
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2007-12

SecureCore Software Architecture:

SecureCore Operating System (SCOS)

functional specification

Clark, Paul C.

Monterey, California, Naval Postgraduate School

http://hdl.handle.net/10945/37289

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36729753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 The Center for Information Systems Security Studies and Research

NPS-CS-07-018

| SecureCore Technical Report

Trustworthy Commodity Computation

and Communication

SecureCore Software Architecture:
SecureCore Operating System (SCOS)

Functional Specification

Paul C. Clark, Cynthia E. Irvine, Thuy D. Nguyen,

Timothy E. Levin, Timothy M. Vidas, David J. Shifflett

December 2007

SecureCore Software Architecture: SCOS Functional Specification

Acknowledgements

This material is based upon work supported by the National Science Foundation

under Grant No. CNS-0430566 and CNS-0430598 with support from DARPA

ATO. Any opinions, findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily reflect the views of

the National Science Foundation or of DARPA ATO.

Author Affiliation:

Center for Information Systems Security Studies and Research
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication i

Table of Contents

1 Introduction ..1

1.1 Background..1

1.2 Limitations...1

1.3 Phase 0 Process Abstraction...2

1.4 Approach to Authentication in Phase 0...2

1.5 Secondary Storage in Phase 0...2

1.6 Referencing Devices ..3

1.7 Partition Focus...3

1.8 Executable Requirements...3

1.9 Segments ...3

1.10 Interface Categories ...4

2 PL3 Initialization Database ...4

3 PL3 Configuration Database ...7

4 Native Call Interfaces..10

4.1 scos_flush_segment ...11

4.2 scos_read_next...12

4.3 scos_read_random ...14

4.4 scos_write_next ...16

4.5 scos_write_random ..18

4.6 scos_shutdown...20

4.7 scos_powerdown..21

4.8 scos_login..22

4.9 scos_who ...24

4.10 scos_logout ..25

4.11 scos_set_password ...26

5 SP Emulation Call Interfaces...28

6 End Notes ...30

References...31

Initial Distribution List ..32

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication ii

[THIS PAGE IS INTENTIONALLY BLANK]

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 1

1 Introduction

1.1 Background

SecureCore is a research project funded by the National Science Foundation (NSF) to

investigate the fundamental architectural features required for trustworthy operation of

mobile computing devices such as smart cards, embedded controllers and hand-held

computers. The goal is to provide secure processing and communication features for

resource-constrained platforms, without compromise of performance, size, cost or energy

consumption. In this environment, the security must also be built-in, transparent and

flexible.

This document describes the interface to the SecureCore operating system (SCOS) for

Phase 0 of the SecureCore project. Phase 0 is a rapid prototype with only enough

specified functionality to demonstrate progress and potential capabilities of the

SecureCore project. The SCOS interface includes a software emulation of the Secret-

Protecting (SP) processor extensions [1]. Because this is a Phase 0 functional

specification, this document is considered to be a rapid-prototype specification within a

spiral life cycle model. This document is expected to change as experience is gained with

the Least Privilege Separation Kernel (LPSK) environment or as better approaches are

identified.

A description of the software architecture and definitions can be found elsewhere [2].

This document assumes the reader is familiar with the architecture and terminology of the

SecureCore project.

1.2 Limitations

The Phase 0 implementation will incorporate only a subset of the envisioned SecureCore

functionality, and will not be developed with high assurance techniques or covert channel

analysis. The following lists the limitations on the SecureCore functionality implemented

in Phase 0:

• The LPSK runs in PL0 without using any hardware support to create virtual

machines.

• The SCSS runs in PL0.

• The SCOS executes in privilege level 1 (PL1), and applications execute in PL3.

• There is only one process per partition.

• There is only one application in PL3 per partition.

• A limited number of active partitions are supported.

• The trusted path application (TPA) is not supported.

• Detection of the invocation of the secure attention key (SAK) will be handled in

PL0 and will not be reflected outside of PL0.

• There is no support for the setting of a session level.

• The keyboard and screen are the only exported devices. They will be attached by

the LPSK during initialization.

• Graphics mode is not supported for the screen.

• Only one hard disk is supported.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 2

• Networking is not supported.

• Non-blocked I/O is the only mode supported for exported devices (i.e., blocked

I/O is not supported). For example, if an SCOS call is made to read from the

keyboard device, and there is no data in the keyboard buffer, then an error is

returned to the caller. Applications will therefore need to poll devices to

determine if data is available.

• Creation of persistent memory objects during run-time is not supported.

• A file abstraction for accessing memory objects is not supported.

• Handheld devices are not supported.

• All the device driver support resides in PL0.

• Sensitivity labels are not supported.

1.3 Phase 0 Process Abstraction

The process abstraction is created by the LPSK. There is only one process per partition.

Therefore, a process consists of all the subjects executing within a partition. There can

be up to three subjects per process. The LPSK schedules processes in a round-robin

fashion with a configurable fixed time slice.

All applications execute in PL3, with one application per partition. The Phase 0 SCOS

does not support the scheduling of multiple applications within a partition.

1.4 Approach to Authentication in Phase 0

The SCOS provides a service that allows an application to authenticate a user by means

of a password. It is the responsibility of the application to prompt the user for a username

and password, then request authentication from the SCOS. A SecureCore computer is

intended to support one physical user at a time, so the SCOS will only support one logged

in user per process. Because there is no communication between SCOS instantiations,

there is no concept of single-sign-on for the SecureCore computer in Phase 0. This may

require a user to log in more than once if authentication is required by more than one

application.

A separate password database should be maintained by each instantiation of the SCOS,

otherwise there is the potential for password inconsistency and covert channels. The

authentication data is stored in a password file as a hash of the expected password for

each user.

When a user is successfully authenticated, the SCOS returns a success code to the calling

application. The consequence of a successful authentication or logout is application-

dependent.

1.5 Secondary Storage in Phase 0

The use of secondary storage is limited in Phase 0. All secondary storage objects that are

needed by any subject must exist prior to LPSK initialization. The creation of secondary

storage objects during run-time is not supported. However, there may be support in

Phase 0 for flushing (i.e., updating) a memory segment to its source object on secondary

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 3

storage. The flush system call is a low priority implementation item and may not be

implemented in Phase 0.

The boot loader in Phase 0 is based on an open-source utility called grub [3]. It is used to

load the LPSK into memory, and to perform additional LPSK initialization functions. A

particularly useful feature of grub (for Phase 0) is the ability to read many different file

system formats, which will allow Phase 0 executables and data to be placed in a familiar

environment. For example, the PL3 applications can be stored in a FAT32 file system

with a location such as “/applications/shell.out”.

1.6 Referencing Devices

Device references with the SCOS will take the form of a (major, minor) tuple, where

“major” refers to a category of devices, and the minor number refers to a specific

instantiation of a device. The keyboard and monitor devices are logically attached by the

LPSK during initialization of all active partitions, with the associated (major, minor)

tuples passed to each PL during their initialization. Phase 0 will not support the dynamic

attachment of other devices.

1.7 Partition Focus

The Trusted Management Layer (TML) detects the invocation of the secure attention key

(SAK). The use of the SAK in Phase 0 is to signal the TML to change the partition with

focus. Partition focus is changed on a round robin scheduling algorithm. For example, if

partition0 has focus, then invoking the SAK will give focus to partition1. Invoking the

SAK again will give focus to partition2, etc. The SAK in Phase 0 is “Alt-+” (i.e., the

‘Alt’ key and the ‘+’ key pressed at the same time).

1.8 Executable Requirements

In order for the LPSK to load an executable file from secondary storage and prepare it for

execution the following requirements must be met:

• The executable file must be constructed in the 32-bit Linear Executable (LX) file

format. The development tools will generate this format when they are installed

and configured per the instructions in a separate document.

• The first executable instruction must be at offset 0. This is dependent on the

developer to write and link the code in a given order. Detailed instructions will be

provided in a separate document.

1.9 Segments

The Phase 0 abstraction for memory objects is a segment. Segments are memory objects

that are created by the LPSK during initialization and are accessible by the applications

that are intended to use them, as directed with a configuration vector that is described in

the next section.

There are four kinds of segments supported by the LPSK:

• Default Segments that are created by the LPSK as a result of loading an

executable file are referred to as default segments. Default segments

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 4

are the code segments, data segments and stack segments that are

declared in the executable file.

• Dseg A dseg is an additional data segment that is initialized from a non-

executable file. In other words, it is data that is not compiled into the

executable file. For example, an application may need to access data

that may change over time, such as a list of valid e-mail addresses.

Therefore, it may be wise to put the data into a separate file rather

than compile it into the executable. Selectors to the optional dsegs

are provided by the SCOS to the application, as described in Section

3.

• Mseg An mseg is an un-initialized data segment. A typical use of an mseg

is the allocation of run-time memory that cannot be compiled into an

executable file. Selectors to the optional msegs are provided by the

SCOS to the application, as described in Section 3. Msegs are not

persistent across system reboots.

• Gseg A gseg is a gate segment. It is used to provide call gates between

privilege levels. PL3 application developers do not need to specify

gsegs.

1.10 Interface Categories

The SCOS interfaces are separated into four parts: the PL3 initialization database, the

PL3 configuration database, native call interfaces, and SP emulation call interfaces.

The PL3 initialization database refers to a file that is used to configure the initial run-time

environment for applications.

The PL3 configuration database refers to information that is provided by the SCOS to an

application during the initialization of the application. An application uses the PL3

configuration database to support its own functionality (e.g., the major and minor

numbers for the attached devices).

A native call interface is an SCOS run-time request that is accessible by applications.

SP emulation call interfaces are run-time requests meant to support an emulation of some

of the SP hardware features for demonstration purposes. The emulation calls are

accessible by applications.

2 PL3 Initialization Database
Each privilege level has its own initialization database. These databases are used to

create a configuration vector for the LPSK. This is shown graphically in Figure 1.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 5

Figure 1. Generation of the LPSK Configuration Vector

The PL3 portion of the configuration vector is used by the LPSK to initialize PL3 in a

way that will start the applications appropriately. An off-line tool parses the input

initialization databases and creates a binary configuration vector that is used by the LPSK

during initialization. Using text files for the initialization databases allows for easy

configuration changes and change tracking.

Comments within the PL3 initialization database may be inserted by preceding a string

with a ‘#’. All text that appears after a ‘#’ and up to the end of the line is considered a

comment and is not processed by the off-line tool. The end of the line is given by the

ASCII line-feed character (0x0a). Blank lines are also considered comments, i.e., lines

that consist only of ASCII tabs (0x09) and space (0x20) ending in the line-feed

character).

The following syntax is used first to declare the location of application executables on

secondary disk, which allows the LPSK to find them and load them into memory.

 CODE[partition] = path;

“CODE” is a reserved word. The other parameters in the above syntax are explained

below:

• partition is a number representing the partition the associated code should be

loaded in (e.g., 0, 1, 2, etc.), as defined in the LPSK initialization database.

• path is a string that provides the executable’s location on secondary storage. If

the location has white space, then it must be quoted. The boot loader in Phase 0

can read most file systems (e.g., FAT32), so the path can contain typical naming

conventions and directory structures. There can be only one PL3 executable per

partition in Phase 0. When loaded into memory, the LPSK enforces a policy that

does not allow other partitions to access the code segment. The same policy is

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 6

enforced for the associated stack and data segments. In addition, all associated

data and stack segments are not marked as executable.

The next part of the configuration declares any pre-existing application data that needs to

be loaded into desgs from secondary storage. The LPSK allows dsegs to have either read

only (RO), read/write (RW) or no access (NA) permissions associated with them. In

addition, it is possible to set RO and RW permissions for applications running in

partitions other than where the data resides (as long as the permissions do not conflict

with information flow rules enforced by the LPSK between partitions). The syntax is as

follows:

 DSEG[index] = { path, partition, permission+ };

“DSEG” is a reserved word. The other parameters in the above syntax are explained

below:

• index is an increasing array value starting from ‘0’.

• path is the directory/name of the file containing the required data. If the path

contains white space it must be quoted.

• partition is the location that the PL3 dseg will be created, and into which the data

from the above file will be copied. The partition is the “hosting” partition for the

dseg. Valid partition numbers are defined in the LPSK initialization database.

• permission+ is a comma-separated list of per-partition permissions, where the

first permission is associated with the 0
th
 partition, the second permission is

associated with the 1
st
 partition, etc. There must be an assigned permission for

each partition (as declared in the LPSK initialization database). The active

partition to which the dseg is assigned (allocated) cannot have a NA permission to

that dseg. If a non-NA permission is given to a partition, then the address space

of the associated process will be updated to reflect the given permission.

The next part of the configuration declares msegs that are needed by the application. The

syntax is as follows:

 MSEG[index] = { size, partition, permission+ };

“MSEG” is a reserved word. The other parameters in the above syntax are explained

below:

• index is an increasing array value starting from ‘0’.

• size is the size of the segment needed. The number can be given as the total

number of bytes or with “KB”, “MB” and “GB” shortcuts, where a kilobyte is

1024 bytes, a megabyte is 1024KB and a gigabyte is 1024MB.

• partition is the location that the PL3 segment will be created. The partition is

hosting the segment. Valid partition numbers are defined in the LPSK

initialization database.

• permission+ is a comma-separated list of per-partition permissions, where the

first permission is associated with the 0
th
 partition, the second permission is

associated with the 1
st
 partition, etc. There must be an assigned permission for

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 7

each partition (as declared in the LPSK initialization database). There must be at

least one active partition with RW access. If a non-NA permission is given to a

partition, then the address space of the associated process will be updated to

reflect the given permission.

The following is an example of what a PL3 initialization database file might look like.

The following assumes there are two active partitions (0 and 1) and one passive partition

(2), as would be defined in the LPSK configuration database.

 # filename: pl3_config.txt

 #

 # This file is used to configure PL3 for all partitions.

 #

 # Created: 2007-11-07 (P. Clark)

 # The following declares the executables. The index refers to the assigned

partition.

 CODE[0] = /shell.out;

 CODE[1] = /emergency.out;

 # Other data segments required by the above applications:

 # Partitions

 # 0 1 2

 DSEG[0] = { “/passwords.txt”, 0, RW, NA, NA };

 DSEG[1] = { “/clearance.txt”, 0, RO, NA, NA };

 DSEG[2] = { “/contacts.txt”, 1, NA, RW, NA };

 DSEG[3] = { “/stuff.txt”, 2, RO, RO, NA };

 # Additional run-time memory required by applications

 # Partitions

 # 0 1 2

 MSEG[0] = { 1MB, 0, RW, NA, NA };

Note that the DSEG and MSEG declarations are optional; they are only necessary if an

application requires data and memory that is not compiled with the application

executable. Note that there is a maximum number of msegs, and a maximum number of

dsegs that can be declared for a SecureCore computer. These are declared in the

constants MAX_MSEGS and MAX_DESGS, respectively.

3 PL3 Configuration Database
This section describes the location and format for the PL3 configuration database

provided by an instantiation of the SCOS to an application.

A selector to the PL3 configuration database will be passed to an application on its stack.

After the SCOS has finished initializing itself and the environment, it will perform an

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 8

initial outer-ring return to the application code. The application will construct a pointer

from the passed selector to reference its configuration database.

The following C-code defines the constants and structures of the PL3 configuration

database. A variable of type “int” is assumed to be 32 bits, and a variable of type “short

int” is assumed to be 16 bits. Some of the types and constants used below assume the

inclusion of lower-layer header files, e.g., the equivalent of an “lpsk.h”, to be defined at a

later date.

#define MAX_USERNAME 32

#define MAX_PASSWORD 32

// Call interface return values

#define SCOS_AUTH_FAILURE 300

#define SCOS_LOGIN_BUSY 301

#define SCOS_INVALID_STRING 302

#define SCOS_NO_LOGIN 303

// The following structure is the PL3 Configuration DB definition

//

typedef struct {

 unsigned int version // PL3 database format version

 device_struct keyboard; // Pre-attached keyboard device

 device_struct screen; // Pre-attached screen device

 unsigned int num_segs; // # of segments created for app

 segment_struct seg[MAX_DSEGS+MAX_MSEGS];

} application_struct;

The device_struct type provides the major and minor numbers for devices that have been

logically pre-attached by the LPSK during initialization. The segment_struct type

provides a structure that allows the SCOS to pass out dseg and mseg information to the

application.

The data provided to an application will be a 16-bit selector placed on the stack by the

SCOS. The SCOS will then perform an initial outer-ring return to the application. From

the point of view of the application, it will appear that execution has returned after

making a call, with the selector treated as an output of the call. The selector will appear

on the stack as shown in Table 1. The name in the table is informational, and does not

represent a named structure.

------------------------------32-bits------------------------------

Selector

Table 1. Stack Frame for Outer-Ring Return

The application creates a pointer using the selector with an offset of 0. The pointer will

point to the memory layout shown in Table 2.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 9

 ------------------------------32-bits------------------------------

version

keyboard.major

keyboard.minor

screen.major

screen.minor

num_segs

seg[0].selector

seg[0].size

seg[0].perms

seg[0].id[0]……………………………………..seg[0].id[3]

…

seg[0].id[60]………………………………..…seg[0].id[63]

…

seg[95].selector

seg[95].size

seg[95].perms

seg[95].id[0]…………………………………..seg[95].id[3]

…

seg[95].id[60]……………………..….…..…seg[95].id[63]

Table 2. Memory Layout of the PL3 Configuration Database

The dsegs in the configuration database can be uniquely identified by the application by

referencing the associated path name in the “id” field. The msegs are identified by the

order they were given in the initialization database; the same order given in the

initialization database will be the order given in the mseg array. Size alone is not a good

identifier because some msegs may be the same size, but shared in different ways (or not

at all). The perms element indicates the permission(s) that the application has been

assigned for the associated segment, which is either read-only or read-write.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 10

4 Native Call Interfaces
This section describes the native call interfaces provided by the SCOS for applications.

When implemented, the calls will be made via a gate interface (e.g., a call gate). The

following calls are described in this section:

• scos_flush_segment

• scos_read_next

• scos_read_random

• scos_write_next

• scos_write_random

• scos_shutdown

• scos_powerdown

• scos_login

• scos_who

• scos_logout

• scos_set_password

The following subsections describe the native call interfaces in detail. Note that a

conscious decision was made to not have the SCOS validate input arguments for pass-

through LPSK functions unless there was a specific SCOS-added feature. Validating

inputs would unnecessarily impact performance. The LPSK will make sure security is

not violated.

The constants referenced in this section are either defined in LPSK or SCOS header files.

For interfaces that return a success code, if the requested action is successful, then the

value of NO_ERROR is returned to the caller.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 11

4.1 scos_flush_segment

The scos_flush_segment call is used to write the contents of a memory segment to its

associated location on secondary storage. The scos_flush_segment call has the lowest

implementation priority of all the calls and may not be implemented in Phase 0.

4.1.1 Prototype

unsigned int scos_flush_segment(const selector_type selector);

4.1.2 Inputs

• selector

The input selector references the segment to be flushed to secondary storage.

4.1.3 Outputs

• Function Result

The only output is a numerical value that indicates the success or failure of the

requested operation.

4.1.4 Processing

1. Call scss_flush_segment using the same inputs and outputs given in

scos_flush_segment.

2. Return the function result returned by scss_flush_segment.

4.1.5 Effects

• If successful, the data on secondary storage will be overwritten with known

values.

• If an error occurs during the flush, then the data on secondary storage is in an

unknown state (i.e., a partial write may occur).

4.1.6 Errors

LPSK_NOT_MAPPED

This error is returned if the memory object referenced by the input selector

was not initialized from a memory object on secondary storage (i.e., the

segment is not a dseg).

LPSK_NO_WRITE

This error is returned if the requesting subject does not have a write

permission associated with the dseg to be flushed.

LSPK_WRITE_FAILURE

This error is returned if an unexpected write error occurred during the

flushing of the segment.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 12

4.2 scos_read_next

The scos_read_next call is used to read data sequentially from the requested device, such

as a keyboard. The call will return no more data in the input buffer than requested by the

caller, but it may return less than requested. The actual number of data units returned is

provided as an output.

4.2.1 Prototype

unsigned int scos_read_next(

const unsigned int major,

const unsigned int minor,

const unsigned int num_requested,

 void * const buffer,

 unsigned int * num_read);

4.2.2 Inputs

• major

The major device number. It is the number that represents the kind of the

device to read from.

• minor

The minor device number. It is the number that represents the specific

instantiation of the major device to be read from.

• num_requested

The requested number of device-dependent data units (e.g., bytes) to put into

the memory location pointed to by the input buffer.

• buffer

The memory location where a copy of the requested data is to be put.

4.2.3 Outputs

• num_read

The actual number of data units read and copied into the input buffer. It is

possible that the number of units read is smaller than the input

num_requested, which will result in no returned error.

• Function Result

A numerical value that indicates the success or failure of the requested

operation.

4.2.4 Processing

1. Call scss_read_next using the same inputs and outputs given in

scos_read_next.

2. Return the function result returned by scss_read_next.

4.2.5 Effects

• If data is obtained from the requested device, then the data is copied to the

input buffer.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 13

• In the event that an error occurs during the copy operation an error will be

returned to the caller, but the state of the input buffer will be unknown. In

other words, the buffer may contain only a partially requested read operation.

• If the input buffer provided by the caller points to an area where the

requesting subject does not have write permission then a general protection

fault will occur when an attempt is made to copy the requested data into the

buffer. The effect in Phase 0 will be an ungraceful shutdown of the system.

4.2.6 Errors

LPSK_BAD_MAJOR

This error is returned if the input major is not a valid major device

number.

LPSK_BAD_MINOR

This error is returned if the input (major, minor) is not associated with an

attached device.

LPSK_NO_DATA

This error is returned if there is no data to read from the device.

LSPK_READ_FAILURE

This error is returned if an unexpected read error occurred while reading

from the device.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 14

4.3 scos_read_random

The scos_read_random call is used to read data from the requested device. It is used to

read from devices that can be randomly accessed, such as the screen. The call will return

no more data in the input buffer than requested by the caller, but it may return less than

requested. The actual number of data units returned is provided as an output.

4.3.1 Prototype

unsigned int scos_read_random(

const unsigned int major,

const unsigned int minor,

const unsigned int offset,

const unsigned int num_requested,

 void * const buffer,

 unsigned int * num_read);

4.3.2 Inputs

• major

The major device number. It is the number that represents the kind of the

device to read from.

• minor

The minor device number. It is the number that represents the specific

instantiation of the major device to be read from.

• offset

The device-specific location to start the read operation from.

• num_requested

The requested number of device-dependent data units (e.g., bytes) to read

from the device, starting at the input offset.

• buffer

The memory location where a copy of the requested data is to be put.

4.3.3 Outputs

• num_read

The actual number of data units read and copied into the input buffer. It is

possible that the number of units read is smaller than the input

num_requested.

• Function Result

A numerical value that indicates the success or failure of the requested

operation.

4.3.4 Processing

1. Call scss_read_random using the same inputs and outputs given in

scos_read_random.

2. Return the function result returned by scss_read_random.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 15

4.3.5 Effects

• If data is obtained from the requested device, then the data is copied to the

input buffer.

• In the event that an error occurs during the copy operation an error will be

returned to the caller, but the state of the buffer will be unknown. In other

words, the buffer may contain only a partially requested read operation.

• If the input buffer provided by the caller points to an area where the

requesting subject does not have write permission then a general protection

fault will occur when an attempt is made to copy the requested data into the

buffer. The effect in Phase 0 will be an ungraceful shutdown of the system.

4.3.6 Errors

LPSK_BAD_MAJOR

This error is returned if the input major is not a valid major device

number.

LPSK_NOT_RANDOM

This error is returned if the input (major, minor) device cannot be

randomly accessed.

LPSK_BAD_MINOR

This error is returned if the input (major, minor) is not associated with an

attached device.

LPSK_BAD_OFFSET

This error is returned if the input offset was invalid for the given device in

its current state.

LSPK_DEVICE_END

This error is returned if the caller attempts to start a read request from the

end of the randomly addressable space.

LSPK_READ_FAILURE

This error is returned if an unexpected read error occurred while reading

from the device.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 16

4.4 scos_write_next

The scos_write_next call is used to write data to the requested device. The call will write

no more data to the device than requested by the caller, but it may write less than

requested. The actual number of data units written is provided as an output.

4.4.1 Prototype

unsigned int scos_write_next(

const unsigned int major,

const unsigned int minor,

const unsigned int num_requested,

const void * const buffer
1
,

 unsigned int * num_written);

4.4.2 Inputs

• major

The major device number. It is the number that represents the kind of the

device to write to.

• minor

The minor device number. It is the number that represents the specific

instantiation of the major device to write to.

• num_requested

The number of device-dependent data units (e.g., bytes) to write to the device.

• buffer

The memory location of the data to be written.

4.4.3 Outputs

• num_written

The actual number of data units written. The num_written may be less than

the num_requested.

• Function Result

A numerical value that indicates the success or failure of the requested

operation.

4.4.4 Processing

1. Call scss_write_next using the same inputs and outputs given in

scos_write_next.

2. Return the function result returned by scss_write_next.

4.4.5 Effects

• If data is written to the requested device, then the state of the device may have

changed, depending on the device.

1
 The use of two const type specifiers means that neither the pointer nor the contents pointed to by the

pointer can be modified by the called function.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 17

• In the event that an error occurs during the write operation then an error will

be returned to the caller, but the state of the device will be unknown. In other

words, a partial write may have occurred.

4.4.6 Errors

LPSK_BAD_MAJOR

This error is returned if the input major is not a valid major device

number.

LSPK_BAD_MINOR

This error is returned if the input (major, minor) is not associated with an

attached device.

LPSK_NO_WRITE

This error is returned if the calling application does not have write access

to the attached device.

LSPK_WRITE_FAILURE

This error is returned if an unexpected write error occurred while writing

to the device.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 18

4.5 scos_write_random

The scos_write_random call is used to write data to the requested device. It is used to

write to devices that can be randomly accessed, such as the screen. The call will write no

more data to the device than requested by the caller, but it may write less than requested.

The actual number of data units written is provided as an output.

4.5.1 Prototype

unsigned int scos_write_random(

const unsigned int major,

const unsigned int minor,

const unsigned int offset,

const unsigned int num_requested,

const void * const buffer
2
,

 unsigned int * num_written);

4.5.2 Inputs

• major

The major device number. It is the number that represents the kind of the

device to write to.

• minor

The minor device number. It is the number that represents the specific

instantiation of the major device to write to.

• offset

The device-specific location to start the write operation.

• num_requested

The number of device-dependent data units (e.g., bytes) to write to the device.

• buffer

The memory location of the data to be written.

4.5.3 Outputs

• num_written

The actual number of data units written. The num_written may be less than

the input num_requested.

• Function Result

A numerical value that indicates the success or failure of the requested

operation.

4.5.4 Processing

1. Call scss_write_random using the same inputs and outputs given in

scos_write_random.

2. Return the function result returned by scss_write_random.

2
 The use of two const’s means that neither the pointer nor the contents pointed to by the pointer can be

modified by the called function.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 19

4.5.5 Effects

• If data is written to the requested device, then the state of the device may have

changed, depending on the device.

• In the event that an error occurs during the write operation then an error will

be returned to the caller, but the state of the device will be unknown. In other

words, a partial write may have occurred.

4.5.6 Errors

LPSK_BAD_MAJOR

This error is returned if the input major is not a valid major device

number.

LSPK_NOT_RANDOM

This error is returned if the input (major, minor) device cannot be

randomly accessed.

LPSK_BAD_MINOR

This error is returned if the input (major, minor) is not associated with an

attached device.

LPSK_NO_WRITE

This error is returned if the calling application does not have write access

to the attached device.

LPSK_BAD_OFFSET

This error is returned if the input offset is invalid for the given device in

its current state.

LPSK_DEVICE_END

This error is returned if the caller attempts to start a write operation from

the end of the randomly addressable space.

LSPK_WRITE_FAILURE

This error is returned if an unexpected write error occurred while writing

to the device.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 20

4.6 scos_shutdown

The scos_shutdown call is used to perform a graceful shutdown of the computer. When

the termination is complete an optional message is displayed, followed by a system notice

advising the user that the shutdown is done. The computer power is kept on. This initial

Phase 0 implementation does not support termination signals to non-TML subjects.

4.6.1 Prototype

void scos_shutdown(const char * const
3
 message);

4.6.2 Inputs

• message

A message to display on the screen. The string must be null-terminated and

cannot exceed MAX_STOP_MSG bytes

4.6.3 Outputs

None

4.6.4 Processing

1. Call scss_shutdown using the same inputs given in scos_shutdown.

4.6.5 Effects

• All processes are terminated.

• All non-LPSK processing is stopped.

• The state of the screen is minimally altered by the system notice. If the input

message is a valid pointer to a non-empty string then the screen state is further

altered.

• Because termination signals are not supported in Phase 0, a call to

scos_shutdown from one partition will result in processes in other partitions

having no opportunity to flush modified segments to disk. On-disk files may

then be out of date.

4.6.6 Errors

 None

3
 The use of two const’s means that neither the pointer nor the contents pointed to by the pointer can be

modified by the called function.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 21

4.7 scos_powerdown

The scos_powerdown call is used to perform a graceful power down of the computer. If

the computer does not support a software-controlled power down, then the result is the

same as a call to scos_shutdown with no message. This initial Phase 0 implementation

does not support termination signals to non-TML subjects.

4.7.1 Prototype

void scos_powerdown(void);

4.7.2 Inputs

None

4.7.3 Outputs

None

4.7.4 Processing

1. Call scss_powerdown.

4.7.5 Effects

• All processes are terminated.

• If software controlled power down is supported, then the computer is powered

down.

• Even if power down is not supported, all non-LPSK processing is stopped.

4.7.6 Errors

None

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 22

4.8 scos_login

The scos_login call is used to authenticate the user. It uses a pre-installed password

database managed by the SCOS to assist in the authentication. The user-visible

consequence of a successful login is application dependent. Only one user may be

logged in at a time per SCOS instantiation. Each SCOS instantiation manages its own

password database, and no communication between SCOS instantiations is performed.

Therefore, if an SCOS authenticates a user for an application running in a partition, the

SCOS in a different partition would have no record of that authentication,

4.8.1 Prototype

unsigned int scos_login(

const char * const username,

const char * const password);

4.8.2 Inputs

• username

The asserted identity. The string must be null-terminated and cannot exceed

MAX_USERNAME bytes in length.

• password

The password to use as proof of the identity. The string must be null-

terminated and cannot exceed MAX_PASSWORD bytes in length.

4.8.3 Outputs

• Function result

A numerical value that indicates the success or failure of the requested

operation.

4.8.4 Processing

1. Refer to the SCOS user authentication database to verify that no user is

currently logged in. If a user is already logged in then return the

SCOS_LOGIN_BUSY error. Otherwise continue to the next step.

2. Verify that the length of the input username is not greater than

MAX_USERNAME bytes. If it does exceed the maximum length, then return

the SCOS_INVALID_STRING error. Otherwise continue to the next step.

3. Verify that the length of the input password is not greater than

MAX_PASSWORD bytes. If it does exceed the maximum length, then return

the SCOS_INVALID_STRING error. Otherwise continue to the next step.

4. Obtain the hashed password for the input username by referring to the SCOS

password database. If no entry exists for the input username, then return the

SCOS_AUTH_FAILURE error. Otherwise continue to the next step.

5. Hash the input password.

6. If the hash generated in the previous step is not equal to the hash obtained

from the password database return SCOS_AUTH_FAILURE. Otherwise

continue to the next step.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 23

7. Update the SCOS user authentication database to show that the input

username is logged in.

8. Return NO_ERROR to the caller.

4.8.5 Effects

• The SCOS user authentication database is updated to reflect that the user

associated with the input username has been authenticated (i.e., is considered

logged in).

4.8.6 Errors

SCOS_LOGIN_BUSY

This error is returned if a user is already considered logged in.

SCOS_INVALID_STRING

This error is returned if either the input username or input password

exceeds their maximum length of MAX_USERNAME and

MAX_PASSWORD, respectively.

SCOS_AUTH_FAILURE

This error is returned in one of two cases: 1) The input username does not

have a matching entry in the password database; or 2) The hashed input

password is not equal to the hashed password stored in the password

database for the input username.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 24

4.9 scos_who

The scos_who call is used to query which user (if any) is currently logged in.

4.9.1 Prototype

void scos_who(char * const username);

4.9.2 Inputs

None

4.9.3 Outputs

• username

The caller passes in this pointer. If a user is logged in then the user name will

be copied to this referenced location, followed by a NULL character (‘\0’). If

no user is currently logged in then an empty string will be copied to the

referenced location (i.e., a NULL character in the first byte). To avoid

unexpected behavior, the referenced memory location must have at least

(MAX_USERNAME + 1) bytes that can be overwritten.

4.9.4 Processing

1. Copy the user name from SCOS authentication database to the output

username.

2. Return to the caller.

4.9.5 Effects

• The PL3 memory location referenced by the output username will be

modified.

4.9.6 Errors

None

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 25

4.10 scos_logout

The scos_logout call is used to request the SCOS to log out the current user. The user-

visible consequence of a successful logout is application dependent.

4.10.1 Prototype

void scos_logout(void);

4.10.2 Inputs

None

4.10.3 Outputs

None

4.10.4 Processing

1. Update the SCOS user authentication database to show that no user is

currently logged in.

2. Return to the caller.

4.10.5 Effects

• If a user was logged in then the user authentication database is modified to

show that no user is logged in.

4.10.6 Errors

None

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 26

4.11 scos_set_password

The scos_set_password call is used to change the password for the currently logged in

user. It is up to the calling application to ensure the user has provided the intended

password (e.g., by requiring the user to enter the password twice) and that the person

providing the new password is the actual user (e.g., by requiring a re-entry of the current

password). Phase 0 does not enforce password selection policies. If the

scos_flush_segment call is not implemented in Phase 0, then the change will not persist

across a reboot of the computer.

4.11.1 Prototype

unsigned int scos_set_password(const char * const password);

4.11.2 Inputs

• password

The new password for the currently logged in user. The string must be null-

terminated and cannot exceed MAX_PASSWORD bytes in length.

4.11.3 Outputs

• Function result

A numerical value that indicates the success or failure of the requested

operation.

4.11.4 Processing

1. Verify that a user is currently logged in by referring to the SCOS user

authentication database. If no user is currently logged in, then return the

SCOS_NO_LOGIN error.

2. Verify that the length of the input password is not greater than

MAX_PASSWORD bytes. If it does exceed the maximum length, then return

the SCOS_INVALID_STRING error.

3. Hash the input password.

4. Replace the hashed password in the SCOS password database that

corresponds to the logged in user (as noted in the SCOS authentication

database).

5. Call scss_flush_segment to update the on-disk copy of the password database.

6. Return the function result returned by scss_flush_segment to the caller.

4.11.5 Effects

• If successful, then the on-disk copy of the SCOS password database is

updated to reflect a change in a user’s password.

4.11.6 Errors

SCOS_NO_LOGIN

 This error is returned if there is no user currently logged in.

SCOS_INVALID_STRING

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 27

This error is returned if the input password exceeds the maximum length

of MAX_PASSWORD.

LSPK_WRITE_FAILURE

This error is returned if an unexpected write error occurred during the

flushing of the password database.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 28

5 SP Emulation Call Interfaces
The SCOS call interfaces that support an SP emulation were originally specified in a

separate document [4]. However, some changes were made to the interfaces after the

document was prepared. Therefore, the current interfaces are provided below, with the

“scos_” prefix added to the calls. These “scos_” calls are pass-through calls to the

equivalent “scss_” calls.

/* general parameters */

#define INIT_SIZE 4096 // size of data blob used to save SP hardware state

/* define register word size */

#define WORD_SIZE 4 // word size of registers in bytes

typedef unsigned long gpreg_t;

/* define fault types – private – do not check directly */

typedef int SPFault;

/* secure memory areas */

typedef struct {

 void *addr;

 size_t size;

 unsigned int state; /* 0 == plaintext, 1 == ciphertext */

 gpreg_t hash[4];

 gpreg_t iv[2]

} SPHW_SecureArea_t

#define SPArea_DESTROY 1

#define SPArea_RELEASE 2

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 29

SPFault scos_SPHW_DeviceRootKey_Set (unsigned int sel, const gpreg_t rs1, const

gpreg_t rs2);

SPFault scos_SPHW_DeviceRootKey_Lock(void);

SPFault scos_SPHW_DeviceRootKey_Derive(void);

SPFault scos_SPHW_StorageRootHash_Get(void);

SPFault scos_SPHW_StorageRootHash_Set(void);

SPFault scos_SPHW_CEMBuffer_Set (unsigned int sel, gpreg_t *rd);

SPFault scos_SPHW_CEMBuffer_Get (unsigned int sel, const gpreg_t rs1,

const gpreg_t rs2);

SPFault scos_SPHW_BeginCEM_auth (void);

SPFault scos_SPHW_EndCEM_auth (void);

SPFault scos_SPHW_SecureArea_Add (void *addr, size_t size);

SPFault scos_SPHW_SecureArea_Remove (const unsigned int opts, void *addr);

SPFault scos_SPHW_SecureArea_Store (void *addr);

SPFault scos_SPHW_SecureArea_Load (void *addr);

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 30

6 End Notes
This section contains notes for future SCOS phases.

If a future phase allows the SCOS to support more than one application, then the

processing for call interfaces that accept pointers as inputs and outputs must be expanded.

In such situations, the SCOS must verify that the pointers belong to the calling

application, and not to any other application supported by an instantiation of the SCOS.

If a future phase allows the SCOS to support more than one application, some thought

must be given to a policy regarding the attachment of devices. If application A attaches a

device via an SCOS call, then application B should not be able to use it. Therefore, the

SCOS must ensure that when an application makes a call that includes the passing of a

major/minor pair, that the device is attached by the application before allowing the device

operation to occur.

Much of Section 2 “PL3 Initialization Database” should be moved to a specification for

the configuration vector tool.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 31

References

[1] Dwoskin, Jeffrey, Lee, Ruby, “Hardware-rooted Trust for Secure Key

Management and Transient Trust”, ACM CCS, 2007.

[2] Clark, Paul C., Irvine, Cynthia E., Levin, Timothy E., Nguyen, Thuy D., Vidas,

Timothy M., SecureCore Software Architecture: Trusted Path Application (TPA)

Requirements, NPS-CS-07-001, Naval Postgraduate School, December 2007.

[3] GNU Grub, http://www.gnu.org/software/grub/

[4] Dwoskin, Jeffrey, Lee, Ruby, “SP Processor Architecture Reference and SP

Emulation Module & SP TSM Interface (Draft)”, Version 0.5, September 30,

2007.

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 32

Initial Distribution List

1. Defense Technical Information Center 2

8725 John J. Kingman Rd., STE 0944

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 013 2

Naval Postgraduate School

Monterey, CA 93943-5100

3. Research Office, Code 09 1

Naval Postgraduate School

Monterey, CA 93943-5138

4. Karl Levitt 1

National Science Foundation

4201 Wilson Blvd.

Arlington, VA 22230

5. Lee Badger 1

DARPA

3701 Fairfax Drive

Arlington, VA 22203

6. Paul C. Clark 1

Code CS/Cp

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5118

7. Cynthia E. Irvine 2

Code CS/Ic

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5118

8. Timothy E. Levin 2

Code CS/Tl

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5118

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 33

9. Thuy D. Nguyen 2

Code CS/Tn

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5118

10. Timothy M. Vidas 2

Code CS

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5118

SecureCore Software Architecture: SCOS Functional Specification

 Trustworthy Commodity Computation and Communication 34

[THIS PAGE IS INTENTIONALLY BLANK]

