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ABSTRACT: This research expands entity level representation of situation awareness and behavior. 
Building on previous work, the researchers developed an integrated and tractable modeling framework 
for the representation of a soldier’s visual attention, situation awareness, and target acquisition prior to 
a close range encounter, as well as the soldier’s initial action choice. The researchers developed data to 
populate the model through subject matter expert questionnaires and a live virtual experiment. The 
resulting algorithms provide insight into soldier action choice on contact. These and other aspects of the 
model have been coded for demonstration as a proof of principle, while work on the full reference model 
continues.  
 
1. Introduction 

 
The main contribution of this work is to present 
an integrated conceptual model of a soldier’s 
visual attention (search), situation awareness, 
and target acquisition leading up to a close range 
encounter, and his initial course of action once 
the encounter begins. The situation awareness 
representation as a probability distribution of 
threat location and the driving of search by 
situation awareness are new to military 
simulations. While the model as a whole is 
conceptual, large pieces of it have been 
implemented in software. The representation of 
entity level situation awareness in combat 
simulations is a key capability to informing 
analysis of future combat systems. These future 
systems rely heavily on networked capabilities 
and the concept of a common operating picture. 
Without intelligent entities capable of perceiving 
and acting on the information passed through the 
network, the analysis of the impact of future 
capabilities on combat operations will be 
suspect.  
 
The term situational awareness first came into 
use among the aviation community as early as 
World War I. The term is now commonly used 

throughout most branches of service. The 
meaning of the term, however, is still ill-defined 
and subject to much debate. Endsley defines 
situational awareness (SA) as “the perception of 
elements in the environment within a volume of 
time and space, the comprehension of their 
meaning and the projection of their status in the 
near future.”  This definition of SA leads to a 
three level model of SA (Endsley, M. R., 2001).  
 
The first level of this model is perception of the 
environment. For the dismounted infantry soldier 
this translates to everything he can sense with his 
five organic senses. The second level of this 
model entails the individual’s reception of the 
cues from the environment and their translation 
of those cues into an understanding of the 
situation presented to them by their 
environmental cues. This understanding is 
certainly influenced by the lens of personal 
experience, culture, and education. Each soldier 
will then take in this series of cues from their 
five senses and evaluate their situation. The 
cognitive process the soldier executes to review 
the presented cues from the environment and 
determine actions has been built through a 
lifetime of experience, education and training 
and is constantly being updated as new life 



experiences are added to the soldiers 
background. The third level of this model 
proposes that the individual then translates this 
perception and the developed understanding into 
a projection of future likely events within their 
environment. This updated projection of future 
events impacts the individual’s decisions and 
action choices in the present. This projection 
relies on the same cognitive interpretation of 
environmental cues and a developed current 
perception of the environment as the previous 
level. The soldier’s interpretive lens is based on 
his prior experience, training and education. This 
lens facilitates his construction of a likely 
projected future state. 
 
This work primarily explores a means of 
representing the perception of the entity. The 
implemented prototypes also contained simple 
models for projecting threat movement as 
described elsewhere (Darken and Anderegg, 
2008). 
 
2. Related Work 
 
This work builds upon existing models and 
research results. Current simulations, such as 
Combat XXI, implement scanning for targets by 
systematically moving an angular field of view 
through a larger field of regard. Our reference 
model replaces this simplistic view of scanning 
by an attention model as a form of “emergent 
look around” (Isla and Blumberg, 2002). The 
form of the threat distribution used to drive the 
attention model is the “particle filter”, which has 
known operational applications (Ristic et. al., 
2004). The assumption of a network of nodes 
and arcs underlying the terrain representation in 
a military simulation also has precedents (Reece, 
2003). 
 
3. Methodology  
Data to support the representation of soldier 
behavior was developed through the execution of 
a post combat questionnaire and a live virtual 
experiment. 
 
3.1 Post Combat Questionnaire  
 
The post combat questionnaire gathered subject 
matter expert input to gain insight into the 
factors essential for modeling close range quick 
reaction engagements and to address behavioral 
issues not well represented in current data sets. 
Questions were designed to illicit responses that 

could be used to augment existing data and 
anticipated data from live virtual 
experimentation. Questions addressed actions on 
contact, target acquisition and identification, 
movement techniques, and combat decision 
making. The questionnaire was administered to 
27 male Army National Guard Soldiers at Camp 
Shelby, Mississippi. Years of service ranged 
from 4 to 20 years. Age of the respondents 
ranged from 21 to 50 years old. The number of 
direct fire engagements they participated in 
ranged from 1 to 30. A direct fire engagement 
was defined as an engagement during which they 
were either fired upon or fired on an enemy 
themselves. All respondents participated in direct 
fire engagements.  
 
The post combat questionnaire results were 
analyzed using item analysis. The mean and 
standard deviation were calculated for each item. 
The hypothesis of marginal homogeneity of the 
response across the subgroups for each question 
was examined using the likelihood-ratio chi-
square and Pearson chi-square test. These tests 
are well known and used for the analysis of 
categorical response and count data and have 
been used extensively in the analysis of 
questionnaire and survey data. They differ in 
their assumption of normality of the estimates. 
The Pearson chi-square test requires the 
normality assumption, the likelihood ratio chi-
square test does not (Sall, J., Creighton, L., and 
Lehman, A.,2003). Figure 1 contains a sample 
question and the analysis results for the role of 
senses.  
 
Figure 2 shows a representative question and 
analysis results related to target identification. 
56% of the respondents report that target 
identification takes place at ranges greater than 
50 meters. At night this target identification 
takes place at much closer ranges, with only 4% 
of respondents reporting identifications at greater 
than 50 meters. This information can inform the 
representation of soldier acquisition cycles and 
be incorporated into the sensing module of the 
detailed reference model. The results are 
statistically significant at the .01 level (dark 
green) and at the .05 level light green. 
 
The question in Figure 3 was designed to inform 
the movement technique selection associated 
with soldier behavior in close range quick 
reaction engagements. The overwhelming 
majority of respondents reported that they 



primarily moved using the 3-5 second rush when 
moving to cover and concealment. 
 
 
The question in Figure 4 looks to inform the 
issue of action choice following the 
identification of a hostile threat. The majority of 
respondents indicated that they engaged the 
target first. 38.5% indicated that they informed 
their teammates first. These responses dominated 
the other options offered. They are also 
consistent with the results of similar follow on 
questions. 
 
The question in Figure 5 seeks to inform the 
representation of soldier behavior in regard to 
suppression. Specifically, it seeks to determine 

how close the cue, direct fire rounds, needs to be 
in order to trigger the suppressed behavior. The 
distribution of responses was broad, but 
maintained its statistical significance with the 
greatest number of responses falling in the 6-
10m range. 
 
Post combat questionnaires provide a means of 
soliciting quantifiable subject matter expert input 
to issues of interest to the analytic and modeling 
communities. Care should be exercised during 
their construction to ensure that questions are 
designed to garner specific pieces of information 
of use to the modeling effort. These results can 
be used to fill knowledge and data gaps at 
relatively low cost. 
 

 

Likelihood Ratio Pearson Vision Hearing Smell Touch

When identifying the 
presence of a threat (Day), I 

most often relied on my sense 
of:

0 0 100.00% 0.00% 0.00% 0.00%

When identifying the 
presence of a threat (Night), I 
most often relied on my sense 

of:

0.0001 0.0001 44.00% 66.00% 0.00% 0.00%

Distribution

Question 

Significance of Item Response

Chi-Squared Tests

Figure 1. Role of senses in threat identification. 
 

Likelihood Ratio Pearson

Less Than 5m 6-15m 16-25m 26-35m 36-50m
Greater 

Than 50m
I usually identified (focused on 
the source of my acquisition) 
targets at a distance of: Day

0.0077 0.0033 0.00% 0.00% 11.11% 18.52% 14.82% 55.56%

I usually identified (focused on 
the source of my acquisition) 
targets at a distance of: Night

0.0559 0.0721 11.11% 29.63% 7.41% 29.63% 18.52% 3.70%

Distribution

Question 

Significance of Item Response

Chi-Squared Tests

 Figure 2. Target identification. 
 

Likelihood Ratio Pearson
3-5 

second 
rush

Low 
crawl

High 
crawl

When moving to cover and 
concealment under fire  I 

usually moved by:
0.0001 0.0001 92.00% 4.00% 0.00%

Distribution

Question 

Significance of Item Response

Chi-Squared Tests

 
Figure 3. Moving under fire. 
 
 



Likelihood Ratio Pearson Inform 
Teammates

Change 
Position 

(crouching, 
kneeling etc) Seek Cover

Engage 
Target Observe

After identifying  a hostile 
target I took the following 

action first:
0.0001 0.0002 38.46% 3.85% 0.00% 53.85% 3.85%

Distribution

Question 

Significance of Item Response

Chi-Squared Tests

 Figure 4. Action choice on contact. 
 

Likelihood Ratio Pearson 1-5m 6-10m 11-15m 16-20m 21-25m 26-30m >30m

I felt suppressed when direct 
fire rounds struck within: 0.0418 0.0486 25.90% 29.60% 18.50% 3.70% 7.40% 3.70% 11.10%

Distribution

Question 

Significance of Item Response

Chi-Squared Tests

 Figure 5.  Suppression from direct fire. 
 
3. 2 Live Virtual Experiment 

In order to develop additional data on soldier 
behaviors in close range quick reaction 
engagement a live virtual experiment was 
conducted in cooperation with the Soldier Battle 
Lab at Fort Benning, Georgia. This experiment 
was conducted their immersive cave facilities. 
Soldiers were presented with a floor to ceiling 
frontal screen through which they interacted with 
the virtual world. The purpose of the experiment 
was to gain insight into soldier actions on 
contact, probability of hit, and engagement time 
over a variety of target ranges and exposure 
types. 

The experiment was executed over five days in 
March 2007. Ten soldiers from the 29th Infantry 
Regiment participated in the experiment. Their 
ages ranged from 19 to 35, with 4 having 
previous combat experience.  They were 
instructed to treat the event as they would a real 
world situation. They wore a standardized 
combat ensemble consisting of: interceptor body 
armor, Kevlar helmet, the Army Combat 
Uniform, desert boots, six magazines with 
associated ammo pouches, and canteens. The 
soldier’s received instructions on the use of the 
M4 surrogate and movement control device 
embedded in the surrogate to control their 
movement through the virtual world. Order 
through the lanes was randomized for each 
soldier on each day. 

Soldiers were instructed to patrol each of the ten 
lanes and were informed that hostiles could be 
present. Target cues were presented as soldier’s 
reached predetermined location on each of ten 

lanes (Figure 6) for each engagement in 
accordance with the experimental design. If the 
soldier did not perceive the cue, the cue 
presentation persisted until the soldier acquired 
the cue. If the cue was not perceived and the 
soldier was in danger of by passing or moving 
beyond the engagement the intensity of the cue 
was increased. 

 
 
Figure 6.  Top level view of lanes in JCATS 
terrain database. 

The experiment sought to more fully explore the 
factor space impacting Soldier performance and 
behavior in close range quick reaction 
engagements. The factors considered in this 
experimental design were: Range to target: 0 to 
50 meters; Target exposure: 30, 50, and 100 
percent exposure of a man sized target; First cue 
presented: audio or visual cue; Terrain type: 
interior building, urban canyon, or wooded; 
Light condition: day or night. 

These factors and levels were used to create an 
experimental design that specified the factor 
settings for each of ten engagements in ten 
virtual lanes. Nearly orthogonal Latin hypercube 
(NOLH) design methodology was used to 
construct the design matrix. The NOLH design 
was chosen for use in this effort for a number of 
reasons. First, it is capable of efficiently 
sampling from a large number of factors and 



levels. Second, the space filling properties of the 
NOLH are well known, giving it the ability to 
examine potentially complex response surfaces 
(Kleijnen, Sanchez, Lucas and Cioppa, 2005).  
 
Data was collected on each soldier throughout 
each run. This resulted in data on over 4,000 
virtual engagements. Data collected included the 
soldier’s location, posture, weapon orientation, 
shots fired and associated hits, cue type 
presented and time of presentation. 
 

Our approach to data reduction was to do it 
entirely via scripts that were run on the raw 
experimental data each time we built a new 
variant of the model. The experimental data itself 
was never altered in any way. The advantage of 
using scripts is that they provide a clear audit 
trail from the original data to the data used to 
construct the model. There were two layers of 
scripts. First, there was an approximately 500 
line Python script that read in the multiple *.csv 
raw data files and produced a single *.csv file 
containing selected data from the original files 
augmented with computed variables depending 
on the original data as described below. Second, 
there was a short script written in the statistical 
package R’s native scripting language to select 
independent variables, modestly subset the data, 
and construct the models. Data where the subject 
moved more than 900 meters while engaging a 
single enemy or engaged the enemy from more 
than 1000 meters were considered outliers and 
removed. Similarly, engagements with detection-
to-trigger times in excess of 10 seconds were 
neglected. 
 
3.3 Analysis Methodology 

Data from the experiment was used in 
conjunction with data from the post combat 
survey to construct algorithms useful in 
representing soldier performance and behaviors. 
These algorithms were developed using logistic 
regression techniques (see Equation 1). Logistic 
regression was chosen for a number of reasons: 
It does not assume homoscedasticity nor linearity 
of relationship between independent and 
dependent variables. Additionally, it does not 
require normally distributed variables (Sall, 
Creighton, and Lehman, 2005). 
 
 

(Equation 1) 
   

Here p is the modeled dependent variable and L 
is a linear function of the independent variables. 
 
4.0 Algorithm Development 
 

The results of the analysis of the experimental 
data confirmed the results of the post combat 
questionnaire. Here we define each independent 
variable used in the models below: 

Terrain: Value is one of “Building” (inside a 
building), “Urban”, or “Forest”, corresponding 
to the three conditions used in the live virtual 
experiments. Time: Value is either “Day” or 
“Night”. The night condition used a coarse 
approximation to night vision that generally 
made target detection more difficult as compared 
to the day condition. Range: The range to the 
target in meters measured at the moment the 
subject indicated detection of the target. 
TargetArea: Value is calculated based on the 
target range assuming the target is a rectangle of 
20” by 69”. Cue: Value is either “Visual”, 
meaning that the encounter was arranged so that 
the subject sees the target first, or “Audible”, 
meaning that the presence of the target is 
signaled by a gun shot. 

Equation 2 describes the relationship between 
probability of hit  and terrain type, day or night 
condition, exposed target area and the type of 
cue received first.  Engagements conducted in 
urban terrain at night decreased the probability of 
hit while a larger presented target area and visual 
cue presentation first tended to increase the 
probability of hit. 
 
 
     
     
    (Equation 2) 
 
 
 

Equation 3 describes the relationship between 
the time from target detection to engagement and 
terrain type, day or night condition, range to the 
target and the type of cue received first.  The 
time to complete the engagement following a 
successful target detection increased as range to 
the target increased in both forested and urban 
terrain conditions, but was surprisingly 
decreased by a nighttime condition.  
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    (Equation 3) 
 
 
 
 
 
 
Equation 4 shows the relationship between the 
action choice to move first and terrain type, day 
or night condition and range to the target. The 
probability of moving first decreases as the range 
to the target decreases and is positively impacted 
by a nighttime condition. 
 
 
     
     
    (Equation 4) 
 
 
 
 
If the choice is made to not move, the following 
model separates the remaining cases into those 
where the firing is done from a kneeling position 
and those where firing is executed from a 
crouching position. Equation 5 shows that the 
probability of kneeling decreases at night but 
does increase as range to the target increases. 
 
 
     
     
    (Equation 5) 
 
 
 
. 
These algorithms, developed from live virtual 
experimentation, became the basis for the action 
selection component of the reference model. 
 
5. Soldier Reference Model 
 

The objective of this portion of the research is to 
develop a highly detailed reference model of 
soldier behaviors and actions that can be used as 
a vehicle to transfer developed algorithms and 
knowledge into current large scale simulation 
models. This reference model (see Figure 7) can 
also serve to aid in the identification of gaps in 
the knowledge and data required to represent 
soldiers in models and simulation. The focus of 

this model is on visual attention (gaze control), 
situation awareness, target detection, and initial 
reaction on contact. The model as a whole is 
conceptual, though large pieces, namely the 
action on contact models above and the decision-
theoretic attention model described below, were 
implemented as software prototypes. 

 

 
Figure 7 Conceptual reference model. 
 
 
5.1 Sensing Model 
 
The sensing model is responsible for the 
generation of contact and terrain reports. Terrain 
reports are simplest. When a new part of the map 
is viewed for the first time, the terrain reports 
corresponding to that part of the map are 
immediately generated. A terrain report consists 
of a list of discrete locations (sometimes known 
as waypoints or navigation nodes) that have 
come into view of the model. Knowledge of 
“contacts”, i.e. other simulation entities, requires 
more computation. When the sensing model 
detects a state of affairs that could cause one 
entity to be aware of another, such as one entity 
being within another’s sensing range (e.g. field 
of view for visual sensing, or auditory range for 
footsteps or gun shots, if represented), a target 
acquisition model is applied to determine 
whether and when the agent perceives anything. 
We have previously described our approach to 
target acquisition of the context of simulations 
having a detailed 3D representation of the 
environment (Darken and Jones, 2007). 
 
Contact reports are the sole information source 
input to the model regarding the positions of 
moving entities. A minimal contact report 
consists of a contact ID (arbitrary identifier used 
to distinguish a particular contact), a time stamp, 
and a position distribution corresponding to this 
particular sensing of the contact. Contact models 
may be augmented in the future with additional 
features describing what was sensed in order to 
discriminate contact types. We do not handle 
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contact aliasing in this model (i.e. ambiguous 
situations where a sensation might be from one 
of several different contacts). 
 
5.2 Situation Assessment 
 
The situation assessment module is the part of 
the model that updates the contact and map 
representations based on contact and terrain 
reports and updates the entities situation 
awareness. When a terrain report is received, the 
module flags those navigation nodes contained in 
the report as known to the soldier model. This 
corresponds to updating the entities perception of 
its environment, level 1 situation awareness 
(Endsley, M. R., 2001). Those nodes might now 
be used for route planning and for cover taking. 
This component also represents the complete 
situation awareness of the model with regard to 
other simulation entities. While knowledge of 
the location of friendly and neutral entities can 
potentially be handled by the same model, we 
focus on hostile entities only in this treatment. 
The contact representation is a probability 
distribution representing the contact’s position. 
For this version of the model, there is one 
distribution for each known contact.  

When a contact report is received, if it describes 
a completely new contact, the position 
distribution in the contact report is sampled to 
populate the model’s position distribution 
(labeled “Contacts” in the architecture diagram 
of Figure 7) with a set of representative position 
hypotheses and their relative likelihoods. This 
representation of the contact constitutes a 
probability distribution of the contact’s position 
known as a “particle filter” (Darken and 
Anderegg, 2007). If the contact report describes 
a contact that is already known, the model’s 
position distribution is updated to incorporate the 
new information. The contact report is treated as 
an independent of previous reports, and the 
position distribution is updated.  

Let X be a random variable describing the 
contact position at some point in time. The 
information in all previous contact reports that 
was used to construct the distribution of X we 
encapsulate as random variable A. Let random 
variable B represent the new information in the 
contact report just received. We assume that B is 
independent of A. We want to update the contact 
position to be P(X|A,B), i.e. the position 
conditioned on the information in both A and B.  

Applying Bayes’ rule to P(X|A,B) yields 

( ) ( ) ( ) ( )| , , | / ,P X A B P A B X P X P A B=  (Equation 6)

But since A and B are independent, 

 
( ) ( ) ( ) ( ) ( )| , | | / ,P X A B P A X P B X P X P A B=  (Equation 7) 

  
Applying Bayes’ rule to P(A|X) and P(B|X)  and 
again noting the independence of A and B yields, 
 
( ) ( ) ( ) ( )| , | | /P X A B P A X P B X P X=  (Equation 8) 

Let L be the finite set of positions which are the 
range of X. If we lack knowledge of P(X), the 
prior distribution over X without A or B, it is 
convenient to let P(X) be the uniform 
distribution, i.e. a constant. The proper value of 
the constant is obvious since P(X|A,B) must sum 
to one, and so the update for the contact position 
assuming a uniform prior is: 
 
( ) ( ) ( )| , | | / ( | ) ( | )

x L

P X A B P X A P X B P x A P x B
∈

= ∑  (Equation 9) 

When no contact report is received, but potential 
threat positions are in view, the probability that 
the threat is actually at one of those positions is 
decreased. To compute the amount of decrease, 
we assume that the model has an independent 
chance to detect a target each time it is brought 
into view (assuming the model has looked away 
in the meantime). Let the initial probability that 
there is a threat at a given position be p0. 
Assume that our target detection model gives 
P(t) as the probability that this target will be 
detected in no more than t seconds. If we observe 
this position for s seconds without receiving a 
contact report indicating a target detection, the 
remaining probability that there is a threat there 
is p0(1-P(s)). 
 
The map representation consists of a single bit 
per navigation node, representing whether the 
model has knowledge of the node or not. 
Knowledge of a navigation node is either zero or 
complete. The model assumes that a special 
representation of the terrain is available to 
support the model, specifically a navigation 
graph. A navigation graph consists of a set of 
nodes (often called navigation nodes or 
waypoints) which is a subset of positions where 
a model may position itself. Each node is aware 
of any sufficiently nearby nodes in the graph that 
the model could move to in a straight line. The 
navigation graph can save computation at run-
time by making it possible to quickly plan paths 
between arbitrary nodes that avoid static 



obstacles in the synthetic environment, such as 
walls, boulders, trees, etc. Additionally, we 
assume that each node also contains six values 
representing the amount of cover provided from 
a set of 60 degree arcs covering all directions. 
The navigation graph and cover data can be 
constructed by an automated process as 
previously described (Darken, Anderegg and 
McDowell, 2007) and (Darken, 2007).  
 
5.3 Action Selection 
 
The action selection module controls the gaze 
direction of the model using a decision theoretic 
model. It also makes the decision of how to 
respond to quick reaction engagements using the 
statistical models described above. We take a 
decision theoretic approach to gaze control, 
choosing the direction of maximum threat 
density in which to gaze. Threat density is 
computed by aggregating by angular sector the 
probability of all threat positions in the contact 
model that could be brought into view by 
adjusting gaze (i.e. threat positions that are 
behind an obstacle and would require walking to 
a new position to bring them into view are 
ignored). The center of the sector containing the 
largest threat density is chosen as the new gaze 
direction. When a target is acquired, this module 
uses the logistic regression models described 
above to choose  
 
6. Conclusions and Future Work 
 
This paper presented our model of soldier 
behavior up to his initial choice of action in a 
close range encounter. While the model as a 
whole is conceptual and intended to drive future 
investigations, substantial chunks of it have been 
implemented to the point where we believe that a 
proof in principle has been provided. We expect 
that future work will allow us to improve the 
components of this detailed model and to cast it 
into simpler forms as required for inclusion in 
current simulations concerned with soldier 
behavior. 
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