exponentially distributed random variables.
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I. INTRODUCTION

In making" a mathematical model for a real- life phenom-

enon it is always necessary to make certain simplifying

assumptions so as to render the mathematics tractable. One

of the simplifying assumptions that is often made is to

assume that certain random variables are exponentially

distributed. The reason for this is that the exponential

distribution is relatively easy to work with.

The property of the exponential life distribution which

makes it easy to analyze is its (memoryless) lack of deteri-

oration with time. By this we mean that if the life time of

an item is exponentially distributed, then an item which has

been in use for a certain amount of time is as good as a new

item in regards to the amount of time remaining until it

fails. When the life time of an item is exponentially

distributed, the failure rate function for the item is

constant

.

Under the assumption of constant component failure

rates, it is possible to build a reliability shorthand

[Ref. 1] for any system. The term system is used to describe

a set of components organized to perform some mission.



Any study on system reliability requires a description

for the system's life and a derivation of the system's

survival function. The reliability shorthand gives a simple

and easy way for describing a system's life, but it is

difficult to implement computationally since it involves

considerable complexity in handling convolutions. Here, the

term convolution refers to the summation of independent

random variables (lives).

This paper presents an analytical approach for obtaining

a general equation for the survival function of any convolu-

tion of independent and exponentially distributed random

variables

.

Section 2 deals with convolutions in detail and gives a

mathematical derivation for a general equation for the

survival function for any convolution of exponential random

variables, using Laplace transforms and Theorem of Residues.

Section 3 gives a mathematical derivation for an alter-

native formula for the survival function of any convolution

of exponential random variables by computing the coeffi-

cients of all the polynomials that accompany the exponential

terms in the survival function equation.

Appendix A contains a computer program written in

Fortran for computing the reliability of any convolution of

inependent and exponentially distributed random variables.

This program uses the general equation in Section 2.



Appendix B contains another computer program written in

Fortran to compute the reliability of any convolution of

exponential random variables, using the general formula in

Section 3

.

10



II. CONVOLUTIONS

Under the assumption of constant component failure

rates, this section presents an analytical approach for

finding a general equation for the survival function of any

convolution of independent and exponentially distributed

random variables.
i

A. SURVIVAL FUNCTION BY INTEGRATION

Let us start with a simple system; a standby system

having one active component and one cold spare component.

The life time of the system is

where

and

T = T, + T 2 ,

T, ~ EXP(\| ) ,

T z^ EXP(\ Z ) ,

T I , Tp are independent

An active component A is to complete a mission of dura-

tion t, while a spare component S replaces the active compo-

nent when it fails. The life duration of the active

11



*—« T
TIME

WORKING COMPONENTS

Figure 2.1 A Single Active Component With One Spare

component is T
|

and the life duration for the spare compo-

nent, if it is used, is T^ (see Fig 2.1).

The system survival function is given by

F T (t) = P ( T > t)

t

= F T (t) + / F-r (t-s).f-r (s) ds

-X.t r -X2
(t-s) -X,s

= e *r V ds
,

where

f
Ti

(s) = - dF^(s)/ds

X,e-
X

'

S
.

By integration, the survival function for the system is

_ \ z -\,t X, -\ 2
t

F T (t) = - V- e + - L— e , t^O

\z X, x,-x

12



Now, suppose a system consists of one active component

with constant failure rate \. and two spares having constant

failure rates /vo anc* X? respectively. The life time of the

system is

where

T = T, + T 2
+ T 3 ,

T, ~ EXP(\, ) ,

T z ~ EXP(\
Z ) ,

T 3 ~ EXP(\ 3 ) ,

and

Tj, T ^ , T^ are independent.

The shorthand notation for the system is

EXP(X, ) + EXP(\
2 )

+ EXP(X
3 ) •

The survival function of the sustem is given by

F T (t) = F7j^ T2 (t) +J
F

1
^(t-s).fT

j

+ -,

i
(s) ds

where

7 (t .., . -M*-*

13



and

f
TJ+Tfc(

s )
= -dFT| + Tl(s)/ds

X, \z r -\z
s -\ Si

XrX e

- e

By integration, the survival function for the system is

FT (t) = FT+T+-r(t)

XzXs c~
X|t

|

X,X3 e-
X2t

|

X
1 A2_£

X
f

(Xe-X,)(X3-X^(XrXz)(XJ-Xz)
+

(Xr\3)(Xz-X3)

, t>0

To compute the survival function for a system of n

lives

,

T = T, + . . .+ T n ,

we can proceed in a similar manner. However the integrations

will become increasingly complex, particularly if the tacit

assumption made so far that all component failure rates are

different is abandoned. Therefore, we will use another math-

ematical way to compute the survival function without direct

integration. This will be done with Laplace transforms and

the Theorem of Residues in the next subsections.

14



B. CLASSIFICATION OF CONVOLUTIONS

Consider a system which has a life time

T = T, + ... + T n ,

where Tj , . .
.
,Tn are independent and exponentially distrib-

uted random variables. This system can be classified as one

of three possible convolution cases :

1. First Case

The system has n dissimilar failure rates,

A
j

* Aj , i $ j , i
, j = 1 , ... , n

.

2

.

Second Case

The system has n identical failure rates,

A
j

= A
j , i

, j = 1 , ... , n

.

3

.

Third Case

The system has a combination of the first case and

the second case, some similar and some dissimilar failure

rates .

We consider the third case to be of particular

interest, since it better represents the general situation

in computing the reliability of any convolution of exponen-

tially distributed random variables.

15



C. CHARACTERISTIC FUNCTIONS AND LAPLACE TRANSFORMS

Consider a random variable T which has a distribution

function F-r-(t) and a density function f-p(t). The charac-

teristic function of T is defined, for any real number u,

[Ref. 2] by

T
(u) = E

iuT 1

f iu\

J
e dF T (t)

r tut
I e f T (t) dt

- <x>

If T is non negative (T > 0) and exponentially distributed

with a failure rate A, , then

oo

T (u) -
tut

e .f j (t) dt

OO

tut , -\t
e \ e dt

X

16



Now, if

where

T = T . + ... + T n ,

T^ ~ EXP(\j ), i = 1, ... , n,

and T.,...,T n are independent, then the characteristic

function of the sum (convolution) T^+ ... + T n is

Cj6T (u) = E
r /(/{Ti + "- + T*)

]

= E
/i/T, 1 /(/Tn

- 0-(u) ... $ (u)

rrr L
^

This implies that the characteristic function for the sum

Tj + ... + T^ is just the product of the individual charac

teristic functions.

17



When dealing with random variables which only assume non

negative values, it is more convenient to use Laplace trans-

forms rather than characteristic functions. The Laplace

transform of the random variable having distribution Fy(t)

is defined [Ref. 2] by

<fi T (s) = E
-St

oO

-St
e dF T (t)

OO

-St
e f T (t) dt,

where f j (t) is the density function of T. This integral

exists for a complex variable s=a+bi, where a>0

.

If T| , . .
.
,T n are independent random variables, then the

Laplace transform of the sum (convolution) T, +...+ T n is

given by

4> (s) =

= E
-sT.l r c t i

e

4> r {s) ...
(f> T (s)

18



n

T 6-r(s)
l-l '

It is important to note that the Laplace transform uniquely

determines the distribution. That is, in fact, there is a

one to one correspondence between distribution functions and

Laplace transforms.

Now, we will consider the following question. Given a

function O t (s), does there exist
t

a function f-j-(t) whose

Laplace transform is <p-r(s)> and if it exists, how can it

be determined ? The answer to the first question is not

always positive. In - general, the function (2j-t-(s) must

satisfy some restrictions which will be discussed in the

next subsection. If the answer to the first question is

positive, then the inversion of the Laplace transform by a

complex integral gives the answer to the second question;

That is, the density function for the random variable T is

given by [Ref. 3]

fT (t) = if^T (s)

(*+ loo

2TT i

c<- ioo

r
st

j.
/ e . <pj(s) ds,

19



where the notation / 0j(s) refers to the inversion of the

Laplace transform and the path of the integral above is the

straight line Re s=o< (o( >0) parallel to the imaginary axis.

D. LAPLACE INVERSION AND THE THEOREM OF RESIDUES

As was stated in last subsection, if we have a Laplace

transform CD-f-(s) for a non-negative, random variable T, then

the Laplace inversion ,X- K2)t( s ) gives the density function

f-r(t)-

When dealing with a convolution of random variables,

that is, T - T, + . . . + T n , where T
(

, . . . ,

T

n are independent,

the convolution density function is given by [Ref. 3]

f T (t) = 1[<£t(»>]

' St
A,e . <Pt ( s ) ds

»

ITT \ J

ok- i <*>

where Cp y (s) is the Laplace transform of the sum

(convolution) T, + ... + T n .

To obtain the convolution density function, it is clear

from the above integral that we have to evaluate a complex

integral, but the Theorem of Residues reduces the evaluation

of a complex integral along closed contours to passages to

the limit and differentiations.

20



Suppose a function G(s) is holomorphic in a finite

domain C, the term holomorphic meaning that the function is

analytic and single-valued. Then the integral

W G(s) ds
Z~

evaluated along it's boundary, vanishes. If the function

G(s) is not holomorphic in C, the integral may not be zero.

If there is in C only one singularity at point a, the value

of the integral is called the residue of G(s) at the

singular point a.

The well known Residues Theorem [Ref. 3] is

The integral of an analytic function along a

closed contour is the sum of the residues at

the singular points in the domain enclosed by

the contour, multiplied by 2 TT i.

Now, let us define the analytic function G(s) to be

G(s) = e . T (s)
,

where 0-j-(s) is the Laplace transform of the sum (convolu-

tion) T
(

+ . . . + T n . Then, according to the Theorem of

Residues, the convolution density will be obtained as

follows

;

21



-I

r(t) = Z[0t(«)]

2rr i J
oL- i oo

c* + /oo

<£ T (s) ds

of, - I oo

m

G(s) ds

I

£>"»') R
L

where m is number of singularities (poles), and R;
,

i=l,...,m, is the residue of the analytic function G(s) at

the singular point (pole) a: .

Therefore
m

f T (t) = Y,
R

L
'

L = l

that is, the convolution density function is just the sum of

the residue of the analytic function G(s) at the singular

points

.

The result established by the last equation would not be

of much value if it were not possible to compute the residue

of the analytic function G(s) at the singularities directly

and without evaluating any integral. Thus, let us now

22



discuss how the residue at a singular point (pole) a of the

holomorphic function G(s), can be evaluated.

First the order of the singular point (pole) must be

established by computing the limit, for s tending to a, of

2
(s-a)G(s), (s-a) G(s), and so on, until we find a finite

limit. The exponent which we find for (s-a) is the order of

the singular point a. If the singular point(pole) at a is of

order (multiplicity) n, the residue of the function G(s) at

a is given by [Ref. 3]

R = lim
d
n-i

L("-')
! ds"

r\

s - a) 6(s)

Therefore, the residue of G(s) at the singular point (pole)

a ; is

R« = lim
d

n,-l
n.

ft.jU^-O! ds
- {(S-a.,) 6(S)

where n : is the order (multiplicity) of the singular point

(pole) a
;

, i = 1, m

By substitution, the convolution density function is

given by

m

f T (t) =
y.

R

i
=

23



rr\ n-

= 1
*l

lim

ds
^((s-^i)ks))"

This implies that the convolution density can be obtained by

limits and differentiations which are easier operations to

deal with than the integrations.

Now, we are ready to deal with the three different

convolution cases which have been mentioned before. we will

try first to obtain the convolution density for every case.

Then, the survival functions will be easily obtained by

integration.

E. SURVIVAL FUNCTION OF A CONVOLUTION

In this subsection, we will use the results obtained in

Subsection D to find the survival function for all the

possible convolution cases which have been mentioned before.

This will result in a general equation for the survival

function of any convolution of independent and exponentially

distributed random variables.

24



1. A System Having n Dissimilar Failure Rates

Consider a system defined by the shorthand notation

where

EXP(\. )+...+ EXP(\ n )

A ] * Aj , i * J , i , j = 1

,

n

The life time of the system is

T = T, + + T n >

where Tj is an exponentially distributed random variable

with a failure rate \- , i=l, . .
.
,n and T, , ... , T n are

independent. The Laplace transform of the convolution is

given by

<£ T (s) = E
f -*(T,+ ••• ± Tn)l

n

n X

s + X

If we define the analytic function

G(s) = e . T (s),

then, according to the Theorem of Residues, the convolution

density is given by

25



f T (t) = 1 R
i '

i*l

where n is the number of singularities (number of distinct

failure rates), and R is the residue of the analytic func-

tion G(s) at the singular point (pole) -A»i , i = 1, . . . , n.

It is clear from the Laplace transform function

(D -t-(s) that there are n singularities, each of which has

an order (multiplicity) one; that is, nj = 1 for i = 1,...,

n. Therefore, the residue of G(s) at the singular

point(pole) - Aj is given by

Rr = lim
-\:L("i-0>. d

_((s_(-\0) s(s))

= lim (s + X; ) G(s)

By substitution, the convolution density will become

n

f T (t) = I R

/ =J

7 lim rs *Xp &
ST

T] (J±i \

26



n

TTr_k
1=1 J*l /V

J

-X;i

The survival function of the system will be obtained

as follows ;

F
T
(t) = P ( T > t )

f T (u) ,du

fr,
l

j;
,v s + Xj

oo

.
-X,-b

Xj e Ju

71

I [ w Xj

1
= 1

j¥'> \j ^1

e

= 1
3+

1

x.) -Xif

»=!

,t > o,

J* I

which is the well known formula for the survival function

for a system having n dissimilar failure rates.

27



2. A System Having n Identical Failure Rates

Consider a system defined by the shorthand notation

EXP( X )
+ ... + EXP( X ) ( n times )

The life time of the system is

T = Tj + . . . + Tn .

where Tj , i = l,...,n, is an exponentially distributed

random variable with a constant failure rate A , and Tj , . .
.

,

T n are independent. The Laplace transform of the convolu-

tion is

«£T(S ) = n
j

n o©

-St;
e '

. f t. (t ) dt
f

o

> X

s + X

Then

St A.G(s) = e • 9 T (s)

( s^x)

28



In this case the analytic function G(s) has one sigular

point (pole) of order (multiplicity) n at the point s=-A .

According to the Theorem of Residues, the residue of

the analytic function G(s) is given by

R = lim
l d

JJ.On-0! j

n- i

-^((s + XJ^Cs))'
s

rt-l

lim m^«-t n

J -(^ X)

X
n

(n-i)!

Therefore, the convolution density is given by

f
T
(t) = R

X
in

(n-i).'

"-' -Xf

n

—— t • e , t > 0,

(n)

29



which is the density function of the Erlang (n
, a )

distribution.

Now, the survival function is given by

FT (t) = P ( T > t )

OO

/ f (u) du

t
J

("-')!
u e du

Integrating by parts yields

A (Xt)
Z "'

-Xt
FT(t) - ) — e , t > o,^ (z- i)\

which is the well known formula for the survival function of

the Erlang (n , A. ) distribution.

3 . A Sytem Having Some Similar and Some Dissimilar

Failure Rate

The shorthand notation for the system is

EXP(X, ) + ... + EXP(X, ) (n, times)

+ EXP(X
2 ) + ... + EXP(X

Z ) (n 2
times)

30



+ EXP(\ m ) + ... + EXP(Xm) (nm times)

where m is the number of distinct failure rates, and n is

the multiplicity of the i-th failure rate \: , i = l,...,m.

The Laplace transform of the convolution is

rn

^ T (s) =tt
x

=i s +x

Then

G(s) = e . <p T(s)

S3i
e

In this case, the system has m distinct failure rates, so

that the analytic function G(s) has m singularities.

According to the Theorem of Residues the convolution density

function is given by

f (t) . y.

m
R

I

31



where R is the residue of G(s) at the singular point (pole)

- A.
j

, i= 1, . . . , m.

Since n
j

is the multiplicity for the failure rate

A*., i = 1, . .
.
,m, it follows that the the residue of the

analytic function G(s) at the singular point (pole) ~Aj is

given by

R; = lim

-X;10,-0! d
^((s+Xif^);

= lim
• d

n;-'

_X L(n;-0! J.

d

nr i

7T7

lim

s XI K-')! ds*'"

rr/-_k_j<
1 1

•
n

i

X,- e

# ( *txP).

•m

(TT\n r

j".' -I

(n
f
-0! s^-XjUs^' jf,i

Sf
771

n l-/ */-! rt;-?
Let D = d/ds. Then D = d / ds and

R; = ( / I A: )- ~ lim
N £ e

(",-0! s— X,L

32



Let us define the function

H-,(s)

m

IT
J = l

J*'

-n,

(s Xj)

Then

n i-' r 5/
D e Hj(s) = e (D + t) Hf(s)

and

m
r\:

R //m

(m-i)j s^.XiL
(0+0

n.-

\St
(n+t\' tf,( s)

I

rt;-l

From the Binomial Theorem the term (D + t) can be repre-

sented as

*;-/

(D t)

Therefore
K-0

H;-U *.-/-* AC

i o

OTX?)
R

-] ' N
//m e £

fr-'Wi\ n;-J-* *
r st^->r-i

ft-01-i..^ t-V.»t D/t»)

33



m

t

K =
d-«

,=-X;

Let us define the term

C(i,k) =
d

Hi< s >

i_ TTfs + X;)
d s j#i

j ^

-Xi

Then

rn n:
n,--i

*i<V^)Z
CO>k)

ri;-K-l -X;t

K =
k| (nj-K-i)i

Since m

f T
(t) = Z R

it follows that the convolution density is

v^OIMII
»=/ /<=<>

K| (Jlj-ZC-O)
t e , t*o

34



This equation is a general equation for the density function

of any convolution of exponentially distributed random

variables

.

Now, the survival function can be obtained as

follows

;

FT (t) = p( T > t )

oo

) duft (u

,=. <= •
'•

t

f7T\VV C(i,<) r- (Ait) AjX

/TT\ NT-VV C( ''^ (Ait) -A; I

This is a general equation for the survival function of any

convolution of exponentially distributed random variables.

35



In the next subsection, we will give three examples

of the application of the equation. These examples represent

all possiple convolution forms.

F. EXAMPLES ON THE GENERAL EQUATION

1 . A Convolution of Dissimilar Failure Rates

Using the general equation which was derived in the

last subsection, this example illustrates how to compute the

survival function for a system defined by the shorthand

notation

where

EXP(\. ) EXP(\. ) + EXP(\_)

A | t A 2. » ^ | * \3 , X 2. * A 3

Since all the failure rates are dissimilar, it follows that

the total number of distinct failure rates is

m = 3 .

The multiplicity of the first distinct failure rate A. is

n, = 1.

The multiplicity of the second distinct failure rate Ao is

n o = 1

.
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The multiplicity of the third distinct failure rate \ is

n3
= 1

The survival function of the system is given by

f
T (

i*l K=0Z»l "! X ' (z-0!

= suml + sum2 + sum3

,

where suml is the sum at i=l, sum2 is the sum at i=2 and

sum3 is the sum at i=3.

At i=l, n, = 1, k has only the value 0, and z has

only the value 1. The value of the derivative term C(1,0) is

given by

C(1,0) -

-"J

as j ^, -X

-rtl"

s + k)
a .x

L(s t X2
)(s + X3 )

J S = .X

(X2-X 1
)(X3-X I )
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Therefore

2-1

sum - X, AZ A-3 L L
„; V"*^7

- \ \ \
"

' cc,o) (X,Q° -X,t
- A,X 2 X 3 TTX"^^"

X, Ao A
-\,t

Z /v3

( V x,

A-a X3

(X3
-X,)X,

-X,t

.
(X 2-X,)(X3-X,)

Similarly, at i=2, n^ = 1, k has only the value 0,

and z has only the value 1. The derivative term C(2,0) is

C(2,0) =

(VX2)(vxJ
and

sum2 =
X, X -X,t

(X,-X2 )(XJ-X2)

Also, at i=3, nj = 1, k has only the value 0, and z

has only the value 1. The derivative term C(3,0) is given by

C(3,0) =

Xf X 3 )(X 2-X3 )
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and

X1 K1 -^
sum3 = d

(X,-X3)(^-X 3)

By adding suml, sum2 and sum3 , the survival function

of the system is

F (t) = suml + sum2 + sum3

-X,t . N -X5t N x -Vt
X 2 X3 e

l

X» X3 e X, X 2 e.

(\2-xxx3 -x,i (xr x2xx3 -^ (x
l
-X3

v

)(x2-x3l

2 . A Convolution of Identical Failure Rates

This example illustrates how to compute the survival

function for a system defined by shorthand notation

EXP ( X ) + EXP ( X ) + EXP ( X )

«

This convolution has only one distinct failure rate

with multiplicity 3. Therefore m=l and n=3. The survival

function of the system can be obtained as follows;

'T(t)-(^)tfr?*.%c
,

e-
v .^..

jm\ K=0 * = '

' R! X? (z-0 1

39



2 3-k \

CO,*) (Xt)
2-

= XEE
-Xt

K=0 2=/
*.' \

J ~* (z-0

Since m = 1, and n. = 3, it follows that i = 1 and k

0,1,2. When k = the derivative term C(1,0) is given by

I

rt.',

C(1,0) =

ds° J - .-X

U(?*.\/f
i,.

=-x

(s + O -X

I .

Since

d

6 *>
jfi

S +
\l)

-"j

= 1,

it follows that the k-th derivative

d* / ds
K

"n"fs-f-x-
;=i \ j

-^j

= , k $, 1
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That is, C(l,k) = 0, for k = 1,2 . Now, the survival func

tion for the system will become

3 X co,°) (Xt) -Xt

TM - x Y,
X
s

(*-')

r (Xt/
'' -Xt

which is the survival function equation of the Erlang( 3 , A. )

distribution.

3 . A Convolution of Similar and Dissimilar Failure

Rates

This example illustrates how to compute the survival

function for a system having some similar and some dissim-

ilar failure rates, using the general equation.

Suppose we have a system defined by the shorthand

notation

EXP(Xj ) + EXP(\, )
+ EXP(\

Z )

In this case, we have two distinct failure rates \. and

\ ?
. The total number of the distinct failure rates is

m = 2
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The first failure rate \. has the multiplicity

n, = 2.

The second failure rate A? has the multiplicity

nj = 1 .

The survival function equation of the convolution can be

given as follows;

2 i;-i *',-*
z-i

VO-(lT«)llI-g^^- e-^.t^o.
;=i jr»o z»J • AiXi (2-0

= suml + sum2
,

where suml is the sum at i=l, and sumz is the sum at i = 2.

At i=l, k takes the values and 1. We will evaluate

the two derivatives C(1,0) and C(l,l) as follows;

C(1,0) = d

ds
Uo + x/fl

s = -X

UC-x/f --X
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(X2-X,)

C(l,l) = d

OS
i.!(s^j)

-"j

-X

(x2-x,)

Then
2-< 2-1

suml =
X,t

AT=0 Z=/ Ki \'

S>
r cO,e)-X,* CCi,o)X,t-X,t CO*0 -X,t

= XT X e -t-

L xr xr

A? A^ Xi"t Xi A 2.

e ' t
X,

z ,M
L xz~x t

X2 - X, (X^-X,)'

-X,t

At i = 2, n^ =1 and k takes only the value . Thus,

we have to evaluate only the derivative term C(2,0) as

follows

;

C(2,0) =
\ J =l

s + X
J )

J

= -X:

x,- x 2y
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Then

sum2
J- , C(2,») (ktt)° ^f

Ai A. 5

0! X

2.

= x, x.

-X,t

x:

( X,- X2) x z

-X,t

(X 2-X,)

Now, the survival function for the system is given by

F -T- (t) = suml + sum2

Xz
+
\\\zt hk

L X 2-X, Xz
- X

; x^ X, J
(Xf-X,)

The three examples above illustrate how we can

compute the reliability of any convolution of exponenial

random variables. In practice, a computer program computes

the reliability directly. A practitioner of the shorthand

methodology can use the computer program in Appendix A to

obtain a system's survival function by just inserting the

failure rates of the system components.
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III. SURVIVAL FUNCTION AND POLYNOMIAL COEFFICIENTS

In section 2, we derived a general equation for the

survival function of any convolution of independent and

exponentially distributed random variables. This section

gives an alternative formula for the survival function,

using the idea of computing the coefficients of the polyno-

mials that accompany the exponential terms in the survival

function equation. This idea was explored by Sadan Gursel

[Ref. 4], adding one distribution at a time. In this section

we will derive the same polynomial coefficients from the

general equation developed in the previous section.

A. DETERMINATION OF THE POLYNOMIAL COEFFICIENTS

Consider a system defined by the shorthand notation

EXP(\,) + ... + EXP(\,) (n, times)

+ EXP(\
2

) + ... + EXP(\
Z ) (n

2
times)

+ EXP (Xm )
+ ••• + EXP(\ ) (nm times)
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m

:onvolution of l_, nThis notation represents the convolution of l. n: exponen-
ts i

tial random variables, where there are n identical exponen-

tial random variables having the failure rate

Xj ,i = 1, ... , m .

We expect the survival function of the convolution to

have the form

-X,t -Xzt _Xmt

F (t) = A^(t).e + A
L
(t).e + ... + Am (t).e , t > 0,

where

z n,-i

M*) = a
io

+ a
u

t + a
\z

t + •• + a, n .
t

2. r\z -\

A
2
(t) = a

20
+ a

Z)
t + a 22 t + + a^, t

2 ^m"
A™ (t)= a mo + a m| t + a. mz t + ... + am ,t

'm

The notation Aj(t), i=l,...,m, represents a polynomial of

(n--l)st degree. Therefore, to obtain the survival function

of the convolution, we have to find all the coefficients

a .
• , i=l, ... , m, j= 0, ... , n -1
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For example, the convolution represented by the shorthand

notation

EXP(X
(

) + EXP(Xj) + EXPCXj) + EXP(X
Z

) ,

where

A. | r A 2 >

has a survival function represented by

F (t) = A,(t) . e ' + A 2 (t) . e *
, t >, 0,

where

and

Z
A, (t) = a

|Q
* a ,,

t + a
[2

t

A
2
(t) = a 20

5

It is important to note that the number of exponential

terms is equal to the number of dissimilar failure rates,

and each exponential term has a polynomial coefficients of

degree one less than the number of identical random vari-

ables having the corresponding failure rate.

The problem of computing the coefficients will be solved

if we derive a general formula for the constant coefficients

of the polynomial coefficients in the survival function

equation.
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Let us begin with the general equation which is

The term
J J

\ , can be written as

m

Substituting the above into the general equation yields

Z-/

i
= / j^/ K'o z^i *: A] \£- xn

Rearranging the above equation yields

i = /

Let L = z - 1. Then the survival function will become

J>/ K = oL=;
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Let us define

K+ L

CO, »Q
G;(k,L) = ^—^ K[ t

X
! 11

Then,

£ ^G
s

(k,L) = G
f

(0,0)+ +6
|

(0,n
|

-l)

K-° L=0 +G:(1,0)+ +G:(l,n:-2)

+G;(2,0)+. . .+Gi(2 s nj -3)

+Gf(nr l,0)

or, equivalently

£ ^] G- (k,L) = 6, (0,0)+ +Gj(nr l,0)

K=0 L=0
+G;(0,1)+ + G (n r 2,l)

+G-,(0,2)+... +G;(nr 3,2)

+Gj (0,nr l)
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L=0 K'O

Therefore

F (t) =

m
-X;t

5] e
A

i
. A.(t)

,

J3|

where

*;-/ ^. K-»)-i.

A.(t) E(UxJ)"f Sft^T*
1

.

L = o
JVi K=0

Now, it easily follows that

% ^°- L
cu,<)

k+l

L "
( W ) IJ* K=0

represents the coefficient of t for the i-th polynomial in

the survival function equation, L = 0, ... , ni-1,
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where

C(i,k) =

771 _ n

J 5 =-X

This formula is the general formula for the coefficients and

it can be considered as an alternative formula for the

survival function of any convolution of exponential random

variables

.

It is clear from the above formula and from the general

equation in Section 2 that the most difficult part in the

reliability computations is the derivative term C(i,k),

particularly when dealing with complex convolutions that

have a long stream of failure rates with high corresponding

multiplicities. We will give the the practical method for

computing the term C(i,k) in Subsection C.

B . EXAMPLE

Consider a system defined by the shorthand notation

EXP(\
(

) + EXP(\
2

) + EXP(\
3

) + EXP(\
3 )

Then, the survival function for the system is given by

F (t) = A,(t).e *l * A z (t).e ^ + A3 (t).e~^
3
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The first distinct failure rate \. has a multiplicity 1,

the second distinct failure rate A? ^as a multiplicity 1,

and the third distict failure rate A3 has a multiplicity 2.

Therefore

m = 3
,

n, = 1 ,

n 2 = 1
,

n 3 = 2 .

The polynomial Ai(t) will be obtained from

A,(t) = a
|0

+ a M t + ... + a |r ,r , t

Substituting n . = 1 in the above equation yields

A,(t) = a
1£)

.

Since
m n - *;-i-L . K + L

.( TT\i)Y ^Vr X,- ,

J*\

it follows that

a
IO

j*l <=°
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x 2 x 3 y.
K =

c(/,*0
^
K

= X? X* C(1,0) ,

where

C(1,0) =

-1-T -1

J?"
Js--X

(X 2-X
1
)(X3 -\,)

Thus
2

Xz X3
^a,0 =

(x2 -x l )(\3 -x l )

Now, the polynomial A.(t) is

A,(t) = a,

Z

X2. \3

(x2-x,)(x3 -x,)

Similarly, the polynomial Ap(t) is given by

A^(t) = a^o
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x,x 3

(\,-X 2)(\3 '-X2)

The polynomial Aj(t) will be obtained from

^3- 1

+ a jnj-» t

Substituting n^ = 2 yield:

A3^) = a3o
+ a Ji t

In this case we have to evaluate the two coefficients

Substituting n? =2, m = 3, L = in the

general equation of the coefficients yields

a30 and a
3

30
J*3 K =

n; 2-1-0
C(3. K)

X, X^ I
K =

K' 0'

C(3, K)

\.

X-

K +0

= X, XpC(3,0) + X,X ? C(3,1) X:

where
_n

C(3,0)
L ds'

TT(^tXj)
J ?*

s = -X5

(Xr X3 )(X2-X3 )
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and

C(3,l) = 77 "CTC'^Xj)
j*3

-"J i

ds s = -X.

(VWV^(V^(WJ

Thus

X, X X, X2X3 Xi X2 \2 ^3
lJ0

(Xr\3)(X2 -^) (Xr X3)(X2-X5)
(Xr A3)(X2-\3y

Substituting L = 1, nj = 2, and m = 3 in the general equation

of coefficients yields

lJl
( t $ ) r ttt? *

i>3 <=0
3

X,Xz L 71 ^3K I

X, X^C(3,0) \- .

Since

C(3,0) = A
U( s+ x^

J

; s=-\3
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(x,-x3)(XrX3 )

it follows that

* 3
'

=MlSvavg
Finally, the survival function of the convolution is

given by

FT (t) = A,(t).e ' +A
z
(t).e^Z ^(tje^3

= a
io

e
-\,t -x 2ta Z0 e

\ z X3 e

+ (a 30
+ a

3|
t)e J

\i A3 £

z

(Xz-X,)(X3-X l
f

+

(Xr X2)(X3-Xj

X,X
I AZ X t X? XZ A3

KX-XsAXt-X,) (X,-X3)(X2-X

X, X? X21 A3 X,X2 X3 t l

£
-X,t

(XfXjXXr^) (X,-X3)(Xz-X3 )
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C. THE PRACTICAL METHOD FOR COMPUTING THE DERIVATIVE TERM

C(I,K)

One of the major difficulties in computing the survival

function either by the general equation, or by the general

formula of the coefficients, is the derivative term C(i,k),

where

C(i,k) =
r d

K rn -n,

J K
6 s -\ s

This term represents the k-th derivative for a product of

m-1 terms. The difficulty in comuting C(i,k) increases with

k. Since k runs from zero up to n: -1, i=l,...,m, it follows

that the maximum value of k will not exceed the maximum

multiplicity of the distinct failure rates minus one. For

example, if we have the two distinct failure rates \ and

At where \, has a multiplicity n^ and A? has a multiplicity

n^ , n
t

> n^ , then, the maximum value of k is n. - 1.

In practice, due to the high accuracy (precision)

required in the computations, we will limit the derivative

term C(i,k) to values of k ^9. This implies that the

multiplicity of any of the distinct failure rates in any

convolution must not exeed 10.
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The following is one of the solutions which will be used

in the computer program for computing the term C(i,k) (see

Appendix. A, Appendix. B).

Suppose we have a convolution which has m distinct

failure rates with m corresponding multiplicities . We know

that

m
K -r~r " J

cd.k) =
[ 4^ y ( s + *o

OS j*i
J 5 -X:

Suppose for example , we want to compute C(i,k) at i - 1,

then k = 0, ... , n.-l, and

m

C(l,k) =

ds J*i

• nJ,

-X

d s
K H s + x 2r ••• cs + M n '

-x

Our problem is how to change a derivative of a product of

terms to a derivative of a sum of terms, since the later is

easier in computations.

Let us define

m -7>:

rT(3 + x
j )

J

58



At i=l we obtain

yn - n

c»+xjv*x,j
%
...(s+x.r

By taking the natural logarithim on both sides, we obtain

In fp
r»i

n(s + \p )
+

• • •
+ ln(s + Xm )

!M

Now, by taking the first derivative on both sides , we

obtain

f
. / fi =

*1
s + X

+
n -m

S + Xm

or, equivalently

f

,

n

L s * X
+

n.

s + \m -

Let us define the term

fr. * +
\i
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Then,

m

I
n

J* 1

-x,

n z n

s + X :

"T •'• +
m

t Xm

Then

f,= - A, . f,

or, equivalently

dfj /ds = - A
(

. f
t

When i=l and k= 1 , the term C(i,k) is

m

C(l,l) = 4- U(^\i)
-*j\

j -J s -X,

J-
f

J S = .x

But

f, = - A f
l
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so that

C(1,D = - A, . f,

s= - K
We can proceed in a similar manner to compute the other

derivatives C ( 1 , 2 ) , C( 1 , 3 ) , . .
.

, C( 1 ,n -1) as follows;

f
,

= df
, / ds

= d/ds - A
I

•
r

\

but

so that

where

= - A, . f, - A, . fj
,

fj = - A r f,
,

f = - A, f, + A, f,

= (-D
2. /

A, - A • f,
,

A, = d/ds

m n

s -t- \i
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rf\

= 1
J- 1

J* 1

d
nj

Then, the derivative term C(l,2) is

C(l,2) =

— X

C- 1
)

2 r 2. /
( A, - A, \ f,

-x,

and so on until we obtain the derivative term C(l,n.-1) (see

Appendix . A , Appendix . B )

.
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APPENDIX A

This appendix contains a computer program written in

Fortran for the survival function of any convolution of

independent and exponentially distributed random variables,

using the general equation

"•HTTX?)^ -SW^f &2_

=

Ail
,t>..

A. FUNCTIONS AND SUBROUTINES USED IN THE PROGRAM

1. FUNCTION IFAC

This function computes any factorial required in the

program.

2. SUBROUTINE GAMMA

This subprogram computes the incomplete gamma func-

tion with the parameters ( \- ,n- -k) and returns the result in

the variable G,
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where

G =

r\;-K z-l

(\\t) -Xjt
<-— e

(z-i
!

T

3. SUBROUTINE DERIV

This subprogram computes the k-th derivative C(i,k)

for k<9 and returns the result in the variable C.

B. PROGRAM'S LIMITATIONS

(1) The multiplicity of any of the distinct failure rates

must not exceed 10.

(2) The computer precision limit.

(3) There is no limitation on the number of distinct failure

rates

.

64



section Computer program

$JOB
C LAMDAI ... .I-th distinct failure rate.
C LAMDA Array of M distinct failure rates.
C PRODCT. .. .Product of all the failure rates.
C FBAR Survival function of the convolution.
C T Time.
C C Value of the derivative term C(i,k).
C G Incomplete gamma function.
C MULTI Multiplicity of the i-th distinct
C failure rate.
C MULTIP ... .Array of multiplicities of the distinct
C failure rates.
C M # of distinct failure rates.
C I,J,K Loop index.

DOUBLE PRECISION LAMDA (20), LAMDAI , PRODCT , FBAR

,

*T , C , G
INTEGER I,J,N,M,K,MULTI,MULTIP(20)
PRINT, 'Please enter the time of duration'
READ, T
PRINT, 'Please enter THE # OF dissimilar failure rates'
READ, M
PRINT, 'Enter the values of dissimilar failure rates'
READ, (LAMDA(J) , J=1,M)
PRINT, 'Enter corresponding multiplicities '

READ, (MULTIP(J) ,J=1,M)
PRINT, 'OUTPUT '

PRINT, '======'
WRITE(6,11)T

11 FORMAT (' TIME = ' .F10.5)
PRINT,' FAILURE RATE MULTIPLICITY'
FBAR = 0.0D0
PRODCT = 1.0D0
DO 10 I = 1,M
WRITE(6,12)LAMDA(I) , MULTIP (I)

12 FORMAT(8X,F10.5,10X,I3)
MULTI = MULTIP (I)
PRODCT = PRODCT -LAMDA ( I ) '""MULTI
DO 20 J=l, MULTI
K = J - 1

LAMDAI = LAMDA(I)
CALL GAMMA (MULTI, K , T , LAMDAI , G

)

CALL DERIV( I, M, LAMDA, MULTIP, K,C)
FBAR=FBAR+C*G/ (IFAC (K) -LAMDAI ** (MULTI -K)

)

20 CONTINUE
10 CONTINUE

FBAR = FBAR * PRODCT
WRITE (6, 13 )T, FBAR

13 FORMAT ( IX, 'P(T >',F6.2,') = ',F10.5)
STOP
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END
FUNCTION IFAC(N)
JFAC=1
IF(N.NE.O) THEN DO
DO 30 J=1,N
JFAC=JFAC*J

30 CONTINUE
END IF
IFAC=JFAC
RETURN
END
SUBROUTINE GAMMA (MULTI ,K , T ,LAMDAI , G

)

DOUBLE PRECISION T,G, LAMDAI
INTEGER L,K,Z, MULTI
G=.0D0
L=MULTI-K
DO 40 Z=1,L
G = G+( LAMDAI *T ) ** (

Z - 1 ) *DEXP (
- LAMDAI*T ) / IFAC (

Z
- 1

)

40 CONTINUE
RETURN
END
SUBROUTINE DERIV ( I , M , LAMDA , MULTIP , K , C

)

DOUBLE PRECISION A, F , C ,B (9 ) , LAMDA ( 10

)

INTEGER I,J,M,L,IK,MULTIP(10)
A=.0D0
F=1.D0
DO 50 J=1,M
IF(I.NE.J) THEN DO
F=F*(LAMDA(J)-LAMDA(I) )**( -MULTIP (J)

)

A=A+ (MULTIP (J)/ (LAMDA(J)-LAMDA(I)))
END IF

50 CONTINUE
IF(K.GT. 1) THEN DO
IK=K-1
DO 60 L=1,IK
B(L)= .0D0
DO 70 J=1,M
IF(I.NE.J) THEN DO
B (L ) =B (L )+(((- 1 )

* V'L ) -MULTIP ( J )
*

*( (LAMDA(J)-LAMDA(I) )**(-L-l) ) )-vIFAC(L)
END IF

70 CONTINUE
60 CONTINUE

END IF
IF(K.EQ.O)THEN DO
C = F
ELSE DO
IF(K.EQ. 1)THEN DO
C=(-1)-'VA-VF
ELSE DO
IF(K.EQ.2)THEN DO
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C=((A**2)-B(1))*F
ELSE DO
IF(K.EQ.3)THEN DO
C=((-1)*(A**3)+3*A*B(1)-B(2))*F
ELSE DO
IF(K.EQ.4)THEN DO
C =

(

a**4 - 6*A**2*B ( 1 ) + 4*A*B ( 2 ) + 3 *

*B(1)**2-B(3))*F
ELSE DO
IF(K.EQ.5)THEN DO
C=((-1)*(A**5)+10*(A**3)*B(1)-10*(A**2)*

*b(2)-15*A*B(l)**2+5*A*B(3)+10*B(l)*B(2)-B(4))*F
ELSE DO
IF(K.EQ.6)THEN DO
C=(A**6-15*(A**4)*B(1)+20*(A**3)*

*B(2)-15*(A**2)*B(3)+6*A*B(4)-B(5)+45*
*(A**2)*(B(1)**2)-60.D0*A*B(1)*
*B(2)+15*B(1)*B(3)-15*B(1)**3+10*B(2)**2)*F
ELSE DO
IF(K.EQ.7)THEN DO
C = (

( - 1
) * (

A**7 ) + 2 ]*A**5*B ( 1
) - 3 5 *A**4*B ( 2 ) + 3 5 *A** 3 *

*b ( 3
) - 2 1*A**2*B ( 4 ) + 7 *A*B ( 5

) - B ( 6
) - 10 5*A**3*

*b ( 1
) **2+210*A**2*B ( 1

) *B ( 2
) - 105*A*B ( 1

) *B ( 3
)
- 105*

*B(l)**2*B(2)-70*a*
*B(2)**2+105*A*B(1)**3+21*B(1)*B(4)+35*B(2)*
*B(3))*F
ELSE DO
IF(K.EQ.8)THEN DO
C= (A**8 -28*A**6*B ( 1 ) + 5 6*A**5*B ( 2

) - 70*A**4*B ( 3 ) + 5 6*
*A**3*B (4 )

- 28*A**2*B ( 5 ) +8*A*B ( 6
) -B ( 7 ) +210*

*A**4*B ( 1
) **2 - 5 6 0*a**3 *b ( 1

)

*

*B(2)+420*A**2*B(l)*B(3)-168*A*B(l)*B(4)+28*
*B ( 1

) *B ( 5
) - 4 2 *A**2*B ( 1

) ** 3 + 840*A*B ( 1
) **2*B ( 2 ) + 2 8 *

*A**2*B ( 2
) **2 - 2 10*B ( 1

) **2*B ( 3
) - 28 0*A*B ( 2

) *B ( 3
)
- 28 0*B ( 1

)

^B (2 )**2+56*B (2 )*B (4 ) +35*B (3 )**2+ 105*B ( 1)**4)*F
ELSE DO
IF(K.EQ.9)THEN DO
C= ( - A**9 + 3 6*A**7*B ( 1

) - 84*A**6*B ( 2 ) + 126*A**5*B ( 3
)
- 126*

*A**4*B ( 4 ) + 84*A**3*B ( 5
) - 3 6*A**2*B ( 6 ) + 9*A*B ( 7

) - B ( 8
)

-

*378*A**5*B ( 1)**2+1230*A**4*B ( 1 )*B ( 2
) - 1260*A**3*B ( 1

)*

*b(3)+756*A**2*B(l)*B(4)-252*A*B(l)*B(5)+36*B(l)*B(6))
C = C+1260*A** 3 *B ( 1

) ** 3 - 3 7 8 *A** 2*B ( 1
) ** 2

*

*B ( 2
)

- 840*A**3*b ( 2 )**2+ 1890*a*
*B ( 1

) **2*B ( 3 ) + 12 6 0*A**2*B ( 2
) *B ( 3

) - 3 7 8*B ( 4 )

*

*B(l)**2-404*A*B(2)*B(4)+84*B(2)*B(5)-945*a*
*b ( 1

) **4 + 25 20*A*B ( 1
) *B ( 2

) **2 + 126 0*B ( 1
) **3*B ( 2

)
- 3 15*A*

*b(3)**2-1260*B(l)*B(2)*B(3)+126*B(3)*B(4)-280*B(2)**3
C = C*F
END IF
END IF
END IF
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END IF
END IF
END IF
END IF
END IF
END IF
END IF
RETURN
END

$ENTRY
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section Examples subsection All failure rates are dissimilar

Shorthand notation :

EXP( . 3)+EXP( . 32)+EXP( .4)+EXP( . 6)+EXP( .62)

Output

TIME = 2.00000

FAILURE RATE MULTIPLICITY

0.30000 1

0.32000 1

0.40000 1

0.60000 1

0.62000 1

P(T > 2.00) = 0. 99817
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subsection All failure rates are identical

Shorthand notation :

EXP(2.1) +....+ EXP(2.1) (10 times)

Output

TIME = 3.20

FAILURE RATE MULTIPLICITY

2.10000 10

P(T > 3.20) = 0.85772
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subsection Some similar and some dissimilar failure rates

Shorthand notation :

+ EXP (6. 5)+ ... + EXP (6. 5) (5 times)

+ EXP(4.5)+ ... + EXP(4.5) (5 times)

+ EXP (3. 5)+

+ EXP (2. 5)+

+ EXP(1.5)+

+ EXP (.50)+

+ EXP (3. 5)

+ EXP (2. 5)

+ EXP (1.5)

+ EXP (.50)

(5 times)

(5 times)

(5 times)

(5 times)

Output

TIME = 8.00000

FAILURE RATE MULTIPLICITY

6.50000 5

4.50000 5

3.50000 5

2.50000 5

1.50000 5

0.50000 5

P(T > 8.00) = 0. 99894

cms cms

71



APPENDIX B

This appendix contains an alternative computer program

written in Fortran for computing the survival function of

any convolution of independent and exponentially distributed

random variables, using the general equation for the coeffi-

cients of the polynomials that accompany the exponential

terms in the survival function equation

F(t) = £ e" '

Y, °-it t , t >0 ,

i.i L=o

where
m n; (n,--0-L K+ L

<L V
J
=

l

J J L.
K , L

A. FUNCTIONS AND SUBROUTINES USED IN THE PROGRAM

1. Function IFAC

This function computes any factorial required in the

program.
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2. Subroutine COEFF

This subprogram computes the coeffient of t for the

i-th polynomial in the survival function equation and

returns the result in the variable CO,

where

m n: *;-'- L K + L

3. SUBROUTINE DERIV

This subprogram computes the k-th derivative C(i,k)

for k<9 and returns the result in the variable C.

B. PROGRAM'S LIMITATIONS :

(1) The multiplicity for any of the distinct failure rates

must not exceed 10.

(2) The computations must be within the computer precision

limit

.

(3) No limitation on the number of distinct failure rates.
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section Computer program

$JOB
C LAMDAI . . . . i- th distinct failure rate.
C LAMDA Array of M distinct failure rates.
C MULTI Multiplicity of the i-th distinct
C failure rate.
C MULTIP ... .Array of multiplicities of the distinct
C failure rates.
C PRODCT. .. .Product of the distinct failure rates.
C FBAR Survival function of the convolution.
C T Time.
C C Value of the derivative term C(i,k).
C CO Coeffetiont of the polynomials.
C M # of distinct failure rates

.

C I,J,K Loop index.
C

DOUBLE PRECISION LAMDA (20), LAMDAI , PRODCT , FBAR,
*T , C , CO
INTEGER I, J,N,M,K,MULTI,MULTIP(20)
PRINT, 'Please enter the time of duration'
READ, T
PRINT, 'Please Enter # of dissimilar failure rates'
READ, M
PRINT, 'Enter the values of dissimilar failure rates'
READ, (LAMDA(J) , J=1,M)
PRINT, 'Enter corresponding multiplicities '

READ, (MULTIP(J) ,J=1,M)
PRINT, 'OUTPUT '

PRINT, '= = = = = ='

WRITE(6,11)T
11 FORMAT (' TIME =

T ,F10.5)
PRINT,' FAILURE RATE MULTIPLICITY'
FBAR = 0.0D0
DO 10 I = 1,M

10 WRITE(6,12)LAMDA(I) , MULTIP (I)
12 FORMAT(8X,F10.5,10X,I3)

DO 20 I = 1,M
MULTI = MULTIP (I)
WRITE (6, 13)1

13 FORMAT ( IX ,' POLYNOMIALS COEFFICIENT FOR LAMDA' , 12
,

' is :

'

)

DO 30 LL = 1, MULTI
L = LL - 1

CALL COEFF ( I, L,M, MULTIP, LAMDA, CO)
WRITE ( 6, 14) I, L, CO

14 F0RMAT(3X, 'a' ,11,11, ' = ',F25.12)
FBAR= FBAR+ T**L*CO*DEXP ( - LAMDA ( I

) *T

)

30 CONTINUE
20 CONTINUE

WRITE (6, 15 )T, FBAR
15 F0RMAT(/ ,1X, 'P(T >",F6.2,') = ',F20.12)
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STOP
END
FUNCTION IFAC(N)
JFAC=1
IF(N.NE.O) THEN DO
DO 40 J=1,N
JFAC=JFAC*J

40 CONTINUE
END IF
IFAC=JFAC
RETURN
END
SUBROUTINE COEFF ( I , L , M , MULTIP , LAMDA , CO

)

DOUBLE PRECISION C , CO ,LAMDA( 10 ) , PRODCT
INTEGER I,L,M,K,KK,LL,MULTIP(10)
PRODCT = 1.0D0
DO 50 J = 1,M
IF(I.NE.J) THEN DO
PRODCT = PRODCT -LAMDA ( J ) -"-'-MULTIP ( J )

END IF
50 CONTINUE

CO = 0.0D0
LL = MULTIP (I) - L
DO 60 KK = 1,LL
K = KK - 1

CALL DERIV( I, M, LAMDA, MULTIP, K,C)
CO = CO + C*PRODCT*LAMDA(I)— (K+L)/IFAC(K)/IFAC(L)

60 CONTINUE
RETURN
END
SUBROUTINE DERIV ( I , M , LAMDA , MULTIP , K , C

)

DOUBLE PRECISION A, F , C ,B ( 9 ) , LAMDA ( 10

)

INTEGER I, J, M,L, IK, MULTIP (10)
A=.0D0
F=1.D0
DO 70 J=1,M
IF(I.NE.J) THEN DO
F=F* (LAMDA (J ) -LAMDA ( I )

) ** ( -MULTIP (J )

)

A=A+(MULTIP(J)/ (LAMDA(J)-LAMDA(I)))
END IF

70 CONTINUE
IF(K.GT.l) THEN DO
IK=K-1
DO 80 L=1,IK
B(L)=.0D0
DO 90 J=1,M
IF(I.NE.J) THEN DO
B(L)=B(L)+(((-l)**L)*MULTIP(J)*
*((LAMDA(J)-LAMDA(I))**(-L-1)))*IFAC(L)
END IF

90 CONTINUE
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80 CONTINUE
END IF
IF(K.EQ.O)THEN DO
C = F
ELSE DO
IF(K.EQ.1)THEN DO
C=(-1)*A*F
ELSE DO
IF(K.EQ.2)THEN DO
C=((A**2)-B(1))*F
ELSE DO
IF(K.EQ.3)THEN DO
C* (

( - 1
) * (A**3 ) + 3*A*B ( 1 ) -B ( 2 )

) *F
ELSE DO
IF(K.EQ.4)THEN DO
C= (A**4 - 6*A**2*B ( 1 ) + 4*A*B ( 2 ) + 3*

*B(1)**2-B(3))*F
ELSE DO
IF(K.EQ.5)THEN DO
C= ( ( - 1 )* (A**5 ) + 10* (A**3 ) *B ( 1 ) - 10* (A**2 )

*

*B ( 2 ) - 15*A*B ( 1 ) **2 + 5 *A*B ( 3 ) + 10*B ( 1 ) *B ( 2 ) - B ( 4 ) ) *F
ELSE DO
IF(K.EQ.6)THEN DO
C= (A**6 - 15* (A**4 ) *B ( 1 ) + 20* (A**3 )

*

*B ( 2
) - 15* (A**2 ) *B ( 3 ) + 6*A*B ( 4 ) -B ( 5 ) + 45*

* (A**2 ) * (B ( 1
) **2 ) - 60 . DO*A*B ( 1

)

*

*B ( 2 ) + 15*B ( 1
) *B ( 3

) - 15*B ( 1
) **3 + 10*B ( 2

) **2 ) *F
ELSE DO
IF(K.EQ.7)THEN DO
C= (

(
- 1 ) * (A**7 ) + 2 1*A**5 *B ( 1

)
- 3 5 *A**4*B ( 2 ) + 3 5*A**3

*

*B ( 3
)
- 2 1*A**2*B (4 ) + 7*A*B ( 5

) -B ( 6
) - 105*A**3*

*B ( 1)**2 + 210*A**2*B ( 1)*B (2 ) - 105*A*B ( 1 )*B ( 3
) - 105*

*B(1)**2*B(2)-70*A*
*B(2)**2+105*A*B ( 1)**3+21*B ( 1)*B (4) + 35*B (2 )*

*B(3))*F
ELSE DO
IF(K.EQ.8)THEN DO
C= ( A**8 - 28*A**6*B ( 1 ) + 5 6*A**5*B ( 2

) - 70*A**4*B ( 3 ) + 5 6*

*A** 3 *B ( 4 ) - 2 8*A** 2*B ( 5 ) + 8 *A*B ( 6
) - B ( 7 ) + 2 1 *

*A**4*B ( 1
) **2 - 5 6 0*A**3*B ( 1

)

*

*B ( 2 ) +420*A**2*B ( 1)*B ( 3 ) - 168*A*B ( 1 )*B (4 ) +28*
*B ( 1

) *B ( 5
)
- 420*A**2*B ( 1

) **3 + 840*A*B ( 1
) **2*B ( 2 ) + 28 0*

*A**2*B ( 2
) **2 - 2 10*B ( 1

) **2*B ( 3
) - 28 0*A*B ( 2

) *B ( 3
) - 2 8 0*B ( 1

)

*B ( 2
) **2 + 56 *B ( 2

) *B ( 4 ) + 3 5 *B ( 3
) **2 + 10 5 *B ( 1

) **4 ) *F
ELSE DO
IF(K.EQ.9)THEN DO
C= ( -A**9 + 36*A**7*B ( 1

) - 84*A**6*B ( 2 ) + 126*A**5*B ( 3
) - 126*

*A**4*B (4 ) + 84*A**3*B ( 5
) - 36*A**2*B ( 6 ) + 9*A*B ( 7

) -B (8 )

-

* 3 7 8*A**5*B ( 1
) **2 + 1 2 3 *A**4*B ( 1

) *B ( 2
)
- 1 2 6 *A** 3 *B ( 1

)

*

*B ( 3 ) + 756*A**2*B ( 1 )*B (4 ) - 252*A*B ( 1
) *B ( 5 ) + 36*B ( 1

) *B ( 6")
)

C = C+ 1260*A**3*B ( 1
) **3 - 3 7 8 0*A**2*B ( 1

) **2*
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*B(2)-840*A**3*B(2)**2+1890*A*
*B ( 1 ) **2*B ( 3 ) + 12 6 *A** 2*B ( 2 ) *B ( 3 ) - 3 7 8 *B ( 4 )

*

*B ( 1
) **2 - 404*A*B ( 2 ) *B ( 4 ) + 8 4*B ( 2 )

*

B ( 5 ) - 9 4 5 *A*

*B(1)**4+2520*A*B(1)*B(2)**2+1260*B(1)**3*B(2)-315*A^
*b(3)**2-1260*&<1)*B(2)*B(3)+126*B(3)*B(4)-280*B(2)*<
C=C*F
END IF
END IF
END IF
END IF
END IF
END IF
END IF
END IF
END IF
END IF
RETURN
END

$ENTRY
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section Examples subsection All failure rates are dissimilar

Shorthand notation :

EXP( . 3)+EXP( .32)+EXP( . 4)+EXP( .6)+EXP( .62)

Output

TIME = 2.00000

FAILURE RATE MULTIPLICITY

0.30000 1

0.32000 1

0.40000 1

0.60000 1

0.62000 1

POLYNOMIAL COEFFICIENT FOR LAMDA 1 IS

alO = 248.000000000000

POLYNOMIAL COEFFICIENT FOR LAMDA 2 IS

a20 = -332.142857142857

POLYNOMIAL COEFFICIENT FOR LAMDA 3 IS

a30 = 101.454545454545

POLYNOMIAL COEFFICIENT FOR LAMDA 4 IS

a40 = -70.857142857143

POLYNOMIAL COEFFICIENT FOR LAMDA 5 IS

a50 = 54.545454545454

P(T > 2.00) = 0.998171698511
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subsection All failure rates are identical :

Shorthand notation :

EXP (2.1) + ... + EXP (2.1) (10 times)

Output

TIME = 3.20000

FAILURE RATE MULTIPLICITY

2.10000 10

POLYNOMIAL COEFFICIENT FOR LAMDA 1 ARE

alO = 1.000000000000

all = 2.100000000000

al2 = 2.205000000000

al3 = 1.543500000000

al4 = 0.810337500000

al5 = 0.340341750000

al6 = 0.119119612500

al7 = 0.035735883750

al8 = 0.009380669484

al9 = 0.002188822880

P(T > 3.20) = 0.857717853017
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subsection Some similar and some dissimilar failure rates

Shorthand notation :

+ EXP (6. 5)+

+ EXP(4.5)+

+ EXP (3. 5)+

+ EXP (2. 5)+

+ EXP(1.5)+

+ EXP (.50)+

+ EXP (6. 5)

+ EXP (4. 5)

+ EXP (3. 5)

+ EXP (2. 5)

+ EXP (1.5)

+ EXP (.50)

(5 times)

(5 times)

(5 times)

(5 times)

(5 times)

(5 times)

Output

TIME = 8.00000

FAILURE RATE MULTIPLICITY

6.50000 5

4.50000 5

3.50000 5

2.50000 5

1.50000 5

0.50000 5

POLYNOMIALS COEFFICIENTS FOR LAMDA 1 ARE

alO = -0.033655633163

all = -0.015984638484

al2 = -0.002968083834

al3 = -0.000255685577
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al4 = -0.000008633539

POLYNOMIAL COEFFICIENTS FOR LAMDA 2 ARE

a20 = 78824.407500664440

a21 = 28606.965700048750

a22 = 4242.082627828356

a23 = 308.298280647481

a24 = 9.469913057431

POLYNOMIAL COEFFICIENTS FOR LAMDA 3 ARE

a30 = -1939257.342698666000

a31 = -833405.255639648600

a32 = -199021.555234616700

a33 = -18294.927183023870

a34 = -1641.852439502142

POLYNOMIAL COEFFICIENTS FOR LAMDA 4 ARE

a40 = 2591869.114320258000

a41 = -558729.118591437400

a42 = 340359.641443397200

a43 = -14083.275902489360

a44 = 4142.139971320400

POLYNOMIAL COEFFICIENTS FOR LAMDA 5 ARE

a50 = -736153.955891001200

a51 = 310180.360064797400

a52 = -58447.530039485250

a53 = 5362.158719218832
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a54 = -297.897706623269

POLYNOMIAL COEFFICIENTS FOR LAMDA 6 ARE

a60 = 4718.810424379766

a61 = -1542.762826749752

a62 = 203.749271368373

a63 = -12.977288263887

a64 = 0.350737520646

P(T > 8.00) = 0.998940885595
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