
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2006

Policy-Driven Memory Protection for

Reconfigurable Hardware [presentation]

Huffmire, Ted

Ted Huffmire, Shreyas Prasad, Tim Sherwood, and Ryan Kastner, Policy-Driven Memory

Protection for Reconfigurable Hardware. Proceedings of the 11th European Symposium on

Research in Computer Security (ESORICS), Hamburg, Germany, September 2006, Pages 461-478.

http://hdl.handle.net/10945/36694

Policy-Driven Memory Protection
for Reconfigurable Hardware

Ted Huffmire, Shreyas Prasad,
Tim Sherwood, and Ryan Kastner

www.cs.ucsb.edu/~arch/RCsec

FPGA Systems are ubiquitous

FPGA Systems are ubiquitous

What is an FPGA?

Mem
App1

App2

-

*

+

FPGA

What is an FPGA?

FPGA chip

µP

µP

µP

µP

S
R

A
M

 B
lo

ck

B
R

A
M

B
R

A
M

B
R

A
M

B
R

A
M

B

R
A

M

B
R

A
M

B
R

A
M

B

R
A

M

SDRAM (offchip)

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

FPGA Fabric

Why are FPGAs desirable?

• Fabrication, Verification Cost

• IP is vulnerable during fabrication

• Parallelism à Throughput

• Updatable

CPU ASIC FPGA

General-Purpose Application-Specific

However…

• Security is an afterthought at best

• Fundamental security primitives do not yet
exist

• Goal: Start building those primitives

• Opportunity to leverage the benefits of
hardware
§  Low-overhead stateful reference monitors

• Separation: a very important primitive

Separation

• Multiple Cores on one chip

• Cores may have different trust levels and
clearance levels

• Cores share resources
§  Logic
§ Memory

• Separation: controlled sharing of memory
between cores

Separation Alternatives

Reconfigurable Separation

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

app1 app2

app3
Reference

Monitor

Separate Processors
D

R
A

M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

gatekeeper

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

gatekeeper

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

gatekeeper

app1 app3 app2

Separation Kernels

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

app1 app3 app2

kernel

Physical Software

Why reference monitors?

• Provides a well-understood foundation for
controlled sharing [Anderson 72]

• Standard memory protection does not make
sense for FPGA systems

• Separation kernels [Irvine et al. 04] are a software-
based scheme that won’t work for embedded
applications that lack code

• Modern processors have more state in the
hardware, making kernel development harder

• Need to protect the integrity of the reference
monitor

A Memory Protection Language

• Exploit the fine-grained reprogrammable nature
of FPGAs

• All modules on chip must obey a memory
access policy
§  Ensured via the architecture
§  Formal, mathematically precise

• Memory protection policies are expressed in the
language
§  Formal Top Level Specification (FTLS)

• Compiler translates the policy FTLS to a circuit

Formal Memory Protection Specifications

• A precise language of legal
accesses
§ Subjects (Modules)
§ Access Rights
§ Objects (Memory Ranges)

• Fixed (Stateless) Models
§ e.g., B&L, Biba

• Transitional (Stateful) Models
§ e.g., Chinese Wall, high water mark

Isolation Example
• A fixed (stateless) model

• Each core is restricted to a fixed range (or set of
ranges) of memory

• Each range can only be assigned to one core

Accessà{Module1,rw,Range1} | {Module2,rw,Range2};
Policyà(Access)*;

Module1

Range1

Compartment 1

rw

Module2

Range2

Compartment 2

rw

Policy Compiler

1. Policy FTLS:
§  Accessà{Module1,rw,Range1} | {Module2,rw,Range2};
§  Policyà(Access)*;

2. Regular Expression:
§  ({Module1,rw,Range1} | {Module2,rw,Range2})*

3. Minimized DFA:

4. Verilog HDL:
§  case({module_id,op,r1,r2})

§  9’b011110: //Module1,rw,Range1
§  state=s0;

§  9’b101101: //Module2,rw,Range2
§  state=s0;

§  default:
§  state=s1; //reject

§  endcase

init

0
{M1,rw,R1},
{M2,rw,R2}

What we have done

• Automated design flow from FTLS to
synthesized circuit

• Language has a well-defined grammar

• Powerful enough to express a variety of
policies that we have compiled and tested
§ Chinese Wall
§  Redaction
§ Access Control List
§  Secure Hand-off

Methodology

• Constructed several isolation policies
§  Varied the number of ranges

• Used Quartus to synthesize

• Measured:
§  Area (Logic Cells)
§  Setup Time
§  Cycle Time

Range

State

Tsu

Tc

Synthesis Results

Circuit Area vs. Number of Ranges

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700

Number of Ranges

N
u

m
b

e
r
 o

f
L
o

g
ic

 C
e
ll
s

Cycle Time vs. Number of Ranges

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700

Number of Ranges

C
y
c
le

 T
im

e
 (

n
s
)

Setup Time vs Number of Ranges

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700

Number of Ranges

S
e
tu

p
 T

im
e
 (

n
s
)

Future Work

• A higher level language
§  Abstract formal security policy model

• Verify correctness of automatic translation
§  Model - FTLS - Verilog - circuit
§  Verify the model and FTLS using formal methods

• Information flow policies

• Dynamic policies

• Evaluate on a realistic embedded application

Acknowledgements

• NPS CISR!

• NSF Grant CNS-0524771, Adaptive
Security and Separation in
Reconfigurable Hardware!

• Andrei Paun and Jason Smith of
Louisiana Tech University!

Questions?

• huffmire@cs.ucsb.edu

• www.cs.ucsb.edu/~arch/RCsec

