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ABSTRACT 
This paper describes four candidate X3D extension nodes:  
Camera, Shot, Movement and OfflineRendering. An X3D 
lexicon for camera movements is defined so that individuals 
directing virtual cameras in X3D can directly apply terms that 
film directors and cinematographers understand. This approach 
greatly simplifies the technical tasks involved in creating precise 
camera animations and setting up still images for digital 
photography. Further, candidate methods are examined for 
implementing Depth of Field for focus control. Moving beyond 
the typical clumsiness of Viewpoint control can enable authors 
to create compelling still and moving images from X3D scenes. 

Categories and Subject Descriptors 
D.3.3 [Computer Graphics]: Three-Dimensional Graphics and 
Realism – Camera viewpoint, rendering, depth-of-field. 

General Terms 
I.3.7 [Three-Dimensional Graphics and Realism]: Virtual 
reality—Color, shading, shadowing, and texture I.3.6 
[Methodology and Techniques]: Standards—Languages Design, 
Human Factors, Standardization. 

Keywords 
X3D graphics, camera movement, viewpoint, depth of field, 
field of view, digital photography, offline rendering, machinima. 

1. INTRODUCTION 
The ability to move the camera separates cinematography from 
still photography. The ability to have both the subject and the 
camera move independently distinguishes it even further. This 
both complicates and enables creativity for visual storytelling. 
The same relationships can be expressed in 3D graphics, which 
is further unconstrained because so many different aspects of 
camera, scene entities and behaviors can be animated 
simultaneously. Non-real-time 3D graphics have long leveraged 
the power of traditional cinematography plus this unconstrained 
freedom to great effect.  

Currently, such complexity and license is only possible in X3D 
with user navigation via NavigationInfo or overly complicated 

Viewpoint animation. A lack of a nuanced camera, stilted or 
arbitrary camera movements, and a lack of camera-specific 
vocabulary generally hinder X3D as a source for high quality 
rendered video. First-class camera capabilities are needed in 
X3D. We propose a Camera node to include: camera movement, 
movement sequencing, field of view (FOV), f-stop (and thus 
aperture) control, focal length, focus distance, and camera aim. 
Such capabilities can enable authors to duplicate, create, 
demonstrate and record sophisticated camera work in an X3D 
scene. 

2. OVERVIEW 
Many of the elements required for a Camera node already exist 
in other nodes within X3D. What is missing is a vocabulary to 
describe basic camera movements.  These are expressed 
generally in Figure 1 and extended to X3D in Figure 2. Many of 
these camera movements can be authored already in X3D, but 
doing so is complicated and their expression in X3D doesn’t 
correspond to concepts in the cinematic domain. While it is not 
our intention to teach cinematography, we do wish to provide an 
equal footing for X3D as a medium for high-quality camera 
work as applied to virtual still photography, real-time directed 
long-form content, and rendered-to-video 3D graphics. 

 
Figure 1.  Basic Camera Movements 
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Figure 2.  X3D Camera Node Dependencies Corresponding to Basic Camera Movements 

 

2.1 Design Goals 
Since X3D is extensible, the overarching design goal is to 
provide the author with simple Prototypes that express basic 
camera movements common in cinematography. Such 
prototypes can be repeatedly used without difficulty, and 
eventually considered as native X3D nodes.  
The physical properties of a camera and lens are often dictated 
by its geometry, i.e. aspect ratio, focal length, size, weight, f-
stop, et cetera. Similarly the physics of optics and the laws of 
motion have solidly constrained the tradition of visual 
storytelling: practical cameras and lenses can only move 
according to physical constraints. This is not to suggest that they 
are not interesting or innovative. On the contrary, one hundred 
years of exploration and practical application of cinematography 
ought to be respected and emulated. It might seem that these 
physical constraints are no longer relevant in virtual cameras. 
Even so, virtual cameras still need to behave in ways that we 
understand.  
Constraining and defining virtual cameras to emulate practical 
cameras is therefore another design goal. We wish to provide 
common vocabulary and understanding across these domains. 
Therefore a design goal for new camera nodes is to make X3D 
camera animation more repeatable and predictable enough to be 
used as a source for virtual imagery all defined in terms that 
filmmakers and photographers grasp. 

2.2 Use Cases 
We identify six basic use cases: invoke a single camera 
movement; invoke a series of camera movements, both 
simultaneous and sequential; the ability to match a single 

practical (real) camera movement for a single shot (e.g. camera 
instance); the ability to match a series of practical camera 
movements for a single photograph, single shot, or series of 
shots; and the ability to loop a series of camera movements.  
We also establish two views of time: a Continuous Time 
approach that corresponds to direct animation of the camera i.e. 
Interpolator/Chaser/Damper stream of events arriving via 
ROUTEs; or Duration Time approach that corresponds to the 
execution of one or more camera movement behaviors, each for 
a discrete time period in seconds. The Continuous Time 
approach can be practically beneficial for real-time X3D, while 
the Duration Time approach lends itself to creating shots for 
non-linear video editing of a timeline sequence as in film.  
Other potentially valuable use cases are machinima and 
previsualization of scenes in virtual sets. Machinima involves 
the creation of video from 3D games or applications.  
Previsualization is widely used in effects-driven feature films 
and feature-length animated films where 3D graphics are used as 
storyboards, informing planning and production with respect to 
camera position, blocking, set design and visual effects. 

3. CURRENT X3D FUNCTIONALITY 
Figure 2 summarizes current X3D node capabilities of interest 
for viewpoint animation and shows field interdependencies. 
It is helpful to remember that X3D scenes are fixed in place.  
User navigation around these scenes is either driven by user 
input or driven by placing the viewpoint under a Transform node 
that is then animated. In many ways Viewpoint nodes are like 
cameras already, often prepositioned by the scene author in 
locations and directions of interest. In combination with the 
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NavigationInfo node, they dictate how users interact with the 
X3D scene. It remains quite difficult for a user to navigate 
precisely and consistently enough to generate a ‘take’ for video 
suitable for the motivating use cases, however. The Viewpoint 
and NavigationInfo nodes do not provide enough information to 
perform off-line rendering of video, or even single-shot 
rendering of still images for digital photography. 
Several well-known problems persist with Viewpoint and 
NavigationInfo. Each set of nodes can be bound independently, 
making coordinated control difficult or impossible. Since users 
can select them from parent or subsidiary Inline scenes, it is not 
possible for an author to strictly control view-based navigation 
without turning off all related nodes and disabling navigation 
entirely. Furthermore, there is no way to interrogate the Scene 
Access Interface (SAI) to determine which of many candidate 
nodes are currently bound, to interrogate current viewpoint 
location and direction, etc.  
More than just enabling a ‘magic carpet ride’ viewpoint, a 
combined, coherent approach to viewing and navigation is 
needed in order to meet the needs of many common author 
intentions and to allow for proper cinematic camera control. 

3.1 Traditional X3D View Animation 
In order to animate (i.e. reposition and orient) a Viewpoint in 
X3D, it is necessary to ROUTE values to either or both of the 
position and orientation fields by using interpolator-ROUTE 
mechanisms. One must always be careful that these are animated 
in tandem, since moving the Viewpoint in XYZ space can easily 
point it astray. This painstaking method works, but it requires 
attention to detail and a sound conceptual grasp of the 3D 
motion you intend to portray. There are also multiple linkages 
that must be maintained throughout such a scene. The same can 
be said of animation by the Transform node above a Viewpoint 
node. Practically, this method often results in overly simple 
camera movements, static camera positions or, even worse, 
default Viewpoints only. Expert users can often generate 
compelling Viewpoint movements using free navigation, but 
these movements are not easily repeated. They rely on expert 
user skills peculiar to the browser being used, not on author 
intent. Example X3D implementations that generalize such 
approaches are the ViewpointSequencer and Animated 
ViewpointRecorder prototypes in the Tools/Authoring section of 
the Savage X3D model archive. 

4. CAMERA NODE DESIGN 
Most of the functionality needed for an X3D camera node is 
already present in Viewpoint, NavigationInfo, TimeSensor, and 
the interpolator nodes (Position, Orientation and Scalar). 
Camera prototype construction is mostly a matter of correctly 
connecting them. This technical task is complicated somewhat 
by the artistic requirements of camera work, since most 
cinematic camera movements use the patterns of Figure 1. 
Viewpoint contains two essential fields: position and orientation. 
NavigationInfo provides visibilityLimit (farClippingPlane) and 
the first field from Avatar Size (nearClippingPlane). Still, 
purposefully positioning and orienting a camera in X3D is hard. 
We refactor information already present to simplify camera 
placement so that cinematic effects can be achieved. Figure 2 
maps common camera movements to their respective X3D 
attributes. This correspondence helps to match the lexicons of 
cinematography and directing camera movements. Given an 

understanding of this vocabulary, these new camera nodes are 
designed so that such movements can be accomplished directly. 

4.1 Camera Aim 
Currently in X3D there is no direct concept of camera aim, 
whereby one translates a viewpoint and it automatically 
calculates the orientation required to keep looking at the object 
of intent. Some browsers include this functionality as a user aid 
to navigation, but it is not well specified and not universally or 
consistently implemented. By exposing camera aimPoint, the 
correct orientation is computed so that the camera continues to 
point in the direction intended (aimVector). Pan and Tilt without 
camera aim is also allowed. Pan and Tilt with camera aim is 
actually a camera Track, even if one or both are moving. Non-
tracking and tracking camera movements in sequence are 
allowed in cinematography, especially in documentary style 
(though not always in an artistically effective fashion). The 
aimVector is outputOnly and is provided as a calculated vector 
so that supplementary animation scripting can avoid quaternion 
mathematics. It is related to aimPoint, but is not directly 
manipulated. The X3D Follower component also has appeal for 
animating aimPoint.  This camera-animation design enables 
authors to set a goal aimPoint in sequential camera Movements.  
Such an approach is much easier than simultaneously trying to 
translate a Viewpoint while orienting it in a specific direction. 

4.2 Camera upVector 
In addition to providing camera aim, we include an UpVector 
that allows the camera to be constrained so that camera 
movements do not generate new camera rotations that are 
unnecessary or undesirable. Certain camera movements such as 
Track, Tilt and Tumble generate UpVector changes that are used 
to constrain the roll, pitch and yaw of the camera. Generally, it 
is desirable to keep the Camera upVector in the Cartesian 
quadrants I and II, even when doing a Tumble, as this keeps the 
‘world’ right-side-up. 

4.3 Non-Motion Lens Adjustments 
Two important motionless camera movements correspond to 
Field-of-View (FOV) and Depth-of-Field (DOF) lens 
adjustments. Both fields can be modified simultaneously with 
other movements of the camera itself. Moving the focal plane 
towards the camera is known as “Pulling Focus”, while moving 
it away from the camera is known as “Pushing Focus.”  
Cinematographers often use this device (perhaps subtly) to 
direct viewer attention to a desired element in the scene. 

4.3.1 Field of View (FOV) 
FOV corresponds directly with the physical property of a lens 
focal length.  In X3D, a smaller FOV effectively zooms the lens; 
a larger FOV has the practical effect of a wide-angle lens. 
Moving the viewpoint closer, while increasing the FOV creates 
a fish-eye distortion. See Figure 3. 
 

 
Figure 3.  Savage model of 747 aircraft seen from 25M with  

FOV 1.57 (90°) and then less-distorted FOV 0.7853 (45°) 
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Careful FOV authoring usually prevents unwanted distortion, 
but it is conceivable that wide-angle lens distortions, which are 
commonly used in cinema, might purposefully be authored to 
convey a sense of fantasy or distorted reality. The classic camera 
movement of dolly-zoom (dolly the camera away at the same 
rate the lens is zoomed in) is an example of this distorted reality 
used for dramatic effect. Emulation of other practical lens 
distortions remains interesting and appears to be feasible using 
FOV and DOF animation effects. 

4.3.2 Depth of Field (DOF) 
Depth-of-Field (DOF) is defined to be the area enveloping the 
focal place in an optical lens system within which objects retain 
a definitive focal quality [Scofield 1992]. As in many 
approaches to 3D graphics, it has no immediate corresponding 
X3D attribute, since the virtual 3D graphics camera is idealized 
so that there is only a single path for light to travel from the 
scene to the viewer [Demers 2004]. The blur associated with a 
real lens is therefore approximated and called the “Circle of 
Confusion” [Potmesil 1982]. There are multiple generally 
recognized methods for this approximation: distributed traced 
rays across the surface of a (nonpinhole) lens [Cook et al. 1984]; 
accumulated buffer technique [Haeberli and Akeley 1990]; 
rendering multiple layers [Scofield 1994]; forward-mapped z-
buffer techniques [Potmesil and Chakravarty 1981]; and reverse-
mapped z-buffer techniques [Arce and Wloka 2002, Demers 
2003].  A new method utilizes graphics card programmability: 
anisotropic filtering using partial differential equations, which 
may be particularly attractive because it is optimized for real-
time rendering and does not suffer from many of the artifacts of 
previous methods [Bartalmio et al. 2004]. 
 

5. X3D CAMERA NODE SIGNATURES 
The Camera node contains Shot and Movement nodes, each 
carefully combined with camera-specific information required to 
deliberately render a scene. A camera Movement is atomic and 
can be used to assemble a Shot of one or more Movements. A 
Shot has a start and an end, and so multiple Shots can be 
sequenced to animate the full action in a scene. It logically 
follows that Shot duration is the sum of the durations of each of 
its constituent Movements, and similarly a Camera’s duration is 
the sum of the contained Shot durations. The Camera node and 
its dependent nodes supply all the necessary information and 
map quite nicely to existing X3D interpolators and associated 
nodes. It should be noted that the X3D Camera node is used for 
author-directed rather than user-interactive viewing of the scene, 
and may also serve as a recording camera for off-line 
photographic or video rendering of a scene. When the Camera 
node is bound, all other types of Navigation (EXAMINE, 
WALK, FLY, etc.) and other Viewpoints are disabled. 

5.1 Movement Node 
There are two possible approaches to implementing a Shot: each 
camera Movement gets its own interpolators, TimeSensor clock 
and ROUTEs; or else all child Movement interpolations are 
together aggregated into a single Shot animation, constructing a 
single set of interpolators, Time Sensor and ROUTEs to run 
them. The second approach is most appealing since it simplifies 
the computation of values, can be repeated for each Shot, 
reduces the complexity of animating ROUTEs, and allows for 
the Duration Time approach.  

For complex camera animation, multiple camera Shots and 
Movements can be authored individually, making series of Shots 
easier to author. Even complex Shots can be split into individual 
Movements with initialization parameters and goal parameters. 
Movements can be strung together so the camera follows a path, 
and shots can be constructed so that they cut from one to 
another. In video editing, a ‘jump cut’ is a sequential shot of the 
same subject where the camera moves only slightly between 
cuts. The general rule is that the camera move at least 30 
degrees between shots. This is easily accomplished with the 
X3D Camera node by making sure the initialPosition in the 
subsequent Shot is sufficiently far away from the prior action. 
Each node is presented in order from simplest to most complete. 
The proposed Movement node signature is shown in Figure 4. 

 
Figure 4.  Proposed X3D Movement Node Signature 

 

5.2 Shot Node 
The Shot node has two modes: tracking and non-tracking. See 
Figure 2 for a comparison of the node inputs and responses. 
When ‘tracking’ is true, the author can change the camera 
position and aimPoint, but the camera’s orientation is calculated 
automatically by computing orientation values that align to 
direction vector between the camera position and aimPoint.  The 
initialOrientation is set, but subsequent camera orientations are 
calculated to keep the camera pointing at the aimPoint. 
In non-tracking mode, the author can either specify 
goalOrientation (as in a tilt or pan) or else ignore orientation 
altogether by moving the camera (as in a dolly). In every case, 
since all the characteristics at each time step are known, the 
appropriate arrays are built as the keyValue in a traditional 
interpolator and the key is calculated in proportional time steps 
over the range (0..1).  See Figure 5. 
 

 
Figure 5.  Calculation of Key Array in X3D Camera Node 

 
The proposed node signature for Shot is shown in Figure 6. 
 
 

Movement : X3DChildNode 
description SFString inputOutput  Descriptive summary     
enabled SFBool inputOutput value=true  Whether node is active    
duration  SFFloat inputOutput value=0         Duration in seconds for 
    this move    
goalPosition SFVec3f inputOutput value=0 0 10 Goal camera position 
     for this move    
goalOrientation       SFRotation  inputOutput value=0 0 1 0 Goal camera 
rotation  
    for this move    
goalAimPoint SFVec3f inputOutput value=0 0 0 Goal aimPoint for this move
     ignored if 
tracking=false    
goalFieldOfView  SFFloat inputOutput value=0.7854 Goal fieldOfView  
    for this move    
goalFStop SFFloat inputOutput value=5.6 Goal focal length divided by 
     effective aperture diameter,  
     indicating focal plane  width 
goalFocusDistance  SFFloat  inputOutput value=10 Distance to focal plane  
    of sharpest focus    
isActive         SFBool outputOnly      start/stop yields true/false, 

                           useful to trigger external 
animations   
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Figure 6. Proposed X3D Shot Node Signature 

 

5.3 Camera Node 
Since we have taken a hierarchical approach to the Camera node 
construction, the Camera node itself contains only summary 
information about camera movement.  Exposure of the position 
and orientation fields permits direct animation of Camera 
posture by external animation nodes.  Binding a Camera node 
unbinds any bound Viewpoint, OrthoViewpoint or 
NavigationInfo node. 

 
Figure 7. Proposed X3D Camera Node Signature 

 
The Camera node describes the initialization state of the camera 
and provides parameters important to the Shot and Movement 

constructions. Some of these parameters might change during 
the Shot or Movements, while others might not. Timing 
parameter totalDuration is calculated by summing the 
shotDuration of each contained Shot, which in turn is the sum of 
duration values for each contained Movement. There may be 
multiple Camera nodes, each computing independent 
totalDuration values. 

5.4 Scripting and Advanced Techniques 
5.4.1 Shaders for DOF Animation 
As stated before, Camera animations are constructed from 
discrete Camera Movements, interpolators and ROUTEs. 
Internal Camera implementation functionality simply steps 
through the mechanics of interpolator construction. DOF is more 
complex and can have many implementations. Nevertheless, 
since the bindings from X3D to OpenGL Shading Language 
(GLSL), Microsoft High Level Shading Language (HSLS) and 
nVidia Cg shading language are well understood and supported 
by the X3D Specification, application of relevant algorithms 
appears to be feasible.  This paper surveys various techniques, 
but implementation and evaluation remain as future work. 

Animating the fieldOfView appears to be easier, though 
probably not as dramatic an effect. Since the focal length of the 
lens is approximated through the fieldOfView parameter and we 
do not consider the optical properties of the physical lens in its 
determination, an author might emulate a zoom effect by simply 
dollying the camera closer to the aimPoint. Zooming by 
increasing the fieldOfView attribute has the (possibly 
unintended) consequence of distortion. 

5.4.2 X3D Follower Component for Animation 
X3D nodes in the Follower component enable authors to 
dynamically create parameter transitions at run time by 
receiving a destination value, from which a set of smooth 
transition values is computed going from the current value 
towards the newly set destination value.  These nodes can be 
considered direct, smoothed substitutes for interpolator nodes. 
PositionChaser and PositionDamper correspond to 
PositionInterpolator. OrientationChaser and OrientationDamper 
correspond to OrientationInterpolator.  ScalarChaser 
corresponds to ScalarInterpolator for animating DOF and FOV.  
Followers might be applied in several possible ways.  The 
Camera point of view might chase an author-defined list of 
waypoints and orientations, or the camera aimPoint might chase 
a target as it moves. Thus it appears that the Follower nodes are 
well suited for camera and subject animation. 

6. OfflineRender Node 
Historically, X3D authors who want to record a video or take a 
snapshot must run separate screen-capture software while the 
user interacts with the X3D scene. This approach requires that 
the bound Viewpoint node be manipulated by the user or 
animated by the author.  

Since camera shots and movements are well defined, the 
OfflineRender node is designed to provide the additional 
information needed to directly render movies or still images 
with complete precision. Previously, there simply was not 
enough information in an X3D scene to perform offline 
rendering satisfactorily. Rendering movement by movement and 
shot by shot (plus perhaps camera by camera) all corresponds 
nicely to how practical cameras work and how films are made. 

Camera : X3DBindableNode 
<!-- Viewpoint-related fields -->  
  Description SFString inputOutput       Descriptive summary    
  position SFVec3f inputOutput  value= 0 0 10 Camera position    
  orientation  SFRotation inputOutput  value= 0 0 1 0 Camera rotation    
  fieldOfView  SFFloat inputOutput  value= 0.7854 pi/4    
  set_bind       SFBool inputOnly    
  bindTime     SFTime outputOnly    
  isBound       SFBool outputOnly 
    
<!-- NavigationInfo-related fields -->  

nearClipPlane SFFloat inputOutput                                 Vector distance to near 
clipping plane 

  farClipPlane  SFFloat inputOutput                                 Vector distance to far clipping 
plane    
  headLight SFBool inputOutput  value= true  Camera headLight on or off  
<!-- Camera-unique fields --> 
  shots  MFNode  inputOutput  value=NULL  Array of Shot nodes, which 

    contain Movement 
nodes  

  headLightColor SFColor  inputOutput  value=1 1 1 Camera headLight color    
filterColor SFColor  inputOutput value=1 1 1 Camera filter color to  
    modify virtual lens capture    
aimPoint SFVec3f  inputOutput  value=0 0 0 Relative location for  
     camera direction    
upVector SFVec3f inputOutput  Any changes modify  
    camera orientation  
fStop SFFloat  inputOutput  value= 5.6 Focal length divided by effective 
             aperture diameter indicating width of focal 

plane    
 
focusDistance SFFloat  inputOutput  value= 10 Distance to focal plane of 
    sharpest focus    
isActive SFBool outputOnly       start/stop yields true/false, 
     useful to trigger external  
    animations    
totalDuration SFTime outputOnly       Total duration of contained,  
    enabled Shot durations 

<!-- Offline rendering parameters -->  
  offlineRender      MFNode inputOutput value=NULL  OfflineRender node(s) 

Shot : X3DChildNode 
description SFString inputOutput value=”” Descriptive summary 
enabled SFBool inputOutput value=true  Whether node is activated    
tracking  SFBool inputOutput value=true  Whether or not camera is  
    tracking aimPoint, fixed for the 
    conduct of this shot   
moves MFNode inputOutput value=NULL  Set of Movement nodes    
initialPosition  SFVec3f inputOutput value=0 0 1  Setup to reinitialize camera  
    position for this shot    
initialOrientation SFRotation inputOutput value=0 0 1 0 Setup to reinitialize camera  
    orientation  for this shot    
initialAimPoint  SFVec3f inputOutput value=0 0 0 Setup to 
reinitialize aimpoint  
    (relative location for camera  
    direction) for this shot    
initialFieldOfView SFFloat  inputOutput  value=0.7854 pi/4    
initialFStop SFFloat  inputOutput    value=5.6 Focal length divided by 
    effective  aperture diameter  
    indicating width of focal plane    
initialFocusDistance SFFloat inputOutput value=10 Distance to focal plane of  
    sharpest focus    
shotDuration  SFTime outputOnly  Subtotal duration of contained  
    Movement move durations    
isActive SFBool outputOnly  start/stop yields true/false, 

     useful to trigger external  
    animations 
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Figure 8. Proposed X3D OfflineRender Node Signature 

This capability satisfies an important use case. It now becomes 
easily possible to create a finished narrative using just the 
camera nodes and OfflineRender node, whereupon the X3D 
scene itself contains the motions needed to define camera work 
for a complete movie.  We further suppose that X3D scenes 
might be rendered for editing in post-production.  At that point, 
it becomes the video editor’s job to put video sequences together 
to form a narrative. Even for this use case, carefully constructed 
offline renders of X3D camera animation might greatly simplify 
the post-processing of video in Non-linear Video Editing 
systems and even 3D graphics compositing with live action. 

7. AN EXAMPLE SCENE 
We consider the common need to construct a scene using avatars 
driven by behavior engines, where the author only has a general 
idea of where they might be. Figure 9 shows how such a typical 
scene might be staged and described in X3D using Camera, Shot 
and Movement nodes. 
 

 
Figure 9.  Directing Scene Animations via Camera, Shot and Movement Nodes 

OfflineRender : X3DChildNode 
description SFString  inputOutput       Descriptive summary  
movieEnabled SFBool      inputOutput  value= true  Whether this OfflineRender of a 
     movie can be 
activated   
imageEnabled SFBool      inputOutput  value= true  Whether this OfflineRender  of an  
    image can be activated  
frameRate SFFloat     inputOutput  value=30  Frames per second recorded  
    for this rendering    
frameSize SFVec2f    inputOutput  value=640 480   Size of frame in 
number of pixels 
pixelAspectRatio SFFloat   inputOutput  value=1.33   Relative dimensions of pixel 
set_startTime SFTime      inputOnly  Begin render operation    
progress SFFloat     outputOnly       Progress performing render 
operation 

 (0..1)    
renderCompleteTime SFTime   outputOnly       Render operation complete    
movieFormat SFString   initializeOnly  value=  mpeg    Format of rendered output movie  

(mpeg, mp4, etc.)    
imageFormat SFString     initializeOnly  value=  png  Format of rendered output images 
moviePath  MFString   initializeOnly   [url] where rendered movies are written 
imapgePath  MFString   initializeOnly   [url]  where rendered images are written 
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8. FUTURE WORK 
The proposed Camera, Shot and Movement nodes for X3D 
simplify camera animation and support sophisticated DOF 
rendering.  They are, easily authored and applied for both real-
time and offline rendering. The proposed OfflineRender  node 
provides the information necessary to produce multiple format 
outputs in an offline mode.   
More work to produce numerous examples and establish good 
practices is needed to ensure that these capabilities are 
thoroughly designed and fully capable of meeting diverse 
authoring requirements.  We hope that implementation, 
evaluation and optimization provides a path towards eventual 
adoption as part of the X3D Specification. 
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Figure 10.  Depth of Field (DOF) Image Examples, Produced using Pixar's Renderman  
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