
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2005-10

Very large fractional factorial and central

composite designs

Sanchez, Susan M.

ACM

ACM Transactions on Modeling and Computer Sismulation (TOMACS), v.15, no.4, October

2005, pp. 362-377.

http://hdl.handle.net/10945/35894

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36728443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Very Large Fractional Factorial and Central
Composite Designs

SUSAN M. SANCHEZ and PAUL J. SANCHEZ
Naval Postgraduate School

We present a concise representation of fractional factorials and an algorithm to quickly generate
resolution V designs. The description is based on properties of a complete, orthogonal discrete-
valued basis set called Walsh functions. We tabulate two-level resolution V fractional factorial
designs, as well as central composite designs allowing estimation of full second-order models, for
experiments involving up to 120 factors. The simple algorithm provided can be used to characterize
even larger designs, and a fast Walsh transform method quickly generates design matrices from
our representation.

Categories and Subject Descriptors: G.3 [Probability and Statistics] —Experimental design; Sta-
tistical computing

General Terms: Experimentation, Theory

Additional Key Words and Phrases: Design of experiments, Walsh functions, simulation
experiments

1. INTRODUCTION

Factorial and fractional factorial designs have long been the mainstay of in-
dustrial experimentation. Two-level designs provide high power for testing
or estimating linear effects, while fractional factorials allow this to be ac-
complished with fewer observations if higher-order interactions can be as-
sumed to be negligible. Typically, only a handful of factors are dealt with
in practice. Half-fractions are easy to construct, but few resolution V (R5)
fractional factorial designs are readily available. For example, the largest
resolution V fractional factorial in Montgomery [2000] is a 210−3, while
Box et al. [1978] and NIST/SEMATECH [2005] provide a 211−4. Fractional

This work supported in part by the Marine Corps Warfighting Laboratory’s Project Albert.
Authors’ address: Naval Postgraduate School, 1411 Cunningham Rd., Monterey, CA 93943; email:
{ssanchez, PaulSanchez}@nps.edu.
c©2005 Association for Computing Machinery. ACM acknowledges that this contribution was au-

thored or co-authored by a contractor or affiliate of the [U.S.] Government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1049-3301/05/1000-0362 $5.00

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005, Pages 362–377.



Very Large Fractional Factorial and Central Composite Designs • 363

factorial designs are typically specified in terms of the so-called generators,
which indicate how certain effects are confounded (aliased) with others. While
it is easy to verify the confounding structure of a particular design, guidance
such as “be careful in choosing the generators so that potentially important
effects are not aliased with one another” [Montgomery 2000] does not indicate
how appropriate generators can be easily and systematically selected for larger
designs.

With advances in computing technology, experiments involving computer
simulation have become more widespread. Many of the constraints on physical
experiments, such as the number of factors that can be examined and controlled,
need not be restrictions in the simulation setting; analysts can investigate hun-
dreds or even thousands of factors, rather than restricting experiments to less
than a dozen factors [Kleijnen et al. 2005]. Additionally, elements of the simula-
tion model, such as the choices of distributions and their parameters, are often
matters of uncertainty which may impact the system performance [Schruben
et al. 1992; Chick 2001; Zouaoui and Wilson 2004; Kleijnen et al. 2005], and
should be included as factors in designed experiments. Experimental designs
capable of handling a large number of factors are therefore of considerable
interest.

Screening experiments, in which an analyst seeks to identify a subset of
the original factors that have significant main effects, are one approach. Some
screening techniques can be conducted in a single stage, such as resolution
III fractional factorials. Others, such as sequential bifurcation [Bettonvil and
Kleijnen 1997; Wan et al. 2005] are sequential in nature; they offer potential
for substantial reductions in the total sampling effort, but require assumptions
such as a priori knowledge of the signs of any main effects. Screening exper-
iments can also be used as the first stage in a series of experiments, where
later stages may involve higher resolution designs. One drawback of such ap-
proaches is that factors may be excluded from further consideration that have
significant impact in the form of interactions. To avoid this error, we must use
designs that permit evaluation of interactions as well as main effects. However,
including all possible interactions leads to explosive growth in the number of
design points.

We make use of discrete-valued Walsh functions as a concise way to describe
and generate factorial and fractional factorial designs. A two-level factorial or
fractional factorial design can be specified using the indices of the Walsh func-
tions. The designs can be generated easily from this representation, so large
tables are unnecessary. We begin with a brief description of Walsh functions
and a Walsh representation for full factorials. We then provide a simple search
algorithm for generating fractional factorials, and tabulate Walsh representa-
tions for highly-fractionated resolution V fractional factorial (R5 FF) designs
involving up to 120 factors in a 2120−105 design. These increase the number of
factors by an order of magnitude over the standard sources [Box et al. 1978;
Montgomery 2000; NIST/SEMATECH 2005], and our method readily extends
to designs involving more than 120 factors. These R5 FF designs can also be
used as the basis for central composite designs for experiments that investigate
a very large number of factors.

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



364 • S. M. Sanchez and P. J. Sanchez

2. WALSH FUNCTIONS

2.1 Overview

We provide a brief introduction to Walsh functions in this section. The interested
reader can learn more from a suitable reference, such as Beauchamp [1984].

For a fixed positive integer N (a power of two) and for i = 0, . . . , N −1, the ith
discrete Walsh function Wal(i, n) is defined on the domain {n : n = 0, . . . , N −1}
and takes the values +1 or −1. These can be used as column vectors of an N ×N
matrix. The resulting set of Walsh vectors forms a complete orthogonal basis
for N -dimensional Euclidean space.

Three index sets are available, known as the sequency, dyadic, and
Hadamard orderings [Beauchamp 1984]. Note that the alternative index sets
are just structured reorderings; they do not yield different functions. Regardless
of which ordering is used, all three obey the Walsh multiplication identity

Wal(i, n)Wal( j , n) = Wal(i ⊕ j , n) for all n, (1)

where ⊕ denotes bitwise exclusive-OR of the integers i and j . For example,
i = 6 = 1102, j = 5 = 1012, and 1102 ⊕ 1012 = 0112 = 3, so Wal(6, n)Wal(5, n) =
Wal(3, n). The ⊕ operator is associative. It is easy to confirm that i ⊕ i = 0 and
i ⊕0 = i for all i. From these properties it follows that i ⊕ j1 = i ⊕ j2 if and only
if j1 = j2.

We will use the Hadamard ordering because of several nice properties. First,
Hadamard ordered Walsh functions are very easy to generate in matrix form
using a simple recurrence relationship. If we adopt the convention that Hm is
the Hadamard ordered matrix of dimension (2m × 2m), then

H0 = (1) and Hm+1 =
(

Hm Hm
Hm −Hm

)
. (2)

Clearly, Hm is a square, symmetric matrix of dimension 2m × 2m = N × N . For
notational convenience, let h0, h1, . . . , hN−1 denote the columns of Hm. Note
that the elements of hi are Wal(i, 0), . . . , Wal(i, N − 1).

Let Y and ! be column vectors of dimension 2m that constitute a trans-
form pair with respect to Hm; that is, Y = Hm! and ! = H−1

m Y . Then
the least squares estimator for ! is !̂ = (H ′

m Hm)−1 H ′
mY , which simplifies to

!̂ = 2−m H ′
mY because the columns of Hm are all mutually orthogonal and the

individual matrix elements are all ±1. Since the problem is of full rank (with
no degrees of freedom for error), !̂ = !. Also note that since the recurrence
relation is symmetric, so is Hm: H ′

m = Hm for all m ≥ 0. This means that the
transform pair can be represented as

Y = Hm!; ! = 2−m HmY .

As noted earlier, the algebraic solution is ! = H−1
m Y , so H−1

m = 2−m Hm. In
other words, the Hadamard-based Walsh transformation ! = 2−m HmY is its
own inverse to within a scale constant of 2−m.

There exist Fast Walsh Transforms (FWTs) similar to the more familiar Fast
Fourier Transform (FFT) [Beauchamp 1984]. We will not discuss details of the

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



Very Large Fractional Factorial and Central Composite Designs • 365

FWT algorithm, other than to note it is mathematically equivalent to mul-
tiplying the vector of inputs of dimension 2m by 2−m Hm. We provide a Java
implementation [Sanchez and Sanchez 2005] of the Hadamard ordered FWT in
the Appendix.

As an example, when N = 8 (= 23) we get

H3 =





1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1





,

composed of column vectors h0, . . . , h7 from left to right. It is easy to confirm
that the matrix is symmetric, the columns are all mutually orthogonal and have
norm 23, and that the row-wise product for any pair of columns obeys the Walsh
multiplication identity.

2.2 Full Factorial Designs

A concise representation of factorial and fractional factorial designs is simply
the total number of points N , together with a list of Walsh index assignments
that match the factors to appropriate hi ’s. One way (though not a unique way)
to represent full factorials involving k factors is:

assign X j to column hij where i j = 2 j−1 for j = 1, . . . , k. (3)

Throughout the remainder of this article, the phrase “assign Walsh index i j to
factor X j ” is used to indicate such an assignment.

The design generated by (3) follows a different ordering than the standard
presentation for factorials, but there is a one-to-one correspondence [Sanchez
et al. 2002]. Table I shows an analysis matrix for a 23 factorial and the matrix
of Walsh functions with indices 1–7 when N = 8. Note that, in this case, the
Walsh Hadamard representation is found by reversing the row index of the
classical design.

The Walsh index ordering also makes it easy to determine which indices
correspond to specific interactions via the multiplication identity. For example,
the h1h2 interaction occurs at h1⊕2 = h3 (Table I).

We remark that Hadamard matrices have previously appeared in the ex-
perimental design literature. For example, Chen et al. [1993] investigate non-
isomorphic fractional factorials involving 16-run, 32-run, and 64-run designs;
they mention that the resulting 2k−p factorials can be viewed as submatri-
ces of Hadamard matrices. Hedayat et al. [1999] have a chapter describing
the mathematical properties of Hadamard functions and their relationship to
Galois fields. However, the special index structure of the Hadamard-ordered
Walsh functions has neither been remarked upon nor been exploited. In the
next section, we present a general method for constructing and analyzing very
large, highly-fractionated R5 FF designs. Our method is extremely efficient,

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



366 • S. M. Sanchez and P. J. Sanchez

Table I. 23 Factorial Design Representations

Standard Representation

Design Term

Point X 1 X 2 X 3 X 1 X 2 X 1 X 3 X 2 X 3 X 1 X 2 X 3
1 − − − + + + −
2 + − − − − + +
3 − + − − + − +
4 + + − + − − −
5 − − + + − − +
6 + − + − + − −
7 − + + − − + −
8 + + + + + + +

Walsh Hadamard Representation

Design Index:Term

Point 1:X 1 2:X 2 3:X 1 X 2 4:X 3 5:X 1 X 3 6:X 2 X 3 7:X 1 X 2 X 3
1 + + + + + + +
2 − + − + − + −
3 + − − + + − −
4 − − + + − − +
5 + + + − − − −
6 − + − − + − +
7 + − − − − + +
8 − − + − + + −

easy to use, and—unlike other construction methods—allows for a concise rep-
resentation of the complete information needed to generate the designs.

3. LARGE DESIGNS

3.1 Representation

The Walsh index ordering provides a concise representation of factorial or frac-
tional factorial experiments. One need only specify N (a power of 2) and Walsh
indices from among { j , . . . , N − 1} to assign to the k < N factors. Note that h0
always estimates the mean effect. The assignments in (3) yield a full factorial
design if N = 2k , and a replicated full factorial if N = 2k+b for some b > 0.

3.2 Fractional Factorial Designs

Notationally, a 2k−p fractional factorial means that k factors are examined,
each at two levels, in a total of 2k−p design points. A nearly-saturated reso-
lution III (R3) 2k−p fractional factorial can be obtained for any k < 2k−p as
follows:

assign Walsh index j to factor X j for j = 1, . . . , k. (4)

In fact, any set of k distinct indices {i1, . . . , ik} ∈ {1, . . . , 2k−p − 1} is a valid
assignment; the design is saturated if k = 2k−p − 1.

However, if the analyst wishes to be able to estimate all two-way interactions
from the data, then an R5 FF or higher-resolution design is necessary. We
propose a concise, recursive search algorithm, and show it can be used to identify

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



Very Large Fractional Factorial and Central Composite Designs • 367

Fig. 1. Algorithm for generating 2k−p resolution V fractional factorial designs.

R5 fractional factorial designs. The algorithm is provided in Figure 1, followed
by a description and illustration of how it works.

The recursive function Addfactor in Algorithm 1 takes four inputs. The con-
stants a and k indicate that the factors X a, . . . , X k are still awaiting index
assignments, the set A contains the valid index assignments for factors X j
with j < a (if any), and the set T contains the indices that correspond to the
two-way interactions X j1 X j2 such that j1, j2 < a and j1 (= j2. When Addfactor
is invoked, it will determine a valid index assignment for the first unassigned
factor (factor a) and update the sets A and T accordingly. Two conditions must
hold for a candidate index assignment to be valid:

1. It cannot be an index already associated with a two-way interaction among
two of the first a − 1 factors (candidate /∈ T ); and

2. no two-way interaction between one of the first a−1 factors and factor a can
occur at an index already associated with either a main effect or a two-way
interaction (i.e., candidate ⊕ i /∈ A ∪ T for all i ∈ A).

If the candidate index does not meet these two conditions, then its value is
incremented by one (the next index becomes the candidate) and the process is
repeated.

Once a valid index assignment is found for factor a, the set T is updated
to include indices corresponding to all two-way interactions among the first a
factors, and the set A is updated to include the index assignment for factor a.
If a = k then the algorithm terminates and the set A contains valid indices for

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



368 • S. M. Sanchez and P. J. Sanchez

all k factors. If a < k then the Addfactor function is invoked again, with inputs
indicating that factors {a + 1, . . . , k} are still awaiting index assignments, that
the (updated) set A contains indices assigned to the first a factors, and that
the (updated) set T contains the indices associated with two-way interactions
among the first a factors.

For illustrative purposes, we now step through the logic that Algorithm 1
uses to obtain the index assignments A for k = 5 factors. Algorithm 1 uses
set notation for the Walsh index assignments, so any one-to-one matching
of X 1, . . . , X k to the k Walsh indices in A creates a valid design. However,
for ease of exposition we use the convention that the Walsh index assign-
ments for X 1, X 2, . . . , X 5 satisfy i1 < i2 < . . . < i5; this corresponds to the
sequence in which the indices of A are determined. No such ordering oc-
curs as Walsh indices corresponding to the two-way interactions are added to
T .

1. Initialize A and T to the empty set ∅.
2. Invoke the function Addfactor(1, 5, ∅, ∅). This seeks index assignments for

factors 1 through 5, beginning with factor 1. The first candidate index is
0 + 1 = 1, and this is (trivially) a valid index assignment for factor 1. The
set T remains unchanged, and the set A ← {1}.

3. Invoke the function Addfactor(2, 5, {1}, ∅). This seeks index assignments for
factors 2 through 5, beginning with factor 2, given that factor 1 is assigned
to index 1. The first candidate index is 1 + 1 = 2, and this is (trivially) a
valid assignment for factor 2. Update T to include the two-way interaction
between factors 1 and 2, which occurs at Walsh index 1 ⊕ 2 = 3. The set
A ← {1, 2}.

4. Invoke the function Addfactor(3, 5, {1, 2}, {3}). This seeks index assignments
for factors 3 through 5, beginning with factor 3, given that factors 1 and 2
are assigned to indices 1 and 2, respectively (and their interaction occurs at
index 3). The first candidate index is 2 + 1 = 3, which is not an acceptable
assignment since 3 ∈ T . The next candidate index is 4. Since 4 /∈ T , the
main effect for factor 3 will not be confounded with the two-way interaction
between factors 1 and 2. The X 1 X 3 interaction would occur at 1 ⊕ 4 = 5
and the X 2 X 3 interaction would occur at 2 ⊕ 4 = 6; since neither of these
indices are in A ∪ T = {1, 2, 3} then this assignment is acceptable. Update
T ← {3, 5, 6} and A ← {1, 2, 4}.

5. Invoke the function Addfactor(4, 5, {1, 2, 4}, {3, 5, 6}). This seeks index as-
signments for factors 4 and 5, beginning with factor 4, given that factors 1
through 3 are assigned to indices 1, 2, and 4, respectively (and their two-
way interactions occur at indices 3, 5, and 6). The candidate indices 5 and
6 are not acceptable since they are already in T . The candidate index 7 is
not acceptable, since the X 1 X 4 interaction would occur at 1 ⊕ 7 = 6 and
this is already in T . For the candidate index 8, the X 1 X 4 interaction would
occur at 1 ⊕ 8 = 9, the X 2 X 4 interaction would occur at 2 ⊕ 8 = 10, and the
X 3 X 4 interaction would occur at 4 ⊕ 8 = 12. This is acceptable, so update
T ← {3, 5, 6, 9, 10, 12} and A ← {1, 2, 4, 8}.

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



Very Large Fractional Factorial and Central Composite Designs • 369

6. Invoke the function Addfactor(5, 5, {1, 2, 4, 8}, {3, 5, 6, 9, 10, 12}). This seeks
an index assignment for factor 5, given that factors 1 through 4 are assigned
to indices 1, 2, 4, and 8, respectively (and their two-way interactions occur
at indices 3, 5, 6, 9, 10, 12). The candidate indices 9 and 10 are already in
T so they are not acceptable. The candidate index 11 is not acceptable since
the X 2 X 5 interaction would occur at 2 ⊕ 11 = 9 and 9 ∈ T . Index 12 is
not acceptable since it is already in T , index 13 is not acceptable since the
X 1 X 5 interaction would occur at 1⊕13 = 12, and index 14 is not acceptable
since the X 2 X 5 interaction would occur at 2 ⊕ 14 = 12. For the candidate
index 15, the X 1 X 5, X 2 X 5, X 3 X 5, and X 4 X 5 interactions would occur at
1 ⊕ 15 = 14, 2 ⊕ 15 = 13, 4 ⊕ 15 = 11, and 8 ⊕ 15 = 7, respectively.
None of these indices is in either A or T , so this is a valid assignment.
Update T ← {3, 5, 6, 9, 10, 12, 14, 13, 11, 7} = {3, 5, 6, 7, 9, 10, 11, 12, 13, 14}
and A ← {1, 2, 4, 8, 15}. The resulting A is the experimental design for k = 5
factors.

Let Ak = {i1, . . . , ik} denote the set of indices assigned to the k factors by
Algorithm 1, and let Tk = {i ⊕ j : i, j ∈ Ak , i (= j } denote the set of indices
corresponding to two-way interactions of the k factors. As Theorem 3.2 shows,
this algorithm creates R5 designs.

PROPOSITION 3.1. If the set of index assignments Ak yields an R5 design for
N = 2m, then Ak also yields an R5 design for N = 2m+1.

PROOF. From (2), the column h∗
i of the Hadamard matrix Hm+1 is of the form

(h′
i, h′

i)
′ if i < 2m. Note that i < 2m for all i ∈ Ak . The columns {h∗

i : i ∈ Ak}
correspond to two replications of the original R5 design, so the result remains
an unconfounded R5 design.

Proposition 3.1 is used in the proof that follows.

THEOREM 3.2. If k is a positive integer denoting the number of factors, then
Algorithm 1 yields a two-level, resolution V factorial or fractional factorial de-
sign with N = 2k−p design points for some nonnegative integer p.

PROOF (BY INDUCTION ON k). Assume Algorithm 1 has constructed a valid fac-
torial or fractional factorial design for k factors (indices {i1, . . . , ik}) with Nk
design points, but we seek a design for k + 1 factors. Let ik+1 denote the index
assigned to factor k + 1 by Algorithm 1, and define imax = max{i : i ∈ Ak}.
Algorithm 1 tests potential indices imax + 1, imax + 2, . . . until it can assign an
index ik+1.

Case 1: Suppose Algorithm 1 assigns an index ik+1 < Nk to factor k + 1. This
occurs only if (i) ik+1 /∈ Ak ∪ Tk , and (ii) ik+1 ⊕ i j /∈ Ak ∪ Tk for all j ≤ k.
So, if ik+1 < Nk then, by construction, Ak+1 will also be a R5 design
with Nk design points.

Case 2: Suppose that Algorithm 1 does not find a valid index ik+1 < Nk to assign
to factor (k + 1). We show that a valid design exists with Nk+1 = 2Nk .
From Proposition 1, Ak is still a valid assignment for factors 1, . . . , k.
The next index checked by Algorithm 1 is ik+1 = Nk = 2m. From basic

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



370 • S. M. Sanchez and P. J. Sanchez

Table II. Walsh Index Assignments for Resolution V Fractional Factorials

# # Design
Factors Points Walsh index assignments
1 2 1
2 4 2
3 8 4
4–5 16 8 15
6 32 16
7–8 64 32 51
9–11 128 64 85 106
12–17 256 128 150 171 219 237 247
18–21 512 256 279 297 455
22–29 1,024 512 537 557 597 643 803

863 898
30–38 2,048 1,024 1,051 1,070 1,112 1,169 1,333

1,345 1,620 1,866
39–52 4,096 2,048 2,076 2,085 2,185 2,372 2,456

2,618 2,800 2,873 3,127 3,284 3,483
3,557 3,763

53–69 8,192 4,096 4,125 4,135 4,174 4,435 4,459
4,469 4,497 4,752 5,255 5,732 5,804
5,915 6,100 6,369 6,907 7,069

70–92 16,384 8,192 8,263 8,351 8,422 8,458 8,571
8,750 8,858 9,124 9,314 9,500 10,026

10,455 10,556 11,778 11,885 11,984 13,548
14,007 14,514 14,965 15,125 15,554

93–120 32,768 16,384 16,457 16,517 16,609 16,771 16,853
17,022 17,453 17,891 18,073 18,562 18,980
19,030 19,932 20,075 20,745 21,544 22,633
23,200 24,167 25,700 26,360 26,591 26,776
28,443 28,905 29,577 32,705

properties of the ⊕ operator, and making use of the fact that i < 2m

for all i ∈ Ak , we know 2m < 2m ⊕ i < 2m+1 for all i ∈ Ak . From
(1), ik+1 ⊕ i /∈ Ak ∪ Tk for all i ∈ Ak . This means that interactions
between factor (k + 1) and all factors j ≤ k will not occur at previously
assigned indices. Also, from basic properties of the ⊕ operator, ik+1⊕i (=
ik+1 ⊕ j for all i (= j . Thus from (1), ik+1 ⊕ i (= ik+1 ⊕ j for every
i, j ∈ Ak with i (= j . In other words, all two-way interactions involving
factor (k + 1) and any of the first k factors occur at distinct Walsh
indices greater than 2m. It follows that Ak+1 ≡ Ak ∪ {2m} is an R5
design.

By inspection, if k = 2 then Algorithm 1 assigns indices 1 and 2 to factors 1 and
2, respectively, and returns a design with 4 design points (N2 = 22). The X 1 X 2
interaction will occur at index 1 ⊕ 2 = 3, and the result is an unconfounded full
factorial design. Together with Case 1 and Case 2, this proves the result.

Table II lists the resulting designs. To use this table, simply assign the first
k indices listed in the table to the k factors. For example, if k = 10 a 210−3 R5
FF consists of indices {1, 2, 4, 8, 15, 16, 32, 51, 64, 85}. Note that these 2k−p

designs have p > 0 for all k ≥ 5, yielding fractional factorial designs.

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



Very Large Fractional Factorial and Central Composite Designs • 371

The most efficient designs are those with the largest number of factors for
a given number of design points (e.g., k = 2, 3, 5, 6, 8, 11, 17, 21, 29, 38, 52,
69, 92, 120). With this list for reference purposes, Algorithm 1 is no longer
needed to identify any designs involving up to 120 factors. Note that by using
all 120 indices in this table with N = 32,768, we will construct a 2120−105 R5
fractional factorial. Clearly, Algorithm 1 yields efficient (highly fractionated)
designs even for very large k. It also yields a convenient method of assigning
indices to factors because a single list of assignments can be used: the design
for k factors (Ak) is a simple augmentation of the design for k − 1 factors. That
is, Ak = Ak−1 ∪ ik for some index ik .

Generating the designs from the set of indices is a straightforward task.
An FWT can be called repeatedly with vectors (0, ei(N − 1)) for i ∈ Ak , where
ei(N − 1) is an elementary vector of dimension 1 × (N − 1) with a one in the ith
location and zeroes elsewhere. The driver program for the FWT in the Appendix
takes as its input the number of factors, and determines the number of design
points Nk and the appropriate set of indices from Table II. It then generates
the ei columns, performs an FWT on them, and prints out the R5 FF design
in a format similar to Table I, suitable for implementation and analysis. It
takes only 0.2 CPU seconds on a 1.5GHz Mac PowerBook G4 to construct a
212−4 R5 FF and 36 CPU seconds to construct a 2120−105 R5 FF. For comparison
purposes, creating a custom design using the JMP-In software [SAS Institute
2004] on the same machine requires 60 seconds for a design involving 12 factors
in 28 = 256 design points, but the resulting design is not completely orthogonal;
it has pairwise correlations between ±0.0233, with the average |ρ| = 0.00838.
The number of low levels ranged from 125–131, and only three columns had
equal numbers of low and high levels. JMP took over 100 minutes to come up
with an 18 factor design in 512 runs (the same size as our smallest R5 FF),
but again it was not an orthogonal design: correlations ranged from −0.0158 to
0.0197, with the average |ρ| = 0.00606. The number of low levels ranged from
252 to 261, and only two columns had equal numbers of low and high levels.
Given the dramatic increase in time required and the lack of orthogonality, we
did not attempt to construct larger designs in JMP.

Once the response data (Y ’s) have been collected, then standard statistical
regression or analysis of variance software can be used to fit a model involving
all main effects and two-way interactions, and to identify which of these terms
are statistically significant. An equivalent analysis option is available when the
FWT is used to generate the design from the Walsh indices in Table II: taking
the FWT of the response vector Y yields coefficients which, when squared and
scaled by N = 2m, partition the total sum of squares into components SSi
attributable to the Walsh function i (i = 1, . . . , N − 1). The sum squared error
is

SSE = SStot −
∑

i∈Ak∪Tk

SSi,

where SStot denotes the usual total sum of squares for the given fractional
factorial experiment; see, for example, p. 231 of Box et al. [1978]. The ra-
tio SSi j /SSE can be compared to the critical value from a t distribution with

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



372 • S. M. Sanchez and P. J. Sanchez

Table III. Central Composite Design Sizes

# Factors # Design Pts # Factors # Design Pts # Factors # Design Pts
2 10 12 284 39 4,176
3 16 17 292 52 4,202
4 26 18 550 53 8,300
5 28 21 556 69 8,332
6 46 22 1,070 70 16,526
7 80 29 1,084 92 16,570
8 82 30 2,110 93 32,956
9 150 38 2,126 120 33,010

11 154

N −1− k(k+1)
2 degrees of freedom to test the null hypothesis of no main effect for

factor j . Similarly, the ratio SSi j ⊕ih/SSE can be used to test for an interaction
between factors j and h.

3.3 Central Composite Designs

The R5 fractional factorials of the previous section can be used as the basis for
forming central composite designs as well: the 2k−p R5 FF can be augmented
by the addition of 2k star points and one or more center points. We follow Box
et al. [1978] and use two center points so that all designs will have at least one
degree of freedom for estimating the error variance.

Using the coded levels, the center points have the form (X 1, . . . , X k) =
(0, . . . , 0), and the pairs of axial points have the form

±ce j (k) for j = 1, . . . , k

with values ±c at index i j and zeroes elsewhere. Common choices for c are c = 1
and c = k

1
2 . If c = 1, then these points occur on the faces of the k-dimensional

hypercube, and the design is called a face-centered central composite; if c = k
1
2

this design is said to be rotatable, which means it minimizes correlation among
the terms of a full second-order model [NIST/SEMATECH 2005].

Table III shows the total number of runs required for selected central com-
posite designs—representing the smallest and largest number of factors for
given N in the underlying R5 FF designs.

4. DISCUSSION

For certain values of k there are other R5 designs that require fewer runs than
those in Table II. For example, Mee [2004] describes an orthogonal array that
handles 47 factors with N = 2,048 runs instead of the N = 4,096 from Al-
gorithm 1. Hedayat et al. [1999] discuss generators and error-correcting code
methods that can be used to construct some R5 designs (which they call or-
thogonal arrays of strength 4) that involve k = 2m factors in N = 22m runs.
These can sometimes be more efficient than our designs when k = 2m, but since
our designs can use intermediate values of N for k (= 2m, neither method domi-
nates. For example, Hedayat et al. [1999] refer to a construction that yields R5
designs for 17 to 32 factors in 1,024 runs, and designs for 33 to 64 factors in
4,096 runs. Our designs are twice as large for k in the ranges 30–32 and 53–64,

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



Very Large Fractional Factorial and Central Composite Designs • 373

but they require the same number of design points for k in the ranges 22–29 or
39–52, half as many design points for k in the ranges 18–21, 30–38, or 65–69,
and one-fourth as many design points for k = 17.

Despite the existence of some more efficient designs for certain values of k,
our method has a distinct advantage because of the ease of constructing the de-
signs. Under 80 lines of code in the Appendix provide a method for generating
R5 FFs involving up to 120 factors—where the analyst need only specify k. This
code is also available online [Sanchez and Sanchez 2005]. Even without access
to our implementation of the FWT, we showed in Section 1 that it is easy to gen-
erate Hadamard matrices. It is then straightforward to create a R5 FF design
by selecting the set of columns specified in Table II. This is in stark contrast to
the methods we have found in our literature search, where descriptions of the
construction methods are complex. For example, when Hedayat et al. [1999,
Section 5.11] focus on designs involving fewer than 32 factors, they describe
multiple methods depending on the value of k. Mee’s [2004] description of a R5
design involving 64 factors in 4,096 runs requires the analyst to (i) construct
a 27 full factorial; (ii) for each of 32 blocks, augment the 27 factorial with 57
additional columns (one for each design generator, multiplied by −1 if the entry
in the 57 × 32 blocks by foldover matrix he provides is ‘−’); and (iii) stack the
32 augmented blocks to obtain a 4,096-run design. While none of these steps
is hard, there are many opportunities for errors to creep in if step (ii) is done
manually. We see the ease of constructing very large designs for general k as a
clear benefit of our approach.

Our initial interest in large designs was motivated by simulation experi-
ments, where the time to conduct an experiment does not depend solely on
the number of design points. Simulations are often characterized as having
hundreds or thousands of potential factors, important interaction effects, and
highly heterogeneous error variances (see, e.g., Law and Kelton [2000] and
Kleijnen et al. [2005]). Once an analyst recognizes that the assumption of a
common error variance may not be valid, the design must be replicated. This
provides more flexibility in the choice of design. For example, suppose an an-
alyst suspects that error variance is not constant across design points, has
an interest in estimating these variances, and has sufficient time or budget
for 215 = 32,768 runs. Partitioning this between the base design and repli-
cations yields several possibilities, ranging from 32 replications of a 229−19 to
2 replications of a 292−78. If the latter is chosen and, say, 70 factors are im-
portant as main effects or in interactions, then a smaller design would not
have sufficed. Conversely, if only 29 or fewer factors yield significant effects,
then the analyst can eliminate 63 or more factors from further considera-
tion and treat the data as 32 replications of a 229−19. In short, large R5 frac-
tional factorials can be viewed as screening designs where interactions are of
interest.

5. CONCLUSIONS

We have provided a concise representation for resolution V fractional facto-
rial designs involving up to 120 factors, and a simple algorithm for generating

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



374 • S. M. Sanchez and P. J. Sanchez

even larger designs. This representation can be quickly converted into a design
matrix for implementing an experiment.

APPENDIX

A. JAVA SOURCE CODE FOR THE HADAMARD FAST WALSH TRANSFORM
package walsh;

import java.text.DecimalFormat;

public class Hadamard {
/**
* Performs a fast Walsh transformation using a Hadamard
* (natural) ordered in-place algorithm. Array x is altered by
* this algorithm. If you want theresult in a new array, leaving
* the input data intact, use the fwt(double[]) method instead.
* <p>
* Note that this transform is its own inverse, to within a scale
* factor of x.length, because the transform matrix is orthogonal
* and symmetric about its diagonal. An interesting implication
* is that the j(th) factorial design point can be generated by
* creating a vector of all zeros except for a one in location
* (j-1), then performing an fwt on the vector. Repeating for
* j=1,...,2^k yields a full factorial design for k factors
*/

public static double[] ipfwt(double[] x) {
double temp;
int j;
int k;
int offset;
int ngroups;

if (!isPowerOf2(x.length)) {
throw new IllegalArgumentException(

"Vector length must be a power of two.");
}
for (int lag = 1; lag < x.length; lag = offset) {

offset = lag << 1;
ngroups = x.length / offset;
for (int group = 0; group < ngroups; ++group) {

for (int base = 0; base < lag; ++base) {
j = base + group * offset;
k = j + lag;
temp = x[j];
x[j] += x[k];
x[k] = temp - x[k];

}
}

}
return x;

}

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



Very Large Fractional Factorial and Central Composite Designs • 375

/**
* Performs a Hadamard ordered Fast Walsh Transform. This method
* is a front-end which clones the argument array, then operates
* on the clone in-place. Returns the resulting vector of Walsh
* coefficients.
*/

public static double[] fwt(double[] x) {
return ipfwt((double[]) x.clone());

}

/*
* Private method to check whether n is a power of two
*/

private static boolean isPowerOf2(int n) {
final int MAXINT = 1 << 30;
for (int i = 1; i < MAXINT; i <<= 1)

if (i == n)
return true;

return false;
}

/*
* Private method to format an output string to a fixed with by
* prepending space.
*/

private static String prependSpace(int n, String s) {
String[] res = { "", " ", " ", " ", " " };
if (n < res.length)

return res[n] + s;
else

return s;
}

/**
* Main method to generate fractional factorial designs based
* on pre-calculated Walsh indices from Sanchez, S. M. &
* Sanchez, P. J., 2005, "Very large fractional factorial and
* central composite designs," ACM Trans. Model. Comput. Simul.
* 15(4): 362-377. User should specify the # of factors as a
* command line argument. Program defaults to 5 factors.
*/

public static void main(String[] args) {
String s;
int[] index = {1, 2, 4, 8, 15, 16, 32, 51, 64, 85, 106, 128,

150, 171, 219, 237, 247, 256, 279, 297, 455, 512, 537,
557, 594, 643, 803, 863, 998, 1024, 1051, 1070, 1112,
1169, 1333, 1345, 1620, 1866, 2048, 2076, 2085, 2185,
2372, 2456, 2618, 2800, 2873, 3127, 3284, 3483, 3557,
3763, 4096, 4125, 4135, 4174, 4435, 4459, 4469, 4497,
4752, 5255, 5732, 5804, 5915, 6100, 6369, 6907, 7069,
8192, 8263, 8351, 8422, 8458, 8571, 8750, 8858, 9124,
9314, 9500, 10026, 10455, 10556, 11778, 11885, 11984,
13548, 14007, 14514, 14965, 15125, 15554, 16384, 16457,

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



376 • S. M. Sanchez and P. J. Sanchez

16517, 16609, 16771, 16853, 17022, 17453, 17891, 18073,
18562, 18980, 19030, 19932, 20075, 20745, 21544, 22633,
23200, 24167, 25700, 26360, 26591, 26776, 28443, 28905,
29577, 32705};

int[] power = new int[index.length];
for (int i = 0, p = 1; i < index.length; ++i) {

if (index[i] >= p) p <<= 1;
power[i] = p;

}
int size = (args.length > 0) ? Integer.parseInt(args[0]) : 5;
double[][] design = new double[size][];
DecimalFormat decimal0 = new DecimalFormat("###0;-##0");
DecimalFormat decimalX = new DecimalFormat("’X’##0");
System.out.print(" run#");
for (int i = 1; i <= size; ++i) {

s = decimalX.format(i);
System.out.print(prependSpace(5 - s.length(), s));

}
System.out.println();
for (int i = 0; i < size; ++i) {

design[i] = new double[power[size-1]];
design[i][index[i]] = 1.0;
Hadamard.ipfwt(design[i]);

}
for (int j = 0; j < power[size-1]; ++j) {

s = decimal0.format(j + 1);
System.out.print(prependSpace(5 - s.length(), s));
for (int i = 0; i < design.length; ++i) {

s = decimal0.format(design[i][j]);
System.out.print(prependSpace(5 - s.length(), s));

}
System.out.println();

}
}

}

REFERENCES

BEAUCHAMP, K. G. 1984. Applications of Walsh and Related Functions, With an Introduction to
Sequency Theory. Academic Press, London.

BETTONVIL, B. J. AND KLEIJNEN, J. P. C. 1997. Searching for important factors in simulation models
with many factors: Sequential bifurcation. Eur. J. Oper. Res. 96, 180–194.

BOX, G. E. P., HUNTER, W. G., AND HUNTER, J. S. 1978. Statistics for Experimenters: An Introduction
to Design, Data Analysis and Model Building. Wiley, New York, NY.

CHEN, J., SUN, D. X., AND WU, C. F. J. 1993. A catalogue of two-level and three-level fractional
factorial designs with small runs. Internat. Statist. Rev. 61, 131–145.

CHICK, S. E. 2001. Input distribution selection for simulation experiments: Accounting for input
uncertainty. Oper. Res. 49, 5, 744–758.

HEDAYAT, A. S., SLOANE, N. J. A., AND STUFKEN, J. 1999. Orthogonal Arrays: Theory and Applications.
Springer, New York, NY.

KLEIJNEN, J. P. C., SANCHEZ, S. M., LUCAS, T. W., AND CIOPPA, T. M. 2005. A user’s guide to the brave
new world of designing simulation experiments. INFORMS J. Comput. 17, 3, 263–289.

LAW, A. M. AND KELTON, W. D. 2000. Simulation Modeling and Analysis, 3rd ed. McGraw-Hill,
New York, NY.

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.



Very Large Fractional Factorial and Central Composite Designs • 377

MEE, R. W. 2004. Efficient two-level designs for estimating all main effects and two-factor inter-
actions. J. Qual. Tech. 36, 400–412.

MONTGOMERY, D. C. 2000. Design and Analysis of Experiments, 5th ed. Wiley, New York, NY.
NIST/SEMATECH. 2005. e-Handbook of Statistical Methods. Available at
<http://www.itl.nist.gov/div898/handbook/>.

SANCHEZ, P. J., HEAD, K. L., AND RAMBERG, J. S. 2002. Life in the fast lane: Yates’ algorithm,
fast Fourier and Walsh transforms. In Modeling Uncertainty, M. Dror, P. L‘Ecuyer, and F.
Szidarovszky, eds. Kluwer Academic Publishers, Norwell, MA, 652–684.

SANCHEZ, P. J. AND SANCHEZ, S. M. 2005. Resolution V fractional factorial generating program.
Available via “Software downloads” link at <http://diana.cs.nps.navy.mil/seedlab/>. Naval
Postgraduate School.

SAS INSTITUTE. 2004. JMP-In Version 5.1 for Windows, Macintosh, and Unix. Duxbury Thompson
Learning, Pacific Grove, CA.

SCHRUBEN, L. W., SANCHEZ, S. M., SANCHEZ, P. J., AND CZITROM, V. A. 1992. Variance reallocation
in Taguchi’s robust design framework. In Proceedings of the 1992 Winter Simulation Conference,
J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson, Eds. IEEE, Piscataway, NJ, 548–556.

WAN, H., ANKENMAN, B., AND NELSON, B. L. 2005. Controlled sequential bifurcation: A new factor-
screening method for discrete-event simulation. Oper. Res., forthcoming.

ZOUAOUI, F. AND WILSON, J. R. 2004. Accounting for input-model and input-parameter uncertain-
ties in simulation. IIE Trans. 36, 11, 1135–1151.

Received September 2005; revised October 2005; accepted October 2005

ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, October 2005.


