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The Android Smartphone as an Inexpensive Sentry Ground Sensor
 

Riqui Schwamm, Neil C. Rowe
Cebrowski Institute, U.S. Naval Postgraduate School, 1411 Cunningham Rd., Monterey, CA 93943

ABSTRACT  

A key challenge of sentry and monitoring duties is detection of approaching people in areas of little human traffic.  We are exploring
smartphones as easily available, easily portable, and less expensive alternatives to traditional military sensors for this task, where the
sensors are already integrated into the package.  We developed an application program for the Android smartphone that uses its
sensors to detect people passing nearby; it takes their pictures for subsequent transmission to a central monitoring station.  We
experimented with the microphone, light sensor, vibration sensor, proximity sensor, orientation sensor, and magnetic sensor of the
Android.  We got best results with the microphone (looking for footsteps) and light sensor (looking for abrupt changes in light), and
sometimes good results with the vibration sensor.  We ran a variety of tests with subjects walking at various distances from the phone
under different environmental conditions to measure limits on acceptable detection.  We got best results by combining average
loudness over a 200 millisecond period with a brightness threshold adjusted to the background brightness, and we set our phones to
trigger pictures no more than twice a second.  Subjects needed to be within ten feet of the phone for reliable triggering, and some
surfaces gave poorer results.  We primarily tested using the Motorola Atrix 4G (Android 2.3.4) and HTC Evo 4G (Android 2.3.3) and
found only a few differences in performance running the same program, which we attribute to differences in the hardware.  We also
tested two older Android phones that had problems with crashing when running our program.  Our results provide good guidance for
when and where to use this approach to inexpensive sensing.
 
This paper appeared in the Proc. SPIE Conf. on Unattended Ground, Sea, and Air Sensor Technologies and Applications XIV,
Baltimore, MD, April 2012.
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1.       INTRODUCTION

A key military challenge for ground sensors is detection of approaching people in isolated areas for detection of curfew and border
violations, criminal activity, and improvised explosive device (IED) emplacement1.  This is a separate problem from detection of
suspicious activity in crowds which requires different techniques.  Isolated person detection would seem easy for fixed-position
cameras since differences between images at successive times are due to moving objects and are easy to find, and moving people look
quite different from moving vegetation and other objects2,3,4.  But there are several problems with continuous surveillance using
cameras:

·       Cameras suffer from occlusion problems from vegetation, walls, vehicles, and other people.  They do not work well in forests
or near walls.
·       Cameras usually do not work under poor lighting conditions such as at night or in bad weather.  While infrared cameras can
be used, they are more expensive, provide a less well defined picture, and can be defeated by particular kinds of clothing.
·       Cameras are expensive compared to most nonimaging sensors.  They require a focal plane with a sufficient number of pixels
to be useful, and that costs money.
·       Cameras are relatively large sensors since they require a lens which needs at least a few inches of diameter to be useful.
·       Cameras collect large amounts of data.  That makes their data difficult to transmit via wireless connections as is desirable. 
The data can be processed to reduce its size, but this generally requires sophisticated software since the best methods vary with
subjects and lighting conditions, and sensor nodes may not have the capabilities to run such software. 

 
We are exploring nonimaging sensors for this task of automated sentry monitoring.  Nonimaging sensors can cover wide areas better
than cameras can with today’s networking technology5.  The idea is that once people are detected, security personnel can be alerted, or
one of a few cameras can be turned on and aimed at the location so that many fewer cameras are needed.
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1.1 Previous work

 
Previous work of ours explored specialized nonimaging sensors for this task.  We experimented first with Crossbow sensors6.  Initial
work focused on magnetic and infrared sensors.  Both were imprecise and temperamental.  These infrared sensors generally did
recognize people within 15 feet, but it was not certain.  The magnetic sensors were a little better at detecting ferromagnetic material,
but this is of limited use for most surveillance activities since most people are not carrying appreciable amounts of ferromagnetic
material.  Subsequent work7 assigned probability distributions to the reports of a set of infrared, magnetic, and acoustic sensors, and
derived cumulative probabilities of a person at a grid cell at a particular time.  This evidence fusion improved the tracking accuracy for
people, something important for noticing suspicious behaviors involving acceleration. Previous work8,9 suggests a number of clues to
suspicious behavior that can be obtained from tracking overall body location alone.  Our own experiments5 showed that nonzero
accelerations were by far the best clue in detecting suspicious behaviors related to IED emplacement, and they are important in many
kinds of criminal activity like theft in public places, so tracking needs to be good enough to detect accelerations.
 
The set of 16 Crossbow sensors cost $10,000 in 2007 to cover about 50 square meters in our experiments.  Though subsequently the
price decreased, it is still expensive.  So we subsequently we experimented with 8 sets of Phidgets sensors (www.phidgets.com)
costing a total of about $1,000 in 2010 without wireless networking and covering an area of about 100 square meters10.  These had
broad-range infrared sensors for motion detection, photocell-type infrared sensors for short-range detection, short-range sonar sensors,
light-intensity sensors, magnetic sensors, vibration sensors, and pressure strips (to detect people walking on them).  We supplemented
these with microphones and our own footstep-detection software.  We conducted a variety of experiments including both suspicious
and nonsuspicious behavior in our sensor field.  In these experiments, the infrared motion detector, sonar, and microphones performed
the best at both detecting people and noticing suspicious behavior.  The light sensor also worked well but need to be significantly
blocked by optical filters when used outdoors because it saturated easily under bright conditions.
 
To reduce the cost of sensing still further, we can look to today’s commercial “smartphones” providing telephone and Internet
capabilities.  These cost around $100 each with a contract and many military personnel are carrying them anyway for no added
expense.  Smartphones have many sensors built-in, including light, vibration, and magnetic sensors as well as microphones and
cameras, and they provide built-in networking capabilities.  Thus they would seem to provide more capabilities for a similar price to
the Phidgets sensors.  Seeing as how the infrared and light sensors were especially useful in the Phidgets experiments, as well the
microphones, those two kinds of sensors would seem the highest priority to exploit on a commercial wireless device.  Unfortunately,
there is no sonar as was helpful with the Phidgets, but the other two kinds of sensors useful previously are present.
 
Previous experiments by us tested the Iphone as a potential sensor platform in this manner11.  First tests focused on the
vibration/orientation sensor because it sounded as if it could be helpful in detecting footsteps. But results were disappointing. 
Pedestrians needed to be very close to the phone and needed to make strong footsteps for them to be detected, and many pedestrian
transits could not be detected above the background noise.  We tried to enhance sensitivity by attaching the Iphone to a stake inserted
into the ground, to better pick up the lower frequencies that travel better through the ground since these are better clues to footsteps,
but this did not help much.  We concluded that the vibration sensor in the Iphone is only useful for detecting gross motions like
changing the orientation of the phone itself.  On the other hand, the microphone in the Iphone was better at detecting footsteps.  We
experimented with several ways of filtering the acoustic signal for footsteps and found a good approach focused on 10-500 hertz
frequencies at intervals of 0.4 to 1.0 seconds apart which was helpful for the work to be described.  However, a key issue for us was
the unfriendly environment for development of non-Apple Iphone software. 
 
The Android platform is more developer-friendly and seemed a better choice for long-term development.  Examples of use of the
Android for similar sensing applications include medical monitoring systems for at-risk patients12,13, systems for detection of traffic
accidents14, and systems for early warning of earthquakes15.  All of these are similar to our sentry task in involving sensing of rare but
easy-to-detect safety-related events that just need a sensor in the right place at the right time, with relaying of a report of that event to a
central collection point.
 
  

2.  EXPERIMENTAL SETUP
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The task we addressed was automated sentry duty where a set of smartphones are set up around a military position to monitor for
approaching people.  Pictures will be automatically taken of anything that looks like a person and transmitted to a central collection
site.  The Android's light sensor is on its front and its better camera is on its back; its front one provides only 1.3 megapixels and its
driver differ significantly between manufacturers unlike the other camera.  So it was found best to orient the Android vertically facing
forward with the camera lens pointing backward towards a mirror, with the mirror angled to reflect an approaching person to the lens. 
This was because the light sensor, as a diffuse sensor, is more sensitive to blocking of its field of view than the camera is.
 
For our experiments, we used the Android Development Environment (developer.android.com/sdk/index.html) with the Windows
Vista Business SP2 32-bit operating system, the Eclipse Hellios Service Release 2 development environment (www.eclipse.org), and
the Level 7 Android API (developer.android.com/reference/packages.html).  Two Android smartphones were used for this project to
test the hardware independence of the sensor capabilities.  One was the Motorola Atrix 4G (Android 2.3.4) on an AT&T contract with
a Nvidia Tegra 2 Dual Core 1Ghz CPU, 1 GB of memory, 16 GB of internal storage, a KXTF9 3-axis Accelerometer sensor, AK8975
3-axis Magnetic field sensor, AK8575 Orientation sensor, ISL29030 Proximity sensor, ISL29030 LIGHT sensor, a Gravity Sensor, a
Linear Acceleration Sensor, and a Rotation Vector Sensor.  The other Android was a HTC Evo 4G (Android 2.3.3) Sprint Unlocked
with a Qualcomm QSD 8650 1Ghz CPU, 1 GB of memory, 8 GB of internal storage, a BMA150 3-axis Accelerometer, AK8973 3-
axis Magnetic field sensor, AK8973 Orientation sensor, CM3602 Proximity sensor, CM3602 Light sensor, Gravity Sensor, Linear
Acceleration Sensor, and a Rotation Vector Sensor.  Our programs were written in Java using ideas from several authors16,17.
 
The first thing that needed to be tested was the usefulness of each sensor on the smartphones.  Each sensor was tested to determine
which one would be the most useful for detecting footsteps.  Code from an open-source Android project
(https://bitbucket.org/nonninz/android-sensor-logger/overview) was used to dump raw sensor data into text files.  The application
provided a way to record all sensor data simultaneously in real time.  The original project code only supported the accelerometer,
orientation and magnetic field sensor.  The code was later modified to include support for light, proximity and audio recording.  All
five sensor data (saved as .txt file) and audio recording (saved as .wav files) was recording real-time during the test runs.  Each text
and audio file was time stamped during the experiment.
A time-lapse camera application18 was used separately to test how well the built-in camera can capture the environment.  The idea was
to create an application that uses a sensor to trigger the camera.  The results were very promising.  The camera was able take multiple
snapshots at a relatively fast pace of one per half second.  Due to the time it takes for the smartphone to process the image, running it
any faster seems to cause the program to become unstable and crash.
 
Several test runs were done on several different surfaces (concrete, dirt, grass).  The smartphone was placed directly on the ground or
on a stand during the test runs.  The subject would start from one end (10 feet away from the smartphone) and walks pass it until the
subject reaches the other end (10 feet away on the other side).  The subject would pass the smartphone at a very close proximity (one
to two feet). 
 
 

https://bitbucket.org/nonninz/android-sensor-logger/overview
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Figure 1: Experimental setup.
 
 
The sensors that yielded the best results were light, vibration (accelerometer) and audio (microphone).  The built-in microphone was
able to clearly record footsteps.  The footsteps can clearly be identified in audio editing software such as Audacity
(audacity.sourceforge.net).
 

Figure 2: Example footsteps recorded by the audio processing program.
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The light sensor was not very useful indoors, but very useful outdoors.  When the subject walks passed the smartphone the values
fluctuate enough to indicate a trigger.  The only problem is the subject has to cast a shadow onto the sensor for it to react.  It can be
very tricky to set the right threshold for the sensor to trigger.  The camera was very useful to capture the environment and subject.  It
can take two pictures per second.  It cannot handle continuous snapshots.  One snapshot per half a second seems to be the limit.  We
could get the effect of the light sensor by taking a picture and averaging its brightness, but there is latency in both the camera and
required processing, and this would be too slow to provide the necessary rapid alert capability we needed. 
 
Other sensors such as the proximity, magnetic and orientation sensor did not return any useful results.  Despite being an infrared
sensor, the proximity sensor can only detect objects that are closer then 3cm.  The magnetic sensor only detects objects that have a
magnetic field, not ferromagnetic materials as more usefully with the Crossbow sensors, and the target must be holding an electronic
device close to the smartphone or it will not trigger.  It may be useful in some situations, but for this project it was not used in the final
application.  The orientation sensor worked very well to detect tilting and angle of the smartphone.  However, like the magnetic sensor
it is not very useful for this project. 
 
From the above test results it seems best to use the sensor as a trigger to take a snapshot with the camera.   This image could then be
transmitted to a collection point, and humans could make a judgment based on appearance of whether the moving object was
suspicious (or an animal, a fallen object, etc.).
 

3. RESULTS
 
Figures 3 and 4 show some sample pictures taken by the smartphone.
 

 
The indoor surfaces tested were linoleum, carpeting, hardwood, and smooth concrete.  The outdoor surfaces tested were concrete, dirt,
gravel, and grass.  The smartphone was setup on the ground with a harness to prop the phone up.  The subject will walk past the
smartphone from left to right and then back again.  A total of ten passes were made in front of the smartphone.  Two different
distances were used during the test run (4-feet & 10-feet).
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4 feet was the minimal distance necessary for taking a picture.  Any closer and the camera will only be able to capture the subject’s
lower half of the body.  The point of the experiment was to see if the phone can capture the subjects face.  The smartphone could have
been tilted back further to allow for closer ranges, but this would prevent the camera from fully capturing the surrounding
environment.
 
After a few experiments it became apparent how unreliable the vibration sensor could be.  The vibration sensor seemed to work
relatively well in close proximity, but the results were very inconsistent.  For instance, on one test run it would trigger 50% of the time,
but on another test run it would not trigger at all.  On one occasion the vibration sensor in the HTC Evo 4G would trigger constantly
while the Atrix 4G vibration sensor would not trigger at all on the same transits.  Because of these results we focused on using just the
audio and light sensor for this project.
 
Adjustment of the thresholds for triggering the camera was critical to performance as our results below attest.  We discovered right
away that it is essential to turn off the clicking sound produced by the camera when taking a picture because this produced sufficient
low frequencies to trigger itself continually.  Another important issue is latency of the camera function.  It took an average of a half a
second for the camera to take a picture once the software ordered it to do so.  This means that a fast-moving subject could be out of
camera range by the time the camera triggered.  This could be a problem with detecting vehicles, but was not a problem with detecting
pedestrians since these will generally follow very straight paths remaining within a few feet of the nearest-approach distance for
several seconds.  However, it did generally mean that we often got the side or rear of subjects rather than their faces.
 
Our measures of performance were recall and precision.  Recall for this application was the percentage of transits of the smartphone
that resulted in a picture of the transiting subject.  Precision was the percentage of pictures taken by the smartphone that showed the
transiting subject.

 

3.1 Camera with audio trigger

 
The audio trigger is very simple.  When the application starts it creates a baseline value.  The application takes 8000 samples per
second for the first 3 seconds (24000 samples total) and set it as the baseline.  A threshold value is then added to the baseline.  If the
real time value of the sensor is higher than the threshold it will trigger the camera to take a snapshot.   The threshold value for audio
was 25 for an average value of 0-9.
 
Creating a baseline value in the start of the application helps minimize false positives.  Subtle noises like leaves rustling in the wind do
not trigger the sensor.  However, any loud noise can trigger the sensor.  This is not much of a problem indoors, but it did occur
outdoors with car and airplane noise (our campus is beneath an airport approach). 
 
At first, the various surfaces (carpet, dirt, gravel, grass) did not return any good results.  All surfaces returned 40-50% for both the
recall and precision.  It quickly became apparent that the threshold value was set too high.  After the threshold value was set to half of
the initial value it returned better results.
 
At four feet away, the best results were achieved on the concrete surface (outdoor).  Many test runs resulted in a 100% recall rate. 
Precision, on the other hand, was still at 40-50%.  The lower threshold value caused the camera to trigger more often, which resulted in
a higher rate of false positives.  Carpeted surfaces (indoor) returned the worst results.  It appeared that the carpeted surface would
absorb most of the sound and the camera would not trigger.  Even if the threshold was set relatively low it would only trigger once or
twice during the test run. 
 
At ten feet away, the concrete surface (outdoor) still returned good results from 10-feet away.  There was one instance where the recall
and precision were very low (30%/43%).  But for the most part the recall was 70-90% and the precision was 40-50%. 
 
 

Table 1: Results with just an audio trigger.
Distance Trigger Capture Recall Precision

4 feet 29 12 100% 41%
4 feet 32 10 100% 31%
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4 feet 20 10 100% 50%
10 feet 29 12 90% 53%
10 feet 32 10 30% 43%
10 feet 20 10 70% 16%
10 feet 9 7 70% 37%

 
3.2 Camera with light-intensity trigger

 
A threshold value is hard coded into the application.  If the real time value of the sensor is lower than the threshold it will trigger the
camera to take a snapshot.  10000 was used outdoors and 10 indoors (for average sensor values of 16000-19000 and 30-500
respectively).
 
The sensor will only trigger if the subject casts a showdown onto the sensor.  If the light source is not strong enough it will not trigger
the sensor.  This can be a problem in environments with soft lighting and/or multiple light sources.
Due to the extremely limited nature of the light sensor no extensive testing was done for this sensor.  Since the camera would only
trigger with light, it was unnecessary to test various surfaces.  The light sensor would only trigger if the subject casts a shadow onto
the smartphone’s light sensor.  This would mean that the sensor would not trigger on the 10-feet mark, simply because the subject
would be too far away to cast a shadow.  However, it did return very good results compared to the vibration sensor.  As long as there
was a good light source the light sensor would trigger at a relatively high rate.  The test two test runs below were done on a very sunny
day where the subject’s shadow would cover the entire smartphone each time the subject walked by.  The sensor did not trigger with
soft lighting indoors.
 

Table 2: Results with just a light-intensity trigger.
Trigger Capture Recall Precision
20 17 100% 85%
10 10 100% 71%

 
3.3 Camera with audio and light trigger

 
This is a combination of the two previous applications.  A baseline for the audio trigger is used and a simple threshold value
comparison is used for the light sensor.  A snapshot is taken when one of the sensors is triggered.  If both sensors are trigged at the
same time only one snapshot is taken (to avoid duplication).  Two surfaces were tested, an outdoor sidewalk of concrete, and an indoor
one of linoleum. 
 
The combination of the two sensors returned decent results for the recall.  The added light trigger caused the camera to take more
pictures which resulted in a much lower precision.  Unfortunately, the combination of the two sensors did not improve the overall test
results.  
 

Table 3: Results with both audio and light-intensity triggers.
Surface Distance Trigger Capture Recall Precision
concrete outdoor 4 feet 45 12 100% 27%
concrete outdoor 4 feet 18 7 70% 39%
concrete outdoor 4 feet 34 10 100% 29%
linoleum 4 feet 16 3 30% 19%
linoleum 4 feet 17 9 90% 53%
linoleum 4 feet 14 10 100% 71%
linoleum 4 feet 14 7 70% 50%
linoleum 4 feet 15 8 80% 53%

 
Many new surfaces and environments were tested for this last portion.  The audio sensor seemed to be the most reliable sensor at this
point.  Different environments were tested to see how well the audio sensor would hold up.
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Table 4: More results with both audio and light-intensity triggers.
Surface Distance Trigger Capture Recall Precision
linoleum 9 feet 9 6 60% 67%
linoleum 9 feet 20 5 50% 25%
hardwood 10 feet 35 20 100% 57%
hardwood 10 feet 33 16 100% 48%
hardwood 10 feet 35 18 100% 51%
concrete indoor 4 feet 35 10 100% 29%
concrete indoor 4 feet 24 11 100% 46%
concrete indoor 4 feet 19 9 90% 47%
concrete indoor 10 feet 12 4 40% 33%
concrete indoor 10 feet 22 10 100% 45%
concrete indoor 10 feet 16 11 100% 69%

 
 

3.4 Differences between smartphone manufacturers

Our tests primarily tested two platforms, the Motorola Atrix 4G (Android 2.3.4) and HTC Evo 4G (Android 2.3.3).  Although they
both had the same kinds of sensors (seven plus a microphone and a camera), the appropriate thresholds for light and audio were
different and required separate adjustments.  Speed of the program was similar even though the Motorola was a dual-core processor,
from which we conclude that our program did not tax the processors very much.
 
On the Atrix 4G, the application installed and ran without a problem on this phone.  The test data shown above is from this phone. 
The HTC Evo 4G was similar, except it had some lag issues when the camera would trigger frequently but it would still capture
enough information during the test runs. On some rare occasions the phone would freeze up during the rapid camera trigger.
 
Other Android phones tested for compatibility and performance for the application were the HTC G1 (Android 1.6), the HTC Droid
Eris (rooted - Android 2.3.7: CyanogenMod), and the Samsung Google Nexus S (Android 2.3).  On the HTC G1, the application
would not run at all; it would properly install but would always crash during the launch process.  Even after recompiling the
application to API Level 4 (down from API Level 7) it would not run properly.  This problem could be related to the slow processor
for the phone (ARM 11 528MHz).  On the HTC Droid Eris, the application installed properly and would run for a while but would
often crash after a camera trigger.  This could be due to the low processing power of the phone (Qualcomm MSM7600, 528MHz). 
There were only a few successful runs where the phone would not crash.  On the Samsung Google Nexus S, the application installed
and ran without a problem, and provided similar performance to the Atrix 4G without lag issues or crashing of the application.  From
these tests we conclude that our application does require relatively recent Android hardware to work properly.
 

4. CONCLUSIONS
 
The audio sensor in the Android smartphones proved to be useful enough for detecting suspicious behavior.  The test runs returned
promising data in various environments.  The smartphone was able to capture the subject reasonably quickly.  False positives are still
an issue, but this did not affect the overall performance of the smartphone or the recall value.  It may be possible to improve precision
by running additional tests with different threshold values.  The light sensor should be useful in certain outdoor environments.  Even
though combining audio and light-intensity information lowered precision in our tests, it should be important for detecting subjects
that do not make much noise.  The application can be made into an .apk package for a wide range of devices.  Both smartphones
worked well for this experiment and returned good results. 
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