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First passage time analysis for climate prediction

peter c. chu

Climate prediction experiences various input uncertainties such as initial
condition errors (predictability of the first kind), boundary condition (or
model parameter) errors (predictability of the second kind), and com-
bined errors (predictability of the third kind). Quantification of model
predictability due to input uncertainties is a key issue leading to success-
ful climate prediction. The first passage time (FPT), defined as the time
period when the prediction error first exceeds a predetermined criterion
(i.e. the tolerance level) can be used to quantify the model predictability.
A theoretical framework on the basis of the backward Fokker–Planck
equation is developed to determine the probability distribution function
of FPT. Furthermore, the FPT analysis can also be used for climate
index prediction.

6.1 Introduction

Complexity in climate systems makes prediction difficult. Numerical modelling and
climate index prediction are often used. For numerical climate modelling, a practical
question is commonly asked: How long is a climate model valid since being
integrated from its initial state? To answer this question, the instantaneous error (IE,
defined as the difference between the prediction and reality), must be investigated. It
is widely recognised that the IE is caused by the three types of model uncertainties
(Lorenz 1984): (a) measurement errors, (b) model errors such as discretisation
and uncertain model parameters, and (c) chaotic dynamics. Measurement errors
cause uncertainty in initial and/or boundary conditions. Such a method using the
IE evolution with respect to uncertain model input is called the forward approach.

For the forward approach, the small amplitude stability analysis (linear error
dynamics) is used with the IE growth rate and the corresponding e-folding time scale
as the measures for evaluating the model predictability due to initial condition error
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(the first kind of predictability). The IE growth rate is usually estimated by either the
leading (largest) Lyapunov exponent or the amplification factors calculated from
the leading singular vectors (SVs) (Dalcher and Kalnay 1987). However, the errors
may grow to finite amplitudes such as in medium-range prediction (Vukicevic
1991), in forecasting using ‘imperfect’ models (Bofetta et al. 1998) and in models
with open boundaries (Chu 1999). The linear assumption is no longer applicable
and the nonlinear effect should be considered.

One way to simplify the climate system is to represent low-frequency variability
of atmospheric circulations by climate indices, i.e. teleconnection patterns, such as
the Arctic Oscillation (AO), Antarctic Oscillation (AAO), North Atlantic Oscilla-
tion (NAO), Pacific/North American Pattern (PNA) and Southern Oscillation (SO).
Temporally varying indices, s(t), were calculated for these patterns. Here, t denotes
time. Among them, the SO index (SOI) was first to show equivalent barotropic
seasaw in atmospheric pressure between the southeastern tropical Pacific and the
Australian–Indonesian regions (Walker and Bliss 1937). A popular formula for cal-
culating the monthly SOI is proposed by the Australian Bureau of Meteorology,

s(t) = 10 × pdiff(t) − 〈pdiff〉
SD(pdiff)

. (6.1)

Here, pdiff is the mean sea-level pressure of Tahiti minus that of Dawin for that
month; 〈pdiff〉 is the long-term average of pdiff for the month in question; and
SD(pdiff) is the long-term standard deviation of pdiff for the month in question.
Detailed information can be found at http://www.cpc.noaa.gov/.

How to predict the climate indices effectively has practical significance because
of their connections to large-scale atmospheric circulation. Usually, these indices
are treated as time series and statistical predictions are conducted (forward method).
For example, singular spectrum analysis (Keppenne and Ghil 1992), wavelet anal-
ysis (Torrence and Campo 1998), and nonlinear analogue analysis (Drosdowsky
1994) were used to obtain the dominant frequencies of the SOI time series. The
power-law correlations were found for the self-affine properties of SOI (Ausloos
and Ivanova 2001). Such methods may be called the forward index prediction.

An alternative ‘backward’ method may be used for numerical climate mod-
elling, index prediction and model predictability detection. This method predicts
a typical time span (τ ) needed for the IE to first exceed a pre-determined cri-
terion (i.e. the tolerance level) in numerical modelling or for a climate index to
exceed a given increment. Such a time span (τ ) is defined as the first passage
time (FPT), which is widely used in many disciplines such as nonlinear dynamical
systems (e.g. Ivanov et al. 1994), physics and chemistry (e.g. Rangarajan and Ding
2000), biology and economics (e.g. Chu 2006), etc., but not in meteorology and
climatology until recently when the FPT was used to evaluate ocean–atmospheric
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model predictability (Chu et al. 2002a,b,c) and to predict the climate indices (Chu
2008). In this chapter, we will introduce the FPT concept and its broad appli-
cation in climate studies. The rest of the paper is outlined as follows. Sections
5.6.2 and 6.3 discuss the forward and backward approaches. Sections 5.6.4 and 6.5
describe the backward Fokker–Planck equation (for FPT) and the moments of FPT.
Section 6.6 presents the stochastic stability and Section 6.7 shows the power decay
law of FPT and its moments. Section 6.8 depicts identification of the Lagrangian
stability using FPT analysis and Section 6.9 presents the conclusions.

6.2 Forward approach

The forward approach is commonly used in climate studies. Here, two examples
are listed for comparison to the backward approach.

6.2.1 Climate index prediction

Monthly varying climate indices from the National Oceanic and Atmospheric
Administration (NOAA) Climate Prediction Center show randomness (Fig. 6.1)
with poor predictability because their phases and amplitudes are rather unpre-
dictable; both involve many (time and space) scales which are often intrinsic to
chaotic behavior. The forward approach predicts the change of the index (z) at
time t with a given temporal increment τ from analysing single or multiple time
series. Due to the stochastic nature, the probability density function (PDF), p[z(t),
τ ], should first be constructed. Collette and Ausloos (2004) analysed the NAO
monthly index (single time series) from 1825 till 2002 and found that the long-
range time correlations are similar to Brownian fluctuations.

The distribution functions of the NAO monthly index fluctuations have a form
close to a Gaussian, for all time lags. This indicates the lack of predictive power
of the present NAO monthly index. Lind et al. (2005) used the standard Markov
analysis to get the Chapman–Kolmogorov equation for the conditional PDF of the
increments z of the NAO index over different time intervals τ and to compute the
diffusion and drift coefficients (D(1), D(2)) from the first two moments of such a
probability distribution. The random variable z(t) is found to satisfy the Langevin
equation

dz(t)

dt
= D(1) [z(t), t] + η(t)

√
D(2) [z(t), t] (6.2)

where η(t) is a fluctuating δ-correlated force with Gaussian statistics, i.e.〈
η(t)

〉 = 0,
〈
η(t)η(t ′)

〉 = q2δ(t − t ′). (6.3)
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Figure 6.1 The monthly mean climate index data obtained from NOAA
Climate Prediction Center for: (a) Arctic Oscillation (AO), (b) Antarctic Oscil-
lation (AAO), (c) North Atlantic Oscillation (NAO), (d) Pacific/North American
Pattern (PNA), and (e) Southern Oscillation (SO). Detailed information can be
found at http://www.cpc.noaa.gov/.
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Maharaj and Wheeler (2005) predict the daily bi-variate index (multiple time series)
of the Madden–Julian oscillation using seasonally varying vector autoregressive
models. Although this model shows no strong skill advantage over a lagged regres-
sion technique, it has the convenience of employing only a single set of equations
to make predictions for multiple forecast horizons.

6.2.2 Model predictability

Let climate evolution in domain � be described by the dynamical state vector X(x, t)
determined to be composed from variables such as pressure, velocity, temperature,
humidity, salinity and so on with (x, t) denoting the spatial and temporal coordinates.
In general this vector may only be approximately estimated from the observations.
In order to overcome this complexity the estimation of model forecast skill is
reduced into the sensitivity analysis of the so-called ‘reference solution’ Xref (x,
t) to perturbations of model input (Lacarra and Talagrand 1988). The numerical
climate model is usually represented by

dY/dt = F(Y, t), (6.4)

with the initial condition

Y(x, t0) = Y0, (6.5)

and the boundary conditions

G(Y(x, t)) = Q, (6.6)

where F(Y, t) is a nonlinear operator describing forcing, nonlinear interactions and
subgrid parameterisations, Y0 is the initial vector and G determines fluxes across
the boundary of calculation domain �. When the IE is defined by

Z(x, t) = Y(x, t) − Xref(x, t), Z(x, t0) = Z0,

the model predictability is estimated by a dimensionless functional

J (Z, W, t) = {
ZTWZ

}
, (6.7)

where W(x, t) is the weight matrix, the superscript ‘T’ denotes the transpose
operator, and the brackets denote the volume integration {. . .} =

∮∮∫
�

. . . dV .
From the physical point of view, the functional J satisfies the two following

inequalities,

〈J (Z, W, t)〉 ≥ Jnoise = 〈{
ZT

noiseZnoise
}〉

,

〈J (Z, W, t)〉 ≤ ε0
{
XT

refXref
}
,
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where the angular brackets show the ensemble averaging; Znoise characterises the
level of non-removed noise existing in the model such as the natural heating noise.
In general the level of the intrinsic model noise is determined by the chosen param-
eterisation schemes for unresolved scales (Chu et al. 2002b); and ε = ε0{XT

refXref}
is the allowed model uncertainty (tolerance level) for the prediction.

The forward approach is to find the temporal evolution of the functional J(Z, W,
t). The model evaluation becomes a stability analysis on small-amplitude errors in
terms of either the leading (largest) Lyapunov exponent or can be calculated from
the leading singular vectors (Farrell & Ioannou 1996). The faster the IE grows,
the shorter the e-folding scale is. For finite-amplitude IE, however, the linear
stability analysis becomes invalid. The statistical analysis of the instantaneous
error (both small- and finite-amplitudes) growth (Nicolis 1992), the information–
theoretical principles for the predictability power (Schneider and Griffies 1999)
and the ensembles for forecast skill identification (Toth et al. 2001) become useful.
Such methods may be called the forward model predictability.

The linear tangent model of the IE dynamics is commonly used to estimate
the prediction time scale through leading (largest) Lyapunov exponents or the
amplification factors calculated from the leading singular vectors (the finite-time
Lyapunov exponents). Linearisation of the governing equations is realistic when
the energy of IE is considerably less than the energy of the reference solution
(Palmer 2001). With the linear tangent model, the energy is transferred from the
(basic) flow to the perturbations (error field), not vice versa. However, many studies
show the existence of upscale processes when the energy is transferred the small
scale to large scale perturbations. In this case the nonlinear IE dynamics should be
considered even if formally the energy of the reference solution dominates. Thus,
approaches that automatically incorporate both linear and nonlinear perspectives of
IE should be considered in ocean models especially in regional and coastal oceans.

Both linear and nonlinear perspectives of IE and corresponding prediction
timescales are computed through the probabilistic approach based on the PDF
of IE. In general, such a PDF satisfies the Liouville or Fokker–Planck equation
(Nicolis 1992). In practice, because the dimension of error subspace is high for
large models, the low-order moments of PDF, such as mean and variance, can be
estimated only through ensemble averaging techniques (Toth & Kalnay 1997), i.e.
practically the error distribution is assumed to be approximately Gaussian. That
simplifies mathematics but often does not agree with the physics of circulation
in small semi-closed seas. Using the Gulf of Lion as an example, Auclair et al.
(2003) pointed out that in coastal ocean modeling, the IE statistics remain largely
unknown (they are probably not even exactly Gaussian) and such a well-behaved
homogeneous (or even regionally homogeneous) statistical description could seem
rather over-simplistic.
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6.3 Backward approach and FPT

6.3.1 Climate index prediction

The climate indices change either positively or negatively at a given time
(Fig. 6.1). Then, of course, it is of interest to predict the exact change at a point in
time; however, this is not possible. Therefore, the best one can do, from a statistical
point of view, is to predict the time that is probabilistically favourable for the given
index change. This optimal time, as we will see, is determined by the maximum of
the first passage time distribution, i.e. the optimal FPT. Given a fixed value of an
index reduction (z), the corresponding time span (positive) is estimated for which
the index reduction (similar for index enhancement)

γ�t (t) = s(t + �t) − s(t), (6.8)

reaches the level ρ for the first time (Chu 2008),

τρ(t) = inf{�t > 0|γ�t (t) ≤ −ρ}, (6.9)

which is a random variable and called the FPT. As the index data run through
the past history, the FPT can be computed and the PDF of FPT, p(τρ), can be
constructed. Fig. 6.2 shows p(τρ) with ρ = 1.9 for AO, AAO, NAO, PNA indices
and with ρ = 25 for SOI. The solid curve is the theoretical PDF, which will be
discussed in Section 6.4.

The PDF of FPT exhibits a rather well defined and pronounced maximum,
followed by an extended tail for very long FPTs indicating a non-zero and important
probability of large passage times (note that the τρ-axis is logarithmic). These long
(toward El Niño for SOI) FPTs reflect periods where the tropical Pacific is in a
strong El Niño phase and needs a long period of time before finally coming to
an even stronger El Niño. The short FPTs on the other hand – those around the
maximum – are in La Niña periods, which appear to be the most common scenario.
A cumulative distribution is introduced for transition times larger than τρ , i.e.

P (τρ) =
∫ ∞

τρ

p(τ )dτ . (6.10)

To better understand the tail of this distribution, various values of ρ are consid-
ered. If this level is small enough, it is likely that the index reduction will break
through the level after the first month, while larger FPTs will become more and
more unlikely. However, the probability for a large FPT value will not be zero; if,
say, there is a small-level ρ, then a period of strong El Niño will result in a τρ(t)
that might be considerably larger than one month since it takes time to recover from
the El Niño event. For instance, after the 1992 El Niño event, it took five years to
reach a new El Niño event in 1997.
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Figure 6.2 First passage time density functions with particular index reduction
ρ for (a) Arctic Oscillation (AO), (b) Antarctic Oscillation (AAO), (c) North
Atlantic Oscillation (NAO), (d) Pacific/North American Pattern (PNA) and (e)
Southern Oscillation (SO) (after Chu 2008). Here, the parameter a represents the
most favourable FPT, τ (max)

ρ = 2a2/3, which is the first value in parenthesis near
the curve maxima. The second value is its PDF.
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x(t) x (t)'

'
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Figure 6.3 Trajectories of model prediction y (solid curve) and reality x (dashed
curve) and error ellipsoid Sε(t) centered at y. The reality and prediction trajectories
at a time instance are denoted by ‘*’ and ‘o ’, respectively). A valid prediction is
represented by a time period (t – t0) at which the error first goes out of the ellipsoid
Sε(t) (after Chu et al. 2002b).

6.3.2 Model predictability

The backward approach is to find a time period τ (i.e. FPT) at which the functional
J(Z0, W, t) reaches a predetermined tolerance level (ε) for the first time,

τ (Z0, W, ε) = inf
t≥0

(t
∣∣J (Z0, W, t) > ε2 ). (6.11)

The prediction is valid if the state point x(t) is situated inside the ellipsoid (Sε,
called tolerance ellipsoid) with center at y(t) (i.e. the prediction) and size ε. When
y(t) coincides with x(t), the model has perfect prediction. The prediction is invalid
if the state point x(t) first touches the boundary of the tolerance ellipsoid the FPT
for prediction is the time period from the initial state (Fig. 6.3).

The FPT is a random variable when the model has stochastic forcing or the initial
condition has a random error. Its statistics such as the probability density function,
mean and variance can represent how long the model can predict. For simplicity
and without loss of generality, a one-dimensional population model is used for
illustration. Clearly, the FPT defines the model predictability on the condition that
any returns of model predictability (i.e. model error smaller than the tolerance level
ε after passing the FPT) do not contribute to the prediction skill (the shaded zones
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in Fig. 6.4a). The mean FPT differs from the e-folding or the doubling time when J
oscillates or is random. To compare the e-folding and the FPT, we need to assume
in (6.11) that

Jnorm = (Z0, Z0) and ε̂2 = e2.

The e-folding time is the time when 〈J〉 crosses e2 (Fig. 6.4b),

τe (W) = max
t≥0

(t | 〈J (Z0, W, t)〉 ≤ e2), (6.12)

where the brackets denote the average over the ensemble of initial perturbations
Z0. The mean FPT for the same e is computed by

〈τ (W, e)〉 = 〈inf
t≥0

(t |J (Z0, W, t) > e2)〉, (6.13)

where the averaging is over the ensemble of FPTs (τ 1, . . . , τN) induced by the
ensemble of Z0 (Fig. 6.4c). Chu and Ivanov (2005) pointed out that the mean FPT
is the lower bound of e-folding time:

τe(W) ≥ 〈τ (W, e)〉.

6.4 Backward Fokker–Planck equation

Despite the linearity or nonlinearity of the original dynamical system, the PDF of
FPT always satisfies a linear equation called the backward Fokker–Planck equation.
For a random variable z satisfying the Langevin equation (6.2), the corresponding
backward Fokker–Planck equation (Gardiner 1985; Chu et al. 2002a; Chu 2008)
is given by

∂p

∂t
− [D(1)(z, t)]

∂p

∂z
− 1

2
η(2)D(2)(z, t)

∂2p

∂z2
= 0, (6.14)

which has an analytical solution,

p(τ ) = 1√
π

a

τ 3/2
exp

(
−a2

τ

)
, a > 0, τ > 0. (6.15)

The Lorenz system (1984) is the simplest possible model capable of representing
an unmodified or modified Hadley circulation, determining its stability, and, if it
is unstable, representing a stationary or migratory disturbance. Projection of the
three-dimensional forecast error vector onto the unstable manifold leads to a self-
consistent model (Nicolis 1992)

dξ

dt
= (σ − gξ )ξ + η(t)ξ, ξ |t=t0 = ξ0, ξ ∈ (0, ∞), (6.16)
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Figure 6.4 The FPT and e-folding time for an oscillating prediction error: (a)
FPT (τ ) computed in an individual forecast (shaded zones show returns of model
predictability), (b) an ensemble of J (dashed curves), the ensemble averaged J
(solid curve) and the e-folding time (τ e); and (c) the ensemble of J (dashed
curves) and appropriate ensemble of FPT (τ 1, τ2, . . . , τN) (after Ivanov and Chu
2007a,b).
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where ξ is non-dimensional amplitude of error, g is a non-negative, generally
time-independent nonlinear parameter whose properties depend on the underlying
attractor; and η(t) is a fluctuating δ-correlated force with Gaussian statistics [see
(6.3)]. The PDF of FPT satisfies the following backward Fokker–Planck equation
(Chu et al. 2002a,b),

∂p

∂t
− (

σξ0 − gξ 2
0

) ∂p

∂ξ 0
− 1

2
q2 ∂2p

∂ξ 2
0

= 0, (6.17)

with the initial error (ξ 0) bounded by,

ξnoise ≤ ξ0 ≤ ε. (6.18)

6.5 Moments of FPT

With the known PDF of FPT, the k-th moment and central moment (k = 1, 2, . . . )
of FPT is calculated by

τk = k

∞∫
0

p(τ )(τ )k−1dτ , τ̂k = k

∞∫
0

p(τ )(τ − τ1)k−1dτ k = 2, . . . , ∞,

(6.19)
where τ 1 and τ̂2 are the mean and variance of the FPT, and

SK ≡ τ̂3/τ̂
3/2
2 , KU ≡ τ̂4/τ̂

2
2 , (6.20)

are the skewness and kurtosis of FPT. For an autonomous dynamical system, f =
f(z0), the PDF of FPT still varies with time [satisfying the Backward Fokker–Planck
equation (6.17)]. However, the first two moments of FPT are given by (Chu et al.
2002a,b),

(
σξ 0 − gξ 2

0

)dτ1

dξ0
+ q2ξ 2

0

2

d2τ1

dξ 2
0

= −1, (6.21)

(
σξ 0 − gξ 2

0

)dτ2

dξ0
+ q2ξ 2

0

2

d2τ2

dξ 2
0

= −2τ1, (6.22)

with the boundary conditions,

τ1 = 0, τ2 = 0 for ξ0 = ε; (6.23)

dτ1/dξ0 = 0, dτ2/dξ0 = 0 for ξ0 = ξnoise. (6.24)
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The equations for the moments of FPT (6.21) and (6.22) with the boundary condi-
tions (6.23) and (6.24) have analytical solutions,

τ1(ξ̄0, ξ̄noise, ε) = 2

q2

1∫
ξ̄0

y
− 2σ

q2 exp

(
2εg

q2
y

) ⎡
⎢⎣

y∫
ξ̄noise

x
2σ
q2 −2 exp

(
−2εg

q2
x

)
dx

⎤
⎥⎦dy,

(6.25)

τ2(ξ̄0, ξ̄noise, ε) = 4

q2

1∫
ξ̄0

y
− 2σ

q2 exp

(
2εg

q2
y

)⎡
⎢⎣

y∫
ξ̄noise

τ1(x)x
2σ
q2 −2 exp

(
−2εg

q2
x

)
dx

⎤
⎥⎦dy,

(6.26)

where

ξ̄0 = ξ0/ε, ξ̄noise = ξnoise/ε

are non-dimensional initial-condition error and noise level scaled by the tolerance
level ε, respectively. For given tolerance and noise levels (or user input), the mean
and variance of FPT can be calculated using (6.25) and (6.26). For the Nicolis error
model (6.16) with the same parameter values as in Nicolis (1992),

σ = 0.64, g = 0.3, q2 = 0.2. (6.27)

Figures 6.5 and 6 show the curve plots of τ1(ξ̄0, ξ̄noise, ε) and τ2(ξ̄0, ξ̄noise, ε) versus ξ̄0

for four different values of tolerance level, ε (0.01, 0.1, 1 and 2) and four different
values of random noise ξ̄noise (0.1, 0.2, 0.4 and 0.6). The following features are
obtained: (a) τ 1 and τ 2 decrease with increasing ξ̄0, which implies that the higher
the initial error, the lower the predictability (or FPT) is; (b) τ 1 and τ 2 decrease
with increasing noise level ξ̄noise, which implies that the higher the noise level, the
lower the predictability (or FPT) is; and (c) τ 1 and τ 2 increase with the increasing
ε, which implies that the higher the tolerance level, the longer the FPT is. Note that
the results presented in this subsection are for a given value of stochastic forcing
(q2 = 0.2) only.

6.6 Stochastic stability

The stochastic stability addresses effects of random perturbations on trajectories of
a dynamical system and estimates its stability in terms of probabilistic measures,
such as expected values or distribution functions. In general, the stochastic stabil-
ity differs from the predictability. However, if a time scale quantifies the model
predictability, and if this scale indicates the time when the forecast uncertainty
exceeds some boundary or when information on the initial condition is lost, the
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Figure 6.5 Dependence of τ1(ξ̄0, ξ̄noise, ε) on the initial condition error ξ̄0 for four
different values of ε (0.01, 0.1, 1 and 2) and four different values of random noise
ξ̄noise (0.1, 0.2, 0.4 and 0.6) using the Nicolis (1992) model with stochastic forcing
q2 = 0.2 (after Chu et al. 2002a).

stochastic stability and predictability are interchangeable. Since these time scales
are widely used in meteorology and oceanography, the stochastic stability concept
seems to be a useful tool for the predictability analysis of large hydrodynamic
models.

Loss of superposition and extreme inhomogeneity are common in nonlinear
hydrodynamic models that require local measures of predictability and corre-
sponding timescales (Lorenz 1984). For small-amplitude initial perturbations, the
timescales are related to the inverse of the largest Lyapunov exponent estimated
by the tangent linear models. The linear approach gives reasonable estimations of



P1: SJT Trim: 174mm × 247mm Top: 0.553in Gutter: 0.747in
CUUK726-06 cuuk726/Palmer ISBN: 978 0 521 76105 5 July 6, 2009 17:42

First passage time analysis for climate prediction 171

30 18

16

14

noise
= 0.1

12

10

8

6

4

2

0

25

20

t

e

15

10

2
t 2

5

0

0.2

7

6

5

4

3

2

0
0.4 0.5 0.6

0

0.7
ξ

ξ

0
ξ

0.8 0.9 0.6

1.4

1.2

0.8

0.6

0.4

0.2

0

1

0.7 0.8 0.9 11

1

0.4 0.6 0.8 0.2 0.4 0.6 0.8 11

 = 2

e
e

e
 = 1

=0.01
 = 0.1

e = 2

e
ee

 = 1

=0.01
 =0.1

noise
= 0.2ξ

noise
= 0.4ξ

noise
= 0.6ξ

e= 2

e
e

e

 = 1

=0.01
 =0.1

e= 2

e

e
e

 = 1

=0.01

 =0.1

Figure 6.6 Dependence of τ2(ξ̄0, ξ̄noise, ε) on the initial condition error ξ̄0 for four
different values of ε(0.01, 0.1, 1 and 2) and four different values of random noise
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model predictability in many practical cases. However, it cannot provide critical
boundaries on finite-amplitude stability especially in ocean circulation models.

6.6.1 Reference solution

We consider a rectangular semi-closed basin with the horizontal dimensions: L1 =
1050 km and L2 = 1000 km, and with constant depth H = 2 km, which is situated
on a mid-latitude β-plane. The basin has rigid (�) and open (�′) boundaries. The
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Figure 6.7 Basin geometry. The x1 and x2 axes point toward east and north,
respectively (after Ivanov and Chu 2007a).

geometry of the basin and its sizes are shown in Fig. 6.7. The numerical model has
the nonlinear shallow-water equations with nonlinear bottom friction, wind and
boundary forcing

∂Du1/∂t + L(Du2, Du1) − f Du2 = −gD∇1ζ + W1 − αE1/2u1, (6.28)

∂Du2/∂t + L(Du1, Du2) + f Du1 = −gD∇2ζ + W2 − αE1/2u2, (6.29)

and the mass conservation equation

∂ζ/∂t + (∇1Du1 + ∇2Du2) = 0, (6.30)

where L(. . . , . . .) is the nonlinear advective operator; [∇1, ∇2] = [∂/∂x1, ∂/∂x2];
u1 and u2 are the zonal and meridional velocities, respectively; D = H + ζ , ζ is the
sea-surface elevation; the drag coefficient α = 2.5 × 10−3; g is acceleration due to
gravity; and E = u2

1 + u2
2. The Coriolis parameter varies linearly with a beta plane

approximation f = f0 + βx2, where f0 = 2�sin (ϕ0) and β = (2�/a)cos (ϕ0). Here,
� and a are the rate of rotation and the radius of the Earth, respectively; ϕ0 = 350;
for the chosen model parameters: f0 = 7.3 × 10−5 s−1, β = 2.0 × 10−11 m−1 s−1.
A flow in the semi-closed basin bounded by � ∪ �′ is forced by both the zonal
wind forcing W1(W2 = 0) varying with latitude as

W1 = − ws

ρw
cos

(
πx2

L2

)
, (6.31)

where ρw = 1025 kg m−3, ws is the wind stress, ws/ρw = 1.0 × 10−3 m2 s−2, and
a prescribed net flux [characterised by the normal velocity ūb(x2, t) and surface
elevation ς̄b(x2, t) along the boundary �′].

Zero normal velocity and zero Neumann conditions for the surface elevation are
imposed on the rigid boundary �. The chosen model configuration is suitable for
the analysis of ocean model predictability affected by different kinds of stochastic
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Figure 6.8 Spatial structure of the reference solution at the initial state (a) and
after integration for 60 days (b). Open boundary conditions (ūb) corresponding
to the reference solution are shown to the right of the circulation patterns (after
Ivanov and Chu 2007a,b).

uncertainties: errors inserted in initial conditions (Ivanov and Chu 2007a,b), wind
(the present study) and open boundary conditions. Cross-correlations between these
errors can also be studied. Model (6.28)–(6.30) is similar to that used by Veronis
(1966) for the analysis of nonlinear wind-driven circulation in a closed basin. But
in contrast to Veronis (1966) we parameterise bottom friction by the quadratic drag
law.

The prescribed non-stationary net flux across the open boundary is computed as
explained in Chu et al. (1997). The structure of open boundary conditions on day-0
and day-60 is demonstrated in Figs. 6.8a and 6.8b, respectively. The initial condition
represents a non-closed anticyclonic gyre shown in Fig. 6.8a. The corresponding
initial surface elevation is not shown because its structure is obvious. After 30
days of integration the model reaches a spin up when the spatially averaged kinetic
energy oscillates with a period of 120 days. Amplitude of this oscillation reduces
with time exponentially with rate of 1000 d−1. The circulation pattern formed
after day-30 presents a multigyre structure with maximum velocities up to 0.9 to
1.0 m s−1 (Fig. 6.8b).

6.6.2 Ensemble prediction

For simplicity, Ivanov and Chu (2007a,b) sampled perturbations from speci-
fied, multivariate normal distributions. First, due to simplicity, our hydrody-
namic model is able to produce forecast ensembles containing up to ∼O(105)
perturbations. Second, the Latin hypercube (LHC) design (Latin Hypercube;
see http://www.mathworks.com/matlabcentral/fileexchange/4352) was applied to
simulate a highly uniform distribution of an initial error in the phase space. Using
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pure probabilistic arguments, Downing et al. (1985) pointed out that the Latin
hypercube design is more effective than the classical Monte-Carlo method. For
obtaining dense error coverage with the same degree of homogeneity from Monte-
Carlo samples and through the LHC design NM0 and N(2M0 + 2) statistical real-
isations are required, respectively. Here, N is the number of statistical realisations
necessary to simulate one degree of freedom, and M0 is the truncated mode number.
Typically, N ∼ O(103). For M0 = 15, the classical Monte-Carlo method requires
∼O(1045) initial perturbations for a statistically significant estimate. This is not
feasible with available computer resources. Comparable results can be obtained by
the LHC design approach with only ∼O(104) initial perturbations.

The LHC design approach provides the dense error coverage of the model
phase space for ∼O(104) initial perturbations. This number of initial perturbations
is a trade-off between the ensemble ability to reproduce the main features of
IE statistics, and the computational cost. However, the optimal number of initial
perturbations (Nopt) should be specified for the concrete ocean model. We estimated
this number through the Kullback–Leibler (KL) distance (the relative entropy; see
White 1994).

The KL distance is a natural distance function from a ‘true’ probability density,
F∞, to a ‘target’ probability density, FN. For continuous density functions, the KL
distance is defined as

KLN (F∞ |FN ) =
∞∫

0

dτFN (τ ) log

[
F∞(τ )

FN (τ )

]
, (6.32)

where FN(τ ) and F∞(τ ) are τ -PDFs computed for an N sample ensemble and a
hypothetic ensemble with infinite sampling, respectively. In practice, a difference
between two distributions is negligible if KLN ≤ 5.0 × 10−3 (White 1994).

To calculate the KL distance we suppose F∞ = F100000 because only small
differences in τ -statistics estimated from ensembles of 5.0 × 103, 1.0 × 104, 2.0 ×
104, 5.0 × 104 and 1.0 × 105 samples have been observed. The KLN rapidly reduces
with N from 2.0 × 10−1 (N = 20) to 4.0 × 10−3 (N = 103). Therefore, Nopt was
chosen as 103.

6.6.3 Stochastic perturbations

Two types of (stochastic) initial perturbations are introduced: two-dimensional
isotropic Gaussian white noise [white-noise-like perturbations (WNLPs)] with the
two-point correlation function

〈u′
i(x)u′

j (x′)〉 = I 2δij δ(x − x′), (6.33)
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or two-dimensional isotropic Gaussian spatially correlated noise [red-noise-like
perturbations (RNLPs)] with the two-point correlation function

〈u′
i(x)u′

j (x′)〉 = I 2δij exp

[
− (x − x′)2

2R⊥ 2

]
, (6.34)

where x = (x1, x2), R⊥, I2 are correlation radius and noise variance (intensity of
perturbations), respectively. These perturbations are directly added to the initial
conditions. The technical details of generating Gaussian noises with correlation
functions (6.33) and (6.34) can be found in Sabel’feld (1991). The non-dimensional
intensity of the initial perturbations Ī 2 = (I/I0)2(I0 = 1 m s−1) will be used below.
Noise with correlation functions (6.33) and (6.34) is the popular model of errors
for optimal interpolation or spline fitting. Both of these procedures are applied to
construct initial conditions for ocean models from irregularly spaced data (Brasseur
et al. 1996).

The stochastic wind perturbation U is represented by (Sura et al. 2001)

U = [U1(x1, x2, t), U2(x1, x2, t),] = μ(t)σ G1/2(x1, x2), (6.35)

where μ(t) = [μ1(t), μ2(t)] are white Gaussian vector processes with zero mean and
unit variance; σ 2 is the wind variance; the spatial structure function G characterises
a degree of spatial inhomogeneity of wind perturbations above an area of interest.
Two different structure functions G are used. The first one is given by

G1(x1, x2) = cos

(
πx2

L2

)
. (6.36)

In this case only the amplitude of wind stress (6.33) is distorted by the non-Gaussian
white noise. The second one is chosen as

G2(x1, x2) = αs

[
πβ1β2erf

(
L1

2β1

)
erf

(
L2

2β2

)]−1/2

× exp

(
− (x1 − L1/2)2

2β2
1

− (x2 − L2/2)2

2β2
2

)
. (6.37)

Here, erf is the error function; αs is a scaling parameter; (β1, β2) are the decorre-
lation scales; G2 shows the impact of the localised atmospheric eddy activity near
the point (L1/2, L2/2) on the surface wind perturbations with βc = β1 = β2 =
600 km (Sura et al. 2001). In most numerical experiments the scaling constant
αs is chosen to adjust the weight function in (6.13) to 1. However, a number of
computations use βc between 100 km and 600 km. The noise in the surface wind
with σ 2 = 28.0 m2 s−2 corresponds to typical observed atmospheric conditions in
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Figure 6.9 Temporal evolution of the root mean square error <J> for various
initial perturbations: (a) WNLPs with different noise intensities: 0.05, 0.01, 0.005
and 0.001 (denoted by ‘1’, ‘2’, ‘3’, ‘4’); and (b) RNLPs with the correlation radius
of 70 km and different noise intensities: 0.02, 0.01, 0.003 and 0.001 (denoted by
‘1’, ‘2’, ‘3’, ‘4’) (after Ivanov and Chu 2007a).

the North Atlantic region (Wright 1988). Therefore, the stochastic forcing (6.35)–
(6.37) is a conceptual tool to study the effect of noise on simple and more complex
wind-driven regional ocean models.

6.6.4 Stability due to initial uncertainty

At least four stages for the IE evolution are identified for both WNLPs (Fig. 6.9a)
and RNLPs (Fig. 6.9b). All these stages are clearly identified by the IE growth rate.
Initial error decay is observed for the first ten days of IE evolution (Figs. 6.9a,b)
where the IE growth rate, Q ≡ dln 〈J〉/dt, evolves as

Q ≈ Q0[exp(α0t) − α1], (6.38)

where α0 is the decay exponent, Q0 ≈ −0.45, α0 = ln α1/t1, t1 = 10 d.
Non-exponential initial error decay corresponding to (6.38) differs from a quasi-

exponential decay obtained in Wirth & Ghil’s (2000) model with the dissipative
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operator ν�⊥ and quite large horizontal viscosity ν. In contrast to this model the
zero horizontal viscosity is used in our model. Therefore, the non-exponential decay
seems to be caused by nonlinear bottom friction. Then 〈J(t)〉 has quasi-stationary
low values during 10 and 20 days for WNLPs (Fig. 6.9a) and RNLPs (Fig. 6.9b),
respectively. During the third stage (after day-20 and day-30 for WNLPs and
RNLPs, respectively) the IE grows faster than exponentially (Figs. 6.9a,b).

Linear theory suggests that the larger the amplitude of the initial perturbations,
the higher the probability of obtaining low model predictability. The IE should
steadily increase with a prediction time scale in the linear predictability regime.
In contrast to this, forecast skill may decay more slowly when the amplitude of
initial perturbations increases. The growing perturbations rapidly adopt a horizontal
scale comparable to that of the reference state (linear predictability regime), and
further growth is limited by interactions with this state and among them (nonlinear
predictability regime). In the nonlinear predictability regime the IE demonstrates
clear contributions from the cumulative effects of flow scales, and the predictability
time is no longer measured by the inverse of the leading Lyapunov exponent.
Moreover, model predictability is enhanced with the growth of the correlation
radius R⊥ and is less sensitive to the choice of the intensity Ī 2.

Ivanov and Chu (2007a) demonstrated the existence of the linear predictability
regime identified by non-Gaussian statistics and (quasi)-exponential growth of
prediction error, for a small correlation radius (R⊥ � 50 km, in the case of WNLPs)
and large noise intensities (Ī 2 ≤ 0.2). For WNLPs, the typical τ -PDF was close
to Gaussian if Ī 2 ∼ 0.01–0.05. The growth of Ī 2 up to 0.1–0.2 resulted in a weak
asymmetry for the τ -PDF (SK → 0.15) and departs from non-Gaussian (KU →
3.10). However, although such a τ -PDF has a short tail (labelled ‘1’ in Fig. 6.10a),
it was still close to Gaussian and the mean τ -IPT reduced with the growth in
amplitude of initial perturbations. The τ -PDF quickly departs from Gaussian with
the growth of Ī 2 after 0.2. However, from a physical point of view, such initial
perturbations seem to be too large to exist in reality.

The nonlinear predictability regime appears as R⊥ grows. Both highly non-
Gaussian τ -PDFs, and the mean FPT that grows with increasing R⊥, indicate that
the PE becomes nonlinear. A typical non-Gaussian τ -PDF (SK ≈ 0.8, KU ≈ 4.0)
computed for a finite correlation radius is demonstrated in Fig. 6.10b. The long
PDF tail (labelled ‘2’ in Fig. 6.10b) is clearly seen in this figure. The tail is formed
by rare individual forecasts (FPT up to 60 days), each of which is longer than the
mean ensemble forecasting (FPT of about 44 days).

The first four parameters of FPT were computed for various values of correla-
tion radius R⊥. The asymmetry of τ -PDFs becomes higher for the larger values
of correlation radius R⊥ (Fig. 6.11). The SK value, which is a measure of asym-
metry, increases up to 0.8 when R⊥ tends to 100 km. Larger values of mean FPT
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Figure 6.10 The τ -PDFs for (a) WNLPs with Ī 2 = 0.1, R⊥ = 30 km and ε̄2 = 0.5;
and (b) RNLPs with Ī 2 = 0.1, R⊥ = 125 km and ε̄2 = 0.2. Skewness and kurtosis
are 0.15 and 3.09 for (a), and 0.77 and 3.95 for (b). Dashed lines indicate mirror
reflections of the left-hand-side tails of τ -PDFs (from Ivanov and Chu 2007a).

(Fig. 6.11a) and τ -variances (Fig. 6.11b) correspond to more asymmetric PDFs.
Highly non-Gaussian (KU ≈ 4, Fig. 6.11d) and sharp τ -PDFs with long tails stretch-
ing to large prediction times accompany this nonlinear predictability regime. The
explicit growth of mean predictability time observed with the growth of correlation
radius R⊥ is strong evidence of the nonlinear predictability regimes caused by the
inhomogeneous morphology of the model phase space (Kaneko 1998).

6.6.5 Stability due to surface wind uncertainty

Perturbations excited by uncertain winds grow at all scales and during the whole
50–60 day period. This is in contrast to the case when there is uncertainty in the
initial condition only. Therefore, the presence of the spatio-temporal noise (6.34) in
wind forcing (6.33) causes the monotonic error growth. At least four predictability
regimes are identified from Fig. 6.12. In all the cases the IE grows in a monotonic
manner but with different speeds. More accurately, these regimes can be identified
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the noise intensity of 0.1, and tolerance level 0.2: (a) τ -mean, (b) τ -variance,
(c) τ -skewness, (d) τ -kurtosis (after Ivanov and Chu 2007a).

using the error growth rate (Q): linear growth, power growth and super-exponential
growth.

The error dynamics strongly depends on the intensity and spatial inhomogeneity
of wind uncertainty (G, σ̄ 2) as shown in Fig. 6.12. During the linear error growth,
mean square IE is represented by,

〈J 〉 ≈ Defft, (6.39)

Duration of the linear IE growth regime is typically up to 4–5 days if σ̄ 2 ∼ 0.1–1.0.
The effective coefficient Deff is determined by summation of contributions from the
error source term at all wavenumbers (Ivanov & Chu 2007b). The linear law (6.39)
was earlier documented in a number of studies (see, for example Vannitsem and
Toth 2002, personal communication). However, Ivanov & Chu (2007b) analytically
determined the error sources with strong dependence on the effective coefficient
on the variance of wind as well as on the degree of spatial inhomogeneity of the
wind forcing.

For moderate but inhomogeneous winds, Ivanov and Chu (2007b) found the
power growth of perturbations after the transient phase (for example, see Fig. 6.12).
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Figure 6.12 The growth rate Q (solid curve) for different σ̄ 2 and G: (a) σ̄ 2 = 0.1,
G = G2; (b) σ̄ 2 = 1.0, G = G1; (c) σ̄ 2 = 1.0, G = G2, and (d) σ̄ 2 = 2.0, G =
G2. The solid curve, white dots and asterisks show exponential, linear and power
(with scaling exponent of 8.8 × 10−1) laws, respectively (after Ivanov and Chu
2007b).

For small values of σ̄ 2 � 1.0 the power growth is replaced by exponential growth
(shown by the dashed line in Fig. 6.12a).

If σ̄ 2 exceeds 1, there is no exponential growth and the IE grows with the power
law the power exponent being about 8.8 × 10−1. This regime exists between day-5
and day-15 in Fig. 6.12a, between day-7 and day-23 in Fig. 6.12b, between day-4
and day-14 in Fig. 6.12c, but there is no power-law regime in Fig. 6.12d when
the stochastic wind uncertainty is too large (σ̄ 2 > 2.0). For such a variance the
linear growth of IE dominates. Smaller scales affected by the stochastic wind are
subject to strong viscous damping due to the increasing drag coefficient α with the
growth of kinetic energy of large-scale perturbations. Therefore, the smaller scales
grow more slowly than the unstable large scales. The growing perturbations rapidly
adopt the horizontal scales comparable to those of the reference state. Alternatively,
stronger stochastic wind (σ̄ 2 ≥ 1.0) excites more modes at smaller scales than weak
wind, and the coherent behaviour of the modes is clearly observed in this case (for
example see Fig. 6.12b).
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Figure 6.13 Identification of τ -CDF: (a) FPT histogram for a 103-term ensem-
ble; (b) CDF computed directly from the ensemble (solid curve) and using the
developed method (black dots), γ = 30 days (after Ivanov and Chu 2007b).

For finite-amplitude IEs, stochastic wind forcing (6.10), in general, induces
highly non-Gaussian τ -PDFs. The following question arises: what kind of statistics
can be used to represent such τ -PDFs? If an appropriate distribution function is
found, it would be possible to identify the ensemble-generated PDFs from a limited
observation series and small forecast ensembles, and in turn to estimate the model
predictability horizon. Ivanov and Chu (2007b) found that the FPT satisfies the
three-parameter Weibull distribution (Fig. 6.13a)

f (τ ) = β

η

(
τ − γ

η

)β−1

exp

[
−

(
τ − γ

η

)β
]
, (6.40)

with (η, γ , β) the scale, shape and location parameters, which were estimated
by an algorithm on the basis of the Kullback–Leibler distance (White 1994).
The τ -CDFs computed by the non-parametrical technique (solid curve) and our
method (black dots) are compared in Fig. 6.13b. The parameters (η, γ , β) have
the values 3.71, 30.0 and 1.67 days, respectively. The parameter β affects the
length of the PDF tail formed by rare forecasts, which are longer than the
mean ensemble forecast 〈τ 〉. A small value of β indicates an enhanced proba-
bility for the realisation of abnormally long (in our case up to 50 days) model
forecasts.
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6.7 Power decay law

A random process is called fractional Brownian motion if its cumulative FPT
density function satisfies the power law (Ding and Yang 1995),

P (τ ) ∼ τH−1, (6.41)

with 0 < H < 1. Here H is the Hurst exponent. For H = 1/2, the random process
is the ordinary Brownian motion.

The cumulative distribution, P(τρ), for each climate index datum (Fig. 6.14)
shows a power-law feature in the tail of the distribution scales. For a very small
value of the index reduction, ρ0 (0.01 for the AO, AAO, NAO and PNA indices
and 0.1 for SOI), the cumulative FPT density function calculated from the index
data shows that

P (τ0) ∼ τ
−α0
0 , (6.42)

with α0 ∼1/2. Since the Hurst exponent of an ordinary Brownian motion is H =
1/2, the empirically observed scaling (Fig. 6.14) is a consequence of the (at least
close to) Brownian motion behaviour of the climate indices.

This argument of an unbiased Brownian motion is also strengthened by observing
that (Fig. 6.14)

P (τ0 = 1) ∼ 1/2. (6.43)

This indicates that the climate index has a 50% chance of increase and decrease
at each time step (one month). Figure 6.14 also shows the cumulative distributions
P(τρ) for different values of ρ, i.e. ρ = 0.01, 0.5, 1.0, and 1.5 for the (AO, AAO,
NAO, PNA) indices and ρ = 0.1, 10, 20, and 30 for SOI. From this figure it is seen
that the tail exponent, αρ , is rather insensitive to the value of ρ. In particular one
finds that αρ ∼ 1/2 over a broad range of values for ρ, a value that is consistent
with the Brownian motion hypothesis.

Such a power decay law in FPT is also found in model predictability. The Gulf
of Mexico real-time nowcast/forecast system is taken as an example to show the
existence of the power decay law of FPT in the predictability skill. This system (Chu
et al. 2002c) was built based on the Princeton Ocean Model (POM) with 1/12◦ ×
1/12◦ horizontal resolution. Real-time sea-surface height (SSH) anomalies derived
from NASA/CNES TOPEX and ESA ERS-2 altimeters, and composite SST data
derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR) in
a continuous data assimilation mode are used to produce a nowcast and four-week
forecast. It was found that the forecast retains considerable skill to about one-two
weeks, beyond which it begins to deviate rapidly from reality.

The Gulf of Mexico velocity data at 50 m depth are archived every six hours
from the nowcast/forecast system for six months beginning on 9 July 1998. The
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Figure 6.14 The empirical cumulative density functions, P(τρ), for different values
of the index reduction for (a) Arctic Oscillation (AO), (b) Antarctic Oscillation
(AAO), (c) North Atlantic Oscillation (NAO), (d) Pacific–North American Pattern
(PNA) and (e) Southern Oscillation (SO). It shows the power-law features (after
Chu 2008).
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Figure 6.15 Statistical characteristics of VPP for zero initial error and 55 km tol-
erance level: (a) histogram of FPT, (b) PDF of FPT computed using the Epanech-
nikov kernel density, (c) PDP for FPT between 0 and 20 days, and (d) PDP for
FPT between 5 and 17 days (after Chu et al. 2002c).

observational data are collected from 50 satellite-tracked drift buoys at 50 m depth.
Since the number of drift buoys is limited (50 in this study), the point stochastic
process is used to create more realisations to calculate the ensemble mean of the pre-
dictability skill (Tikhonov & Khomenko 1998). Moving along the drifter trajectory
y(t), points are randomly selected and the predictability skill is calculated for each
of these points. Such a process is called the point stochastic process. The average
over these points is equivalent to the ensemble average due to the ergodic feature
of the trajectories (Dymnikov & Filatov 1987; Tikhonov & Khomenko 1998).

The FPT is computed for non-ensemble prediction with a tolerance level (ε) of
55 km and without initial error (z0 = 0). The PDF of FPT (Fig. 6.15), calculated
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using the Epanechnikov kernel density (Good 1996) from the histogram (Fig.
6.15a), shows a non-Gaussian distribution with a narrow peak and a long tail in the
domain of long-term prediction. Successful 10–15 day predictions are abnormally
long (called the extreme long predictions) compared to the mean FPT (3.2 days) and
the most probable FPT (2.4 day). The tail of the probability density of prediction
follows the power law 5 with the power exponent, γ = 2.2 (Figs. 6.15c and d).

6.8 Lagrangian predictability

During the World Ocean Circulation Experiment (WOCE), the ocean veloc-
ity observation has been significantly advanced with extensive spatial and
temporal coverage using near-surface Lagrangian drifters, RAFOS floats and
Autonomous Lagrangian Circulation Explorers (ALACEs). Trajectories of these
quasi-Lagrangian drifters reflect the whole spectrum of ocean motions, includ-
ing meso- and submeso-scale eddies, various waves, inertial and semi-diurnal
motions, and provide invaluable resources to estimate the forecast skill. However,
direct comparison between model and Lagrangian observational data is difficult
since neither the dynamics of numerical models nor their forcing data (such as
surface forcing functions) are identical to the reality. It needs to be determined if
the model–data difference comes from a deficiency in modelling ocean physics,
from some unessential imperfection or from unrepresentative data. It is clear that
the high-resolution ocean model and the Lagrangian drifter data are compared only
in the statistical sense. Since the mesoscale (10–50 km) movements of Lagrangain
drifters represent the eddy dynamics, it is reasonable to ask if the high-resolution
ocean model reproduces the mesoscale Lagrangian drifter movements. Such a
model capability, defined as the ‘Lagrangian predictability’ (Mariano et al. 2002)
as distinct from the ‘Eulerian predictability’ has the capability to reproduce patterns
and topological details of the circulation attractor.

The Lagrangian data were collected from 15 satellite-tracked sonobuoys, manu-
factured by the Applied Technology Associates and deployed by Horizon Marine,
provided the Lagrangian data used for the study. A nylon drogue at 50 m depth is
tethered to the buoy hull of which 0.64 m is in the water and 0.33 m in the air. The
drifter trajectories used in the present study are given in Fig. 6.16. The synthetic
particle trajectories are obtained from the time integration of the modelled hori-
zontal velocity field at 50 m depth with bi-cubic spline interpolation in space and
second-order interpolation in time.

The PDF of FPT for zero initial errors is calculated from the drifter and synthetic
particle trajectories with four tolerance levels (ε) (0.25◦, 0.5◦, 0.75◦ and 1.25◦).
It clearly shows non-Gaussian distribution (Fig. 6.17). The long tail stretching
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into the long FPT period (t larger than 1 day) demonstrates the existence of a
long-term correlation between the drifter and synthetic particle trajectories. Such a
phenomenon is called the extremely successful prediction (Chu et al. 2002a). This
long tail has the power behaviour for a long FPT period with power exponents of
2.17, 1.98, 2.08 and 1.77 for ε values of 0.25◦, 0.5◦, 0.75◦ and 1.25◦, respectively.
For a power exponent larger than 2, there is no intermittency in the prediction skill.

Dependence of the first two FPT moments on the tolerance (ε) follows the power
law

〈τ 〉 ∼ ε0.99±0.08...., τ̂2 ∼ ε1.76±0.07......, (6.44)

which indicates that the Lagrangian prediction skill of the Gulf of Mexico model
is non-Gaussian and non-intermittent. If the FPT statistics is Gaussian, the power
exponents of (6.44) should be

α = 1, β = 2,

rather than

α = 0.99 ± 0.08, β = 1.76 ± 0.07.

6.9 Conclusions

(1) First passage time (FPT) presents a new way to detect climate model pre-
dictability and temporal variability of the climate indices. It is a random variable,
the probability density function of which satisfies the backward Fokker–Planck
equation. In solving this equation, it is easy to obtain the ensemble mean and
variance of the FPT for climate models and climate indices. The solution of the
backward Fokker–Planck equation is usually non-Gaussian. The PDF of FPT for a
numerical ocean model to uncertain initial conditions satisfies the three-parameter
Weibull distribution.

(2) The FPTs for the five climate indices show Brownian fluctuations. This
means that the early results on the Brownian fluctuations for the NAO index are
also valid for the other indices (AO, AAO, PNA and SO). With δ → 0 as a limit
case (i.e. no index reduction), the FPT density function tends to the δ function.

(3) The power law of FPT is found for climate model predictability. The proba-
bility density function of FPT for the Gulf of Mexico nowcast system is asymmetric
with a broader and long tail for higher values which indicates long-term predictabil-
ity. This long tail corresponds to the power law for error growth. For FPT with
small mean and mode values, its individual model prediction can be valid for a
long period (long-terms prediction); this is represented by a long tail for higher
FPT values. The extreme long and short predictions share the same statistics.
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(4) The power law of FPT is also found in climate index prediction. For a
very small values of the index reduction, ρ0 (0.01 for the AO, AAO, NAO, and
PNA indices and 0.1 for SOI), the cumulative FPT density function shows a
power-law dependence on τρ with an exponent of approximately –1/2. Another
well-known method for checking power-law dependence is examination of the
autocorrelation function. This also confirms that the climate indices have Brownian-
type fluctuations.

(5) The FPT is found useful to analyse stochastic stability of numerical models.
It is expected that FPT will be applied to many areas such as stochastic climate
prediction and stochastic dynamical systems.
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