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An Efficient Snell's-Law Method for Optimal-Path Planning Across
Multiple Two-dimensional Irregular Homogeneous-Cost Regions

Neil C. Rowe and R. F. Richbourg

Department of Computer Science

Code 52Rp, U.S. Naval Postgraduate School Monterey, CA 93943 USA

Abstract

We are exploring a new approach to high-level optimal-path planning when homogeneous irregularly-
shaped regions of a plane have different traversal costs per unit distance. It is based on the simple idea that
optimal paths must be straight in homogeneous regions, and so those regions need not be subdivided for path
planning. Our approach uses optics analogies, ray tracing, and Snell's Law, and reduces the problem to an

efficient graph search with a variety of pruning criteria. The time and space of our algorithm is  in
an intuitively average case, where V is the number of region vertices. In experiments in which space is held
constant, an implementation of our algorithm was not only dramatically faster but gave better-cost solution
paths than a representative implementation of the chief competing technique, grid-based wavefront
propagation. This appears due to the quite different and considerably smaller search space required for our
more intelligent algorithm.

|This work was supported in part by the U. S. Army Combat Developments Experimentation Center under
MIPR ATEC 88-86. R. F. Richbourg is currently with the Office of Artificial Intelligence Analysis and
Evaluation, U.S. Military Academy, West Point, New York, USA. This paper appeared in International
Journal of Robotics Research, 9, no. 6 (December 1990), 48-66.  The equations were redrawn in 2008.

Introduction
We address here the problem of optimal-path planning for autonomous mobile agents in two dimensions. In
particular, we are concerned with large-scale or "high-level" path planning in which the start and goal points
are specified, and the size and dimensions of the agent are negligible in comparison to the geometry of the
path. And consistent with the term "large-scale", we assume reasonably complete knowledge of the features
of the two-dimensional space across which we are planning, including not only the locations and dimensions
of obstacles for traversal, but traversal costs per unit distance for homogeneous regions within the two-
dimension space or "terrain". The primary intended application of our work is off-road navigation by
autonomous vehicles, but it also applies to planning military operations and constructing permanent linear
features such as pipelines.

In defense of our concern for optimality of proposed paths, we argue that minimizing a cost is natural and
desirable in most path-planning problems, be it an energy expenditure, traversal time, total probability of
accident, or some weighted sum of the three. We will show that the cost of finding an optimal path by our
algorithm is not unreasonable, making finding nonoptimal paths often pointless. In defense of our assumption
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of reasonably detailed terrain-cost information, standard terrain maps and aerial surveying such as that done
by the United States Defense Mapping Agency already provide detailed information for most of the earth's
surface for planning at a resolution of 100 meters. The surface geometry, composition, and vegetation
information provided from such sources are used in the calculations of the Army Mobility Model (AMM)
(Rula and Nuttall 1971; Turnage and Smith 1983) to assign cost-per-unit-traversal-distance (infinite for
obstacles) for homogeneous areas of the terrain, not necessarily regular, for various kinds of vehicles, with
especial emphasis on wheeled vehicles. Our work is predicated on this AMM model and the databases used
by it, since they are quite general and cover most overland robotic vehicles proposed, not just military
vehicles. We do not have the space here to explain in detail the assumptions used in the AMM, the result of
two decades of analysis and experimentation. The model is isotropic, or assumes that traversal direction does
not affect cost (other recent work of ours (Rowe and Ross 1988) has addressed this oversimplification). We
have experimented with the AMM model on terrain information at a resolution of 12.5 meters, typical of
high-priority military terrain, so this will be our formal definition of "large-scale path planning"; even at that
resolution, agent size has little import.

The chief innovation of our work is its ability to reason about irregular terrain regions of arbitrary size and
shape in path planning, which are possible output from the AMM model. With an irregular-shape
representation, terrain features can be better modeled than with the uniform grid that is used in nearly all
other approaches to this problem. But such a representation requires a more complex algorithm to reason
about what happens to paths on boundaries of regions. Our approach sees an exact analogy between this
problem and the paths of light rays in optical media, whose paths obey Fermat's principle. While some
theoretical groundwork has been previously published for this approach (Richbourg et al 1987; Rowe 1989;
Mitchell 1988) we believe we are the first to implement it.

Previous work

Wavefront-propagation methods

The standard algorithm for finding optimal paths on terrain with a known cost map is a dynamic-
programming "wavefront propagation" (Chavez and Meystel 1984; Graglia and Meystel 1987; Parodi 1985;
Witkowski 1983; Mitchell et al 1987). (Note that path-finding methods that search a visibility graph of region
vertices (Lozano-Perez and Wesley 1979) apply to terrain with only obstacles, not regions of varying cost;
and methods that designate "good" areas of free space (Brooks 1983; Crowley 1984; Rueb and Wong 1987)
do not give optimal paths.) Terrain is modeled by a uniform "grid" or tessellation of cells of uniform size and
shape. Each cell has an associated cost which represents an average cost-per-unit-traversal-distance for the
terrain within the cell. The algorithm works by expanding a wavefront (initially approximately circular) about
the start point, much in the way that a stone dropped in a smooth pool of water creates ever-expanding
ringlets of disturbance in the surface of the water. In the algorithm, the wavefront is expanded at varying rates
along its circumference in a way proportional to the reciprocal of the traversal costs for the underlying cells,
so the wavefront moves more slowly through high-cost cells. The algorithm stops when the goal point is
encountered, and back pointers are used to recover the path that was taken from the start point to that goal
point as the wavefront expanded.

Wavefront-propagation algorithms have many variants. But all versions can have certain problems. These
problems do not always matter, and there are many applications, such as terrain with a uniformly high level
of variation in traversal characteristics, or situations needing simple software, for which wavefront
propagation is appropriate and preferable to anything else. But wavefront propagation is not good for all path
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planning.

First, the imposition of a fixed grid on terrain is arbitrary and is not likely to reflect the organization of the
real terrain, causing problems when widely different terrain is averaged within a cell. Figure 1 provides an
example: if the original 4 by 6 array of cost values needs to be compressed into eight words of data, the
averaging necessary for a regular grid clearly gives a poorer representation of the terrain than the irregular
representation with a triangular region embedded inside a background region, whose vertices can be
described with six numbers. For real-world paths we will need real terrain databases, which usually store data
in the form of regular arrays; but we are interested here only in high-level path planning for which at least
some aggregation of that raw data must be performed to enable reasonably quick answers.

Figure 1

Second, it is hard to pick the right grid size, because the level of detail necessary in some portions of the map
for good path planning there may be quite different than the level of detail needed elsewhere; an irregular
terrain representation can take this in stride. Figure 2 gives an example map, where a uniform grid must either
sacrifice fine detail of the upper right corner or wastefully create many identical cells in the rest of the terrain.
But algorithms for nonuniform grids are considerably more complicated.
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Figure 2

Third, the method is predisposed towards propagation in certain directions; for instance, on a square grid,
horizontal, vertical, and diagonal directions of traversal are unfairly preferred with most implementations.
But there are some tricks to reduce this problem, discussed in the next section.

Fourth, wavefront-propagation algorithms waste computation, since they blindly explore everywhere. While
some simple tricks can rule out certain directions of advance, the uninformed nature of the search process in
wavefront propagation can give behavior that appears foolish.

Fifth, wavefront propagation on multi-cost terrain can have difficulties with arithmetic roundoff errors. If a
region has a uniform traversal cost, the error in approximation will be multiplied by the length of the path in
cells. While large uniform regions are statistically unlikely in uneven terrain, they can arise with manmade
terrain.

Sixth, although this is rarely recognized, wavefront-propagation algorithms are incapable even in principle of
obtaining optimal solutions in the limit when the number of grid cells modeling some fixed terrain area
approaches infinity, because of the "digital bias" effect (Mitchell et al 1987), that solution paths not following
the "natural" directions of the grid tend to be longer than necessary because of the "zigzagging". To illustrate,
consider a starting point inside a forest and a goal point in a field adjacent the forest. See the top diagram in
Figure 3; suppose the forest region is on the left and the field on the right, and the starting point in the lower
left corner of the upper box, and the goal point in the upper right corner. Assume the forest and the field are
reasonably homogeneous in this vicinity. Suppose (as often with cultivated fields) that the boundary between
the two areas is abrupt, and suppose this boundary is a straight line running 14 degrees west of north. Assume
the cost of traversing the forest per unit distance is 7 units, and the field 2. Then the optimal path, as verified
by the methods described later in this paper, is shown in the upper box. The middle box shows the solution
for a four-neighbor wavefront propagation on a 13 by 12 grid, and the lower box on a 26 by 24 grid. (Eight-
neighbor propagation programs are more common, and analogous inaccuracies occur, but their illustration
would be less dramatic.) Both wavefront propagations give jagged paths due to the permissible directions of
propagation, paths which are hardly reasonable for an agent to follow exactly, unlike the path in the top box.
Furthermore, the cost of the paths found by the three methods are 17.2, 22.6, and 22.1 respectively, so both
wavefront-propagation methods are significantly worse than the true optimal path in cost. While the high-
resolution wavefront propagation was a little better, that mostly reflected a lucky coincidence in its problem
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representation, and is not generally true; in fact, high-resolution wavefront-propagation searches can give
significantly worse results than low-resolution searches (though both errors can be bounded). At any rate, the
use of all those vertical and horizontal segments virtually guarantees that the solution paths found by basic
wavefront-propagation algorithms will be significantly worse than the true optimal solution.

Figure 3

Note that all the above objections to wavefront propagation are far more serious, except the third and fourth
which are equally serious, for multi-cost terrain than for terrain with only obstacles. Thus the simplicity and
popularity of propagation on obstacle-only single-index terrain should not blind us to the serious additional
difficulties of extending it to multiple terrain costs; weighting of cells introduces many serious
implementation problems. But multiple terrain costs are essential to accurately modeling nearly any outdoor
terrain.

Improved wavefront propagation

Various fixes have been proposed to the basic wavefront-propagation algorithm to address these problems,
especially the non-optimality in the solutions generated. Certainly it helps to use the A* search algorithm
rather than branch-and-bound at a local level (Graglia and Meystel 1987; Mitchell et al 1987), but the time
improvement was rather small in a variety of experiments we conducted (Richbourg, 1987). (Note that use of
A* does not affect the propagation-direction problem, as the bias arises from inaccurate cost calculation
along a path, not in estimating its future potential.) A more significant variant (Graglia and Meystel 1987;
Mitchell et al 1987) is to allow more complex forms of connectivity between the cells to enable a larger
number of possible directions of traversal at the local level. But all these other forms of connectivity require
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an effectively lower resolution in the terrain representation. For instance, to get 16 possible traversal angles,
we must skip cells in some directions we travel, meaning the grid must be twice as long and wide (four times
as big) to represent terrain features adequately as with basic eight-neighbor propagation. Furthermore, this
approach does not eliminate path jaggedness or non-optimality, just reduces it by increasing the number of
preferred directions.

A second way to improve paths is to do repeated propagations on successively more detailed representations
of the terrain, using results of earlier searches to guide paths for later searches (Graglia and Meystel 1987;
Kambhampati and Davis 1986; Metea and Tsai 1987). But optimality guarantees are virtually impossible
with even two levels of hierarchy; for instance, Figure 4 shows a situation where the solution to a four-
neighbor search on a 6 by 6 terrain representation is the extreme opposite of the solution to a search on a 3 by
3 representation obtained from the first by cell summation. In the top picture, the optimal path follows
clockwise along the region boundary from the Start to the Goal and costs 220, and the path following
counterclockwise along the boundary costs 231; whereas in the lower picture, the corresponding costs are 206
and 190, and the counterclockwise path is optimal. (Those totals count half of the cost for the start and goal
cells.) In general, it is impossible to predict when a terrain will give markedly differently optimal paths at one
level of detail than another, and thus hierarchical reasoning cannot be trusted when optimality is desired.

Figure 4

Finally, a third way to improve the paths produced by wavefront-propagation methods is to "straighten"
them, either by shortcutting sharp turns (Mitchell et al 1987), fitting straight lines to portions of the path
generated (Mitchell et al 1987), or iterative smoothing (Thorpe 1984). But again this does not guarantee an
optimal path. For one thing, if the truncation of the path within a homogeneous-cost region does not include
an exact multiple of the number of "cycles" of the zigzagging composing the path, the best-fit line will be
askew. This skewness can be significant in paths crossing many regions. A more fundamental objection can
be raised to the straightening process, however: since optimal paths within homogeneous isotropic regions
are always straight, why represent such regions with multiple cells and add unnecessary computation?
Wouldn't it make more sense to reason about a large region as a whole, despite possible boundary
irregularity? Then none of the ugly tricks just discussed would be necessary.
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Previous work: the Continuous Dijkstra Algorithm (CDA)

Independent of our own preliminary work (Richbourg et al 1987), Mitchell (Mitchell 1988; Mitchell and
Papadimitriou 1990) developed developed the "Continuous Dijkstra Algorithm" for this problem. This
approach has some similar ideas to the one we will describe. However, the CDA was not designed for
practicality but to prove a point: that a certain class of path-planning problems can be solved by an algorithm
that is, in the worst case, polynomial in time and space with respect to the number of region-boundary line
segments. To achieve this, the algorithm requires the start and goal to be on region boundaries, the regions
themselves to be triangular, and imposes certain other restrictions.

We believe that polynomial worst-case bounds are unnecessary for an optimal path-planning algorithm, just
as polynomial algorithms for linear programming are unnecessary compared to the Simplex algorithm despite
the latter's exponential worst-case performance. We have therefore developed an optimal-path-planning
algorithm which, like Simplex, works well on the average. It is robust, efficient, and capable of exploiting
many powerful pruning heuristics; though its time and space needs with respect to the number of region-
boundary edges in the worst case has not been proven better than exponential, in the average case we can
prove them quadratic.

Our algorithm
So we will assume terrain consisting of homogeneous regions, each of a characteristic "index" or cost per unit
of traversal distance; for instance, forests can have a high index, fields a low index, and steep cliffs an infinite
index. We will further assume, consistent with the practice of surveyors, that region boundaries are
polygonal. (Any boundary can be approximated to any arbitrary closeness by some polygon.) For such a
terrain model, we can prove that optimal-path planning reduces to a finite search even without imposing a
cellular grid. Furthermore, since there is a simple lower bound on completion cost in this search, the A*
search algorithm is strongly suggested, among the standard search algorithms of artificial intelligence (Rowe
1988). (Do not confuse this use of A* with its occasional use in wavefront propagation: the search spaces are
quite different.)

Snell's Law

Fermat's Principle of optics says that light rays always follow a path between two locations that is a
minimum, maximum, or stationary point (though usually a minimum) with respect to time. So we can solve
path-planning problems by interpreting terrain as optical media, with the cost per unit traversal distance
("cost index") analogous to the reciprocal of the speed of light in the region. We can then "trace rays",
determine where an analogous light ray could go, and rule out the occasional maximal-time and stationary-
point-time paths. Fermat's Principle at a boundary between two homogeneous regions of different index

implies Snell's Law, which explains the refraction or turning of light rays: .  This

gives the angle between the normal to the region boundary and the light path in region 2, when the path

angle from the normal in (incoming) region 1 is  and the characteristic indices (cost per unit distance) for

the two regions are  and . This applies equally to light rays and traversal paths. In essence it describes a
necessary local condition that must hold when any minimum-cost path crosses a boundary between regions of
different traversal characteristics.
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Such analysis is greatly simplified when boundaries are straight, so it is desirable to have polygonal terrain
regions; this is straightforward to satisfy in the collection of terrain data, as in specified policy for obtaining
data for the Army Mobility Model, or by polygonal fitting to data for evenly-spaced terrain points using
standard algorithms of computational geometry. Notice that Snell's Law implies that paths only turn where
the cost index changes, so on terrain consisting entirely of homogeneous-cost-index regions, any locally-
optimal path between two points must be piecewise-linear.

Well-behaved path subspaces (WBPSs)

Our key to finding the optimal path from a start point S to a goal point G is the finding of "well-behaved path
subspaces" (WBPSs). A WBPS from point S is a partition of the set of all locally-optimal paths departing
from S such that its paths cross the same region-boundary line segments in the same order, obeying Snell's
Law at region boundaries. By "locally-optimal" path we mean any slight path perturbation has higher cost.
Figure 5 shows some sample paths within a WBPS; for a certain range of starting headings, all locally-
optimal paths from the starting point will cross the four near-horizontal region boundaries in sequence.
WBPSs cannot enclose region vertices; for path subspaces that do, we will use the more general term
"wedge".

Figure 5

WBPSs are important because they are the terminal nodes for a search tree of wedges, using "search tree" in
its conventional artificial-intelligence sense. Consider a subspace of paths that cross the same sequence of
cost-region boundaries after starting from some point S, and then head straight to the goal point after crossing
the last boundary. We prove in the Appendix that total path cost to the goal is a convex function over the set
of all such paths, and hence there is at most one path in a WBPS that is a local cost minimum to the goal.
Thus within a WBPS there is at most one locally optimal path from a start to a goal. It can be found by a
simple bisection iteration. (Iteration is necessary because there is no closed-form solution for the inverse of
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the ray tracing problem, of finding a path to a given point.) Then the globally-optimal path from a start to a
goal is the best of local optima when all possible paths are apportioned into WBPSs.

A systematic search can provide the WBPSs rooted at a start point S. Since they represent sets of locally-
optimal paths crossing the same region boundaries, the two WBPS borders (for instance, the leftmost and
rightmost rays in Figure 5) are always locally-optimal paths that each pass through at least one region vertex
(for instance, the left upper vertex for the left ray in Figure 5, and the right upper vertex for the right ray). So
we can find WBPSs by finding their borders first, by finding the Snell's-Law-obeying paths from the start
point S to every region-boundary vertex, in order of increasing distance from S. WBPS finding is a classical
search process where wedges are the "agenda" items from which a selection of what to work on next is made,
unlike cells which are the agenda items in wavefront propagation. "Branching" means finding a path to a
region-boundary point within a wedge and splitting the wedge in two; heuristics can prune wedges from
further consideration.

Generally speaking, the idea is to "grow" wedges toward the goal point rather than splitting wedges at
random. This is ensured by the distance-to-goal lower-bound cost used in the A* algorithm. Note also that the
start and goal points can be reversed and the problem might be easier to solve. But bidirectional simultaneous
search is not a good idea because the forward wedges are different from the backward wedges.

Details

That is the basic idea of our algorithm, but there are four important details. First, whenever an optimal path to
a vertex V is found, often another "middle" wedge can be created besides the "left" and "right" wedges, one
representing paths that follow the single globally-optimal path to V and then diverge. Consider Figure 6,
where the shaded region is a higher index than its surroundings, and the black region is an obstacle. Assume
locally-optimal paths from the start point S that miss V slightly to the left are bent by refraction 30 degrees
left, and paths that miss V slightly to the right are bent 30 degrees right. It seems there is an abrupt change in
behavior of optimal paths around point V. This is not so because there is an intermediate class of optimal
paths passing through V and turning less than thirty degrees in either direction. To find the optimal path to
the goal in this "middle" wedge, we can recursively consider a search problem in which V is the starting
point, but with certain initial path-direction restrictions. Points like V are analogous to pinholes in diffraction
optics, in being new points of radiation. Middle wedges can also occur with obstacles, as at point U in Figure
6, where a class of paths from S passes through U and then bends around to the "hidden" side of the obstacle.
Such obstacle-related middle wedges explain following the exteriors of obstacle boundaries.
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Figure 6

Another detail concerns situations in which Snell's Law (see section 3.1) claims that the sine of the outgoing

angle at a region boundary is greater than 1 (that is, . This happens to "grazing" paths,
those not sufficiently perpendicular to the boundary, trying to enter a lower-cost region; for instance in Figure
7, paths just to the right of the path from S to A to B that is refracted perpendicular to edge at B. This
corresponds to total internal reflection in optics; in path planning it means that no optimal path crosses the
boundary there. However, there may be a non-reflecting subwedge like that shown that can cross the region
boundary when a bigger wedge cannot. The subwedge is usually easy to determine because one of its
boundaries must hit the region boundary at the "critical" angle, the arcsine of the ratio of the region indices;
no iterative search for that wedge boundary is needed, unlike forward ray tracing with Snell's Law.
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Figure 7

A third detail concerns finding such reflection paths working backwards. Whenever a path runs along a
region boundary (the path is then assumed just inside the lower-cost region), a set of locally-optimal paths cut
away at the critical angle along it. This set can be reasoned about as another wedge. However, most such
wedges will be eliminated quickly by the methods of section 4, so we always in effect give them a large cost
surcharge when placing them on the A* agenda.

Fourth, A* search needs a lower bound on the cost through a wedge to the goal, to rate wedges for its agenda.
This can be the sum of two lower bounds, one on the cost in the wedge from the start to the farthest-forward
boundary known crossed by the wedge, and one on the cost from there to the goal. The first can be proved to
occur for the wedge path perpendicular to the last boundary; the second is the lowest possible index times the
distance to the goal from the nearest point on the last boundary segment.

The main flowchart of our algorithm is shown in Figure 8. (Richbourg, 1987) gives further details.
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Figure 8

An example

Figures 9 and 10 illustrate our computer implementation of our algorithm for a simple example. Figure 9 (the
bit map of a display for our actual running program) shows some terrain classified into regions of two kinds;
the triangular shaded areas are regions of twice the index (cost per unit distance) of the unshaded areas, and
there are no obstacles. The big rectangle represents a "bounding box" within which the solution must lie (see
discussion of PM5 in the next section). S marks the start, G the goal. The other points labeled with small
letters are used to define all the WBPSs (well-behaved path subspaces) created for this problem. The optimal
path found was S to f to n to o to G, at a cost of 7.97; the complete path S to h to r to G was also found, but it
costs 9.29. Note point o is a critical-angle cutaway, discussed in the last section.
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Figure 9

Figure 10

Figure 10 shows the complete A* search tree created by the algorithm for this problem. Each node represents
a threefold wedge partition about a vertex. The numbers in the circles give the order in which partitions were
made; with partition 9 the optimal solution was found. (Because critical-angle-cutaway wedges have in effect
a high surcharge not shown, partition 9 was only made after all non-cutaway wedges were eliminated from
the agenda.) For each wedge in the tree, its left and right boundaries are given, as sequences of turn points.
Below is either (1) the word "empty", indicating a wedge not containing cost-region vertices, hence
ignorable; (2) "prune > u.b.", indicating a wedge pruned because its cost is greater than the global upper
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bound (see discussion of PM4 in the next section); or (3) the agenda rating, a lower bound on the cost of a
path from the S to G that passes through that wedge. The last is shown as the sum of two lower bounds, as
explained at the end of the last section, except for the two complete S to G paths. (Nodes 1 and 2 of the tree
may be confusing since each represents an entire half plane of rays departing from S; node 1 is rays departing
up from the path z8-S-d-c, node 2 those departing down.)

Pruning methods
One consequence of our higher-level representation of the world as meaningfully-shaped regions of
homogeneous index is that our algorithm can be more knowledge-based than wavefront-propagation methods
for the same path-planning problems. That is, pruning criteria and heuristics can be more easily developed,
since they can reference the many possible higher-level features. We now present some major categories of
pruning methods. (Our program currently uses all but PM6, PM7, PM8, and PM11, which we decided after
analysis would not be cost-effective for the test terrain we were to use.)

PM1: Obstacles. Any wedge whose sides reach the same obstacle-boundary line segment can be pruned
whenever the wedge does not enclose the goal or any region-boundary vertices.

PM2: Reflections. Any wedge whose sides reach a boundary line segment for which internal reflection in the
same direction occurs for both sides can be pruned, provided the wedge does not enclose the goal or any
region-boundary vertices.

PM3: Closed wedges. Any wedge whose sides meet can be pruned, provided it does not enclose the goal or
any region-boundary vertices.

PM4: Pruning with a cost upper bound in A* search. Suppose we have an upper bound U on the cost from
the start to the goal. The cost of the straight line between them will do if it does not intersect obstacles; if it
does, an algorithm like (Lozano-Perez and Wesley 1979) can find the shortest obstacle-avoiding path to use
instead. Then any wedge on the agenda rated more than U can be pruned. U can be improved anytime a better
path to the goal is found, allowing possibly immediate further agenda pruning.

PM5: Global ellipse limiting. Pruning method PM4 can also be used preemptively. Given an upper bound U

on the cost of the optimal path from start to goal, D the straight-line distance, and  the lowest cost index
possible. Then the globally-optimal path is contained in an ellipse whose foci are the start and goal, whose

major axis is , and whose minor axis is . (This follows from the definition of an
ellipse as the locus of points the sum of whose distances from the foci is constant.) Figure 11 shows an
example where the shaded regions have a cost index 1.77 times the unshaded area; then the straight-line path
between start S and goal G is 45% in high-cost area, at an average cost 1.35 times the optimum, and the
bounding ellipse is as shown. So any wedge that does not enclose a region-boundary vertex within the ellipse
can be pruned. But to save time in our program we use the rectangle ("bounding box") circumscribing the
ellipse; only a little extra area is included.
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Figure 11

PM6: Cost bounds from dual-graph analysis. After an ellipse has been drawn, we can analyze the regions
enclosed to obtain better cost bounds on paths. A dual graph can be constructed where nodes represent
regions or region portions, and edges represent region adjacencies. Cost bounds can be computed for every
sequence of three connected nodes in this graph, bounds on the cost that can be incurred in the middle node
when traveling from the first to the third. They can be determined from the minimum width and maximum
length (or necessarily in some cases, the circumference) of the region portions. For instance in Figure 11, if
the straight path between S and G is one unit long, the optimal path from S to G must spend a minimum of
0.20 units of distance in the long rectangular high-cost region, a minimum of 0.01 units in the upper high-cost
region, a maximum of 0.31 in the lower, and a maximum of 0.37 in the upper; so if the high-cost regions
have an index 1.77 times their surroundings, the cost expended in them on the optimal path must be between
.37 and 1.20. In general, numbers can be summed for all possible paths between start and goal to get upper
and lower bounds on the cost of the optimal path.

PM7: Iterative ellipse improvement. Once an ellipse has been constructed, its interior can be examined, for
instance with PM6, to possibly get a better (smaller) upper bound on cost. This implies a narrower ellipse
with perhaps an even better upper bound, and so on iteratively.

PM8: Virtual obstacles. Suppose convex region R has index |n sub r|, and suppose R is bordered by regions
of index lower than |n sub s|. Then no optimal path can enter R except to reach a goal point inside (that is, R
is a "virtual obstacle") if for any pair of points P and Q on the border of R, the ratio of the shortest distance

along the perimeter of R from P to Q to the straight-line distance between them is less than .

PM9: Corner cutting. Suppose a wedge cuts across a corner of a region of higher index than its surroundings;
that is, the wedge crosses two successive boundary line segments of the region, segments meeting at a vertex.
Then the wedge can be pruned if the sine of half the angle between the segments is more than the ratio of the
indices. This follows because the greatest advantage of a shortcut occurs when it forms an isosceles triangle
with the corner vertex.

PM10: Using cached costs of optimal paths. Suppose we want the cost of the optimal path between points R
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and S, and we know the cost c(A,B) of the optimal path between nearby points A and B. Let d(R,A) be the

distance of R from A, d(S,B) the distance of S from B, and the highest index in the area of interest. Then

an upper bound on the cost from R to S is  and a lower bound is 

. The closer R to A and S to B, the tighter these bounds. For
instance in Figure 12, suppose the optimal path from C to D is the one-bend path shown; then the optimal
path from A to B is a subpath of the path from C to D; and an upper bound on the cost of the optimal path
from S to G is the cost from S to A plus the cost from G to B plus the cost of the optimal path from A to B.
To facilitate good bounds, we could prestore optimal costs between evenly-spaced points, or between region
vertices since our algorithm focuses on them. Or we could cache the results of previous path planning, to
provide a simple form of learning from experience. The more cached costs, the better the search pruning, and
the faster the solution. (We can also cache costs of nonoptimal paths, but they only provide upper bounds.)

Figure 12

PM11: Using cached optimal paths. No optimal path can intersect another optimal path more than once.
(Otherwise there would be two equally-good paths between the two points of intersection.) So any
previously-computed optimal path from A to B lying to one side of start S and goal G forms a barrier which
the optimal path from S to G cannot cross. If A and B both lie outside the limiting ellipse, and the optimal
path between them intersects the ellipse, then the barrier rules out an entire part of the ellipse. For instance in
Figure 12, if the C to D path is optimal, it rules out the area to its right side within the ellipse for the optimal
path from S to G. This suggests we should store optimal paths between a variety of widely-spaced points.

Performance analysis
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Worst-case theoretical analysis

Within the initial ellipse for some problem, let v be the number of region vertices, and let e be the number of
region edges. Since all regions are polygons, the number of edges is close to the number of vertices. Regions
can share edges and vertices, in which case the number vertices is decreased by one for every shared edge.
But even so, O(e) = O(v).

The main loop of the program takes the lowest cost wedge from the agenda, determines the closest search
point (a region vertex or the goal) within that wedge, if any, and replaces the wedge on the agenda by up to
four subwedges (the left, the middle, the right, and possibly an internal-reflection wedge). Since each wedge
partition removes one wedge from the agenda and adds up to four, an upper bound on the total number of
wedges created by the algorithm is 3P-2, P the number of partitionings made.

But the number of partitions is not just the number of search points, because wedges can overlap, and the
same search point can be encountered in more than one wedge. Wedges can be characterized by a
permutation of a subset of all the possible edges and vertices up to the point at which the edge is explored. An
upper bound on the number of such permutations is O(v+e+1)! = O(v!), where the 1 represents the goal. In
the worst case, wedge partition requires comparing each vertex to the wedge to determine if it is inside,

which requires  time. So an upper bound on the time complexity of the algorithm is .

As for the space complexity, the problem representation requires O(v). But this is negligible compared to the
dynamic requirements for the agenda of wedges, which can contain at worst O(v!) wedges. Each wedge
description requires one or two vertices for each edge or vertex encountered, which is O(v) in the worst case,
so the total space requirements in the worst case are O(v!v).

Figure 13 shows the kind of situation that approaches the worst-case bound. The three high-cost regions
between the start and goal can act like optical lenses, "focusing" paths into a narrow band to either side of the
straight line connecting start and goal, if costs and dimensions fall within a certain narrow range. Then many
wedges at the start point can include the goal point. But such circumstances require exceptional coincidences
in the real world.

Figure 13

Average-case theoretical analysis

But average-case performance of our algorithm is much better, . To see this, we will define "average
case" to mean terrain with a statistically even distribution of features. And as v increases, we will assume that
a larger bounding box is taken on the same terrain, not more regions added to the same box. We want to
know how complexity increases then.

First observe that refining a wedge selected from the agenda requires examining O(v) vertices, comparing
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them to the boundaries of the wedge, for which it is almost always sufficient to compare to the two lines
representing the indefinite extension of first unexplored part of the wedge. We may in many cases be able to
improve on O(v) if we sort region vertices into bins of a two-dimensional grid, or by closeness to some point
of interest; the sorting can be done in linear time if we can copy the items to a sparse auxiliary array.

Once the nearest unsolved vertex V for the wedge has been found, an iterative search must find the Snell's-
law path in the wedge to V. The time for this fluctuates randomly, but is roughly proportional to the number
of edges crossed since a Snell's law calculation must be done at each edge, so the time is O(e) = O(v).

Now if all search points encountered by the algorithm are encountered no more than once, an upper bound on

the number of wedge partitions is |v|, and thus the average-case performance of the algorithm is .
This result holds for terrain with few vertices or vertices spaced widely apart.

Otherwise, there are two kinds of multiple encounter of search points. One kind is the immediate encounter
caused by a "focusing vertex" as in Figure 13. The partition of a wedge about such a point can create not only
a middle wedge, but the left and right wedges that can intersect both the middle wedge and each other; thus
there can be multiple paths to any vertex in the intersection. This phenomenon is quite common, since it
arises whenever a high-cost region has a convex vertex; the strength of the cost difference determines the
strength of the overlap, so it is mostly a function of the region geometry and not the entering paths. Thus the
probability of this phenomenon occurring does not depend on v. When it does occur, it will create additional
wedge partitions. On the average these additional partitions will not be significant because as they extend,
their costs will quickly mount up, the dispersion of the random variable representing the difference between
the two will quickly increase, and very quickly it is likely one will be prunable with respect to the other. Thus
unless |v| is small or the vertex is near the edge of the bounding box, it is unlikely that both these overlapping
wedges will extend to the edge of the box, and thus the size of the box (that is, how it varies with v) will have
very little effect on the cost other than in the number of opportunities for this multiple-point-encounter to
occur. Therefore, the additional number of wedges due to this phenomenon is O(kv) = O(v).

The other kind of repeated search-point encounter is non-immediate multiple paths to the same search point.
This can occur either when a wedge closes as in PM3 in section 4 and its two bordering wedges intersect, or
when a wedge intersecting another continues on to intersect a neighbor. In both cases the analysis is similar
to that of the preceding paragraph: the number of such phenomena will, at worst, proportionately increase as
the number of search points increases. In fact, it is even more likely that one of the wedges will be prunable
to begin with, since the non-immediacy of the wedge intersection gives more opportunity for costs to diverge.

Thus  performance holds for this situation too, and thus the whole algorithm has an average-case time

complexity of .

The space requirements for the O(v) wedges overwhelm all other space demands. Each wedge has O((k+1)

(e+v)) = O(v) terms for the edges and vertices crossed. Hence average space is .

Theoretical comparison to the other two algorithms

The complexity measures for the wavefront-propagation algorithm are not immediately commensurate with
the measures for our algorithm, since they are a function of |n|, the number of grid cells in the problem
representation, not v. The worst-case and average-case time and space complexities are both O(n). So the best
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way to compare wavefront propagation to our algorithm is through experiments with analogous
implementations, as those in the next section.

The unimplemented Continuous Dijkstra Algorithm has claimed time complexity of  and space of 

. But beyond these results the algorithm does not try to be efficient, as it uses a simple branch-and-
bound search without heuristics, and can only handle triangular regions. Thus its average-case performance
should be much worse than our algorithm.

Besides time and space complexity, the three algorithms can be compared in the cost of the best path found
by each of them for a problem. As we discussed in section 2, wavefront propagation has errors which our
algorithm does not because of the averaging of terrain values within cells of a uniform grid, a grid which only
coincidentally relates to features of the terrain. It also has roundoff errors due to repeated subtractions at each
propagation step, while our algorithm has only roundoff for the addition at each boundary crossed.
Furthermore, wavefront propagation is in principle incapable of generating the optimal solution to a path-
planning problem, even in the limit as its grid size approaches infinity, because of digital bias or "zigzagging"
imposed upon the path by the grid. As for the Continuous Dijkstra Algorithm, it does require that start and
goal points be on boundaries of regions, but artificial regions can be introduced, so its accuracy should be
similar to ours.

Testing of algorithm performance

Complexity-order analysis gives only a very rough idea of the performance of an algorithm, and does not
show the effect of most heuristics. So we conducted a variety of experiments to test performance of the
algorithm relative to wavefront propagation under a variety of conditions (Richbourg 1987). Figure 14
provides a sample of these experiments, reporting results with an artificial terrain map consisting of four
high-cost regions, one large "background" medium-cost region, and four impassable (obstacle) regions, with
44 region vertices total. (Similar results were obtained from a terrain map of real data for Point Lobos,
California, so map artificiality did not seem critical.) For the wavefront-propagation program used for
comparison, a 128 by 128 square grid was constructed from this terrain map; to make comparison even more
favorable to wavefront propagation, region vertices were at corners of grid cells, and propagation was eight-
neighbor.

Figure 14 shows the significantly better speed of our algorithm in all but a few of the simpler problems. "Box
Cells" is the number of grid cells in the rectangle containing containing the solution, "Box Vertices" the
number of cost-region vertices inside it, "Nodes Explored" the number of grid cells encountered in
propagation, and "# of Inters." the number of line intersections computed. Times given are seconds of CPU
time on an Integrated Systems workstation running Berkeley Unix 4.2. Times are dramatically better for our
algorithm for nearly all problems, a striking validation of our approach. Observe that the number of nodes
explored (and less directly, the box nodes) predict well the time taken by wavefront propagation; the number
of intersections and, to a lesser extent, the number of box vertices predict well the time taken by our

algorithm. This and other data support our theoretical prediction that the time of our algorithm is ,
where V is the number of search points within the bounding box: a regression analysis of the best power

curve for 55 experiments with this map gave . But this data is from only one
terrain, and we expect that wavefront propagation should be faster whenever terrain has a uniformly highly
amount of variation in traversal characteristics.
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As for space requirements, our algorithm requires 3000 lines of Prolog code compared to 200 lines for our
implementation of a quite simple wavefront-propagation algorithm. But dynamic data storage was roughly
comparable for the two algorithms, thanks to our choice of a 128 by 128 grid for wavefront propagation.
However, the ratio of the dynamic storage spaces will clearly vary enormously with the homogeneity of
terrain modeled, so it is impossible to make predictions for other problems.

As for solution accuracy, in all the experiments we conducted, the cost of the solution found by our algorithm
was always better (less than) that found by our eight-neighbor wavefront propagation. For the Figure 14 map,
wavefront-propagation was 8 percent worse on the average when data storage space was the same.
Unfortunately there is no oracle to compare our solutions against, only the inferior wavefront-propagation
results, so we do not know whether or how much our algorithm's results can be improved. Increasing grid
size for wavefront propagation will sometimes improve resulting path cost, but at the expense of perhaps
unacceptable time and space. Figure 15 shows a typical instance of the superiority of the paths found by our
algorithm; note that our paths seem more intuitive.

 
Case    Box     Box     Wave Algorithm Our Algorithm
\^      \^      \^      _       _
        Cells   Vertices\^     Nodes   Time to # of    Time to
\^      \^      \^      Explored       Solve   Inters. Solve
a       90      5       87      5.95    79      9.28
b       304     6       297     23.53   304     10.88
c       1532    21      1282    123.33  675     67.36
d       1211    12      1062    108.67  232     33.28
e       759     12      689     60.23   340     36.11
f       701     9       543     49.58   159     15.45
g       6989    42      5115    692.1   3237    265.47
h       374     6       317     26.98   113     12.8
i       5993    42      3462    483.42  797     74.75
j       744     13      551     56.73   175     14.58
k       65      5       44      2.96    37      3.51
l       1497    16      1084    109.80  272     18.76
m       3690    28      3030    411.76  1190    95.75
n       4345    39      3527    423.17  1271    96.46
o       1246    9       1149    106.17  373     33.08
p       3207    24      2393    290.02  662     53.95
q       1086    14      970     108.05  299     39.02
r       1157    17      624     68.81   318     28.91
s       1847    20      1419    132.45  637     50.56
t       507     9       407     27.85   68      8.67
u       2442    31      1964    243.73  964     99.01
v       3061    24      2544    319.70  1226    129.13
w       617     11      446     35.07   167     12.87
x       1054    14      761     64.53   344     34.15
y       1411    11      1137    98.75   252     19.35
z       515     8       416     33.32   96      7.01
aa      501     14      384     29.61   133     17.20
ab      900     15      355     32.02   100     12.36
ac      471     10      229     14.35   30      3.23
ad      710     12      338     37.48   119     9.28
ae      156     1       74      5.76    7       0.73
af      2840    23      1368    132.32  307     36.20
ag      4814    35      4077    456.53  1285    117.51
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ah      179     11      146     11.24   107     11.22
Figure 14

Figure 15

Special-purpose hardware (Parodi 1985; Witkowski 1983) speeds wavefront propagation significantly, but
special-purpose hardware can speed our algorithm too. Tree-structured processor architectures (Shaw 1987)
could help: upon each wedge partition, a different processor can be assigned to each wedge. Search processes
are central in artificial intelligence, and there has been significant hardware research lately concerning them.
In addition, vector-processing hardware can compute line intersections fast, something critical in all parts of
our algorithm.

(These tests were done with an implementation designed for terrain with only three kinds of regions:
obstacles, high-cost, and low-cost. This reflects our work in planning for tanks in the Point Lobos and Fort
Hunter-Liggett terrain, in which this tripartite division follows military doctrine (forests are high-cost and
grassland is low-cost). But generalizing our program requires only minor code changes.)

An extension to interpolation regions
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One problem with a homogeneous-cost-region representation of terrain is the artificially abrupt index
transitions on region boundaries. To better model the real world, we can introduce a new kind of region, a
nonhomogeneous "interpolation region" or "spline region" inserted between homogeneous regions of
different index, across which the index would vary smoothly with position. Such regions can model the
shoulders of roads and the edges of rivers.

Suppose the index is solely a function of the x-coordinate in some coordinate system. Then (using a trick of
Fermat) we can model the terrain as a set of infinitesimally thin horizontal bands, each with a uniform cost as
the width of the bands approaches zero in the limit. By transitive application of Snell's Law across the bands,

the quantity  is invariant along any optimal path, where n(x) is the

index and ! is its slope angle. If we know the starting  and , we can rearrange the differential equation
to calculate y for the path as a function of x:

A simple application of the above integral is to a region in which the index at any point is 
 where x is the distance across the region; note this is a monotonic function of x. If a rectangular such region

of width W interpolates between regions of indices and , then 

. Then the above integral gives a circular arc whose

direction at  is perpendicular to the boundaries. So if we are given the region-entering angle of a

path, the region-leaving angle of the path is given by ; the place of leaving

can be determined from the radius of curvature, . This means that
wedges crossing such interpolation regions are bent so that their boundaries are circular arcs of a computable
curvature. Figure 16 gives an example in which the dark region in the center represents a road, and the
shaded regions to the left and right of it represent shoulders interpolating between a background region of
twice the cost of the road. Curved wedges complicate details such as the calculation of upper and lower cost
bounds, but our algorithm can use them and remain fundamentally the same.
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Figure 16

Conclusion
Our approach to path planning finds optimal paths in an intelligent, natural way. It systematically exploits
optics analogies to reduce the problem to finite A* search, whereupon a variety of pruning criteria can
provide search efficiency. Our method has advantages over the traditional wavefront-propagation methods
because one can model the world better with irregularly-shaped regions than with a uniform grid. It can thus
(1) find paths closer to optimal; (2) solve conceptually simple problems quickly, sometimes dramatically so,
avoiding obvious useless search directions; (3) avoid unreasonable jagged paths due to digital approximation;
(4) reduce roundoff errors; and (5) avoid directional bias in paths. Furthermore, our method is considerably
more efficient in the average case than the only other Snell's Law algorithm proposed for path planning. We
thus expect it to be a valuable tool in the arsenal of spatial-reasoning methods.
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Appendix: The cost convexity theorem
We prove over the set of all paths between some start and goal points that cross the same region-boundary
edges in the same order, assuming homogeneous isotropic regions with a uniform cost per unit distance, that
path cost is a convex function of parameters necessary to specify the path. For these parameters, take the
distances along the region-boundary edges from some fixed points. We will show that each subcost of the
subpath between region boundaries is convex; the sum of convex functions is convex, so the total cost is
convex.
 
First consider the beginning and ending segments of the optimal path. Let |x| represent the distance along the
first or last region boundary from the projection of the start or goal point onto its line extension, and assume
this projection has length |c|. The cost between the start or goal and this boundary is |sqrt { x sup 2 + c sup 2
}| which has a second derivative with respect to every other variable besides x of zero, and with respect to x
of |c sup 2 ( x sup 2 + c sup 2 ) sup -1.5 |, a nonnegative quantity.
 
For all other path segments, first assume the two boundaries are not parallel, and let |x| and |y| be distances
along the lines containing the boundary line segments, distances from the intersection of those lines. The law
of cosines says that the subpath distance is |( x sup 2 + y sup 2 - 2 x y cos H ) sup 0.5 |. Convexity is proved
from:
 
lambda ( x sub 1 sup 2 + y sub 1 sup 2 - 2 x sub 1 y sub 1 cos H ) sup
0.5 + ( 1 - lambda ) ( x sub 2 sup 2 + y sub 2 sup 2 - 2 x sub 2 y sub
2 cos H ) sup 0.5
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  >=   [ ( lambda x sub 1 + ( 1 - lambda ) x
sub 2 ) sup 2 + ( lambda y sub 1 + ( 1 - lambda ) y sub 2 ) sup 2 - 2
( lambda x sub 1 + ( 1 - lambda ) x sub 2 ) ( lambda y sub 1 + ( 1 -
lambda ) y sub 2 ) cos H ] sup 0.5
by squaring both sides, cancelling terms, rearranging, squaring again, and cancelling terms to get a
nonnegative sum of squares; we skip the tedious details. If the region boundaries are parallel at distance |D|,
measure the distances |x| and |y| along them relative to some perpendicular line. Then subpath distance is |sqrt
{ ( x - y ) sup 2 + D sup 2 }|. Convexity follows from
 
lambda sqrt { ( x sub 1 - y
sub 1 ) sup 2 + D sup 2 } + ( 1 - lambda ) sqrt { ( x sub 2 - y sub 2
) sup 2 + D sup 2 }   >=   sqrt { [ lambda x sub 1 + ( 1 - lambda ) x
sub 2 - lambda x sub 2 - ( 1 - lambda ) y sub 2 ] sup 2 + D sup 2 }
which can be shown by the same methods as the general case.

Figure captions
Figure 1: Example in which an irregular terrain representation is better

Figure 2: Example of terrain needing varying resolutions (high-cost regions are shaded, obstacle region is
black)

Figure 3: Higher resolution for wavefront propagation doesn't help much

Figure 4: A bad case for hierarchical wavefront propagation

Figure 5: Some Snell's Law paths within the wedge (which is also a WBPS) crossing the four horizontal
region boundaries (shaded areas are high-cost)

Figure 6: Two examples of middle wedges when searching from S

Figure 7: Total internal reflection of part of a wedge

Figure 8: Control flow in the algorithm

Figure 9: Example terrain

Figure 10: Example A* search tree

Figure 11: Example ellipse containing start S and goal G (shaded regions are high-cost)

Figure 12: Example for bounds from previously-cached optimal paths (shaded region is high-cost)

Figure 13: An example in which the goal point can fall within many wedges (shaded regions are high-cost)

Figure 14: Statistics on some experiments with our program on an artificial terrain (similar results were
obtained for a real terrain)

Figure 15: A simple example illustrating the differences in the paths found by our algorithm and wavefront
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propagation (note the experiments summarized in Figure 14 were generally more complicated paths than
this)

Figure 16: A curved wedge arising from crossing interpolation regions
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