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ABSTRACT

Every forecast should include an estimate of its likely accuracy, as a measure of predictability. A new measure,
the first passage time (FPT), which is defined as the time period when the model error first exceeds a predetermined
criterion (i.e., the tolerance level), is proposed here to estimate model predictability. A theoretical framework
is developed to determine the mean and variance of FPT. The low-order Lorenz atmospheric model is taken as
an example to show the robustness of using FPT as a quantitative measure for prediction skill. Both linear and
nonlinear perspectives of forecast errors are analytically investigated using the self-consistent Nicolis model.
The mean and variance of FPT largely depends on the ratio between twice the maximum Lyapunov exponent
(s) and the intensity of attractor fluctuations (q2), l 5 2s/q2. Two types of predictability are found: l . 1
referring to low predictability and l , 1 referring to high predictability. The mean and variance of FPT can be
represented by the e-folding timescales in the low-predictability range, but not in the high-predictability range.
The transition between the two predictability ranges is caused by the variability of the attractor characteristics
along the reference trajectory.

1. Introduction

The following is a commonly asked practical ques-
tion. How long is an atmospheric (or oceanic) model
valid, once it is integrated from its initial state? To an-
swer this question, uncertainty in atmospheric models
must be investigated. It is widely recognized that un-
certainty can be traced back to three factors (Lorenz
1984a): (a) measurement errors, (b) model errors such
as discretization and uncertain model parameters, and
(c) chaotic dynamics. Measurement errors cause uncer-
tainty in initial and/or boundary conditions. Discreti-
zation not only causes truncation errors but also small-
scale ‘‘subgrid’’ processes to be either discarded or pa-
rameterized. The chaotic dynamics may trigger a sub-
sequent amplification of small errors through a complex
response.

Traditionally, the small amplitude stability analysis
(linear error dynamics) is used with the instantaneous
error (IE) growth rate and the corresponding e-folding
timescale as the measures for evaluating the model pre-
dictability due to initial condition error (the first kind
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of predictability). The IE growth rate is usually esti-
mated by either the leading (largest) Lyapunov exponent
or the amplification factors calculated from the leading
singular vectors (SVs; e.g., Lorenz 1984b; Dalcher and
Kalnay 1987; Farrell and Ioannou 1996a,b; Vannitsem
and Nicolis 1997).

However, the errors may grow to a finite amplitude
such as in the medium-range prediction (Vukicevic
1991; Barkmeijer 1996), in the forecast using ‘‘imper-
fect’’ models (Bofetta et al. 1998; Palmer 2001), and in
the models with open boundaries (Gustafsson et al.
1998; Chu 1999; Jiang and Malanotte-Rizzoli 1999).
Thus, the linear assumption is no longer applicable and
the nonlinear effect should be considered.

Both linear and nonlinear perspectives of forecast er-
rors can be studied using a probabilistic approach based
on the analysis of the probability density function (PDF)
of the error (e.g., Benzi and Carnavale 1989; Benzi et
al. 1999; Nicolis 1992; Ehrendorfer 1994a,b; Molteni
and Corti 1998). The given error PDF leads to the full
statistical description of the error dynamics. In general,
PDF satisfies the Liouville equation which can be solved
only by numerical methods even in one-dimensional
cases (Ehrendorfer 1994a,b; Nicolis 1992). A practical
approach to estimate the PDF of forecast error is to
calculate it through ensemble prediction (Leith 1974;
Toth and Kalnay 1997).
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FIG. 1. Phase space trajectories of the reference solution x̂ (solid
curve), one of the ensemble realizations x9, and ellipsoids S«(t) and
Sd(t) centered at x̂. The positions of x̂ and x9 at time instance are
denoted by ‘‘*’’ and ‘‘C’’, respectively. FPT is represented by a time
at which perturbed trajectory x9 leaves the ellipsoid S«(t) at the first
time.

To simplify the probabilistic analysis of forecast error
dynamics, Ivanov et al. (1994) and Ivanov and Mar-
golina (1999) applied the first passage time (FPT; Gar-
diner 1985) as a measure of quantitative prediction skill.
Here, FPT is defined as the time period when the model
forecast error exceeds a predetermined criterion « (i.e.,
the tolerance level) for the first time. In this paper, we
plan to show the advantage of using FPT in analyzing
the forecast skill of an atmospheric model; to illustrate
the capability of such an analysis using a low-order
atmospheric model; and to improve the knowledge of
how the strength of the initial error and the variations
of model parameters affect the model prediction skill.

2. Measure of predictability

a. Dynamic constraint

From a low-order model to a certain level of descrip-
tion such as a global atmospheric spectral model, an N-
dimensional vector x(t) 5 [x (1)(t), x (2)(t), . . . , x (N )(t)] is
used to represent the full set of variables characterizing
the dynamics of the atmosphere. Let the dynamic law
be given by:

dx
5 f (x, t), (2.1)

dt

where f is a functional including nonlinear interactions
between different scales, a parameterization of subgrid
scales and forcing. The aim of individual (oceanic or
atmospheric) prediction is to find the solution of (2.1)
with an initial condition

x(t ) 5 x .0 0

Uncertainty in atmospheric (or oceanic) models is
caused by measurement errors (initial and/or boundary
condition errors), model discretization, and uncertain
model parameters. This leads to the addition of sto-
chastic forcing into atmospheric (oceanic) models.
Moreover, stochastic forcing may also be added to the
forecast model in the parameterization of nonlinear in-
teractions (Penland and Sardeshmukn 1995; Leith 1996;
Palmer 2001).

For simplicity, the stochastic forcing (f 9) is assumed
to be multiplicative or additive white noise, and (2.1)
becomes

dx
5 f (x, t) 1 f 9(x, t),

dt

f 9(x, t) 5 k(x, t)g(t), (2.2)

where k(x, t) and g(t) are the forcing covariance matrix
{kij} (dimension of N 3 N) and the vector delta-cor-
related process (dimension of N), respectively.

b. FPT for forecast error

Let x̂(t) be the reference solution which satisfies (2.2)
with the initial condition x(t0). The forecast error z is
determined as

z(t) 5 x̂(t) 2 x9(t),

where x9(t) is an individual prediction corresponding to
perturbing initial condition and/or forcing f 1 f 9. The
rmse is used to estimate the model forecast skill:

TJ 5 ^z Az&, (2.3)

where A is the weight matrix, the superscript T denotes
the transpose operator, the bracket represents the en-
semble average over realizations generated by stochastic
forcing, uncertain initial conditions, and uncertain mod-
el parameters in (2.2).

To quantify FPT, we first define two model error lim-
its. First, the forecast error cannot be less than a min-
imum-scale d, which depends on the level of thermal
and intrinsic noises existing in the model. In general,
this scale functionally depends on the square root of the
subgrid-scale kinetic energy E 1/2. The simplest param-
eterization is d proportional to E 1/2, with the propor-
tionality depending on the selection of the subgrid-scale
parameterization (Aurell et al. 1996). Second, the fore-
cast error cannot be more than a maximum-scale (tol-
erance level)«.

The ratio between the maximum and minimum limits
is large

z 5 «/d k 1,1 (2.4)

in atmospheric circulation models. Two ellipsoids S« and
Sd are defined by J 5 «2 and J 5 d2, with the center
at x̂(t) (Fig. 1). The model rmse (J) is bounded by the
two limits

2 2d # J # « . (2.5)

FPT is a stochastic time period t for which x9(t) leaves
a domain limited by S« for the first time. From physical
point of view, it determines the low limit of the pre-
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dictability time because we neglect the impact of res-
toration of model prediction skill a priori, which occurs
in large atmospheric models (Anderson and van der
Dool 1994).

To calculate the moments of FPT, the probability den-
sity of prediction (PDP) is P(t0, z0, t 2 t0), which is
the probability of the time period t 2 t0 that the forecast
error is less than « when the initial error is z0 (Ivanov
and Margolina 1999). Thus, the stability analysis on the
reference solution x̂ (Fig. 1) using FPT should be clas-
sified as the probabilistic (stochastic) stability analysis
(Has’minskii 1980).

Use of FPT and PDP has the following advantages
in evaluating model predictability skill. First, FPT is a
measure of model forecast skill for both linear and non-
linear error regimes. Second, the moments of FPT char-
acterize high-order variability of the prediction skill.
This variability is determined only from the knowledge
of a single-point distribution function, PDP. Third, PDP
and naturally, the moments of FPT, can be effectively
calculated by ensemble prediction techniques. Such a
calculation consumes less computer resources because
PDP is determined only inside the ellipsoid S«, rather
than in the whole phase space. Fourth, an iterative tech-
nique (Ivanov et al. 1999) and analytical approach (Chu
et al. 2002) are developed to find the structure of PDP.
Analytical estimate of PDP is possible even for multi-
dimensional error models.

3. Pontryagin–Kolmogorov equation

The temporal evolution of PDP, for the model (2.2),
satisfies the Pontryagin–Kolmogorov equation (PKE;
Pontryagin et al. 1969) with the first-order partial dif-
ferentiation with respect to time, and the second-order
partial differentiations with respect to initial condition
errors,

2]P dx̂ ]P 1 ] Pi2 f 2 2 k k 5 0,i i l l j0 0 01 2]t dt ]z 2 ]z zi i j

i, j, l 5 1, . . . , N, (3.1)

where the coefficients kij are the components of the forc-
ing covariance matrix k(x, t) and ( , , . . . ) are the0 0 0z z z1 2 N

components of the initial error z0.
One initial condition and two boundary conditions

(with respect to z0) are needed to solve (3.1). The initial
condition of (3.1) is given by

P(t , z , 0) 5 1,0 0 (3.2)

which indicates that the vector of initial error z0 is al-
ways less than the given tolerance.

The model error vector z is bounded by two limits:
minimum error limit (noise level d) and maximum error
limit (tolerance level «). If the initial error vector z0

reaches the tolerance level [i.e., z0 hits the boundary of
S« (t0)], the model loses prediction capability at the first
place:

2P(t , z , t 2 t ) 5 0 at J 5 « , (3.3)0 0 0

which is called the absorbing type boundary condition.
It is clear that the forecast error can not be less than d,
which leads to

]P
2k 5 0 at J 5 d , (3.4)i j 0]zj

which is called the reflecting boundary condition. In
general, the reflecting and absorbing boundary condi-
tions can be simultaneously applied on S« and Sd.

The kth moment (k 5 1, 2, . . .) of FPT is calculated
using PDP by

`

k21t (z ) 5 k P(t , z , t 2 t )(t 2 t ) dt,k 0 E 0 0 0 0

t0

k 5 1, . . . , `. (3.5)

The mean and variance of FPT can be calculated from
the first two moments:

^t& 5 t , (3.6)1

2 2^dt & 5 t 2 t , (3.7)2 1

where the bracket denotes the ensemble average over
realizations generated by stochastic forcing. The mean
and variance of FPT are both local characteristics of the
prediction skill since they depend on position z0 on the
reference trajectory x̂.

The prediction skill of atmospheric models is cur-
rently verified using the perfect model concept with
uncertainty appearing only in the initial conditions.
Such an uncertainty is easily taken into account in
our approach through additional averaging of (3.6)
and (3.7) with respect to an ensemble of initial per-
turbations.

4. A low-order atmospheric model

Determination of prediction skill of a low-order at-
mospheric model proposed by Lorenz (1984a) is taken
as an example to demonstrate the usefulness of our ap-
proach. The Lorenz system is the simplest possible mod-
el capable of representing an unmodified or modified
Hadley circulation, determining its stability and, if it is
unstable, representing a stationary or migratory distur-
bance. The model consists of the three ordinary non-
dimensional differential equations:

dx1 2 25 2x 2 x 2 ax 1 aF,2 3 1dt

dx2 5 x x 2 bx x 2 x 1 G,1 2 1 3 2dt

dx3 5 bx x 1 x x 2 x , (4.1)1 2 1 3 3dt

where t is the time scaled by five days; x1 represents
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the intensity of the symmetric globe-encircling westerly
wind, and also the poleward temperature gradient which
is assumed to be in permanent equilibrium with the
wind; x2 and x3 are the cosine and sine phases, respec-
tively, of a chain of superposed large-scale eddies,
which transport heat at a rate proportional to the square
of their amplitude, and transport no angular momentum
at all. The terms aF and G represent symmetric and
asymmetric thermal forcing. The terms x1x2 and x1x3

describe amplification of eddies through interaction with
the westerly currents. The displacement of eddies by the
westerly wind is parameterized using the terms 2bx1x3

and bx1x2. The parameter a is the damping coefficient.
The traditional stability analysis on the Lorenz model

(4.1) leads to three Lyapunov exponents. Among them,
only one is positive. Projection of the three-dimensional
forecast error vector onto the unstable manifold leads
to a self-consistent model (Nicolis 1992)

dj
5 (s 2 gj)j 1 y(t)j, j | 5 j ,t5t 00dt

j ∈ [0, `), (4.2)

where j is the nondimensional amplitude of error, and
g is a nonnegative, generally time-independent nonlin-
ear parameter whose properties depend on the under-
lying attractor. Equation (4.2) is written in Ito form. The
tangent approximation of error growth leads to g 5 0.
The eigenvector j is associated with the positive Lya-
punov exponent (s). The term y(t)j is a specially chosen
stochastic forcing with zero mean and pulse-type var-
iance

2^y(t)& 5 0, ^y(t)y(t9)& 5 q D(t 2 t9), (4.3)

where the bracket is defined as the ensemble mean over
realizations generated by the stochastic forcing, D is the
Delta function, and q2 is the intensity of attractor fluc-
tuations modeled as multiplicative noise forcing.

The combination of the free model parameters s, g,
and q2 affects the model prediction skill. Nicolis (1992)
used the following values:

2s 5 0.64, g 5 0.3, q 5 0.2. (4.4)

In reality the dynamical characteristics of the atmo-
sphere vary considerably between different synoptic sit-
uations. Model forecast skill depends on various factors
such as season, location, and boundary conditions. Ev-
idence shows variability of forecast skill in operational
models such as the European Centre for Medium-Range
Weather Forecasts (ECMWF) model. Therefore, the pa-
rameters s, g, and q2 should be time and attractor de-
pendent. This problem is not addressed here. However,
in contrast to Nicolis (1992) we assume

0.2 # s # 0.64, g 5 0.3,
20.01 # q # 0.6 (4.5)

in this study. Since the Nicolis model is analytical, the
parameter d should be small and z1 [ «/d 5 105 is

assumed. This should be satisfactory for the quality
analysis of the prediction skill.

Use of the self-consistent model (4.2) has several ex-
plicit advantages. First, it allows analytical study on
linear and nonlinear perspective of forecast error. Sec-
ond, the methodology developed by Nicolis (1992) can
be generalized to more realistic atmospheric models.
Third, the model contains several dynamical regimes of
forecast error behavior. Obviously, their analytical study
may be useful for the interpretation of results obtained
by large atmospheric models.

5. Mean and variance of FPT

For the self-consistent error model (4.2), the mean
and variance of FPT can be computed without the de-
termination of PDP. PDP for the Nicolis model (4.2)
satisfies the following PKE (Pontryagin et al. 1969; Gar-
diner 1985; Ivanov et al. 1994):

2]P ]P 1 ] P
2 22 (s 2 gj )j 2 q j 5 0, (5.1)0 0 0 2]t ]j 2 ]j0 0

with the initial condition

P(t , j , 0) 5 1,0 0 (5.2)

and boundary conditions

P(t , j , t 2 t )| 5 0,0 0 0 j 5«0

]P(t , j , t 2 t )0 0 0 5 0. (5.3))]j0 j 5d0

Multiplying (5.1) by (t 2 t0)k and then integrating with
time from t0 to `, we obtain a set of equations for the
moments tk (k 5 1, 2, . . .):

2 2 2dt q j d tk 0 k2(sj 2 gj ) 1 5 2kt ,0 0 k212dj 2 dj0 0

d # j # «. (5.4)0

The boundary conditions for tk also are obtained
through integrating (5.3) with time

dt kt | 5 0, 5 0. (5.5)k j 5«0 )dj0 j 5d0

The mean FPT is the same as the first moment t1,
and the variance of FPT is computed from the first and
second moments [see (3.7)]. Simple mathematical ma-
nipulations give the following equations:

2 2 2d^t& q j d ^t&02(sj 2 gj ) 1 5 21 and (5.6)0 0 2dj 2 dj0 0

22 2 2 2 2d^dt & q j d ^dt & d^t&02 2 2(sj 2 gj ) 1 5 2q j .0 0 02 1 2dj 2 dj dj0 0 0

(5.7)
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FIG. 2. Comparison of prediction skill between iterative (with different iteration parameter Dm) and
numerical solutions for (a) mean FPT with l 5 6.4, (b) variance of FPT with l 5 6.4, (c) mean FPT with
l 5 1, and (d) variance of FPT with l 5 1.

6. Iterative solutions

An iterative method (Ivanov et al. 1999), whose math-
ematical detail is listed in appendix A, is proposed to
solve (5.6) and (5.7). The iteration parameter (Dm) is
defined as the inverse of the number of iteration (I);
that is, Dm 5 1/I.

It is clear that the mean and variance of FPT, as well
as the iteration parameter depend on the model param-
eters (s and q) and the tolerance level. To illustrate how
fast the convergence of the iterative process is, the it-
erative solutions (^t&, ^dt2&) are compared with the nu-
merical solutions (^t&num, ^dt2&num), obtained using the
finite difference method with the second-order accuracy
(Press et al. 1992). Two sets of calculations are con-
ducted (Fig. 2) with the model parameters. (a) In case

1, g 5 0.3, s 5 0.64, q2 5 0.4 (l 5 3.2), and « 5 0.1.
(b) In case 2, g 5 0.3, s 5 0.2, q2 5 0.4 (l 5 1), and
« 5 0.5. Here, l 5 2s/q2.

The root-mean-square errors between iterative and
numerical solutions,

^t& 2 ^t&numD 5 rmse , (6.1)1 1 2^t&num

2 2^dt & 2 ^dt &numD 5 rmse , (6.2)2 21 2^dt &num

are used to represent the accuracy of the iteration pro-
cedure. For case 1, D1 5 0.85% and D2 5 5.6% with
the iteration parameter Dm 5 1/2; and D1 5 0.03% and



1 OCTOBER 2002 2865C H U E T A L .

D2 5 0.25% with the iteration parameter Dm 5 1/3 (Figs.
2a,b). For case 2, D1 5 1.7% and D2 5 5.2% with the
iteration parameter Dm 5 1/2; and D1 5 0.8% and D2

5 2.2% with the iteration parameter Dm 5 1/3 (Figs.
2c,d). Thus, with the iteration parameter Dm 5 1/3, the
iterative solutions are quite close to the numerical so-
lutions, and therefore, can be used for evaluating the
model prediction skill.

7. Characteristics of prediction skill

The model prediction skill (S) that is represented
by the mean and variance of FPT strongly depends
on the model parameters such as l in the Nicolis mod-
el. If a critical value l 0 is found where dS/dl is dis-
continuous, S may behave differently between l .
l 0 and l , l 0 . Low (high) S values in one side of
l 0 is referred to low (high) predictability. Low pre-
dictability (dynamical chaos) may coexist with high
predictability (dynamical behavior) even for the same
attractor (Ziehmann et al. 2000). In the Nicolis sys-
tem, low predictability is found for l . 1, and high
predictability is found for l , 1.

a. Low predictability (l . 1)

Low predictability is characterized by low values of
mean and variance of FPT, high sensitivity to initial
condition errors, and usually occurs in chaotic dynam-
ics. This case has been numerically studied by Nicolis
(1992) for l 5 6.4.

1) LINEAR REGIME

For the linear regime (g 5 0), the mean and variance
of FPT have the analytical expressions

2 1
[0] 2(l21) l21^t& 5 ln(z) 2 z (z 2 1) ,12 [ ]q (l 2 1) l 2 1

« «
z 5 , z 5 . (7.1)1j d0

Since z1 k 1 and l . 1, Eq. (7.1) can be rewritten by

2
[0]^t& ø ln(z), (7.2)

2(2s 2 q )

which is the classical e-folding time. Forecast accuracy
weakly depends on d and, naturally, on the model sub-
grid-scale parameterizations. Furthermore, ^t &[0] is
bounded if d is nonzero.

Equation (7.2) further shows that ^t&[0] increases with
increasing intensity of attractor fluctuations q2. This is
consistent with the Benzi and Carnevale (1989) result
obtained for the tangent model (4.2) that the most prob-
able growth of forecasting error is depressed as the at-
tractor fluctuations increase.

Similar to (7.1), the variance of FPT is calculated by

8
2 [0]^dt & ø ln(z), (7.3)

4 3q (l 2 1)

which indicates that the variance of FPT also has an e-
folding dependence on z. However, the generality of this
analytical result (i.e., e-folding variance of FPT) into
operational atmospheric models should be further in-
vestigated. The mean and variance of FPT are calculated
with three different tolerance levels (« 5 0.02, 0.2, and
2) and various values of initial error j0. Both mean and
variance of FPT reveal e-folding type with z when j0

# 0.5 (Fig. 3).

2) NONLINEAR REGIME

For the nonlinear regime (g ± 0), the mean FPT is
obtained using the iterative method illustrated in ap-
pendix A:

4
[0] [1] [2] [3] [4]^t& ø ^t& 1 (R 1 R 1 R 1 R ),

23q (l 2 1)
(7.4)

where the functions R[1], R[2], R[3], and R[4] are deter-
mined as

2 2g« g «
[1] 21 [2] 22R 5 A (1 2 z ), R 5 A (1 2 z ),1 22 4q q

3 3g «
[3] 23R 5 A (1 2 z ), and3 6q

4 4g «
[4] 24R 5 A (1 2 z ),4 8q

with the coefficients

5 16
A 5 , A 5 ,1 2l l(l 1 1)

5.9
A 5 , and3 l(l 1 1)(l 1 2)

4.7
A 5 .4 l(l 1 1)(l 1 2)(l 1 3)

As an example, for l 5 3.2, the coefficients are:

A 5 1.5626, A 5 0.678, A 5 0.030,1 2 3

A 5 0.002,4

which indicates a fast convergence of the iteration
process (fast reduction values from A1 to A 4 ). If l 5
6.4 [the parameters take on the same values as in
Nicolis (1992)], the convergence of the iteration is
even faster.

The expression for the variance of FPT is quite cum-
bersome, and is not listed here. Figure 3 shows the
comparison of the mean and variance of FPT between
linear and nonlinear regimes with three different tol-
erance levels (« 5 0.02, 0.2, and 2) and l 5 3.2. For
small tolerance levels (« 5 0.02, 0.2), there is almost
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FIG. 3. Comparison of prediction skill between linear and nonlinear regimes for (a) mean FPT with «
5 0.02, (b) variance of FPT with « 5 0.02, (c) mean FPT with « 5 0.2, (d) variance of FPT with « 5
0.2, (e) mean FPT with « 5 2, and (f ) variance of FPT with « 5 2.

no difference between linear and nonlinear regimes. The
difference increases with the tolerance level. As the tol-
erance level increases to « 5 2, the difference becomes
evident.

For a small initial error (j0 K 1), (7.4) becomes

2 10
^t& ø ln(z) 1 g«

2 1q (l 2 1) 3l
2 232 g «

1 1 · · · , (7.5)
2 23l(l 1 1) q

which indicates that the increase of the mean FPT
with increasing q 2 ; that is to say, the mean FPT, is
larger for the nonlinear regime than for the linear
regime.

For a large initial error j 0 , the dependence of the
high-order iterations on the stochastic forcing (q 2 ) is
complicated. For example, the impact of the third it-
eration is given by

4
[4]U 5 R

23q (l 2 1)
4 418.8g «

245 (1 2 z ).
103q (l 2 1)l(l 1 1)(l 1 2)(l 1 3)

Three U values (for q2 5 0.01, 0.02, and 0.2), and in
turn the two ratios, are computed:

2 2U(q 5 0.01)/U(q 5 0.02) 5 1.04,
2 2U(q 5 0.02)/U(q 5 0.2) 5 0.53,
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FIG. 4. Dependence of the prediction skill on l for (a) mean FPT with « 5 0.1, (b) variance of FPT with
« 5 0.1, (c) mean FPT with « 5 0.5, and (d) variance of FPT with « 5 0.5.

which indicates that U is reduced when q2 increases
slightly from q2 5 0.01 to q2 5 0.02; and then is in-
creased when q2 increases drastically from q2 5 0.02
to q2 5 0.2.

b. Transition to high predictability (l 5 1)

The point l 5 1 is a threshold between two kinds of
prediction skill. Here, the mean and variance of FPT
cannot be described by the e-folding type dependence
on z even for infinitesimal and small initial errors. They
depend on the noise level d. To show a change of the
model predictability at l 5 1, the mean and variance
of FPT are calculated using (5.6) and (5.7) with various

tolerance levels and initial errors for linear and nonlinear
regimes.

The two different predictability ranges (low and high)
can be identified from the dependence of mean and var-
iance of FPT on l value (Fig. 4). Notice that the slope
of curves and functional dependences for the mean and
variance of FPT have a drastic change at around l 5
1, that is, the low-predictability range (low mean and
large variance of FPT) to high-predictability range (high
mean and large variance of FPT).

1) LINEAR REGIME

For the linear regime (g 5 0), the mean and variance
of FPT are given by
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FIG. 5. Dependence of prediction skill on j0/« for linear and nonlinear regimes with l 5 1 (transition
between low and high predictability) for (a) mean FPT with « 5 0.01, (b) variance of FPT with « 5 0.01,
(c) mean FPT with « 5 0.1, (d) variance of FPT with « 5 0.1, (e) mean FPT with « 5 0.5, and (f ) variance
of FPT with « 5 0.5.

1
[0] 2 2^t& 5 [(l ) 2 (l ) ]1 22q

1 «
25 ln [ln(«z ) 2 lnd ], (7.6)02 1 2q z0

2d
2 [0] 4 4^dt & 5 [(l ) 2 (l ) ], (7.7)1 243q

where

l 5 ln(z ), l 5 ln(z ), z 5 j /d.1 1 2 2 2 0

Several interesting facts emerge from (7.6) and Fig. 5:
(a) the mean FPT does not coincide with the e-folding
timescale [see (7.2)]; (b) the mean FPT increases with
decreasing d logarithmically as 2ln(d2); (c) the variance

of FPT (proportional to d2) decreases with decreasing
d2. Therefore, the reduction of the noise level only de-
creases the variance of FPT considerably, but not the
mean FPT.

2) NONLINEAR REGIME

For nonlinear regime (g ± 0), the mean FPT is
obtained using the iterative method illustrated in ap-
pendix A:

1
[0] [1] [2] [3] [4]^t& ø ^t& 1 (R 1 R 1 R 1 R ), (7.8)

23q

where
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gd
[1] 3 3R 5 B [(l ) 2 (l ) ],1 1 22q

2 2g d
[2] 4 4R 5 B [(l ) 2 (l ) ],2 1 2q4

3 3g d
[3] 5 5R 5 B [(l ) 2 (l ) ],3 1 26q

4 4g d
[4] 6 6R 5 B [(l ) 2 (l ) ],4 1 28q

and the coefficients B1, B2, B3, and B4 are given by

B 5 2.66; B 5 1.33; B 5 0.36;1 2 3

B 5 0.04.4

Figure 5 shows the comparison of the mean and var-
iance of FPT between linear and nonlinear regimes with
three different tolerance levels (« 5 0.01, 0.1, and 0.5).
For the small tolerance level (« 5 0.01) the nonlinear
effect on both the mean and variance of FPT is negli-
gible. For 0.01 , « , 0.1, the nonlinear effect is neg-
ligible on the mean FPT too but not on the variance of
FPT. For « 5 0.5, the prediction skill difference between
the tangent and nonlinear error models becomes very
evident. For the same initial error, the mean FPT is larger
for the nonlinear regime than for the linear regime,
which indicates the enhancement of the predictability
due to nonlinearity.

c. High predictability (l , 1)

As l , 1, the mean and variance of FPT increase
with decreasing l rapidly (Fig. 4), which leads to the
high-predictability range.

1) LINEAR REGIME (g 5 0)

For l → 1, the mean and variance of FPT are given by

2
[0] 12l l21^t& ø (z ) [1 2 (z) ] and (7.9)12 2(1 2 l) q

4
2 [0] 2(12l) 2(l21)^dt & ø (z ) (1 2 z ). (7.10)14 4q (1 2 l)

Equation (7.9) demonstrates that the mean FPT does
not coincide with the e-folding timescale (7.2) even
for infinitesimal and small amplitude errors. In ad-
dition it is noted that for high predictability and z k
1, the mean and variance of FPT have power depen-
dence of z1 with scaling exponents equaled to 1 2 l
and 2(1 2 l), respectively.

2) NONLINEAR REGIME (g ± 0)

For the nonlinear regime, the mean and variance of
FPT are given by

4g«
[0] [1] [2] [3] [4]^t& 5 ^t& 1 (R 1 R 1 R 1 R ),

23q (1 2 l)
(7.11)

where

1 g«
[1] 2(12l) [2] 3(12l)R 5 C (1 2 z ), R 5 C (1 2 z ),1 22 3q q

2 2g «
[3] 4(12l)R 5 C (1 2 z ),3 4q

3 3g «
[4] 5(12l)R 5 C (1 2 z ),4 5q

and C1, C2, C3, and C4 are the coefficients given by
1 3 4

C 5 ; C 5 ; C 5 ;1 2 32 2 l (3 2 l) 9(4 2 l)

32
C 5 .4 135(5 2 l)

For l 5 0.5, they are

C 5 0.67, C 5 1.2, C 5 0.13, C 5 0.05,1 2 3 4

which indicates a slower convergence of the iteration
process (reduction values from C1 to C4) than in the
low-predictability regime (l k 1) represented by the
reduction values from A1 to A4.

Figure 6 shows the comparison of the mean and
variance of FPT between the linear and nonlinear er-
ror models for three different tolerance levels (« 5
0.01, 0.1, and 0.5). For the small tolerance level («
5 0.01), the nonlinear effect on both mean and var-
iance of FPT is negligible. As the tolerance level in-
creases (i.e., « . 0.01), the mean FPT is larger in the
nonlinear regime than in the linear regime for the
same initial condition error vector, which indicates
the enhancement of the predictability due to nonlin-
earity. Besides, both solid and dotted curves in Fig.
6 reveal a reverse G-type shape, which indicates that
^t & and ^dt 2 & depend weakly on the value of initial
error in both linear and nonlinear regimes if j 0 /« K
0.01.

8. Ensemble effect of initial uncertainty on the
mean FPT

The error of an ensemble forecast is usually smaller
than the mean error of individual forecasts comprising the
ensemble (Leith 1974; Murthy 1991). One may ask: What
is the ensemble effect of initial uncertainty with finite
amplitudes on the prediction skill? The classical stability
analysis associated with Lyapunov exponents or SVs is
not able to answer this question since it is in general only
for small initial errors. The FPT approach can answer this
question, and the low predictability range (l . 1) is taken
as the example for illustration. To do so, let the initial
condition be distorted by noises with unknown intensity
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FIG. 6. Same as Fig. 5, except for l 5 0.5.

of 0. According to Leith (1974) additional noises withĵ
zero mean and variance of 4 2 are added to 0. The meanj̃ ĵ
FPT is averaged over ensemble realizations composed of
individual samples with noises homogeneously distributed
within the interval [ 0 2 , 0 1 ].ĵ j̃ ĵ j̃

a. Infinitesimal and small initial errors

Independent of the tolerance level, we obtain the fol-
lowing expression:

^^t(ĵ )&& . ^t(ĵ )&,0 0 (8.1)

for infinitesimal and small initial errors. Here, the single
bracket indicates an averaging over statistics of sto-
chastic forcing and the double bracket denotes an av-
eraging operator over statistics of both stochastic forcing
and the ensemble of initial realization. The mathematical

detail is listed in appendix B. The inequality (8.1) shows
that the ensemble mean of forecasts will, on average,
have longer FPT (smaller model error) than the mean
error of individual forecast comprising the ensemble.
This agrees with the classical result (Leith 1974; Mur-
phy 1991).

b. Finite amplitude initial errors

For finite amplitude initial errors, the ensemble mean
FPT may be smaller than the mean FPT for an individual
prediction. Therefore, if the initial uncertainty consists
of small and finite amplitude errors and if the tolerance
level is large, the additional averaging over the ensemble
of the initial errors may deteriorate the model prediction
skill.
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9. Conclusions

This study demonstrates the capability of the FPT
approach in evaluating model forecast skill. Two kinds
of predictability skill are analytically identified for the
Lorenz (1984a) model based on the parameter, l 5 2s/
q2: low predictability if l . 1, and high predictability
if l , 1. Here, s and q are the maximum Lyapunov
exponent and the intensity of attractor fluctuations, re-
spectively. The low- to high-predictability transition oc-
curs at l 5 1. The transit from low to high predictability
is realized for l 5 1. Both kinds of predictability skill
coexist for small initial error j0 K 1.

The low predictability (l . 1) is characterized by
high sensitivity to initial condition errors. For a small
tolerance level (« K 1), the model prediction skill is
represented by the e-folding time. Both the mean and
variance of FPT increase with increasing intensity of
the attractor fluctuations. The mean FPT is longer in the
nonlinear than in the linear regimes. The model predic-
tion skill should weakly depend on subgrid-scale pa-
rameterization schemes; however, neglect of the noise
scale (d 5 0) leads to an incorrect asymptote for the
mean FPT when the initial error is infinitesimal. For a
large tolerance level, the mean FPT is no longer ex-
ponentially decaying with the initial error, and is always
greater than the e-folding time.

The high predictability (l , 1) is characterized by
the power-law decay of the mean and variance of FPT
with decay exponents (1 2 l) and 2(1 2 l), respec-
tively, if z k 1 and l → 1. The prediction skill strongly
depends on the noise level d and the subgrid-scale pa-
rameterization schemes. Notice that both the mean and
variance of FPT weakly depend on the values of infin-
itesimal initial errors.

A nonlinear perspective of forecast error is important
in finding an exact functional correlation between the
quantitative model skill and the physical factors. In gen-
eral, nonlinear processes limit the growth of forecast
error and causes a wide dispersion of individual pre-
dictions. Averaging over the ensemble of initial uncer-
tainties, the nonlinearity can either increase or decrease
the mean FPT.

The model prediction skill strongly depends on the
position of the predicted attractor. Low- or high- (local)
prediction skill should be locally detected through PDP
analysis on different fragments of the attractor trajec-
tory. However, the real model skill is obtained through
averaging over the local prediction skills along the ref-
erence trajectory. The high (low) predictability can be
interrupted by randomly distributed bursts of low (high)
predictability. Such a temporal intermittency of the pre-
diction skill should be investigated in more complete
model than the Nicolis model. This is not discussed in
this paper.
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APPENDIX A

Iterative Process for Solving (5.5) and (5.6)

Taking (5.6) as an example, the iterative process starts
from the decomposition of the operator

2 2 2d q j d02L̂ 5 (sj 2 gj ) 1 (A.1)0 0 2dj 2 dj0 0

into two parts

L̂ 5 L 1 mL ,1 2 (A.2)

where m is the varying parameter ranged from 0 to 1.
The operator L1 is chosen such that the equation

L t 5 211 (A.3)

has an analytical solution.
Then, we introduce an additional auxiliary function

W 5 ]t/]m satisfying the following equation:

L W 1 mL W 1 L ^t& 5 0.1 2 2 (A.4)

The following iterative process is used to solve (A.4)
(Ivanov et al. 1999):

[0]L ^t& 5 21, (A.5)1

[i] [i21] [i21]^t& 5 ^t& 1 DmW ,

i 5 1, . . . , I (A.6)

[i] [i] [i] [i21]L W 1 L ^t& 1 m L W 5 0, (A.7)1 2 2

1
[i]m 5 Dmi, Dm 5 , (A.8)

I

where I is the maximum number of iterations. The it-
eration stops when m[ i ] equals 1. Here, ^t&[ i ] is the ap-
proximate solution of (5.5) with accuracy of O(Dm).
The variance of FPT is calculated using the same it-
erative procedure.

Let us illustrate the iterative procedure (A.5)–(A.8)
by calculating the mean FPT for l 5 1 and I 5 3:
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[0]L ^t& 5 21, (A.9)1

[0] [0]L W 5 2L ^t& , (A.10)1 2

[1] [0] [1] [0]L W 5 2L ^t& 2 (m 1 Dm)L W , (A.11)1 2 2

[2] [0] [0]L W 5 2L ^t& 2 DmL W1 2 2

[2] [1]2 (m 1 Dm)L W , (A.12)2

[3] [0] [0] [1]L W 5 2L ^t& 2 DmL W 2 DmL W1 2 2 2

[3] [2]2 (m 1 Dm)L W , (A.13)2

where Eqs. (A.9)–(A.13) use the reflecting boundary con-
dition at j0 5 d and the absorbing boundary condition at
j0 5 «, respectively. The solutions are written by

1 « j0[0]^t& 5 R , , 2 ,
2 1 2q d d

2 « j0[0]W 5 B R , , 3 ,12 1 23q d d

2 « j 2 « j0 0[1]W 5 B R , , 3 1 B Dm R , , 4 ,1 2 12 21 2 1 23q d d 9q d d

2 « j 4 « j0 0[2]W 5 B R , , 3 1 B Dm R , , 41 2 12 21 2 1 23q d d 9q d d

4 « j01 B R , , 5 ,32 1 245q d d

2 « j 2 « j0 0[3]W 5 B R , , 3 1 B Dm R , , 41 2 12 21 2 1 23q d d 3q d d

36 « j 16 « j0 01 B R , , 5 1 B R , , 6 ,3 42 21 2 1 2135q d d 405q d d

where
ngd

l lR(z , z , l) 5 ln z 2 ln z , B 5 ,1 2 1 2 n 21 2q
n 5 1, . . . , 4.

APPENDIX B

Averaging over Initial Uncertainty

a. Small amplitude error and small tolerance level
Let

min maxj 5 ĵ 2 j̃, j 5 ĵ 1 j̃,0 0 0 0

min max max minb 5 j /j , ĵ 5 0.5(j 1 j ).0 0 0 0 0

Average of (7.2) over an ensemble of initial uncertainty
is given by

1 «
^t& 5 ln 1 1

2 max1 2[q (g 2 1) j 0

min minj j0 01 ln . (B.1)
max min max1 2]j 2 j j0 0 0

Rewrite (B.1) and (7.2) into

2 « b
^^t(ĵ )&& 5 ln 1 1 1 ln(b) ,0 2 max1 2[ ]q (g 2 1) j 1 2 b0

(B.2)

2 « 2
^t(ĵ )& 5 ln 1 ln . (B.3)0 2 max1 2 1 2[ ]q (g 2 1) j 1 1 b0

A comparison between (B.3) and (B.4) leads to

^^t(ĵ )&& . ^t(ĵ )& if b # 0.9.0 0

b. Small amplitude error and large tolerance level

For this case, j0/« K 1, a constant A,

2 2 3 3 4 44 g« g « g « g «
A 5 1 1 1

2 2 4 6 8[ ]3q (l 2 1) q q q q

is added to both (B.2) and (B.3). The analysis becomes
the same as the previous case (i.e., the small amplitude
error and small tolerance level).

c. Large amplitude error and large tolerance level

Use of the asymptotic

« « «
ln ø 2 1 as → 1,1 2j j j0 0 0

and average of all terms of (7.4) over the ensemble of
initial errors leads to

2 2 2 2 21 4g « A 1 j 4g « A ĵ2 max 3 02 2^t(ĵ )& 5 G 1 1 2 (1 1 2b 1 b ) 1 1 2 (1 1 2b 1 b ) 1 · · · ,0 2 4 2 6 25 6[ ] [ ]q (g 2 1) 3q 4 « 3q 4«
(B.4)

2 2 2 3 31 4g « A 1 j 4g « A ĵ2 max 3 02 2^^t(ĵ )&& 5 G 1 1 2 (1 1 b 1 b ) 1 1 2 (1 1 b ) 1 · · · , (B.5)0 2 4 2 6 25 6[ ] [ ]q (g 2 1) 3q 3 « 3q 2«
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where

4g«A ĵ1 0G 5 21 1 1 2 .
21 21 23q 2«

Comparison between (B.4) and (B.5) leads to

^^t(ĵ )&& , ^t(ĵ )&0 0

for any value of b.
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