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ABSTRACT

Scale analysis indicates that five nondimensional parameters (Ro, ¢, s, A and x)) characterize the disturbance
generated by the steady flow of a uniform wind (Up, Vy) incident on a mountain ridge of width a in an isothermal,
uniformly rotating, uniformly stratified, vertically semi-infinite atmosphere. Here p = ho/Hp is the ratio of the
mountain height A, to the deformation depth Hi = fa/N where fis the Coriolis parameter and N is the static
buoyancy frequency. The parameters A = Hyz/H and )\ are the ratios of Hj to the density scale height H and
the potential temperature scale height H/x respectively. There are two Rossby numbers: One based on the
incident flow that is parallel to the mountain, ¢ = V,/fa, and one normal to the mountain, Ry = Up/fa. If Ry
< 1, then the mountain-parallel flow is in approximate geostrophic balance and the flow is semigeostrophic.

The semigeostrophic case reduces to the quasi-geostrophic one in the limit as x4 and ¢ tend to zero. If the flow
is Boussinesq (A = 0), then the semigeostrophic solutions expressed in a streamfunction coordinate can be
derived from the quasi-geostrophic solutions in a geometric height coordinate.

If the flow is anelastic (A =~ 1), no direct correspondence between the two approximations was found. However
the anelastic effects are qualitatively similar for the two and lead to: (i) an increase in the strength of the mountain
anticyclone, (ii) a reduction in the extent (and possible elimination) of the zone of blocked, cyclonic flow, (iii)
a permanent turning of the flow proportional to the mass of air displaced by the mountain, and (iv) an increase
in the ageostrophic cross-mountain flow. The last result implies an earlier breakdown of semigeostrophic theory
for anelastic flow over topography.

Apart from a strengthening of the cold potential temperature anomaly over the mountain, the presence of a
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finite potential temperature scale height (i.e., x nonzero) does not significantly alter the flow solution.

1. Introduction

The important problem of airflow over mountains
comprises a variety of flow regimes. Gill (1982) pro-
vides a clear review of this literature. For mountains
of large horizontal scale, the earth’s rotation plays a
major role in determining the flow structure. Meteo-
rological studies of this regime have their origins in the
work of Charney and Eliassen (1949) who presented
the first quasi-geostrophic analysis of airflow over
mountains. Much of the subsequent work focused on
the ability of the mountain anticyclone to create a stag-
nation point and form a Taylor column (Bannon, 1980,
reviews the barotropic literature on Taylor column
formation.) Usually' quasi-geostrophic theory treats the
lower boundary condition in linearized form.

Robinson (1960) introduced a formulation for ro-
tating flow over topography that includes the nonlinear

! One exception is the study of Buzzi and Speranza (1979).

Corresponding author address: Dr. Peter R. Bannon, Dept. of Me-
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lower boundary condition but retains the important
quasi-geostrophic feature of the filtering of internal
gravity waves. Jacobs (1964), Merkine (1975), Merkine
and Kalnay (1976), Pierrehumbert (1985) and Blumen
and Gross (1986) have refined this Boussinesq analysis
which represents an application of semigeostrophic
theory (Hoskins, 1975) to mountain flows. The present
study seeks to extend these analyses to include anelastic
effects. It represents a generalization of the quasi-geo-
strophic results of Smith (1979) and Bannon (1986) to
finite-amplitude mountain ridges.

A mountain immersed in an incident zonal wind
on a uniformly rotating reference frame experiences a
lift force, L, due to the pressure differential across the
mountain which tends to push the mountain in a me-
ridional direction:

L= —y'f PNdA = —J- % dv, (1.1)
s Mv 3y

where p is the fluid pressure, N is the unit vector normal
to the elemental surface area dd4 directed toward the
fluid, y is the unit vector in the meridional (cross-
stream) direction, S is the mountain surface and MV
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is the mountain volume. The transformation of the
surface integral to an integral over the volume of the
mountain utilizes the scalar version of the divergence
theorem and the Archimedean concept of replacing
the solid body with the equivalent fluid (see Batchelor,
1967, pp. 16-17). If the uniform incident flow is in
geostrophic balance and has amplitude Uy, then the
contribution of the ambient pressure gradient to (1.1)

is

L = MD X fU,, (1.2)
where f'is the constant Coriolis parameter and MD is
the mass of air displaced by the mountain

MD = odV.

MV

As noted by Smith (1979), a mountain induced pres-
sure field could potentially generate an O(hg®) lift
(where A, is the mountain height) but this cannot bal-
ance the O(hy) lift given by (1.2). Invoking airfoil the-
ory, Smith argued that the lift (1.2) generates a far-ﬁeld
circulation of strength

X MD
r-_/xMD

MC °

where MC is the mass per unit area of an air column.
As (1.3) indicates, only atmospheres with finite MC
will possess a nonzero circulation. For an infinitely long
mountain ridge, a linear string of circulations are gen-
erated; their net effect is to produce a meridional de-
flection of the flow:

(1.3)

fX MDL
MC

where Av = v (downstream) —v (upstream) and MDL
denotes the displaced mass per unit length of the ridge.

Bannon (1986) confirmed the validity of the far-field
circulation for the anelastic quasi-geostrophic approx-
imation. In that theory the lower boundary condition
is linearized and the displaced mass is approximated
by

Av = — (1.4)

MD = poMV, (1.5)

where pg is the surface value of the density. In the pres-
ent study the nonlinear lower boundary condition is
incorporated and it is shown that discrepancies with
the linearized condition arise from (1.5) being an over-
estimate.

Section 2 presents the model formulation which
employs Robinson’s (1960) streamfunction coordinate
and follows Pierrehumbert (1985) in assuming a semi-
infinite atmosphere. A scale analysis indicates that five
nondimensional parameters describe the flow. It is
found that the smallness of the square of the Rossby
number based on the amplitude of the flow normally
incident on the mountain provides justification of the
semigeostrophic approximation while a mountain
Richardson number measures the extent of quasi-
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geostrophy. Section 3 presents the closed-form solution
of the nonlinear problem and the details of its numer-
ical solution. In addition the formula (1.4) for the per-
manent turning is derived analytically. Section 4 de-
scribes the results for the standard anelastic case while
section 5 discusses the modified case. An appendix
compares the analytic quasi- and semigeostrophic so-
lutions in the Boussinesq case.

2. The model

The basic state model atmosphere consists of an iso-
thermal compressible gas in hydrostatic balance. The
density/pressure scale height is H = RT/g where R is
the ideal gas constant, 7 the uniform temperature, and
g the acceleration due to gravity. The constant potential
temperature scale height is H/x = C,T/g and implies
a uniform buoyancy frequency N. Here C, is the spe-
cific heat capacity at constant pressure and « = R/C,.
A mountain ridge of width a and height A, lies at the
origin of a rotating Cartesian coordinate system with
constant Coriolis parameter f. A uniform wind is in-
cident on the mountain with components Uy normal
to and ¥, parallel to the ridge. Figure 1 summarizes
the model physics and geometry.

a. Basic equations

The equations of motion describing the inviscid, hy-
drostatic, anelastic flow are

9¢

Du
D1 —fv-——a, (2.1a)
Dv 6¢
— = 2.1
Dt +fu ay (2.16)
8¢ ko o6
—=g— 2.
oz H 8 5. (2.1¢)
Z
p=PE z/h 3f = constant
(UoVo)
N=conston'rT
+KzZ/H
6s=0, No

X

FIG. 1. A schematic illustration of the model. A uniform wind is
incident on an infinite mountain ridge of height 4, and width a on
an f-plane. The wind (Us, V,) has components normal (Up) and par-
allel (V) to the mountain. The isothermal basic state atmosphere
has density scale height H, potential temperature scale height H/x
and uniform buoyancy frequency N.
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9 where
o () + (psv) + 2w =0, @10 i_ 2. .0
D 50 dr u dx é)z ’
(sz te ) =0, (1) oh
Dt Y w=u— at z=hx). (2.6)
where ox
_ D - 9 +u 9 +o 9 Fw 9 , (2.22) We note that the system (2.5) and (2 6) are fully non-
Dt ot ax dy 0z linear.
ps = po exp(~z/H), (2.2b) b. Scale analysis
N? = gd In8,/dz = kg/H. (2.2¢)

The subscript s denotes the static basic state fields and
860 is the dynamic contribution to the potential tem-
perature. In (2.1) the usual meteorological convention
holds for the velocity field (#, v, w) and the geopotential
¢ is related to the pressure p by ¢ = p/p(z). The influ-
ence of the mountain appears mathematically through
the lower boundary condition

w=D— at z=h, 2.3)

Dt
where A(x) describes the mountain profile.
We write the steady solution as the sum of the in-
cident flow and that induced by the mountain:

u= Uy + uylx, z), (2.4a)

v =V, + v(x, 2), (2.4b)

w = w'(x, 2), (2.4¢)

= —f[Uoy — Vox] + ¢/(x, 2), (2.44d)
80 _ «fTUoy — Vox]

g 5, H +g 0; (x z). (2.4¢)

The primed fields denote the disturbance generated by
the mountain ridge and by symmetry are assumed to
be independent of y. The subscript a on the mountain-
induced zonal wind component indicates that this field
is an ageostrophic one. We note that the flow in the
absence of the mountain is in geostrophic balance with
the uniform pressure gradient force.
Substitution of (2.4) into (2.1) and (2.3) yields

dug _ o, _ _ 9
dt fo ax’ (2.52)
LI 2.5b)
dt 0 '
' «k , _of
az H ¢ -4 03 ’ (2'50)
d d
I (ostt) + — (psw') =0, (2.5d)
X 0z
d 2 of Kf ’ ___' ry —
7 (N z+ g 0. ) T (Upv Vouy) =0, (2.5¢)

A judicious scale analysis provides much insight into
the problem posed by (2.5) with (2.6). At the outset we
note that the mountain introduces zonal variations to
the flow through (2.6). Thus, we choose g as the char-
acteristic scale for x. The choice of a corresponding
vertical scale is ambiguous as five such scales arise in
the problem (Table 1). However the scales H and H/«
are intrinsic scales of the fluid but not of the flow. Sim-
ilarly the mountain height may not represent a typical
dynamical scale. Here we choose Hp rather than H; as
the appropriate vertical scale of the flow as this defor-
mation depth is consistent with the characteristic hor-
izontal scale a.

The effect of the mountain is to deform the isen-
tropes horizontally over a distance g by an amount Af
where

a0, 8
Af ~ hy— == N?hy.
b = Nl

Anticipating an approximate thermal wind balance for
the mountain parallel flow,

w19 (g0
9z  fax\6 )’

the scale, V7, of the shear of the meridional wind is

8 AB N 2h0
Vr=
fab,  fa

Thus we choose v’ ~ O(V;Hg) = Nhy and, by ap-
proximate geostrophy, ¢ ~ O( fNahy).

The boundary condition (2.6) introduces a scale for
the vertical field w' ~ O(Uyho/a) provides u, < Uy. By

.continuity, (2.5d), we choose u}, ~ O(Uphe/HR).

Based on the above considerations, we introduce the
following scaling

X = ax’, z = Hgz", h = hoh'(x), (2.7a)

TABLE 1. Characteristic vertical scales.

hy mountain height

H=RT/g density (pressure) scale height

Hyx potential temperature scale height

Hyp = fa/N deformation depth for mountain scale a
H; = Up/N

deformation depth for inertial scale Up/f
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uy, = Uppul, v = Nhgv", w' = U, %uw”, (2.7b)
(]
¢ = Nfahyt", & 06" = N2y, 2.7¢)
into (2.5) and (2.6) to obtain
du L)
2 ——a — = ————
Ry ” I’ (2.8a)
av
Ztu=1 .8b
pytu=i (2.8b)
% _ kAg = 0, (2.8¢)
dz
J . a .
Fw (pu) + u — (pw) = 0, (2.8d)
Cox 0z
d
7 (z + pd) + kAp(v — euy) = 0, (2.8¢)
where
d . ;]
7 (4 + puy) o T (2.9a)
=10+ uu,, (2.9b)
R oh
w=(d+ pu) — at z=uh(z). (2.9¢)
ox

In writing the system (2.8) with (2.9) we have dropped
the double primes and introduced # to denote the scaled
incident wind and p for the scaled basic state density
where

£ Y

=1, (2.10a)
(2.10b)

The five nondimensional parameters (R¢>, ¢, g, A and
k) describing the flow are summarized in Table 2.

p = exp(—Az).

¢. The semigeostrophic approximation

Inspection of (2.8a) indicates that the semigeo-
strophic approximation of the mountain-parallel wind
being in geostrophic balance is valid provided

R02 < 1,
u < 0O(1).

(2.11a)
(2.11b)

TABLE 2. Nondimensional flow parameters.

p = ho/Hg = Nhp/fa
A = Hy/H = fa/NH
x = R/Cp

Ro = H;/Hg = Uslfa
e= Volfa
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This differs from Merkine’s (1975) criterion that Uy%/
N?D? < 1 for Ry < 1 where D is the depth of the fluid.
Clearly, as D approaches infinity, D is no longer a char-
acteristic scale of the flow and Merkine’s criterion loses
validity. Replacement of D with Hy makes his criterion
equivalent to (2.11a) and overcomes some of the dif-
ficulties inherent in his nondimensionalization.
Henceforth we assume that (2.11) holds and that the
flow is semigeostrophic. Then (2.8a) is replaced by

-y = — —

2.8a
Ix (2.8a)
In such a case the solutions depend only on ¢, u, A and
«X and are not an explicit function of the incident nor-
mal windspeed U,.

d. The Boussinesq case

Setting A = 0 retrieves the Boussinesq case and the
governing equations are only a function of u. This result
agrees with Pierrehumbert (1985) where p = RoFr in
his notation., He noted that u is the Burger number
based on the mountain slope. The present scaling in-
dicates that u may also be defined as

w = Vi/N = 1/VR],

where Ri is the Richardson number based on the ther-
mal shear of the mountain parallel flow. Equation
(2.9a) indicates that u is a measure of the advection by
the ageostrophic flow while (2.9¢) suggests that x also
measures the strength of the forcing by bottom topog-
raphy.

Pierrehumbert (1985) noted a similarity between the
quasi- and semigeostrophic solutions for the zonal
wind. The Appendix extends this correspondence to
the other flow fields.

2.12)

e. The quasi-geostrophic limit

In the limit as u and ¢ tend to zero, the set (2.8) and
(2.9) with (2.8a’), reduces to

__9
v= o (2.13a)
av
E+ . =0, (2.13b)
g — kA@ = 0, (2.13¢)
ou, ‘19 . .
ax oz (ow) =0, (2.13d)
(]
d—+x>\v+ w=0, (2.13e)

dt
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where
9

>

SRS

SRS
&

w at z=0.

Solving (2.13) for the geopotential yields the quasi-
geostrophic potential vorticity equation

d[de 108 (,08\]_

dt [6x2 T 3oz (” 32)] =9, (2.15)
with the boundary condition

d (d¢\  dh _

7 ( az) = at z=0. (2.16)

The Green’s function solution for the three-dimen-
sional problem appears in Bannon (1986) while the
Appendix treats the two-dimensional Boussinesq case.
3. Analysis

The method of solution follows Robinson (1960) by

introducing a streamfunction coordinate transforma-

tion to form a second-order partial differential equation
for the vertical displacement of the streamline. In the
anelastic case treated here the equation is an elliptic
one with nonconstant coefficients and we obtain so-
lutions numerically.

a. Derivation of the governing equation

Introduction of a mass streamfunction, ¢,

N 2P

p 9z’ up ax’
satisfies the continuity equation (2.8d) identically. A
convective derivative then becomes, for example,

dv 1

i ;J(‘P, v),

where J(, v) = (V¢ X Vo) is the Jacobian.

It is convenient to introduce the meridional dis-
placement 7(x, z) of a fluid parcel. Then by definition
_

dt’
and the heat equation becomes, using (2.8b), (2.9b)
and (3.2),

@3.1)

3.2)

v (3.3)

%J[tﬁ, z + uf + kAu(n + ev)] = 0. 3.4)

This equation implies that z + uf + xAu(n + ev) is a
function, z,, say, of ¥ only. We determine z(y) in the
usual manner by examining the flow far upstream of
the obstacle. There we assume 6, n, v and u, all vanish
and
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z=zq ;
9 ] o, G5
oY/oz = pil (3.5b)
The latter equation has the solution
¥=—(1/Ne™ as x—> —c0. (3.5¢)
Thus, '
Zo = —(1/X) In(=MY) (3.6)

is the height of a streamline far upstream of the moun-
tain.

With these considerations the set (2.8) and (2.9) be-
comes

—v = —0¢/0x, (3.7a)
pJ(y, v) = p(d — u), (3.7b)
0¢/0z — kX = 0, (3.7¢)
z+ ub + kAu(n + ev) = z, (3.7d)
pv = J(¢, ), (3.7¢)
with the boundary condition
1o _dwon ;
L ox 9z0x at z = ph(x). 3.8)
Elimination of ¢ and 6 from (3.7a, ¢ and d) yields
av 14
— - =—— 3.
¥ KN o 0, 3.9
where
O = z, (YY) — kAu(n + ev), (3.10a)
or
O =z+ ud, (3.10b)

is the total nondimensional potential temperature field
excluding the linear variations associated with the in-
cident flow [see (2.4¢)].

We next introduce a streamfunction coordinate sys-
tem (X, ) to replace the Cartesian system (x, z):

X=x ¥=¥Ux 2, (3.11)

and the streamfunction height z = z(X, ) is the new
dependent variable. Use of the chain rule indicates that

(3.122)

8_9 (W9
ax ox \ox) oy’
d _ () 9 ’
iz (az) oy’ (3.12b)
and the Jacobian simplifies to, for example,
_[(\dv . v
J, v) = (az) o pu " (3.12¢)
Two other useful relations are
0z
- —(8y/9x)/(8¥/92), (3.13a)
0 _ 8 _(oz\(o9)\ &
ax  dx (ax)(az) R (3.130)
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Use of the new coordinate system in (3.9), (3.7b) and
(3.7e) yields

) 9z 9z 90 9z 3O
w5 G ) O
av
& = (4 — w/u, (3.14b)
v = u(dn/dX). " (3.14¢)

The boundary condition (3.8) with (3.13a) becomes
z=uh at ¢ =—1/A (3.15)

A second-order partial differential equation for z(X,
¥) emerges from (3.14a and b) upon cross-dlﬁ‘erentla-
tion. The result is

30 az\ 9 [(90 o oz
ax (aw ax) ax [( g ’“’) aw]

+ 2 (52} -0
a¢ N '
It can readily be shown that this equation reduces to

the Boussinesq problem if A = 0. The equation is elliptic
provided

(3.16)

pOO/Y) 1
(80/0X + rkAuv)? '

We note that the numerator represents the static sta-
bility of the flow while the denominator is the square
of a measure of the thermal wind shear [cf. (3.9)]. Thus
the ellipticity condition (3.17) requires that the effective
Richardson number of the flow in (X, ¥) space be
greater than %. Using (3.10a) and (3.14¢) we rewrite

(3.17) as
$ii(0/39)
(xw( ) (u - iy

3.17)

1
>Z’

and we conclude that the standard anelastic case (x
= 0) is always elliptic. The cases investigated here all
satisfied (3.17).

b. Permanent turning

Here we derive the expression (1.4) for the net me-
ridional displacement of the flow. First we note that
this displacement is barotropic. Use of (3.1) and (3.10a)

into (3.9) yields
o _ an av 9z,
% o8- ).

Infinitely far upstream or downstream of the ridge, the
ageostrophic motions vanish. Then, from (3.3), v = dn/
dx, and, from (2.8b), dv/dx = 0, and the meridional
wind is independent of height:

v

—=0 at |x]=

Fy (3.19)
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The variation of the meridional wind along a
streamline is, from (3.14b),

w_101_
ax u\u )
Integration along a streamline from X = —o0 to +o0

and then across ¢ from the surface (¢ = —1/A) to in-
finity (y = 0) yields

A 0 +00 1
Av = ;f—l/)\ ay Jj_m dX(; - 1) (3.21)

where we have used the fact that the permanent turning
Av is independent of . We use (3.1) to rewrite the
integrand in the form

1 a9z
——1)={p=>-1
W)=(5)
14
- — + —~AZ’
N 3g DY+ e
using (2.10b). Interchanging the order of integration
in (3.21) and substituting (3.22) enables the integration
over ¥ to be performed. Since z(y = 0) = oo and z(y
= —1/\) = uh, the expression for Av is

(3.20)

(3.22)

Av = — 1 f+w ax{l — exp(—auh)]. (3.23)
H V-

This result is the nondimensional version of the per-
manent turning (1.4) for an isothermal atmosphere.
Inspection of (3.23) indicates that Av vanishes for the
Boussinesq case (A = 0) and that Av = —\ MV for the
anelastic quasi-geostrophic (¢ = 0) case. Finally we note
that the permanent turning is not a function of «.

¢. Method of solution

The coefficients of the elliptic equation (3.16) for z
are nonconstant and are, from (3.10a), functions of v
and 5. We find expressions for these variables using
(3.14b) and (3.14c¢):

v= f (“ — “) (3.24)

7= f ( )dx (3.24b)
where

u = 1/(paz/op). (3.24¢)

In writing the definite integrals we have applied the
upstream condition that v and 5 vanish at X = —oo.
Thus (3.16) and (3.24) form a coupled system of equa-
tions for z.

We obtain numerical solutions by solving (3.16) and
(3.24) iteratively. At each iteration we solve (3.16) using
standard techniques for fixed coefficients. We use the
new approximate solution for z to calculate revised
coeflicients from (3.24). The technique is convergent
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after about 10 iterations. We take a numerical solution
to the Boussinesq case (A = 0) which has constant coef-
ficients as the initial guess.

We map the infinite strip domain (—oo < X < +00,
—A!< ¢ < 0)into a rectangle (—1 < X < +l 1>y
= 0) by the transformations

X = tanh(0.2X), (3.25a)
¥ = (=M)A. (3.25b)

A uniform grid of 101 X 51 points covers the 2 X 1
domain in (X, ¢) space. In physical space the horizontal
resolution is 0.1a near the mountain and the first in-
terior points are +11.5a from the mountain peak. The
vertical resolution near the lower surface is 0.02 H with
the highest interior point at z = 3.9Hp from the surface.
‘We use second-order differencing and the trapezoidal
rule.
The boundary conditions for (3.16) are

§=0 at X ==zl (3.26a)
CS=hER) at §=1, (3.26b)
5=6r ‘at §=0, (3.26¢)

- where :
60 =(z— zy)/u (3.27)

is the deviation of the streamfunction height from its
value far upstream. These conditions express the phys-
ical constraints that ¢ vanish far upstream and down-
stream of the mountain and that the lower boundary
correspond to a streamfunction.

The nonhomogeneous boundary condition, (3.26¢),
at the top of the domain requires some justification.
The constant dr is defined by

1

% 2 dx f dzp
and is the constant displacement over the internal (—/
< x < /) having the same normalized mass per unit
length as that displaced by the mountain. For our iso-
thermal atmosphere, we can perform the integration
over z analytically to yield

or= (3.28)

1 +{
73 f_, dx[1 — exp(=Auh(x)))/Au, (3.29)

which has the limiting value
or = 2[f dxh(x) as (Aorw)—>0, (3.30)

and 2/6 is the cross-sectional area of the mountain.
Condition (3.28) is therefore consistent with the an-
elastic quasi-geostrophic (Bannon, 1986) and Boussi-
nesq semigeostrophic (Pierrehumbert, 1985) results for
which the displaced volume equals the mountain vol-
ume. For a horizontally infinite domain, / = oo and
87 = 0. Use of this homogeneous condition in the
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numerical scheme yielded solutions similar to those
with a rigid lid. This suggested that despite the trans-
formation (3.25a), the effective horizontal domain is
finite. Solutions with / = 11.5 (corresponding to the
first interior grid point) in (3.30) showed excellent
agreement with the anelastic solutions for the two lim-
iting cases. All solutions presented here used (3.26) with
[=115.

4. Results for the standard (x = 0) theory

We refer to the case with x = 0 as the standard theory
which ignores the finiteness of the potential tempera-
ture scale height. In this case the governing equation
(3.16) with (3.10a) and (3.24c¢) reduces to

0z, ¥z | 8 [(022)7 82) _
Y ox> w[( ¢) |l

This result and the boundary conditions indicate that
the solution is symmetric about x = 0 for symmetric
mountains. In addition the solution is independent
of e. '

Figures 2-6 display the flow fields for the case of a
Gaussian mountain

(4.1)

h = exp(—x?), 4.2)

with nondimensional parameter settings A = 1 and u
= (.4, Experiments in which these parameters are
changed indicate that the results vary monotonically
with both A and p. The choice displayed here is for
flow over strong topography with significant anelastic
effects. Dimensionally these values roughly correspond
to a mountain of height 4y =~ 3 km and width a ~ 800
km in an atmosphere with scale height # = 8 km, f
= 10"*s7!, and N = 1072 s™!. The semigeostrophic as-
sumption w1ll be a good approximation (e.g., Ro?

< 0.10) for typical atmospheric wind speeds (e.g. U

|x/al

FIG. 2. Horizontal variation of the vertical displacement, é (in
units of k), of the streamline from its far-field value of one defor-
mation depth (z% = fa/N). Also shown is the displacement of the
surface streamline which corresponds to the nondimensional moun-
tain height z = A(x). Here and in Figs. 3 through 6, p = 0.4, A = 1,
and « = 0, and the labels AS, AQ and B denote the anelastic semi-
geostrophic, and anelastic quasi-geostrophic, and the Boussinesq cases
respectively.
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FIG. 3. The cross-mountain wind at the surface (in units of Up) as
a function of absolute horizontal distance. BS denotes the Boussinesq
semigeostrophic case.

<25 m s7}). For purposes of comparison the figures
also display the anelastic quasi-geostrophic (denoted
AQ) and Boussinesq semigeostrophic (denoted BS) so-
lution. In cases where the BS results correspond with
the quasi-geostrophic ones (see the Appendix) they are
denoted B. The new anelastic results are denoted AS.

Figure 2 displays the displacement of the z,, = 1
streamline which far upstream lies at the elevation of
one Rossby height above the surface. Comparison with
the displacement of the surface streamline (which cor-
responds to the mountain height) indicates that the
amplitude of the displacement decreases with height
but broadens laterally. Both the B and AQ displace-
ments conserve the mountain volume per unit length
given by (3.30) while the AS results conserves the nor-
malized displaced mass (3.29). While both anelastic
cases predict greater displacements aloft than the
Boussinesq case, the (linearized) AQ result is an over-
prediction.

The well-known enhancement of the cross-mountain
flow imposed by mass conservation is illustrated in
Fig. 3. Both the BS and AQ cases underestimate this
enhancement and hence the associated breakdown of
semigeostrophic theory (Pierrchumbert, 1985). [We

0 T T
3 B -
A\ / ="
\ AY PR
-'0.5" ‘\\ \\»_"/ -3
> AS :
™ /‘/ __________ X
-1 “\ -‘__/-——’ -
"
-15 T T
-0 1 2 3
x/a

F1G. 4. The total mountain-parallel wind at the surface (in units
of Nhp) as a function of distance downstream of the mountain top.
The fields are antisymmetric about the origin. The crosses on the
right ordinate denote the asymptotic far-field value for each case.
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Ix/al

FIG. 5. The surface relative vorticity (in units of Nho/a)
as a function of absolute horizontal distance.

note in passing that the zonal windspeed need not be
infinite for the theory to fail. Large but finite speeds
would generate sufficiently large advections that their
neglect in (2.8a) would no longer be justifiable.] Farther
down the mountain slope the zonal wind is decelerated
below its upstream value. Anelasticity reduces this up-
stream blocking. The zonal wind is symmetric about
x = 0. Thus, apart from the regions of weak blocking,
the flow is divergent upstream and convergent down-
stream of the mountain top.

We plot the mountain-parallel wind in Fig. 4 with
the value of ¥} set to produce an antisymmetric field
with v(x = 0) = 0. The permanent turnings calculated
numerically at x = —11.5 are Av = 2Vy/Nhy = 0.12,
1.76 and 1.53 for the cases B, AQ and AS, respectively.
Theoretical values for cases B and AQ are Av = 0 and

m (=1.77), respectively. This good agreement with
theory verifies the numerical technique and gives an
estimate of the numerical error. As noted in the Intro-
duction, the overprediction for the AQ case with its
linearized boundary condition is given by (see 1.4) the
ratio

poMV/MD = 1.15, 4.3)

and agrees with the difference in the anelastic predic-
tions for the meridional deflection Av. This agreement

|x/al

FIG. 6. The mountain-induced geopotential at the surface (in units
of Nhy fa) as a function of absolute horizontal distance.
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provides a posteriori justification for the boundary
condition (3.26).

The overprediction by quasi-geostrophic theory is
further reflected in Figs. 5 and 6 where one sees that
the strength of the AS mountain anticyclone is reduced
compared to the AQ case.

We next note that some of the features of the u, v
and ¢ curves are interrelated. Operating (3.13b) on v
and using (3.14a) with A = 0 and (3.14b) yields an
expression for the relative vorticity

w d-u 1 (82)2 u
—+ -l =,
uu u\0x
Since 9z/0x = udh/dx at z = ph(x), we have

(4.4)

v d-u oh\? u
£=5 ” u(ax) 7 & Z= k) (, )
We obtain insight into this expression by taking the
quasi-geostrophic (u — 0) limit, to obtain

(4.6)

We note from (2.13b) that the quasi-geostrophic result
holds at all levels. Since the second rhs term in (4.5) is
O(w), the first term generally dominates. Then anti-
cyclonic (cyclonic) flow results for # > i (u < ). In-
spection of Figs. 3 and 5 indicate that the region of
blocked flow is typically cyclonic. Further the over-
shooting of the v field seen in Fig. 4 requires cyclonic
flow. As noted by Pierrehumbert (1985), the blocking
depends on the mountain profile. Sensitivity experi-
ments (not shown) for the anelastic case qualitatively
confirm his findings. For example, solutions for a bell-
shaped mountain profile (which has gentler slopes than
the Gaussian displayed here) exhibit no region of
blocking, no cyclonic far-field vorticity and the v-field
approaches its asymptotic value monotonically.

5. Results for the modified (x = %;) theory

Here we retain a finite potential temperature scale
height and set « = %. In such a case the governing
equation (3.16) must be solved with (3.10a), and the
solution is a function of e. In order to obtain a sym-
metric solution for z we choose ¢ = pAv/2. As in section
4, this choice makes the total meridional wind field
antisymmetric about x = 0.

‘Inspection of (3.10a) indicates that the effect of a
nonzero k is measured by the parameter grouping

kAu = kho/H,

which is the ratio of the mountain height to the poten-
tial temperature scale height. For the parameter settings
A = 1and u = 0.4 used in the preceding section, kAu
= 0.114 and the effects are small. In the quasi-geo-
strophic case, kA\u = 0, and as noted by Bannon (1986),
the modified results are identical to the standard ones
except for the strengthening of the potential tempera-

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 45, No. 6

ture anomaly over the mountain due to cold advection
of the ambient meridional gradient (2.4¢).

Numerical solutions for k = %, A = 1, and ¢ = 0.4
are very similar to those displayed in Figs. 2-6 for «
= 0 and are not shown. For example, the maximum
cross-mountain windspeed is 2.65 (2.53), the minimum
zonal windspeed is 0.92 (0.93), the minimum relative
vorticity is —1.55 (—1.51), the maximum meridional
windspeed is 1.02 (1.01), and the permanent turning
is Av = —1.49 (—1.53) for x = % (0). These compari-
sons suggest that, to within numerical error, the solu-
tions are the same.

6. Conclusion

This study has presented an investigation of anelastic
flow over a finite-amplitude mountain ridge in a ro-
tating, isothermal atmosphere. The results indicate that
use of the linearized boundary condition, consistent
with quasi-geostrophic theory, underestimates the
strength of the cross-mountain flow but overestimates
the mountain anticyclone and the effect of the lift force
in producing a permanent turning of the flow.

The lift force (1.1) may be generalized for the beta
effect and nonuniform incident flow to

L=[ sarou e, 6
provided the incident flow is in geostrophic balance.
The permanent turning/far-field circulation associated
with (6.1) should be modified accordingly. However,
inclusion of vertical shear in an anelastic flow and the
beta effect introduces a gradient to the ambient poten-
tial vorticity field. Thus Rossby waves will comprise a
part of the solution.

It is important to note that the lift (6.1) depends
crucially on the presence of a nonzero incident wind
Us. Thus even though T in (1.3) and Av in (1.4) are
not explicit functions of Uy, both the far-field circu-
lation and permanent turning would #ot be present in
an atmosphere at rest. -

A final remark concerns the drag force D acting to
push the mountain downstream,

= -—)E-f pNdA = — 4 av. 6.2)

S MV X
If the mountain-parallel wind v is in geostrophic bal-
ance, then this expression may be written as
D= —f p(2)fodV. 6.3)
MV

In general the drag (6.3) does not vanish unless v is
antisymmetric [assuming A(x) is symmetric]. The anti-
symmetry displayed in Fig. 4 is achieved by choosing
the appropriate value of the upstream mountain-par-
allel flow Vy (=NhyAv/2) such that half of the perma-
nent turning occurs on the upstream side of the moun-
tain and half on the downstream side. Then the drag
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TABLE 3. A comparison of the quasi-geostrophic and semigeostrophic solutions for the Boussinesq approximation.

Quantity

Semigeostrophic

Quasi-geostrophic

Streamline displacement
Cross-mountain wind
Mountain-parallel wind

WX, ¥) = u(35/3X)

Vertical motion

Cross-mountain geopotential gradient

Relative vorticity

80X, ¥) = 22 dich(k) exp(ikx — ki)

u(X, ¥) = 4f(1 + udd/ay)
ux, ¥) = [ (88/8¢)dx

9¢ =1 — [#Vas2
2= (z)wa /0%)

3ol

(X, ¢) = v/ax + (

8(x, 2) = [22 dikh(k) exp(ikx — |Klz)

u(x, z) = d4(1 — pdé/dz)
v(x, z) = + [ (38/dz)dx
wx, z) = #{dd/dx)

e _
x x2)=v

Hx, z) = dv/dx

vanishes but the mountain has an upstream influence.
This upstream influence, however, is consistent with
the far-field circulation (1.3). We further note that for
this choice of Vy, € = uAv/2 and e is not a free param-
eter. For the choice Vy = 0, e = 0, and the v-field is
asymmetric (e.g., Blumen and Gross, 1986). As the
flow is inviscid, adiabatic, and without wave motion,
the implied nonzero drag must (Bannon, 1985) be the
result of flow transience. Here the transience is asso-
ciated not with the incident wind but rather with the
starting vortex shed during the initial setup of the flow
and forever advecting downstream.
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APPENDIX
The Boussinesq Case

If the flow is Boussinesq, A = 0 and the governing
equation (3.16) reduces to Laplace’s equation for the
streamline displacement 8. Pierrehumbert (1985) pre-
sented the solution for a semi-infinite atmosphere in
terms of the Fourier transform /(k) of the mountain
profile A(x). Table 3 summarizes the solutions in (X,
¥) space for 4 and related flow variables. The table also
displays the corresponding solutions in (x, z) space for
the quasi-geostrophic case.

Inspection of Table 3 indicates that the semigeo-
strophic solutions reduce to the quasi-geostrophic ones
in the limit as 4 = 0. Note also that since y = z + ud,
the coordinates (X, ¢) reduce to (x, z) in that limit.
Even for finite u the two solutions possess a close cor-

respondence. In particular, knowledge of the quasi-
geostrophic solution is sufficient to determine the
semigeostrophic one completely. For example, the so-
lution for 8, v and 8 (= —4§) have the identical form.
Comparison of the two cases indicates that the
mountain anticyclone has weaker pressure gradients
in the semigeostrophic cases. The vorticity fields differ
in that the anticyclonic region is narrower and the far-
field cyclonic flow is stronger for the semigeostrophic
case. Despite the addition of vortex tilting and relative
vorticity stretching to the semigeostrophic vorticity
dynamics, the anticyclonic vorticity at the mountain
top (where d3/dX vanishes) is the same for the two cases.
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