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What is an FPGA? 
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What is an FPGA? 
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Why are FPGAs desirable? 

• Fabrication, Verification Cost 
 
• IP is vulnerable during fabrication 
 
• Parallelism à Throughput 
 
• Updatable  

CPU ASIC FPGA 

General-Purpose Application-Specific 



However… 

• Security is an afterthought at best 
 
• Fundamental security primitives do not yet 
exist 
 
• Goal: Start building those primitives 
 
• Opportunity to leverage the benefits of 
hardware 
§  Low-overhead stateful reference monitors 
 
• Separation: a very important primitive 



Separation 

• Multiple Cores on one chip 
 
• Cores may have different trust levels and 
clearance levels 
 
• Cores share resources 
§  Logic 
§ Memory 
 
• Separation: controlled sharing of memory 
between cores 



Separation Alternatives 

Reconfigurable Separation 
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Why reference monitors? 

• Provides a well-understood foundation for 
controlled sharing [Anderson 72] 
 
• Standard memory protection does not make 
sense for FPGA systems 
 
• Separation kernels [Irvine et al. 04] are a software-
based scheme that won’t work for embedded 
applications that lack code 
 
• Modern processors have more state in the 
hardware, making kernel development harder 
 
• Need to protect the integrity of the reference 
monitor 



A Memory Protection Language 

• Exploit the fine-grained reprogrammable nature 
of FPGAs 
 
• All modules on chip must obey a memory 
access policy 
§  Ensured via the architecture 
§  Formal, mathematically precise 
 
• Memory protection policies are expressed in the 
language  
§  Formal Top Level Specification (FTLS) 
 
• Compiler translates the policy FTLS to a circuit 



Formal Memory Protection Specifications 

• A precise language of legal 
accesses 
§ Subjects (Modules) 
§ Access Rights 
§ Objects (Memory Ranges) 
 
• Fixed (Stateless) Models 
§ e.g., B&L, Biba 
 
• Transitional (Stateful) Models 
§ e.g., Chinese Wall, high water mark 

 
 



Isolation Example 
• A fixed (stateless) model 
 
• Each core is restricted to a fixed range (or set of 
ranges) of memory 
 
• Each range can only be assigned to one core 
 
Accessà{Module1,rw,Range1} | {Module2,rw,Range2}; 
Policyà(Access)*; 

Module1 

Range1 

Compartment 1 

rw 

Module2 

Range2 

Compartment 2 

rw 



Policy Compiler 

1. Policy FTLS: 
§  Accessà{Module1,rw,Range1} | {Module2,rw,Range2}; 
§  Policyà(Access)*; 

2. Regular Expression: 
§  ({Module1,rw,Range1} | {Module2,rw,Range2})* 

 
3. Minimized DFA: 
 
 
4. Verilog HDL: 
§  case({module_id,op,r1,r2}) 

§  9’b011110: //Module1,rw,Range1 
§  state=s0; 

§  9’b101101: //Module2,rw,Range2 
§  state=s0; 

§  default: 
§  state=s1; //reject 

§  endcase 

init 

0 
{M1,rw,R1}, 
{M2,rw,R2} 



What we have done 

• Automated design flow from FTLS to 
synthesized circuit 
 
• Language has a well-defined grammar 
 
• Powerful enough to express a variety of 
policies that we have compiled and tested 
§ Chinese Wall 
§  Redaction 
§ Access Control List 
§  Secure Hand-off 



Methodology 

• Constructed several isolation policies 
§  Varied the number of ranges 
 
• Used Quartus to synthesize 
 
• Measured: 
§  Area (Logic Cells) 
§  Setup Time 
§  Cycle Time 

Range 

State 

Tsu 

Tc 



Synthesis Results 

Circuit Area vs. Number of Ranges
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Future Work 

• A higher level language 
§  Abstract formal security policy model 
 
• Verify correctness of automatic translation 
§  Model - FTLS - Verilog - circuit 
§  Verify the model and FTLS using formal methods 
 
• Information flow policies 

• Dynamic policies 

• Evaluate on a realistic embedded application 
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Questions? 

• huffmire@cs.ucsb.edu 
 
• www.cs.ucsb.edu/~arch/RCsec 


