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ABSTRACT 

A Mission Execution Automaton (MEA) is a generalization of a Turing machine 

(TM) that allows either a human being or a sensor-based mobile robot to serve as an 

external agent to the finite state machine (FSM) part of a TM.  This approach is in 

contrast to the standard definition of a TM that allows only an incremental tape recorder 

to fulfill this function.  Thus, MEA constitute a proper superclass of TM, and have a 

potential for wider application.  In this report, the possibility of using MEA for top level 

control of autonomous mobile robots is explored by means of a Lisp/Prolog computer 

simulation. 

A universal MEA consists of a fixed mission execution engine and a set of 

mission orders to specialize the resulting automaton to a specific mission.  That is, such a 

mission execution engine, together with its orders, define the finite state part of a mission 

specific MEA.  This report presents a Prolog implementation of a mission execution 

engine and includes a set of orders, also written in Prolog, for an example “area search 

and sample” mission for an autonomous unmanned undersea vehicle (UUV).  A Lisp 

simulation of a particular UUV and its environment permits testing of a complete mission 

in the given circumstances. 

The software architecture used in this simulation is based on the Rational 

Behavior Model (RBM) in which the top strategic level is realized by means of an MEA.  

Below this is a tactical level, that coordinates the functioning of controllers for physical 

devices at an execution level.  In this report, the tactical level is simulated by a 

combination of Lisp and Prolog, while the execution level is entirely in Lisp. 

Functions implemented at the tactical level are called behaviors, and are defined 

in this report by Lisp function definitions in a hierarchical arrangement.  This process is 

often called behavior subsumption.  Thus, creation of more complex behaviors is 

accomplished by a bottom up process of task abstraction.  On the other hand, executable 

goals are reached by a top down process of recursive refinement of strategic level goals.  
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This process terminates when goal refinement reaches far enough down to attain a basis 

condition in which only previously defined tactical level behaviors are called. 

The report presents a methodology that allows for a gradual migration from 

execution of mission orders by a human tactical officer to execution by an entirely 

robotic tactical officer.  Proof of mission order correctness through exhaustive testing is 

available at every stage of this process.  The authors feel that such proofs are essential 

before actual deployment of autonomous mobile robots in hostile environments. 
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I. INTRODUCTION 

In [1, 2] the concept of a Mission Execution Automaton (MEA) is introduced.  

Briefly, an MEA is a generalization of a Turing Machine (TM) that allows either a human 

being or a sensor-based mobile robot to function as an external agent for the finite state 

machine (FSM) part of a TM.  This is in contrast to the standard definition of a TM that 

allows only an incremental tape recorder to fulfill this function.  Thus, MEA constitute a 

proper superclass of TM, and have a potential for wider application.  Specifically, in [1], 

an example autonomous Unmanned Undersea Vehicle (UUV) area search and sample 

mission is implemented as a Lisp/Prolog computer simulation using the Rational 

Behavior Model (RBM) software architecture [3, 4], with the top (Strategic) level 

realized as an MEA. 

The primary advantage of MEAs is that since mission orders are interpreted by 

them as finite state machines, the correctness of such orders can be established before 

download to an autonomous mobile robot through exhaustive interactive testing 

conducted by human mission experts.  When mission orders are written in appropriately 

structured Prolog, MEAs offer the further advantage that such orders can be read 

declaratively by mission specialists, and procedurally by a Prolog compiler, so that no 

recoding is needed for human testing and mission rehearsal.  However, with respect to 

validation of mission orders through exhaustive testing, experience shows that the 

number of phases in the mission must be small, probably not more than five or six, or 

else such testing will become impracticable due to a “combinatorial explosion” (too many 

cases for human accomplishment in an acceptable time).  This report shows how this 

problem can be overcome by recursive refinement of commands (goals) from a strategic 

level MEA until a basis condition is reached in which only implemented tactical level 

tasks (or “behaviors” [3, 4]) are called to accomplish execution of a given command.  

This approach is used in this report to refine a depth first area search command from the 

MEA of [1] to a basis of Lisp functions derived from a less efficient Brownian motion 

(completely random) search procedure.  This example concretely demonstrates the 

feasibility and effectiveness of combined use of recursive goal refinement and iterative 
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task abstraction (“subsumption”) in autonomous mobile robot control software 

development using an MEA at the top level. 

It is important to realize that strategic level mission control by MEA does not 

attempt to model the kind of complex dialogue that typically occurs between humans in 

execution of a mission in a manned submarine.  Rather, MEA control is totally 

authoritarian in nature.  That is, when this implementation of the RBM architecture is 

adopted, the actions of the subordinate tactical level in interacting with the strategic level 

are strictly limited to executing one of a predefined finite set of commands, and 

responding to a finite set of predefined queries with one of a finite set of answers.  In this 

report, tactical level responses are limited to just two values, “yes” and “no.”  This is 

done to facilitate exhaustive testing of a given set of mission orders.  Despite the apparent 

severity of these constraints, we believe that such restrictions may be exactly what is 

needed to produce a highly desirable type of disciplined behavior by an autonomous 

robot during mission execution.  In addition, we believe that these constraints do not 

affect the generality of the mission control approach we are advocating.  We provide 

examples in this report to support this view. 
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II. A FINITE STATE MODEL FOR HUMAN MISSION 
SPECIFICATION AND EXECUTION 

A. UNIVERSAL MEA AND MISSION ORDERS 

In [1, 2], the concept of a universal MEA mission controller, capable of carrying 

out any mission for any type of external agent when supplied with appropriately 

formatted mission orders is introduced.  In these references, a prototypical 

reconnaissance mission for a UUV is also defined using structured natural human 

language, and subsequently translated into Prolog mission orders.  The dialect chosen for 

this purpose is Allegro Prolog [6, 7], implemented in Common Lisp [8].  The code 

proposed for achieving the desired functionality, as presented in [1], is as follows in 

Figure 1.  We now prefer to refer to such a controller as a Mission Execution Engine 

(MEE). 
 
 
;C:/Documents and Settings/mcghee/My Documents/Papers/Tech Memos/Recursive Refinement/ 
;mission-controller.cl" 
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   
;Robert B.  McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 
;CA.  Date of last revision: 15 July 2011. 
 
;Allegro Prolog uses Lisp syntax.  Rule head is first expression following "<--" symbol.  Rule 
;body is rest of expressions.  Subsequent definitions of rule use "<-" symbol. 
   
;Note that mission orders must be saved as "mission-orders.cl" in same folder as  
;mission-controller.cl, and then compiled before attempting execution by mission-controller.   
;After compiling "mission-orders.cl,” if "mission-controller.cl" has not been previously  
;compiled, it may be necessary to open it in a new Allegro Editor window to avoid "name  
;conflict error" response from compiler. 
 
(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
(load "C:/Documents and Settings/mcghee/My Documents/Papers/Tech Memos/Recursive 
Refinement/mission-orders.fasl") 
 
 
;Facts 
 
(<-- (current_phase 0)) ;Start phase. 
 
;Mission execution rule set  
 
(<-- (execute_mission) (initialize_mission) (repeat) (execute_current_phase) (done) !) 
(<-- (initialize_mission) (abolish current_phase 1) (asserta ((current_phase 1))))  
(<-- (execute_current_phase) (current_phase ?x) (execute_phase ?x) !) 
(<-- (done) (current_phase 'mission_complete))  
(<- (done) (current_phase 'mission_abort))  
 
 
;Human external agent communication functions 
 
(<-- (negative nil)) 
(<- (negative n)) 
(<-- (affirmative ?x) (not (negative ?x))) 
(<-- (report ?C) (princ ?C) (princ .”") (nl)) 
(<-- (command ?C) (princ ?C) (princ "!") (nl)) 
(<-- (ask ?Q ?A) (princ ?Q) (princ "?") (read ?A)) 
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;Test function (illustrates format for calling for mission execution from Lisp) 
 

(defun tm () (?- (execute_mission))) 

Figure 1. Prolog code for Universal Mission Execution Engine with Human 
External Agent Communication Functions 

Corresponding example mission orders, also from [1], are as listed below in 

Figure 2. 
 
 
;C:/Documents and Settings/mcghee/My Documents/Tech Reports/Recursive Refinement/ 
;Mission Orders Archive/AVCL-mission.cl 
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   
;Robert B.  McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 
;CA.  Date of last revision: 13 March 2011. 
 
;This code can be executed only if it is first saved in /My Documents/Mission Control/ as  
;"mission_orders.cl" and then compiled.  When this has been done, it can be executed by loading  
;and compiling "mission_controller.cl,” which is also located in /My Documents/Mission 
Control/. 
 
;The "<--" predicate definition symbol should be used only for the first definition of a  
;given predicate.  After that, subsequent definitions must use "<-" to avoid overwrite.   
 
(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
 
 
;Utility functions 
 
(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) 
     (asserta ((current_phase ?new)))) 
 
 
;Mission specification 
 
(<-- (execute_phase 1) (command "Search Area A") (phase_completed 1))  
(<-- (phase_completed 1) (ask "Search successful" ?A) (affirmative ?A) (change_phase 1 2)) 
(<- (phase_completed 1) (change_phase 1 3)) 
 
(<- (execute_phase 2) (command "Sample environment") (phase_completed 2)) 
(<- (phase_completed 2) (ask "Sample obtained" ?A) (affirmative ?A) (change_phase 2 3)) 
(<- (phase_completed 2) (change_phase 2 5)) 
 
(<- (execute_phase 3) (command "Search Area B") (phase_completed 3))  
(<- (phase_completed 3) (ask "Search successful" ?A) (change_phase 3 4)) 
 
(<- (execute_phase 4) (command "Rendezvous UUV2") (phase_completed 4)) 
(<- (phase_completed 4) (ask "Rendezvous successful" ?A) (change_phase 4 5)) 
 
(<- (execute_phase 5) (command "Return to base") (phase_completed 5)) 
(<- (phase_completed 5) (ask "At base" ?A) (affirmative ?A)  
    (change_phase 5 'mission_complete) (report "Mission succeeded")) 
(<- (phase_completed 5) (change_phase 5 'mission_abort) (report "Mission failed")) 

Figure 2. Prolog Mission Orders for Human Execution of Example UUV Area 
Search and Sample Mission 

For readers unfamiliar with Allegro Prolog, a concise explanation of the syntax 

and semantics of this dialect is provided in [1, 2].  As a further aid to understanding, 
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Figure 3 below presents a more abstract (language independent, but not executable) 

representation of the logic of the example mission in the form of a state graph. 

 
Figure 3. State Graph for Example UUV Area Search and Sample Mission 

It should be noted that two of the phases enclosed by ovals in the above graph are 

terminal phases (or states) that have no successor states.  In addition, there is a “Start” 

phase that has no predecessor state.   

Figure 4 below provides examples of human interaction with Prolog during 

simulated execution of the above mission.  For ease of understanding, user responses 

have been manually highlighted in bold in this figure. 

Referring to Figures 2 and 3, it can be seen that each of the given examples is in 

agreement with the given mission orders.  Specifically, in the first example, the mission 

is truncated, and the UUV returns to base due to its failure to obtain a sample in Area A.  

In the second example, Area A search fails, so sampling is omitted, but Area B search 

and rendezvous with UUV2 succeed.  Nevertheless, since the UUV fails to return to base, 
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per mission orders, the mission is deemed to have failed.  Finally, in the third example, 

Area A search and sampling succeed, but Area B search and rendezvous with UUV2 fail.  

Despite these failures, the mission succeeds because the UUV successfully returns to 

base. 
 
 
CG-USER(1): (?- (execute_mission)) 
Search Area A! 
Search successful?y 
Sample environment! 
Sample obtained?n 
Return to base! 
At base?y 
Mission succeeded. 
Yes 
 
No. 
 
CG-USER(2): (?- (execute_mission)) 
Search Area A! 
Search successful?n 
Search Area B! 
Search successful?y 
Rendezvous UUV2! 
Rendezvous successful?y 
Return to base! 
At base?n 
Mission failed. 
Yes 
 
No. 
 
CG-USER(3): (?- (execute_mission)) 
Search Area A! 
Search successful?y 
Sample environment! 
Sample obtained?y  
Search Area B! 
Search successful?n 
Rendezvous UUV2! 
Rendezvous successful?n 
Return to base! 
At base?y  
Mission succeeded. 
Yes  
 
No. 

Figure 4. Examples of Human Response to MEA Queries in Execution of Area 
Search and Sample Mission (User Responses in Bold) 

At this point, several questions arise.  First of all, is the above behavior that which 

is desired by the human mission specialist who wrote the initial natural language orders?  

Next, if this is the case, does exhaustive testing involving all other possible user response 

sequences correspond to the intentions of this or other mission specialists?  Finally, can 

the mission orders be simplified so as to facilitate testing and understanding?  All of these 

questions will be addressed in the remainder of this section of this report. 
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B. SIMPLIFICATION OF MISSION ORDERS 

In [1, 2], there is no assumption that the inputs to an MEA, whether from a human 

or some form of robotic or mechanical external agent, are binary in nature.  However, in 

the above described example, user responses to queries issued by the MEA mission 

orders are in fact binary.  This being the case, some simplification of the mission orders 

can be achieved by omission of the phase_complete predicate appearing in the above 

Figure 2.  This is possible because there are at most two branches out of each phase of 

these mission orders.  This is in contrast to the more general n-way branching allowed for 

other types of MEA mission orders [2].  The result of this simplification is as listed in 

Figure 5 below: 
 
 
;C:/Documents and Settings/mcghee/My Documents/Tech Reports/Recursive Refinement/ 
;simplify1-AVCL-mission.cl" 
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   
;Robert B.  McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 
;CA.  Date of last revision: 25 October 2011. 
 
(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
 
 
;Utility functions 
 
(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) 
     (asserta ((current_phase ?new)))) 
 
 
;Mission specification 
 
(<-- (execute_phase 1) (command "Search Area A") (ask "Search successful" ?A) (affirmative ?A) 
     (change_phase 1 2)) 
(<- (execute_phase 1) (change_phase 1 3)) 
 
(<- (execute_phase 2) (command "Sample environment") (ask "Sample obtained" ?A) 
    (affirmative ?A) (change_phase 2 3)) 
(<- (execute_phase 2) (change_phase 2 5)) 
 
(<- (execute_phase 3) (command "Search Area B") (ask "Search successful" ?A) 
    (change_phase 3 4)) 
 
(<- (execute_phase 4) (command "Rendezvous UUV2") (ask "Rendezvous successful" ?A)  
    (change_phase 4 5)) 
 
(<- (execute_phase 5) (command "Return to base") (ask "At base" ?A) (affirmative ?A)  
    (change_phase 5 'mission_complete) (report "Mission succeeded")) 
(<- (execute_phase 5) (change_phase 5 'mission_abort) (report "Mission failed")) 

Figure 5. Simplification of Example Mission Orders Resulting from Omitting 
Phase_Complete Predicate 

Testing the above code with the examples of Figure 4 above yields identical 

results, but the code is more compact and somewhat more readable.  At this point we 

noted, partially as a result of the improved readability of the simplified mission orders, 
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that change_phase predicate calls are unconditional in Phase 3 and Phase 4, and 

consequently their queries are irrelevant to mission execution.  This means that, without 

changing the way in which the commands are issued in execution of the given mission, 

these queries can be omitted, and Phases 3 and 4 can then be combined into a new phase, 

Phase 34.  These changes lead to the further code simplification of Figure 6. 
 
 
;C:/Documents and Settings/mcghee/My Documents/Tech Reports/Recursive Refinement/ 
;Mission Orders Archive/simplified-AVCL-mission.cl" 
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   
;Robert B.  McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 
;CA.  Date of last revision: 18 January 2012. 
 
;This code can be executed only if it is first saved in /My Documents/Tech Reports/ 
;Recursive Refinement/ as "mission_orders.cl" and then compiled.  When this has been done, it 
;can be executed by loading and compiling "mission_controller.cl,” which is also located in  
;/My Documents/Tech Reports/Recursive Refinement/. 
 
;The "<--" predicate definition symbol should be used only for the first definition of a  
;given predicate.  After that, subsequent definitions must use "<-" to avoid overwrite.   
 
(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
 
 
;Utility functions 
 
(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) 
     (asserta ((current_phase ?new)))) 
 
 
;Mission specification 
 
(<-- (execute_phase 1) (command "Search Area A") (ask "Search successful" ?A) (affirmative ?A) 
     (change_phase 1 2)) 
(<- (execute_phase 1) (change_phase 1 34)) 
 
(<- (execute_phase 2) (command "Sample environment") (ask "Sample obtained" ?A) 
    (affirmative ?A)  
    (change_phase 2 34)) 
(<- (execute_phase 2) (change_phase 2 5)) 
 
(<- (execute_phase 34) (command "Attempt Area B search") 
    (command "Attempt rendezvous with UUV2") (change_phase 34 5)) 
 
(<- (execute_phase 5) (command "Return to base") (ask "At base" ?A) (affirmative ?A)  
    (change_phase 5 'mission_complete) (report "Mission succeeded")) 
(<- (execute_phase 5) (change_phase 5 'mission_abort) (report "Mission failed")) 

Figure 6. Reduced State Area Search and Sample Mission Orders 

At this point it can be observed that, in the above figure, only four  phases remain 

out of the five defined in Figure 2.  Thus, using the terminology of finite state machine 

theory [9], it can be said that Figure 6 presents a reduced state version of the original 

mission orders.  The significance of this reduction is explained in the next section of this 

report.  In addition, it should be noted that the commands issued by State 34 have been 
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prefixed to include the word “attempt.”  This was done in order to emphasize that 

subsequent commands are not conditioned on the outcome of such an attempt. 

C. VALIDATION OF MISSION ORDERS THROUGH EXHAUSTIVE TESTING 

To insure that the above code actually represents the intentions of the mission 

specialist, it can be executed interactively and exhaustively by that person, either acting 

alone, or in concert with  a subordinate “tactical level” officer.  Figure 7 below shows the 

results of such a test for the given code.  It should be noted in the results listed that, for 

convenience, and for fidelity to actual screen capture results, manual highlighting of user 

responses as in Figure 4 has been omitted.  This will also be the case in subsequent 

testing results presented later in this report. 
 
 
CG-USER(1): (?- (execute_mission)) 
Search Area A! 
Search successful?n 
Attempt Area B search! 
Attempt rendezvous with UUV2! 
Return to base! 
At base?n 
Mission failed. 
Yes 
 
No. 
 
CG-USER(2): (?- (execute_mission)) 
Search Area A! 
Search successful?n 
Attempt Area B search! 
Attempt rendezvous with UUV2! 
Return to base! 
At base?y 
Mission succeeded. 
Yes 
 
No. 
 
CG-USER(3): (?- (execute_mission)) 
Search Area A! 
Search successful?y 
Sample environment! 
Sample obtained?n 
Return to base! 
At base?n 
Mission failed. 
Yes 
 
No. 
 
CG-USER(4): (?- (execute_mission)) 
Search Area A! 
Search successful?y 
Sample environment! 
Sample obtained?n 
Return to base! 
At base?y 
Mission succeeded. 
Yes 
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No. 
 
CG-USER(5): (?- (execute_mission)) 
Search Area A! 
Search successful?y 
Sample environment! 
Sample obtained?y 
Attempt Area B search! 
Attempt rendezvous with UUV2! 
Return to base! 
At base?n 
Mission failed. 
Yes 
 
No. 
 
CG-USER(6): (?- (execute_mission)) 
Search Area A! 
Search successful?y 
Sample environment! 
Sample obtained?y 
Attempt Area B search! 
Attempt rendezvous with UUV2! 
Return to base! 
At base?y 
Mission succeeded. 
Yes 
 
No. 

Figure 7. Exhaustive Human Interactive Testing of Area Search and Sample 
Mission Orders 

The authors recognize that obtaining and interpreting the above kind of results can 

be challenging, especially when more phases are involved than in this example.  

However, we have collectively reviewed Figure 7, and agree that the six cases listed 

correspond to what we intended when writing the above mission orders.  Nevertheless, 

there were some surprises that arose in this process that led to considerable discussion.  

For example, before the above tests, we thought that the missions defined in [1] and [5] 

were identical.  However, subsequently, we came to realize that the mission of [5] 

included no explicit abort phase.  We then wondered if such a phase is needed, or can it 

be implicit?  Our conclusion is that since the definition of an MEA mission controller in 

Figure 1 above includes an explicit abort phase, it is better to include this phase in 

mission orders.  This is especially true during recursive refinement of orders since 

executing an abort command will generally involve some action, such as, for example, 

“scuttle” or “surface for recovery.”  Such actions should be unambiguously defined in 

lower level code before undertaking autonomous mission execution by a real physical 

UUV. 
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Another important question is: “How do we know that the above test is 

exhaustive?” After all, the mission orders include three questions, each of which can be 

answered in two ways, so shouldn’t there be eight cases to be tested?  The answer to this 

question is “no,” the reason being that some missions are executed with less than three 

responses being invoked.  The response to the prompts CG-USER(1) and CG-USER(2) 

show this to be true.  Specifically, the “Sample environment” command associated with 

Phase 2 of the mission is not issued in either of these cases because, as can be seen from 

the mission orders, Phase 2 is entered only upon success of Phase 1.  This results in a 

total of only six cases rather than eight. 

Some deeper questions arose from our discussions of the results of Figure 7.  

Specifically, referring to CG-USER(3), why should the vehicle return to base upon 

failing to get a sample from Area A?  Wouldn’t it be better for it to go on and attempt to 

sample Area B?  For that matter, if the purpose of the mission is to obtain a sample, why 

not return to base after success of sampling in Area A rather than in the event of failure 

of this phase?  Was this a mistake in the original human natural language mission 

definition given in [1]?  Only appeal to a higher authority can answer this kind of 

question.  However, this is an additional value of human mission rehearsal that we feel 

will prove to be essential in military or other hazardous missions.  In particular, we 

believe that no potentially lethal robot mission orders should be executed by an 

operational vehicle until they have passed the kind of “Turing test” [10] exemplified by 

Figure 7 above.  When all questions have been resolved concerning exhaustive testing 

results, then in the most meaningful sense of the term, the Prolog mission code can said 

to have been “proved correct.”  At this point, the highest ranking person participating in 

this test could be designated as the legally responsible individual authorizing its use as 

executable specifications for the development of corresponding mission orders to be 

downloaded to a robot external agent. 

Before leaving the issue of mission order validation by exhaustive testing, it is 

important to note that the complexity of such testing grows roughly exponentially with 

the number of queries in a given set of mission orders.  In particular, we have carried out 

full exhaustive testing of the five-phase version of the mission orders listed in Figure 2 

above, and found that eighteen cases are involved.  This is because the irrelevant queries 
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generated by the original States 3 and 4 can each be answered “yes” or “no,” thereby 

increasing the number of possible response sequences without affecting mission 

execution.  Another way of putting this statement is that the answers to these queries have 

value only for data logging, and do not affect the sequence of commands issued in any 

particular mission execution scenario.  Because of the additional queries generated by 

these states, the results of exhaustive testing of the mission orders of Figure 2 were 

substantially harder to obtain and interpret than those of Figure 7 above. 

As a final remark, the above exhaustive testing of mission execution is possible 

only because the control flow graph of Figure 3 is loop free.  If mission orders contain a 

loop, then the possibility of an infinite number of possible test cases arises.  As 

demonstrated in [2], this can be dealt with by utilizing a loop count or time out failure 

mode in tactical level behavior implementation. 
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III. ENVIRONMENT AND UUV CAPABILITIES 

So far, in this report, the selected mission has been described only at a very high 

level of abstraction.  Specifically, nothing has been said about either the environment in 

which the mission is to take place, or the sensing and movement capabilities of the UUV 

that is to carry out the mission.  To address this issue, suppose, for example, that the 

environment constitutes an (idealized) minefield laid out in a rectangular planar grid, 

with random placement of mines within the grid.  Figure 8 below shows a simple table 

providing a graphical representation of such a minefield in a “list of lists” (Lisp) format.  

In this figure, a “1” entry represents a “mine” and a “0” represents “no mine.”  Following 

the usual Lisp convention [8], Row 0 is the top row and Column 0 is the left column.  For 

simplicity, suppose further that the UUV tasked to reach a goal (located at an unknown 

position within the minefield) is constrained to move only in an up-down (north-south) or 

a right-left (east-west) direction within each cycle of motion. 
 
 
                   ((1 1 1 1 1 1 1 1)  
                 (1 0 0 0 0 0 1 1) 
                 (1 1 0 1 1 0 0 1) 
                 (1 0 1 0 1 0 0 1) 
                 (1 0 1 1 0 1 0 1) 
                 (1 1 0 0 1 0 0 1) 
                 (1 0 0 0 0 0 1 1) 
                 (1 1 1 1 1 1 1 1)) 

Figure 8. Example of Planar Rectangular Grid Minefield 

To illustrate the coordinate system for this grid, note that element (3, 1) is a 0 in 

an area completely surrounded by six 1’s.  This means that this point is isolated and 

cannot be reached by a UUV operating outside this area.  Noting that element (3, 3) is 

surrounded by four l’s, if a UUV were to start there, it would be immobilized, and could 

go nowhere.  Now suppose that the goal to be reached by the UUV is the point (5, 5).  

Then, if it were to start at in cell (6, 3), one way it could get to the goal would be by 

moving first two steps to the right to cell (6, 5), then up to cell (5, 5).  This is the shortest 

path for this move.  Obviously, more circuitous paths are possible, and would result if the 

vehicle were, for example, to first move up.  Now the question is: “How could an 
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autonomous UUV accomplish such a traversal to the goal?.”  The answer depends 

delicately on the sensing and computing capabilities assumed for the vehicle.  Two 

alternative possibilities are presented in this report.   

One approach to searching such an area is to assume that the UUV can detect 

mines (by sonar, for example), but has no idea where the goal is until it finds it, and also 

is unable to determine its own location.  By analogy to bacterial behavior, one (very 

inefficient) way for it to find the goal is to simply wander randomly; i.e., to conduct a 

search by “Brownian motion.”  The Lisp code in the file “brownian-motion-search.cl” 

listed in Figure 9 accomplishes this. 
 
 
;C:/Documents and Settings/mcghee/My Documents/Tech Reports/Recursive Refinement/ 
;brownian-motion-search.cl"  
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   
;Robert B.  McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 
;CA.  Date of last revision: October 9 2011. 
 
;This search method implements brownian motion search in a bounded obstacle field.  It does not  
;utilize any form of terrain marking or terrain memory.  Location of goal is not known a 
priori.   
;The list *path-to-goal* is not used by the agent conducting the search.  It is provided solely  
;for support of human debugging and performance analysis. 
 
 
;-----------------------------------Environment and Search State------------------------------- 
 
(defvar *path-to-goal* nil) 
(defvar *virtual-obstacle-list* nil) 
(defvar *goal-location* nil) 
(defvar *robot-location* nil) 
(defvar *terrain* nil) 
(defvar *area-A* (make-array '(8 8) 
   :initial-contents '((1 1 1 1 1 1 1 1) ; An entry of 1 denotes an obstacle. 
                       (1 0 0 0 0 0 1 1) 
                       (1 1 0 1 1 0 0 1) 
                       (1 0 1 0 1 0 0 1) 
                       (1 0 1 1 0 1 0 1) 
                       (1 1 0 0 1 0 0 1) 
                       (1 0 0 0 0 0 1 1) 
                       (1 1 1 1 1 1 1 1)))) 
 
 
;---------------------------------------Execution Level---------------------------------------- 
 
(defun obstaclep (location) ; location is *terrain* index list '(row column) 
  (= (aref *terrain* (first location) (second location)) 1)) 
 
(defun possible-movep (location) 
  (if (not (obstaclep location)) location)) 
       
(defun south-movep (location) 
  (possible-movep (cons (1+ (first location)) (rest location)))) 
 
(defun north-movep (location) 
  (possible-movep (cons (1- (first location)) (rest location)))) 
 
(defun west-movep (location) 
  (possible-movep (list (first location) (1- (second location))))) 
 
(defun east-movep (location) 
  (possible-movep (list (first location) (1+ (second location))))) 
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(defun go-to (location) (setf *robot-location* location)) 
 
 
;-----------------------------------------Tactical Level--------------------------------------- 
 
(defun possible-move-list (location) 
  (remove nil (list (north-movep location) (south-movep location) 
                    (west-movep location) (east-movep location)))) 
 
(defun order-random-move-from (location);Test prevents movement from completely enclosed start. 
  (if (possible-move-list location) (make-random-move-from location))) 
                                  
(defun random-select (list) (nth (random (length list)) list)) 
 
(defun make-random-move-from (location) 
  (push location *path-to-goal*) 
  (go-to (random-select (possible-move-list location)))) 
 
(defun brownian-find-path (start search-area goal-location nloop) 
  (setf *path-to-goal* nil *robot-location* start *terrain* search-area *goal-location*  
        goal-location) 
  (do ((count (1- nloop) (1- count)) 
       (location *robot-location* (order-random-move-from location))) 
      ((or (equal location *goal-location*) (null location) (zerop count)) 
            ;null means immobilized agent. 
       (if (equal location *goal-location*)  
           (pprint (reverse (cons location *path-to-goal*))))))) 
 
 
;-----------------------------------------Test Functions--------------------------------------- 
 
(defun test1 () (brownian-find-path '(2 2) *area-A* '(3 1) 100)) ;Isolated goal. 
 
(defun test2 () (brownian-find-path '(3 3) *area-A* '(3 1) 100)) ;Immobilized start. 
 
(defun test3 () (brownian-find-path '(6 3) *area-A* '(5 5) 100)) ;Short path. 
 
(defun test4 () (brownian-find-path '(3 6) *area-A* '(6 2) 100)) ;Long path. 

Figure 9. Lisp code for Brownian Motion Search 

Examining the above code, it can be seen that there are six global variables 

declared:  *goal-location*, *path-to-goal*, *virtual-obstacle-list*, *robot-location*, 

*area-A*, and *terrain*.  Following this, a series of execution level functions are defined 

that simulate the UUV’s ability to move and to detect obstacles (mines).  Next, tactical 

level functions are specified to organize sensing and motion functions so as to traverse a 

minefield to find a goal whose location is not known a priori.  These functions make use 

of a possible move list associated with any specified terrain location.  For example, 

referring to the *area-A* array in the code, the possible move list from cell (5, 3) would 

include cells (5, 2) and (6, 3), but not cells (4, 3) or (5, 4).  Next, the functions random-

select and make-random-move-from accomplish a random move to one of the cells in the 

possible move list of a given location.  Finally, the function brownian- find-path uses 

random motion to move about in the search space until either the goal has been found, or 

the agent (think of a single bacterium) “dies” after a specified number of steps.  The test 
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functions test1, test2, test3, and test4 provide a convenient means for testing the 

Brownian motion search code, as shown below in the example results of Figure 10. 
 
 
CG-USER(1): (test1) 
NIL 
 
CG-USER(2): (test2) 
NIL 
 
CG-USER(3): (test3) 
 
((6 3) (6 4) (6 5) (6 4) (6 5) (5 5)) 
 
CG-USER(4): (test4) 
NIL 
 
CG-USER(5): (test4) 
 
((3 6) (4 6) (5 6) (5 5) (6 5) (6 4) (6 5) (5 5) (6 5) (6 4) (6 5) (6 4) (6 5) (5 5)  
 (6 5) (6 4)(6 5) (5 5) (5 6) (5 5) (6 5) (5 5) (6 5) (5 5) (6 5) (5 5) (6 5) (5 5) (6 5) 
 (6 4) (6 3) (6 4) (6 3) (5 3) (5 2) (5 3) (6 3) (5 3) (6 3) (6 2)) 

Figure 10. Results Obtained for Brownian Motion Search Test 

Examining the results of Figure 10 shows that the call to test1 failed.  This is as 

expected since the goal is isolated in this case.  Likewise, the call to test2 failed, but in 

this case, this is because the search agent is immobilized at the start.  In the call to test3, 

the goal was found but not by a minimum length path.  Rather, the robot wandered 

around and crossed its own path once before finding the goal.  In understanding this 

behavior, it is important to note that the agent is kept from wandering away from the 

minefield altogether because the search area is enclosed by a boundary of “mines.”  This 

being the case, completely random motion is certain (in a probabilistic sense), given 

enough time, to find the goal, providing that it is reachable from the start location.   

On the first call to test4, the search fails because the agent “dies” before reaching 

the goal.  This happens because the goal is 10 steps away by the shortest path, and in this 

instance random searching doesn’t allow the agent to travel this far in its specified 100 

step “lifetime.”  However, on the second call, the agent fortuitously wanders into the goal 

and returns the path found.  It is important to realize that the search procedure itself 

makes no use of the global variable *path-to-goal*.  Rather, the value of this path is 

simply returned to the human user of this code as an aid to understanding of the behavior 

of Brownian motion search.  The next section of this report shows how searching can be 

improved if the agent uses the value of this variable in deciding on the next move. 



 17 

IV. RECURSIVE COMMAND REFINEMENT AND DEPTH FIRST 
SEARCH 

If it is assumed that an agent (such as a UUV) has a navigation system so that it 

knows its own position, then it can keep a list of places where it has been (the *path-to-

goal* list) and thus search more efficiently.  Moreover, with this capability, it can also 

keep track of places where it was forced to back up (“backtrack”) and try another move, 

in the form of a global *virtual-obstacle-list*, and use this list to avoid blundering into 

the same situation again.  This strategy is called “depth-first-search” [11].  Assuming that 

a UUV exists with tactical level software equivalent to the Lisp code in the “brownian-

motion-search.cl” file listed in Figure 9, then depth first search of “Area A” can be 

carried out by a human calling by the given functions in this file from a keyboard 

according to the strategy of Figure 11. 

 

 
Figure 11. Structured Natural Language Definition of Grid-Based Depth First Search 

Strategy 

The question now is how can a command from the strategic level MEA such as 

“Search Area A” be carried out using depth first search together with the Lisp functions 

defined in Figure 9?  One way to do this is to recursively refine strategic level commands 

Step 0:  Initialize.  Specifically, set *terrain* to *area-A*, and *robot-location* 
and *goal* to the desired values.  Set *path-to-goal* and *virtual-obstacle-list* 
to nil.  To eliminate the trivial case of search, the variables *goal* and *robot-
location* should not be set to the same values.  Evidently, neither one of them 
should be set to the location of an obstacle cell. 

Step 1:  Move forward.  That is, move robot to an adjacent cell that is not an 
obstacle and is not on the path to the goal.  If no such cell exists, or if at goal, 
then go to Step 2.  Otherwise, add the new cell to the head of the *path-to-goal* 
list and repeat. 

Step 2:  If at goal, end and report success.  If at starting location, end and report 
failure.  Otherwise, go to Step 3. 

Step 3:  Backtrack search.  That is, add the present cell to the *virtual obstacle 
list*, move to previous location, and pop the *path-to-goal* list.  Go to Step 1. 
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until a basis condition is reached in which only implemented tactical level functions are 

called.  This approach will be taken in this section of this report. 

The authors believe that the easiest way to obtain a correct set of mission orders 

for a new mission is through stepwise editing of an existing set of orders known to be 

correct for some other mission.  Thus, starting with the orders of Figure 2 above, the 

following set of (incomplete) orders for carrying out the strategy of Figure 11 can be 

obtained. 
 
 
;C:/Documents and Settings/mcghee/My Documents/Papers/Tech Memos/Recursive Refinement/ 
;Mission Orders Archive/2-state-mission-orders.cl 
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   
;Robert B.  McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 
;CA.  Date of last revision: 6 October 2011. 
 
(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
 
 
;Utility functions 
 
(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) 
     (asserta ((current_phase ?new)))) 
 
 
;Mission specification 
 
(<-- (execute_phase 1) (command "Initialize Area A search") (ask "Initialization completed" ?A)  
     (affirmative ?A) (change_phase 1 5)) 
(<- (execute_phase 1) (change_phase 1 1)) 
 
(<- (execute_phase 5) (command "Determine location") (ask "At goal" ?A) (affirmative ?A)  
    (change_phase 5 'mission_complete) (report "Mission succeeded")) 
(<- (execute_phase 5)  (ask "At start" ?A) (affirmative ?A) 
    (change_phase 5 'mission_abort) (report "Mission failed")) 
(<- (execute_phase 5) (change_phase 5 1)) 

Figure 12. Two-Phase (Incomplete) Mission Orders for Depth First Search by Human 
Agent 

The correctness of the above orders, so far as they go, is partially established by 

the testing results of Figure 13. 

While the code of Figure 12 is shown to be syntactically correct by its successful 

compilation, the above tests reveal that it contains a loop in which Phase 1 returns to 

itself until it succeeds.  A permanent initialization failure would thus cause the mission to 

be stuck in this phase with no escape possible.  In addition, this code commands no 

motion, and so is incomplete.  Continuing to use the code of Figure 2 as a model, the 

code of Figure 12 can be altered as depicted in Figure 13 to address these problems. 
 
 
 



 19 

CG-USER(1): (tm) 
Initialize Area A search! 
Initialization completed?n 
Initialize Area A search! 
Initialization completed?y 
Determine location! 
At goal?n 
At start?y 
Mission failed. 
Yes 
 
No. 
 
CG-USER(2): (tm) 
Initialize Area A search! 
Initialization completed?y 
Determine location! 
At goal?y 
Mission succeeded. 
Yes 
 
No. 

Figure 13. Partial Testing of Two-Phase (Incomplete) Depth First Search Mission 
Orders by Human Agent 

;C:/Documents and Settings/mcghee/My Documents/Papers/Tech Memos/Recursive Refinement/ 
;Mission Orders Archive/4-state-mission-orders.cl 
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   
;Robert B.  McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 
;CA.  Date of last revision: 7 October 2011. 
 
 
(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
 
 
;Utility functions 
 
(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) 
     (asserta ((current_phase ?new)))) 
 
 
;Mission specification 
 
(<-- (execute_phase 1) (command "Initialize Area A search") (ask "Initialization completed" ?A)  
     (affirmative ?A) (change_phase 1 2)) 
(<- (execute_phase 1) (change_phase 1 'mission_abort) (report "Mission failed")) 
 
(<- (execute_phase 2) (command "Move to available cell") (ask "Move successful" ?A)  
    (affirmative ?A) (change_phase 2 3)) 
(<- (execute_phase 2) (change_phase 2 5)) 
 
(<- (execute_phase 3) (command "Push previous cell location onto path-to-goal list")  
    (ask "Action completed" ?A) (affirmative ?A) (change_phase 3 2)) 
(<- (execute_phase 3) (change_phase 3 3)) 
 
(<- (execute_phase 5) (command "Determine location") (ask "At goal" ?A) (affirmative ?A)  
    (change_phase 5 'mission_complete) (report "Mission succeeded")) 
(<- (execute_phase 5)  (ask "At start" ?A) (affirmative ?A) 
    (change_phase 5 'mission_abort) (report "Mission failed")) 
(<- (execute_phase 5) (change_phase 5 1)) 

Figure 14. Four-Phase (Incomplete) Mission Code for Execution by Human Agent 
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From Figure 15 below, it can be seen that while this code also compiles and 

executes, and corrects the two problems noted in the code of Figure 12, it fails to initiate 

backtracking when there is no new cell available to continue the depth first search, and 

instead (incorrectly) calls for an additional initialization. 
 
 
CG-USER(1): (tm) 
Initialize Area A search! 
Initialization completed?n 
Mission failed. 
Yes 
 
No. 
 
CG-USER(2): (tm) 
Initialize Area A search! 
Initialization completed?y 
Move to available cell! 
Move successful?y 
Push previous cell location onto path-to-goal list! 
Action completed?y 
Move to available cell! 
Move successful?n 
Determine location! 
At goal?n 
At start?n 
Initialize Area A search! 
Initialization completed? 

Figure 15. Human Execution of Four-Phase Depth First Search Mission Orders 

To fix the omission of backtracking, Phases 2 and 3 of Figure 14 above can be 

combined into a new Phase 2, and then two more phases can be added as in Figure 16 

below.  In this figure, Phase 5 is also modified to accommodate the other code changes.  

The authors feel obliged to admit that, to us, the resulting code is far from obvious, and 

that it was not easily obtained.  Rather, many iterations involving exhaustive phase 

transition tests and group code review were required to arrive at these results.  This 

process also resulted in minor modifications to our original natural language definition of 

depth first search so as to arrive at the formulation presented in Figure 11 of this report.  

Construction of a control flow graph (state graph) for various versions of mission orders 

was found to be very helpful during this debugging process.  Figure 17 shows such a 

graph for the code of Figure 16.  Evidently, this graph provides a more conventional 

description of control flow during code execution.  However, it is not executable, and 

therefore not subject to exhaustive testing analogous to Figure 7.  Its value, therefore, for 

the purposes of this report, is merely to aid in human understanding of the corresponding 

Prolog mission orders. 
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 In reviewing and testing the following code, it should be noted that queries have 

been tagged with their associated state numbers.  This technique proved to be valuable in 

finding coding and logic errors by tracing execution results as in Figure 18. 
 
 
;C:/Documents and Settings/mcghee/My Documents/Tech Reports/Recursive Refinement/ 
;Mission Orders Archive/stand-alone-human-depth-first-search.cl 
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   
;Robert B.  McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 
;CA.  Date of last revision: 5 January 2012. 
 
;This code can be executed only if it is first saved in /My Documents/Tech Reports/ 
;Recursive Refinement/mission_orders.cl and then compiled.  When this has been done, it can be  
;executed by loading and compiling "mission_controller.cl,” which is also located in  
;/My Documents/Tech Reports/Recursive Refinement. 
 
;The "<--" predicate definition symbol should be used only for the first definition of a  
;given predicate.  After that, subsequent definitions must use "<-" to avoid overwrite.   
 
(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
 
 
;Utility functions 
 
(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) 
     (asserta ((current_phase ?new)))) 
 
 
;Mission specification 
 
(<-- (execute_phase 1) (change_phase 1 1.1)) 
 
(<- (execute_phase 1.1) (command "Initialize Area A search")  
    (ask "Initialization completed-1.1" ?A) (affirmative ?A) (change_phase 1.1 1.2)) 
(<- (execute_phase 1.1) (change_phase 1.1 'mission_abort) (report "Depth first search failed"))  
 
(<- (execute_phase 1.2) (command "Move forward") (ask "Success-1.2" ?A) (affirmative ?A)  
    (change_phase 1.2 1.3)) 
(<- (execute_phase 1.2) (change_phase 1.2 1.4)) 
 
(<- (execute_phase 1.3) (command "Observe environment and test goal found")  
    (ask "Goal found-1.3" ?A) (affirmative ?A) (change_phase 1.3 'mission_complete)  
    (report "Depth first search succeeded")) 
(<- (execute_phase 1.3) (change_phase 1.3 1.2)) 
 
(<- (execute_phase 1.4) (command "Backtrack search")  
    (ask "Backtrack successful-1.4" ?A) (affirmative ?A) (change_phase 1.4 1.5)) 
(<- (execute_phase 1.4) (change_phase 1.4 'mission_abort) (report "Depth first search failed")) 
 
(<- (execute_phase 1.5) (command "Observe environment and test for available cell")  
    (ask "Available cell-1.5" ?A) (affirmative ?A) (change_phase 1.5 1.2)) 
(<- (execute_phase 1.5) (change_phase 1.5 1.4)) 

Figure 16. Five-Phase Standalone Mission Orders for Human Agent Execution of 
Grid-Based Depth First Search 



 22 

 
Figure 17. State Graph for Five-Phase Grid-Based Depth First Search Mission Orders 

Figure 18 below shows the results of exhaustive testing of state transitions for the 

code of Figure 16. 
 
 
CG-USER(1): (tm) 
Initialize Area A search! 
Initialization completed-1.1?y 
Move forward! 
Success-1.2?y 
Observe environment and test goal found! 
Goal found-1.3?n 
Move forward! 
Success-1.2?n 
Backtrack search! 
Backtrack successful-1.4?y 
Observe environment and test for available cell! 
Available cell-1.5?n 
Backtrack search! 
Backtrack successful-1.4?n 
Depth first search failed. 
Yes 
 
No. 
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CG-USER(2): (tm) 
Initialize Area A search! 
Initialization completed-1.1?y 
Move forward! 
Success-1.2?y 
Observe environment and test goal found! 
Goal found-1.3?n 
Move forward! 
Success-1.2?n 
Backtrack search! 
Backtrack successful-1.4?y 
Observe environment and test for available cell! 
Available cell-1.5?y 
Move forward! 
Success-1.2?y 
Observe environment and test goal found! 
Goal found-1.3?y 
Depth first search succeeded. 
Yes 
 
No. 
 
CG-USER(3): (tm) 
Initialize Area A search! 
Initialization completed-1.1?n 
Depth first search failed. 
Yes 
 
No. 

Figure 18. State Transition Test for Five-Phase Depth First Search Mission Orders 

Now a difficult question arises, namely, are these results correct?  That is, do they 

embody the strategy of Figure 11 and do they always result in a search that halts with a 

correct conclusion?  As shown earlier in this report, for the given top level mission 

orders, this question is answered in a relatively straightforward way by exhaustive testing 

of all possible tactical officer response sequences.  This is possible in this case because 

the mission orders define an FSM with just four states.  In the present case, however, due 

to the utilization of two lists of potentially unlimited length (*path-to-goal* and *virtual-

obstacle-list*), the mission orders of Figure 16 define instead a type of TM [2, 12].  It is 

known that there can be no general algorithm for proof of correctness of TMs [11].  

Nevertheless, the authors believe that Figure 16 correctly encodes depth first search.  As 

a first step in proving this contention, observe that Figure 18 displays results for all 

possible state transitions defined in Figure 16.  To see that this is so, consider first the 

results listed above following the prompts “GC-USER(1):” and “GC-USER(2):.”  Careful 

examination of the user responses in this section of this figure shows that all possible 

query responses have been invoked except for a “no” answer to queries from Phase 1.1.  

Results following “GC-USER(3):” include this case.  It is the authors’ opinion that all of 
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these responses are in accordance with the algorithm of Figure 11, and represent 

physically possible occurrences in the specified depth first search problem. 

 Despite the above assertion that all state transitions specified in Figure 16 are as 

desired, it does not follow that this rule set is complete and correct.  That is, no argument 

has yet been made here that, when using these rules, user response sequences of any 

length always lead to correct mission execution for any terrain.  However, such an 

argument can be made as follows.  First of all, all robot movement is accomplished by 

Phases 1.2 and 1.4 in this code.  Specifically, execution of Phase 1.2 accomplishes a 

forward move into a previously unexplored terrain cell (providing that such a cell exists).  

If this fails, repeated execution of Phase 1.4 results in backtracking until some other 

unexplored cell (if any) is encountered.  This being the case, the robot executing this code 

explores exactly one new cell on each cycle until it halts with either success or failure.  If 

success occurs, then the goal has been found as desired.  If the goal is not found, then the 

entire (bounded) search space has been explored without success, and the process halts 

and indicates failure.  In either case, a correct result is obtained without the inefficiency 

of exploring the same cell multiple times as typically occurs in Brownian motion search.   

The authors contend that the above analysis amounts to an informal proof of 

correctness for the given mission orders.  A formal proof based on predicate calculus [12] 

is beyond the scope of this report. 
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V. REFINEMENT OF TOP LEVEL MISSION ORDERS FOR 
HUMAN EXTERNAL AGENTS 

What we wish to do now is to refine the “Search Area A” command using the 

“stand alone” code of Figure 16.  This is accomplished by appropriately “splicing” the 

code of this figure into that of Figure 6.  That is, the code of Figure 16 was developed and 

tested as if it were a top level mission specification.  In fact, it is intended to represent the 

first stage of recursive refinement of the “Search Area A” command, and hence such a 

splicing (or some other form of function call) is appropriate to achieving this objective.  

The result of this change is listed in Figure 19. 
 
 
;C:/Documents and Settings/mcghee/My Documents/Tech Reports/Recursive Refinement 
;/Mission Orders Archive/refined-area-search-mission.cl 
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   
;Robert B.  McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 
;CA.  Date of last revision: 24 January 2012. 
 
;This code can be executed only if it is first saved in /My Documents/Tech Reports/ 
;Recursive Refinement/Mission Orders Archive/refined-area-search-mission.cl and then compiled.   
;When this has been done, it can be executed by loading and compiling "mission_controller.cl,”  
;which is also located in /My Documents/Tech Reports/Recursive Refinement 
/Mission Orders Archive. 
 
;The "<--" predicate definition symbol should be used only for the first definition of a  
;given predicate.  After that, subsequent definitions must use "<-" to avoid overwrite.   
 
(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
 
 
;Utility functions 
 
(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) 
     (asserta ((current_phase ?new)))) 
 
 
;-------------------------------Top Level Mission Specification-------------------------------- 
 
(<-- (execute_phase 1) (change_phase 1 1.1)) 
 
(<- (execute_phase 2) (command "Sample environment") (ask "Sample obtained" ?A) 
    (affirmative ?A)  
    (change_phase 2 34)) 
(<- (execute_phase 2) (change_phase 2 5)) 
 
(<- (execute_phase 34) (command "Attempt Area B search") 
    (command "Attempt rendezvous with UUV2")  
    (change_phase 34 5)) 
 
(<- (execute_phase 5) (command "Return to base") (ask "At base" ?A) (affirmative ?A)  
    (change_phase 5 'mission_complete) (report "Mission succeeded")) 
(<- (execute_phase 5) (change_phase 5 'mission_abort) (report "Mission failed")) 
 
 
 
 
;-------------------------------------Phase 1 Refinement--------------------------------------- 
 
(<- (execute_phase 1.1) (command "Initialize Area A search")  
    (ask "Initialization completed-1.1" ?A) (affirmative ?A) (change_phase 1.1 1.2)) 
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(<- (execute_phase 1.1) (change_phase 1.1 34) (report "Area A search failed"))  
 
(<- (execute_phase 1.2) (command "Move forward") (ask "Success-1.2" ?A) (affirmative ?A) 
    (change_phase 1.2 1.3)) 
(<- (execute_phase 1.2) (change_phase 1.2 1.4)) 
 
(<- (execute_phase 1.3) (command "Observe environment and test goal found")  
    (ask "Goal found-1.3" ?A) (affirmative ?A) (report "Search Area A succeeded")  
    (change_phase 1.3 2))  
(<- (execute_phase 1.3)(change_phase 1.3 1.2)) 
 
(<- (execute_phase 1.4) (command "Backtrack search") (ask "Backtrack successful-1.4" ?A) 
    (affirmative ?A) (change_phase 1.4 1.5)) 
(<- (execute_phase 1.4) (change_phase 1.4 34) 
    (report "Backtrack failed.  Area A search failed")) 
 
(<- (execute_phase 1.5) (command "Observe environment and test for available cell")  
    (ask "Available cell-1.5" ?A) (affirmative ?A) (change_phase 1.5 1.2)) 
(<- (execute_phase 1.5) (change_phase 1.5 1.4)) 

Figure 19. Area Search and Sample Human Agent Mission Orders with Depth First 
Search Refinement of Phase 1 

Examples of testing of this code are presented in Figure 20, which illustrates 

human execution of a depth first search. 
 
 
CG-USER(1): (tm) 
Initialize Area A search! 
Initialization completed-1.1?y 
Move forward! 
Success-1.2?y 
Observe environment and test goal found! 
Goal found-1.3?n 
Move forward! 
Success-1.2?n 
Backtrack search! 
Backtrack successful-1.4?y 
Observe environment and test for available cell! 
Available cell-1.5?y 
Move forward! 
Success-1.2?y 
Observe environment and test goal found! 
Goal found-1.3?y 
Search Area A succeeded. 
Sample environment! 
Sample obtained?y 
Attempt Area B search! 
Attempt rendezvous with UUV2! 
Return to base! 
At base?n 
Mission failed. 
Yes 
 
No. 
 
CG-USER(2): (tm) 
Initialize Area A search! 
Initialization completed-1.1?y 
Move forward! 
Success-1.2?y 
Observe environment and test goal found! 
Goal found-1.3?n 
Move forward! 
Success-1.2?n 
Backtrack search! 
Backtrack successful-1.4?y 
Observe environment and test for available cell! 
Available cell-1.5?n 
Backtrack search! 
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Backtrack successful-1.4?y 
Observe environment and test for available cell! 
Available cell-1.5?n 
Backtrack search! 
Backtrack successful-1.4?n 
Backtrack failed.  Area A search failed. 
Attempt Area B search! 
Attempt rendezvous with UUV2! 
Return to base! 
At base?y 
Mission succeeded. 
Yes 
 
No. 

Figure 20. Sample Test Results for Human Execution of Area Search and Sample 
Mission with Refinement of Phase 1 

Referring to the above figure, it can be seen that two complete mission scenarios 

have been tested.  The first of these is for the case the “Search Area A” phase ends in 

success, the other is for the case of a failed search.  In both cases, the exit from Phase 1 is 

correct, and the rest of the mission executes as expected.  Since the code of Figures 6 and 

16 have each separately been shown to be correct, the results presented in Figure 20 

prove the combined code of Figure 19 to be correct.  This is in contrast to direct 

exhaustive testing of the combined code, which involves far too many choices 

(potentially infinite) to be realistically accomplished through human interaction.  That is, 

it is neither practical nor necessary to complete Figure 20 to include all possible mission 

scenarios.  The solution to this type of problem, in general, is to recursively refine 

commands (as we have done above), with not more than five or six phases in each 

refinement, and with exhaustive testing of each refinement, until only behaviors 

previously defined at the tactical level are called (basis condition).  The next section of 

this report deals with the alternative possibility of abstracting (subsuming) the previously 

defined Brownian motion search code to accomplish depth first search at the tactical 

level, thereby obviating the need for strategic level command refinement to accomplish 

this behavior.   
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VI. ITERATIVE ABSTRACTION OF TACTICAL LEVEL CODE 
TO ACHIEVE AUTONOMOUS AREA SEARCH 

While the results of Figure 20 prove the correctness of the refined strategic level 

code for the given mission, there are still some problems remaining.  First of all, the 

tactical level Brownian motion Lisp code of Figure 9 does not contain any functions 

corresponding to the either a command to move forward or to backtrack search.  This 

means that either another (therefore “recursive”) refinement of the code of Figure 19 to 

include a definition of these behaviors is required, or else that the code of Figure 9 be 

augmented by further function definitions to provide the functionality needed to enable 

robot search of Area A.  Such iterative abstraction of this code corresponds to the usual 

idea of behavior subsumption  [14].  An appropriate revised “abstracted” version of the 

referenced Lisp code, providing these behaviors, and also capable of performing depth 

first search on its own, is listed below.  It should be noted that this abstraction also 

provides a definition of Area B terrain. 
 
 
;C:/Documents and Settings/mcghee/My Documents/Tech Reports/Recursive Refinement/ 
;subsumption-depth-first-tactical.cl"  
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.  Robert B.  McGhee  
;(robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, CA.   
;Date of last revision: January 24 2012. 
 
;This search method implements depth first search in a bounded obstacle field.  Location  
;of goal is not known a priori.   
 
(load "C:/Documents and Settings/mcghee/My Documents/Tech Reports/Recursive 
Refinement/brownian-motion-search.fasl") 
 
 
;-----------------------------------Environment and Search State------------------------------- 
 
(defvar *area-B* (make-array '(8 8) 
   :initial-contents '((1 1 1 1 1 1 1 1) ; An entry of 1 denotes an obstacle. 
                       (1 0 0 0 0 0 0 1) 
                       (1 0 0 0 0 0 0 1) 
                       (1 0 0 0 0 0 0 1) 
                       (1 0 0 0 0 0 0 1) 
                       (1 0 0 0 0 0 0 1) 
                       (1 0 0 0 0 0 0 1) 
                       (1 1 1 1 1 1 1 1)))) 
 
 
 
;-----------------------------------------Tactical Level--------------------------------------- 
 
(defun initialize-search (start search-area goal-location) 
  (setf *path-to-goal* nil *virtual-obstacle-list* nil *robot-location* start  
        *terrain* search-area *goal-location* goal-location )) 
 
(defun legal-move-list (location) 
  (do* ((outlist nil (cons (legal-movep (first inlist)) outlist)) 
        (inlist (possible-move-list location) (rest inlist))) 
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       ((null inlist) (remove nil outlist)))) 
 
(defun legal-movep (location) 
  (if (and (not (member location *virtual-obstacle-list* :test #'equal)) 
           (not (member location *path-to-goal* :test #'equal))) location)) 
 
(defun move-forward-from (location)  
  (if (legal-move-list location) (and (push location *path-to-goal*) 
                                      (go-to (random-select (legal-move-list location)))))) 
 
(defun backtrack-search-from (location) 
  (if *path-to-goal* (and (push location *virtual-obstacle-list*) 
                          (setf *robot-location* (pop *path-to-goal*))))) 
 
(defun available-cellp (location) (legal-move-list location)) 
 
(defun move-from (location)  
  (if (available-cellp location) (move-forward-from location) 
                                 (backtrack-search-from location))) 
 
(defun depth-first-search (start search-area goal-location) 
  (initialize-search start search-area goal-location) 
  (do* ((location *robot-location* (move-from location))) 
       ((or (equal location *goal-location*) (null location))  
        (if (equal location *goal-location*) 
            (pprint (reverse (push location *path-to-goal*))))))) 
 
 
 
;-----------------------------------------Test Functions--------------------------------------- 
 
 
 
(defun test5 () (depth-first-search '(2 2) *area-A* '(3 1))) ;Isolated goal. 
 
(defun test6 () (depth-first-search '(3 3) *area-A* '(3 1))) ;Immobilized start. 
 
(defun test7 () (depth-first-search '(1 3) *area-A* '(2 5))) ;Short path. 
 
(defun test8 () (depth-first-search '(3 6) *area-A* '(6 2))) ;Long path. 
 
(defun test9 () (depth-first-search'(1 3) *area-B* '(3 5))) ;Open area. 

Figure 21. Revised Tactical Level Lisp Code Including Depth First Search 

Representative results from calling the depth-search function defined above are 

presented below in Figure 22.  The results shown are evidently correct.  In particular, the 

call to “pretty print” the virtual obstacle list shows that, as should happen, the entire 

available cell search space is filled in the failed attempt to reach the isolated goal 

involved in test5, and the robot ends up at the start location.  Moreover, while as 

expected, the paths found in other cases are shorter than those shown in Figure 10 for 

Brownian motion search, they also confirm (from the two calls to test8) that depth first 

search does not always return a minimum length path.  In order to assure the latter, a 

more complex form of search involving either an a priori map or the cooperation of 

multiple agents is needed.  An example of such a search method is breadth first search 

[11] in which a reproducing and expanding group of agents moves a frontier forward 
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until the goal is found.  Evidently, this strategy is not suitable for a search by single UUV 

as envisaged in this report. 
 
 
CG-USER(1): (test5) 
NIL 
 
CG-USER(2): *robot-location* 
(2 2) 
 
CG-USER(3): (pprint *virtual-obstacle-list*) 
((1 2) (1 3) (1 4) (1 5) (2 5) (2 6) (3 6) (3 5) (4 6) (5 6) (5 5) (6 5) (6 4) (6 3) (5 3) 
 (5 2) (6 2) (6 1) (1 1)) 
 
CG-USER(4): (test6) 
NIL 
 
CG-USER(5): (test7) 
((1 3) (1 4) (1 5) (2 5)) 
 
CG-USER(6): (test8) 
((3 6) (4 6) (5 6) (5 5) (6 5) (6 4) (6 3) (5 3) (5 2) (6 2)) 
 
CG-USER(7): (test8) 
((3 6) (4 6) (5 6) (5 5) (6 5) (6 4) (6 3) (6 2)) 
 
CG-USER(8): (test9) 
((1 3) (1 2) (1 1) (2 1) (3 1) (4 1) (5 1) (5 2) (6 2) (6 3) (6 4) (5 4) (5 5) (4 5) (4 4) 
 (4 3) (4 2) (3 2) (2 2) (2 3) (3 3) (3 4) (2 4) (1 4) (1 5) (1 6) (2 6) (3 6) (3 5)) 
 
CG-USER(9): (test9) 
((1 3) (2 3) (2 4) (1 4) (1 5) (2 5) (3 5)) 

Figure 22. Representative Results from Lisp Depth First Search 

The results of the two calls to test9 listed above show that depth first search is a 

poor strategy for searching for a goal in an unknown location in an open area, since the 

paths found are much longer than the shortest path available for this example.  A detailed 

treatment of some more suitable search strategies for low obstacle density terrain can be 

found in [15]. 

While the results of Figure 22 are believed to be correct, there is still a problem 

with respect to simulation of the selected UUV mission in that none of the Prolog code 

presented thus far in this report calls any tactical level Lisp functions, but rather depends 

entirely on human interaction during execution.  That is, all of the Prolog code so far 

included in this report is useful only for “Turing test” debugging [1, 10].  This problem is 

addressed in following sections of this report.   
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VII. EXAMPLE MISSION ORDERS MODIFIED FOR HYBRID 
HUMAN/ROBOT AGENT EXECUTION 

One of the strengths of the recursive refinement approach to code development in 

the RBM architecture is that shifting of responsibility for tactical level mission execution 

can be accomplished incrementally during debugging from a human tactical officer to a 

robot (software) tactical officer.  With respect to the refined area search and sample 

mission orders of Figure 19, the Lisp functions developed in Figure 21 are available for 

this purpose.  While such a gradual shifting of responsibility during code development is 

a tedious process, it has the great advantage of allowing stepwise verification of 

correctness.  Obviously, the human tactical officer not only answers some strategic level 

queries during this process, but also functions as the test agent at each stage of code 

development. 

In the code of Figure 23, the robot execution of Phase 1 is commanded directly 

from the given tactical level mission orders, while the human tactical officer receives 

status reports from the robot to permit verification of correct execution.  He himself then 

interactively controls the execution of the remaining commands and queries arising in 

carrying out the given mission.  It should be noted that participation by the robot in 

carrying out this mission is made possible by the addition below of robot external agent 

communication functions to the human communication functions previously provided in 

Figure 1. 
 
 
;C:/Documents and Settings/mcghee/My Documents/Tech Reports/Recursive Refinement/ 
;Mission Orders Archive/hybrid-agent-depth-first-tactical.cl"  
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   
;Robert B.  McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 
;CA.  Date of last revision: 24 January 2012. 
 
(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
(load "C:/Documents and Settings/mcghee/My Documents/Tech Reports/Recursive 
Refinement/subsumption-depth-first-tactical.fasl") 
 
;Robot external agent communication functions 
 
(<-- (initialize_area_A_search) 
     (report "Robot report: Area A search initialization in progress") 
     (lisp (initialize-search '(1 3) *area-A* '(2 5)))) 
(<-- (move_forward) (is ?x (move-forward-from *robot-location*)) (princ ?x) !  (affirmative 
?x))  
(<-- (goal_found) (is ?x *robot-location*) (is ?y *goal-location*) !  (== ?x ?y)) 
(<-- (backtrack) (is ?x (backtrack-search-from *robot-location*)) (princ ?x) ! 
     (affirmative ?x))  
(<-- (available_cell_found) (is ?x (available-cellp *robot-location*)) !  (affirmative ?x))  
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;Utility functions 
 
(defun random-failure (n) (if (zerop (random n)) T)); Failure 1 out of n times on average. 
 
(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) 
     (asserta ((current_phase ?new)))) 
(<-- (success ?n) (is ?x (random-failure ?n)) (== ?x nil)) 
 
 
;-------------------------------Top Level Mission Specification-------------------------------- 
 
(<-- (execute_phase 1) (change_phase 1 1.1)) 
 
(<- (execute_phase 2) (command "Sample environment") (ask "Sample obtained" ?A) 
    (affirmative ?A) (change_phase 2 34)) 
(<- (execute_phase 2) (change_phase 2 5)) 
 
(<- (execute_phase 34) (command "Attempt Area B search") 
    (command "Attempt rendezvous with UUV2") (change_phase 34 5)) 
 
(<- (execute_phase 5) (command "Return to base") (ask "At base" ?A) (affirmative ?A)  
    (change_phase 5 'mission_complete) (report "Mission succeeded")) 
(<- (execute_phase 5) (change_phase 5 'mission_abort) (report "Mission failed")) 
 
 
;---------------------------------------Tactical Level---------------------------------------- 
 
;Area A search rules 
       
(<- (execute_phase 1.1) (initialize_area_A_search) (phase_completed 1.1))  
(<- (phase_completed 1.1) (success 3)  
    (report "Robot report: Search Area A initialization succeeded")  
    (change_phase 1.1 1.2)) 
(<- (phase_completed 1.1)  
    (report "Robot report: Search Area A initialization failed.  Phase execution aborted")  
    (change_phase 1.1 34)) 
 
(<- (execute_phase 1.2) (move_forward) (not (== ?x nil))  
    (report "Robot report: Move forward succeeded") (change_phase 1.2 1.3)) 
(<- (execute_phase 1.2) (report "Robot report: Move forward failed") (change_phase 1.2 1.4)) 
 
(<- (execute_phase 1.3) (goal_found) (report "Robot report: Search Area A succeeded")  
    (change_phase 1.3 2))  
(<- (execute_phase 1.3) (report "Robot report: Goal not found") (change_phase 1.3 1.2)) 
 
(<- (execute_phase 1.4) (backtrack) (report "Robot report: Backtrack succeeded") 
    (change_phase 1.4 1.5)) 
(<- (execute_phase 1.4) (change_phase 1.4 34) (report "Robot report: Search Area A failed")) 
     
(<- (execute_phase 1.5) (available_cell_found) (report "Robot report: Available cell found") 
    (change_phase 1.5 1.2)) 
(<- (execute_phase 1.5) (report "Robot report: No available cell found") 
    (change_phase 1.5 1.4)) 

Figure 23. Mission Orders Modified for Human/Robot Cooperative Execution 

Figure 24 below shows that, using the above code, the UUV correctly carries out 

Phase 1 autonomously, while other phases of the selected mission are accomplished by 

human interaction.  It should be noted that on the first attempt at mission execution 

shown in this figure, initialization fails, and this failure is reported to the human tactical 

officer.  This is because of the inclusion of a random success predicate in the 

(execute_phase 1.1) definition in Figure 23 to exercise both the success and failure 

branches of this phase.  It should also be noted that in the last example in this figure, the 
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user chose to terminate the simulated mission execution by simply typing a .”” (dot) 

symbol in response to a query.  This is a convenient built in feature of Allegro Prolog. 
 
 
CG-USER(1): (tm) 
Robot report: Area A search initialization in progress. 
Robot report: Search Area A initialization failed.  Phase execution aborted. 
Attempt Area B search! 
Attempt rendezvous with UUV2! 
Return to base! 
At base?y 
Mission succeeded. 
Yes 
 
No. 
 
CG-USER(2): (tm) 
Robot report: Area A search initialization in progress. 
Robot report: Search Area A initialization succeeded. 
(1 2)Robot report: Move forward succeeded. 
Robot report: Goal not found. 
(2 2)Robot report: Move forward succeeded. 
Robot report: Goal not found. 
NILRobot report: Move forward failed. 
(1 2)Robot report: Backtrack succeeded. 
Robot report: Available cell found. 
(1 1)Robot report: Move forward succeeded. 
Robot report: Goal not found. 
NILRobot report: Move forward failed. 
(1 2)Robot report: Backtrack succeeded. 
Robot report: No available cell found. 
(1 3)Robot report: Backtrack succeeded. 
Robot report: Available cell found. 
(1 4)Robot report: Move forward succeeded. 
Robot report: Goal not found. 
(1 5)Robot report: Move forward succeeded. 
Robot report: Goal not found. 
(2 5)Robot report: Move forward succeeded. 
Robot report: Search Area A succeeded. 
Sample environment! 
Sample obtained?y 
Attempt Area B search! 
Attempt rendezvous with UUV2! 
Return to base! 
At base?n 
Mission failed. 
Yes 
 
No. 
 
CG-USER(3): (tm) 
Robot report: Area A search initialization in progress. 
Robot report: Search Area A initialization succeeded. 
(1 2)Robot report: Move forward succeeded. 
Robot report: Goal not found. 
(1 1)Robot report: Move forward succeeded. 
Robot report: Goal not found. 
NILRobot report: Move forward failed. 
(1 2)Robot report: Backtrack succeeded. 
Robot report: Available cell found. 
(2 2)Robot report: Move forward succeeded. 
Robot report: Goal not found. 
NILRobot report: Move forward failed. 
(1 2)Robot report: Backtrack succeeded. 
Robot report: No available cell found. 
(1 3)Robot report: Backtrack succeeded. 
Robot report: Available cell found. 
(1 4)Robot report: Move forward succeeded. 
Robot report: Goal not found. 
(1 5)Robot report: Move forward succeeded. 
Robot report: Goal not found. 
(2 5)Robot report: Move forward succeeded. 
Robot report: Search Area A succeeded. 
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Sample environment! 
Sample obtained?n 
Return to base! 
At base?y 
Mission succeeded. 
Yes 
 
No. 
 
CG-USER(4): (tm) 
Robot report: Area A search initialization in progress. 
Robot report: Search Area A initialization succeeded. 
(1 4)Robot report: Move forward succeeded. 
Robot report: Goal not found. 
(1 5)Robot report: Move forward succeeded. 
Robot report: Goal not found. 
(2 5)Robot report: Move forward succeeded. 
Robot report: Search Area A succeeded. 
Sample environment! 
Sample obtained?. 
Error: Dot context error.  [file position = 4287] 
[condition type: READER-ERROR] 

Figure 24. Example Joint Mission Execution by Human and Robot Tactical Officers 

In examining the above results, it should be noted that the Prolog-based Area A 

search problem solved above corresponds exactly to the test7 Lisp function call of Figure 

22.  As they should, results agree.  Specifically, in the first example, Area A search 

initialization failed, so Area A search also fails, and Phase 1 execution is aborted.  In the 

next two cases, as can be seen from the robot position values returned, the robot first 

moves to the left, then backtracks through the start position at (1, 3), and then continues 

moving forward until reaching the goal at (2, 5).  In the last case, the robot first moves to 

the right, and so finds the goal without backtracking. 

Evidently, the transfer of responsibilities from human to robot could be continued 

until the human tactical officer functions only as an observer.  When this has been done, 

the mission is ready for replacement of the simplified execution level functions utilized in 

this report by real robot execution level function calls, and further testing by simulation 

using realistic UUV dynamics [16].  When this phase has been accomplished, in water 

testing can commence [4, 17]. 

Before proceeding further, it should be noted that, if a suitable communication 

link is available then, if desired, as was done above, a remotely located human tactical 

officer could continue to serve as an external agent to an MEA mission controller 

simultaneously with the robot vehicle external agent in real time mission execution.  This 

is the method used at present by aerial drones and subsea ROVs.  This approach also 

provides an evolutionary path for the development of fully autonomous mobile robots.  If 
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the human tactical officer is retained, then MEA mission orders could potentially put 

constraints on his actions to ensure that the robot responds only to “ethical” commands 

from such a ground controller.  We intend to explore this possibility in a future technical 

report. 
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VIII. FULLY AUTONOMOUS MISSION SOURCE CODE AND 
EXECUTION LOGS 

Up to this point in this report, we have been gradually moving from missions in 

which the response to strategic level commands is provided entirely by a human tactical 

officer toward missions increasingly based on robotic execution.  We also have used 

subsumption of lower level behaviors by higher order behaviors to permit a smaller 

degree of mission goal refinement.  The limit of this evolution toward autonomous 

execution is reached when the role of the human tactical officer is reduced to observation 

and evaluation.  Figure 25 below provides one example of code for fully autonomous 

(robotic) execution of the given area search and sample mission. 
 
 
;C:/Documents and Settings/mcghee/My Documents/Tech Reports/Recursive Refinement/ 
;Mission Orders Archive/robot-agent-random-success.cl"  
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   
;Robert B.  McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 
;CA.  Date of last revision: 31 October 2011. 
 
(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
(load "C:/Documents and Settings/mcghee/My Documents/Tech Reports/Recursive 
Refinement/subsumption-depth-first-tactical.fasl") 
 
;Robot external agent communication functions 
 
(<-- (search_area_A) (success 2)) 
(<-- (sample_environment) (success 2)) 
(<-- (search_area_B) (success 2)) 
(<-- (rendezvous_UUV2) (success 2)) 
(<-- (return_to_base) (success 2)) 
 
;Utility functions 
 
(defun random-failure (n) (if (zerop (random n)) T)); Failure 1 out of n times on average. 
 
(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) 
     (asserta ((current_phase ?new)))) 
(<-- (success ?n) (is ?x (random-failure ?n)) (not (== ?x nil))) 
 
 
;--------------------------------Top Level Mission Specification------------------------------- 
 
(<-- (execute_phase 1) (command "Search Area A") (search_area_A)  
     (report "Robot report: Search Area A succeeded") (change_phase 1 2)) 
(<- (execute_phase 1) (report "Robot report: Search Area A failed") (change_phase 1 3)) 
 
(<- (execute_phase 2) (command "Sample environment") (sample_environment)  
    (report "Robot report: Sample environment succeeded") (change_phase 2 3)) 
(<- (execute_phase 2) (report "Robot report: Sample environment failed") (change_phase 2 5)) 
 
(<- (execute_phase 3) (command "Search Area B") (search_area_B)  
    (report "Robot report: Search Area B succeeded") (change_phase 3 4)) 
(<- (execute_phase 3) (report "Robot report: Search Area B failed") (change_phase 3 4)) 
 
(<- (execute_phase 4) (command "Rendezvous UUV2") (rendezvous_UUV2) 
    (report "Robot report: Rendezvous UUV2 succeeded") (change_phase 4 5)) 
(<- (execute_phase 4) (report "Robot report: Rendezvous UUV2 failed") (change_phase 4 5)) 
 
(<- (execute_phase 5) (command "Return to base") (return_to_base)  
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    (change_phase 5 'mission_complete) (report "Robot report: Return to base succeeded") 
    (report "Mission succeeded")) 
(<- (execute_phase 5) (change_phase 5 'mission_abort)  
    (report "Robot report: Return to base failed") (report "Mission failed")) 

Figure 25. Mission Orders for Simulation of Fully Autonomous “Area Search and 
Sample” Mission Execution 

Examples of execution of the code from Figure 25 are depicted below in Figure 

26. 
 
 
CG-USER(1): (tm) 
Search Area A! 
Robot report: Search Area A succeeded. 
Sample environment! 
Robot report: Sample environment succeeded. 
Search Area B! 
Robot report: Search Area B succeeded. 
Rendezvous UUV2! 
Robot report: Rendezvous UUV2 succeeded. 
Return to base! 
Robot report: Return to base succeeded. 
Mission succeeded. 
Yes 
 
No. 
 
CG-USER(2): (tm) 
Search Area A! 
Robot report: Search Area A failed. 
Search Area B! 
Robot report: Search Area B succeeded. 
Rendezvous UUV2! 
Robot report: Rendezvous UUV2 failed. 
Return to base! 
Robot report: Return to base failed. 
Mission failed. 
Yes 
 
No. 
 
CG-USER(3): (tm) 
Search Area A! 
Robot report: Search Area A succeeded. 
Sample environment! 
Robot report: Sample environment failed. 
Return to base! 
Robot report: Return to base succeeded. 
Mission succeeded. 
Yes 
 
No. 
 
CG-USER(4): (tm) 
Search Area A! 
Robot report: Search Area A succeeded. 
Sample environment! 
Robot report: Sample environment failed. 
Return to base! 
Robot report: Return to base failed. 
Mission failed. 
Yes 
 
No. 

Figure 26. Examples of Simulated Execution of Fully Autonomous Mission Code 
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Inspection of Figure 25 shows that no actual methods have been provided for 

execution of strategic level commands.  Rather, the robot communication functions 

defined for this purpose constitute merely stub functions with a random probability of 

success or failure.  These must be replaced with calls to defined tactical level behaviors 

for a real vehicle before execution in an actual in water test can occur.  In such a test, area 

search could be accomplished either by rule-based depth first search as in Figure 23, or 

by a subsumption behavior as in Figure 21, or by some entirely different algorithm as in 

[15].  However, despite these alternatives, it is important to realize that this code is 

nevertheless generic for the given area search and sample mission, and could be used 

with no modification other than to replace the above “stubs” with real calls to defined 

vehicle behavior functions (in any language) for any physical vehicle capable of 

responding to the given strategic level commands.   

 Another feature of the above code is that it is based on the original five-state code 

for this mission, and not on the reduced four state version.  This is because the authors 

believe that is easier to read the autonomous version of this code in this form.  That is, 

while a human can be expected to understand that a sequence of unconditional commands 

(as in Figure 20) is to be carried out in the order issued, it is better to use the five-state 

orders to make this explicit to a robot, at least for code testing. 

 Consideration of the test cases of Figure 26 shows that only four examples are 

listed while there are eighteen possibilities.  Since, for the code of Figure 25, success or 

failure of any mission phase is random, with an equal chance of either outcome on any 

given case of mission execution, a very large number of trials are likely to be needed 

before all eighteen possible response sequences are observed.  We argue however, that 

this is not necessary.  Instead, since the correctness of the basic coding of the given 

mission has already been verified by exhaustive human testing, all that matters is that all 

of the state transitions associated with the code of Figure 25 have been observed to be 

correct.  This is true (by chance) of Figure 26.  Specifically, the first case appearing in 

Figure 1 presents a correct outcome for the success of each of the five mission phases.  

The next three cases show correct behavior for every possible phase failure.  Thus no 

further demonstration of the overall correctness of the code of Figure 25 is needed.  This 

being the case, Figures 25 and 26 demonstrate that the fundamental objective of this 
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report has been attained with respect to the given area search and sample mission.  That 

is, a validated computer simulation of this mission in a form suitable for transformation 

to real time embedded UUV code has been presented and tested. 

As a final remark, it is important to recognize that while Prolog and Lisp provide 

convenient languages for simulation studies, they may or may not provide the best basis 

for realizing a MEA in a real time system.  This is a topic for further research.  For now, 

we have previously presented an MEA realization in Java together with XML [15, 16].  

We are also hopeful that a programming language based on a finite state machine overlay 

on subsumption based code can also be used for this purpose [14].  No doubt further 

research will reveal still more possibilities, and this is an important line of work to follow 

for achieving clearly defined, unambiguously executed, interoperable robot missions. 
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IX. HOW TO EXECUTE CODE IN THIS REPORT 

The reader is invited to copy and execute the code presented in this report. In 

order to accomplish this, a free trial copy of Allegro Common Lisp 8.2, including an 

integrated development environment (IDE), can be downloaded from www.franz.com. 

When this system has been installed, the code of interest can be copied and pasted into an 

Allegro Editor pane. It should then be saved in an appropriate directory, and compiled 

(by clicking on the “dumptruck” icon). Entering commands to the debug window, as 

shown in Figure 7 and similar figures in this report, should produce the indicated results.  

Of course the load function calls in your code should be modified to match your 

file structure. As a step toward such modification, the authors advocate that load 

commands first be commented out, and manual loading be used instead, from the bottom 

up in terms of file dependencies. The correct path to each file can then be noted from the 

legend appearing at the top of an editor pane, and subsequently used to edit load function 

arguments. 

 

http://www.franz.com/
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X. SUMMARY AND CONCLUSIONS 

A. SUMMARY OF RESULTS OBTAINED 

This report is concerned with the development of a methodology for overlaying a 

software-based field programmable mission controller onto the real-time control software 

of an existing autonomous mobile robot. The flexibility desired in mission control is 

analogous to that of a conventional manned submarine in carrying out a set of formal 

written orders. A key issue in our work is finding a way to write mission orders so that 

they can be read and executed in simulation form both by a human mission expert, and by 

a digital computer, without recoding. We present such a methodology in this report using 

Prolog and Lisp together to achieve a working simulation model. We also describe how 

to use such a simulation model as executable specifications for writing real time code for 

control of a physical robot. In order to illustrate our ideas and mathematical models, we 

develop our study in the context of mission control for a UUV. 

The report begins in a top down fashion with a brief review of the mathematical 

concept of a generalization of a Turing Machine (TM) called a Mission Execution 

Automaton (MEA). A Prolog implementation of a universal MEA mission controller 

called a Mission Execution Engine (MEE), along with a specific set of mission orders is 

presented. These orders are for the “area search and sample” mission previously studied 

extensively at our institution [1]. We then observe that each phase of this mission 

corresponds to a state of a finite state machine, and that a form of state reduction can be 

applied to this machine resulting in a simplified testing protocol. Such tests can prove the 

correctness of a given set of orders through exhaustive testing of all possible event 

sequences. This, of course, requires that the mission orders be loop free. We complete 

and evaluate such a simplification and subsequent testing for the given mission. 

To provide a concrete example of a system to which an MEA might be added, we 

next define a (greatly simplified) vehicle and associated terrain. Specifically, the “terrain” 

consists of a rectangular planar grid in which every cell is either clear or blocked 

(“mined”). We then constrain vehicle motion to a strictly north-south or east-west 

direction, one cell at a time. We also give the simulated vehicle an ability to sense 

whether or not a given cell contains an obstacle, using a “sonar” system with range 
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limited to the four neighbors of the current robot location. Starting with these “execution 

level” capabilities, we then apply a subsumption approach to evolving to higher and 

higher levels of vehicle behavioral capabilities, with each new behavior “subsuming” 

those that support it. Specifically, using Lisp, we first develop tactical level code to 

enable completely random search of the terrain (Brownian motion) to find a goal in an 

unknown location in the search space. We observe that this is analogous to the way 

bacteria find food, and note the inefficiency of this kind of search. 

Following the implementation of Brownian motion search, we next turn our 

attention to refining an area search command from the MEA to the tactical level into a 

more efficient “depth first search.” This is accomplished by first defining depth first 

search in terms of a TM, and then writing tactical level human interactive Prolog code to 

implement the FSM part of the TM. At this point, the “tape” of this machine resides in 

the mind of the human tactical officer. To test the logic of this goal refinement, we 

execute several examples to show that the given mission orders correctly implement the 

state transitions of the specified FSM. Having done this, since exhaustive testing of a TM 

is generally not possible, we present an informal proof that, in this particular case, when 

applied to finite search spaces, the machine proposed always halts with a correct result.  

In the above development, for the purpose of proving code correctness, depth first 

search was treated as a top level mission goal. Of course that is not our intent. Rather we 

wish the code developed to function as a rule-based refinement of the “Search Area A” 

command issued by the mission controller for the given mission. To accomplish this 

objective, we introduce a code splicing technique that allows the Prolog refinement code 

to be accessed in a way analogous to a Lisp function call. This permits human interactive 

execution of an entire area search and sample  mission with autonomous depth first 

search of Area A. Test results for several cases using this code are presented to verify the 

correctness of code splicing, and therefore of the entire combined code. 

Despite the success of the above experiment, at this point all queries are still 

answered by a human tactical officer rather than by Lisp function calls. This is because 

the orders from the refined Prolog code do not “reach down far enough.” That is, the 

given Brownian motion code does not define needed behaviors such as “move forward” 

and “backtrack search.” To remedy this situation, additional Lisp code is written to 
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implement these and other behaviors called by the refined code. Beyond this, a yet higher 

level function is written to directly execute depth first search. Execution of a number of 

examples satisfies several necessary conditions for the correctness of this “abstracted” 

code. 

The final goal of this report is achieved by the presentation of validated code for 

fully autonomous execution of the simulated area search and sample mission. The 

method used in reaching this goal is to replace human interactive function calls one at a 

time. This is found to be a highly effective code development technique. Moreover, it is 

noted that when not all such functions are automated, “human in the loop” drones or 

ROVs result. The possibility exists in such cases that mission orders for such vehicles 

could be written so that they would refuse to obey illegal orders. 

B. CRITIQUE OF EXAMPLE MISSION ORDERS 

The “area search and sample” mission used in this report was chosen as a 

somewhat arbitrary example of a prototypical  UUV mission. It leaves out many details 

that would be required in a real mission. For example, it does not include an explicit 

initialization phase. Rather, initialization is carried out implicitly in the calls to defined 

tactical level behaviors. Moreover, and perhaps more serious, is the omission of an 

explicit transit phase to get from the launch point to Area A. On the other hand, leaving 

issues such as these to phase refinement at either the strategic or the tactical level results 

in a top level mission validation test suite involving only six cases. This consideration 

may override any advantage in mission understanding to be gained by expanding the 

number of phases at the top of the strategic level. More experience with real missions for 

real robots is needed to deal realistically with this issue. 

The particular implementation of grid-based depth first search used here is surely 

too crude for a real mission. Specifically, restricting obstacle sensing and vehicle motion 

to just four directions is unnecessary and unrealistic. It is straightforward to allow eight 

directions to be considered. Should this prove to be inadequate, an arbitrarily number of 

search and motion directions can be explored at the cost of an increase in algorithm 

complexity. 

It is important to recognize that the example mission used in this report is 

configured at the top level in a “fail safe” way. That is, all but one phase can fail without 
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complete mission failure. This is typical of military mission orders in general, since such 

orders often are carried out in an adversarial environment and usually involve carefully 

thought out “contingency” responses. Simple linear “scripts” associated with scientific 

missions sometimes fail to explicitly address mission phase failure in a fail safe manner. 

We think that this shortcoming is unnecessary, and believe that it is better, even for non-

military missions, to explicitly address alternatives in case of phase failure as we have 

done here. Much more experience with real vehicle missions is needed to better 

understand this matter. 

C. CONCLUSIONS 

The concept of a Mission Execution Automation can be used to enable 

autonomous operation of robotic vehicles by adding an additional layer of software to 

deal with mission contingencies, resulting in a Rational Behavior Model (RBM) software 

architecture. Prolog and Lisp can be used together as an effective means for simulating 

such a system. In particular, the methodology presented in this report provides for a 

stepwise and smooth transition from a natural human language set of mission orders for a 

manned system to a fully autonomous real time robotic system, with each stage of 

software development serving as executable specifications for the next stage. Final 

installed software need not make use of either Prolog or Lisp, but a few physical 

experiments in natural environments show that such a choice can be effective [4, 17]. 

More research, involving real vehicles operating in the physical world is needed to 

further establish the viability of the RBM approach and to determine the best 

programming languages for its implementation in various situations. 

When goal refinement results in a subordinate FSM definition, then that machine 

can optionally be considered strategic level code or tactical level code, without 

compromising the option of accomplishing proof of correctness of mission orders 

through exhaustive testing. However, when such refinement results in the definition of a 

TM, as in this report, then the refinement code should be placed at the tactical level, as 

was done here, in order to preserve the generic provability property of strategic level 

code.  

MEA provide a formalism for the extension of TMs to systems capable of 

controlling mobile robots carrying out complex missions in real time in the physical 
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word. A similar kind of automaton called a “Markov state-space model” [18] has recently 

been shown to be effective in modeling and analyzing risks associated with the at sea 

autonomous operation of long duration UUVs. We believe that it will prove valuable to 

explore possible synergies between this application of finite state machine theory with 

those proposed in the present report. We also think that it would be beneficial to relate 

MEA more completely to FSM, to permit a more formal treatment of issues such as state 

minimization and proof of correctness. We further believe that such an effort would allow 

removal of the constraint that mission orders be loop free by including a time-out or a 

count-out feature in tactical level functions [2, 17]. 

D. RECOMMENDATIONS FOR FUTURE WORK 

To date, successful in water tests have been carried out with two vehicles using 

the RBM architecture, involving both Prolog and Java realizations of an MEA [4, 15], 

and we intend to conduct further experiments with vehicles available at the NPS.  Even 

so, finding additional partners for such investigations is one of our highest research 

priorities. 

In addition to planned in-water UUV testing, experimentation in a virtual 

environment utilizing the NPS AUV Workbench [16] is ongoing.  We are also in the 

process of developing a complete MEA realization for ground robots using the AUV 

Workbench and ground robots available at NPS.  This inquiry might include adding a 

suitable open source ISO compliant Prolog compiler to the AUV Workbench code. 

Within the realm of simulation studies, we are seeking a “fourth layer” for the 

RBM architecture that would abstract the UUV software development paradigm 

advanced in this report to a higher level. In particular, we would like to formally define 

the role of a mission specialist and allow such a person to participate in ROV or drone 

operations at a level above the MEA mission controller. Moreover, when the role of the 

mission specialist is well understood, some of his/her knowledge might be incorporated 

into a compiler to automatically generate executable vehicle code from a higher level 

mission specification. Such a compiler could potentially impose ethical constraints on 

mission orders. 
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We look forward to dialogue with others interested in the further development 

FSM methods for mission planning, execution, and analysis for autonomous robotic 

vehicles and related systems. 
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