
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2012-05

Hardware index to permutation converter

Sasao, T.

19th Reconfigurable Architectures Workshop, May 21-22, 2012, Shanghai, China.

http://hdl.handle.net/10945/35852

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36728406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Hardware Index to Permutation Converter
J. T. Butler T. Sasao

Department of Electrical and Computer Engineering Department of Computer Science & Electronics
Naval Postgraduate School Kyushu Institute of Technology

Monterey, CA U.S.A. Iizuka, Fukuoka, Japan

Abstract—We demonstrate a circuit that generates a
permutation in response to an index. Since there are n!
n-element permutations, the index ranges from 0 to n! − 1.
Such a circuit is needed in the hardware implementation of
unique-permutation hash functions to specify how parallel
machines interact through a shared memory. Such a circuit is
also needed in cryptographic applications. The circuit is based on
the factorial number system. Here, each non-negative integer is
uniquely represented as sn−1(n− 1)!+ sn−2(n− 2)!+ . . .+ s11!,
where 1 ≤ si ≤ i. That is, the permutation is produced
by generating the digits si in the factorial number system
representation of the index. The circuit is combinational and is
easily pipelined to produce one permutation per clock period.
We give experimental results that show the efficiency of our
designs. For example. we show that the rate of production of
permutations on the SRC-6 reconfigurable computer is 1,820
times faster than a program on a conventional microprocessor in
the case of 10-element permutations. We also show an efficient
reconfigurable computer implementation that produces random
permutations using the Knuth shuffle algorithm. This is useful
in Monte Carlo simulations. For both circuits, the complexity is
O(n2), and the delay is O(n).

Keywords: reconfigurable computer, index to permutation
generator, random permutation generator, combinatorial
objects, factorial number system, Knuth shuffle

I. INTRODUCTION

One of the most important combinatorial objects is the
permutation. For example, 2103 is a permutation where 0
maps to 2, 1 maps to 1, 2 maps to 0, and 3 maps to 3 (i.e.,
0 and 2 are interchanged). This can be expressed as the 8-
bit binary number 10 01 00 11. The circuit we seek has an
input that represents the permutation’s index and an output
that represents the permutation itself.

One way to generate all permutations is to generate all 8-bit
bit binary numbers, one per clock, discarding those that are
not permutations. However, this produces permutations at a
rate that is much slower than one permutation per clock. We
seek a circuit that produces one permutation per clock.

The ability to generate permutations has important practi-
cal applications. Permutations are important in cryptographic
algorithms [17]. Permutations are used to create diffusion,
where information in the plaintext is spread out across the
ciphertext. For example, there are six permutations in DES,
two in Twofish and two in Serpent [18].

The ability to generate various permutations is useful in ob-
taining near-optimum data compression of image data obtained
by satellite [1], [13]. When permutations are compressed

using internal regularities, then succinct encodings of integer
functions, strings and binary relations are possible [2].

Permutations can be used to reorder data streams in FPGA-
based digital signal processing engines [15]. This can be
used to automatically generate efficient parallel pipelined FFT
architectures.

There is a need for hardware generation of permutations
in the implementation of unique-permutation hash functions
to specify how parallel machines interact through a shared
memory [6]. Such hash functions yield the minimal possible
contention, as they probe each location with the same prob-
ability regardless of which locations are currently occupied.
They are especially important now that multi-core (CPU) and
many-core (GPU) architectures are commonly available.

The complexity of the binary decision diagram (BDD) [3]
is strongly dependent on the order in which variables are
applied. For example, the BDD of the ‘Achilles Heel’ function
has polynomial number of nodes for the optimum ordering
and exponential number of nodes for the worst case ordering.
Determining the optimum ordering involves the generation
of typically many permutations, testing how many nodes are
required for each.

Two Boolean functions are P-equivalent if they differ only
by a permutation of variables. In [5], a breadth-first search
technique is shown for computing the P-representative of a
given function, which is the canonical form of a Boolean func-
tion under permutation of the variables. Such a classification is
useful in a lookup table implementation of Boolean functions.
This advance was made in the software implementation, but a
faster hardware implementation requires hardware generation
of permutations.

In Section 2, we discuss the factorial number system. We
show how it can be used to generate permutations, and we
discuss its circuit implementation. Then, in Section 3, we
discuss the generation of random permutations in a circuit
implementing the Knuth shuffle algorithm. Finally, in Section
4, we give concluding remarks. This paper can be viewed as
a companion to [4] which describes the high-speed genera-
tion of combinations, as well as the generation of random
combinations. Together the two papers cover a subset of
circuits that produce combinatorial objects. The advent of
large programmable logic circuits has allowed computations to
be performed in hardware that previously could only be done
in software. Indeed, much has been written about generating
combinatorial objects in software (e.g. [7], [9], [10]).



TABLE I
THE FACTORIAL NUMBER SYSTEM FOR n = 4

N s3s2s1s0 Value of N Permu-
tation

23 3 2 1 0 3 3! + 2 2! + 1 1! + 0 0! = 18 + 4 + 1 + 0 3210
22 3 2 0 0 3 3! + 2 2! + 0 1! + 0 0! = 18 + 4 + 0 + 0 3201
21 3 1 1 0 3 3! + 1 2! + 1 1! + 0 0! = 18 + 2 + 1 + 0 3120
20 3 1 0 0 3 3! + 1 2! + 0 1! + 0 0! = 18 + 2 + 0 + 0 3102
19 3 0 1 0 3 3! + 0 2! + 1 1! + 0 0! = 18 + 0 + 1 + 0 3021
18 3 0 0 0 3 3! + 0 2! + 0 1! + 0 0! = 18 + 0 + 0 + 0 3012
17 2 2 1 0 2 3! + 2 2! + 1 1! + 0 0! = 12 + 4 + 1 + 0 2310
16 2 2 0 0 2 3! + 2 2! + 0 1! + 0 0! = 12 + 4 + 0 + 0 2301
15 2 1 1 0 2 3! + 1 2! + 1 1! + 0 0! = 12 + 2 + 1 + 0 2130
14 2 1 0 0 2 3! + 1 2! + 0 1! + 0 0! = 12 + 2 + 0 + 0 2103
13 2 0 1 0 2 3! + 0 2! + 1 1! + 0 0! = 12 + 0 + 1 + 0 2031
12 2 0 0 0 2 3! + 0 2! + 0 1! + 0 0! = 12 + 0 + 0 + 0 2013
11 1 2 1 0 1 3! + 2 2! + 1 1! + 0 0! = 6 + 4 + 1 + 0 1320
10 1 2 0 0 1 3! + 2 2! + 0 1! + 0 0! = 6 + 4 + 0 + 0 1302
9 1 1 1 0 1 3! + 1 2! + 1 1! + 0 0! = 6 + 2 + 1 + 0 1230
8 1 1 0 0 1 3! + 1 2! + 0 1! + 0 0! = 6 + 2 + 0 + 0 1203
7 1 0 1 0 1 3! + 0 2! + 1 1! + 0 0! = 6 + 0 + 1 + 0 1032
6 1 0 0 0 1 3! + 0 2! + 0 1! + 0 0! = 6 + 0 + 0 + 0 1023
5 0 2 1 0 0 3! + 2 2! + 1 1! + 0 0! = 0 + 4 + 1 + 0 0321
4 0 2 0 0 0 3! + 2 2! + 0 1! + 0 0! = 0 + 4 + 0 + 0 0312
3 0 1 1 0 0 3! + 1 2! + 1 1! + 0 0! = 0 + 2 + 1 + 0 0231
2 0 1 0 0 0 3! + 1 2! + 0 1! + 0 0! = 0 + 2 + 0 + 0 0213
1 0 0 1 0 0 3! + 0 2! + 1 1! + 0 0! = 0 + 0 + 1 + 0 0132
0 0 0 0 0 0 3! + 0 2! + 0 1! + 0 0! = 0 + 0 + 0 + 0 0123

II. THE FACTORIAL NUMBER SYSTEM

A. Introduction

In the factorial number system, an integer is represented
as an ordered sequence of digits. While Knuth [8] may have
been the first to use the term “factorial number system”, its
properties have been known as long ago as 1888 [11]. As
in the standard binary number system, in the factorial number
system, each number is represented by a unique vector of basis
values.

Definition 1. In a factorial number system, integer N < n!
is represented as N = sn−1sn−2 . . . s2s1, where

N = sn−1(n − 1)! + sn−2(n − 2)! + . . . + s11! + s00!, (1)

such that 0 ≤ si ≤ i ≤ n − 1.

Note that s0 ≡ 0. We will however, retain s0 as a placeholder.

Example 1. Table I shows the representation of numbers in the
factorial number system for n = 4, where 010 ≤ N ≤ 2310.
The leftmost column shows N in decimal, the second column
shows the vector representation of N , and the third column
shows the value of N as computed from the vector according to
(1). The rightmost column of Table I shows the corresponding
permutation.

(End of Example)

We can make the following observations.

1) The largest value of the index Nmax is represented by
the digits n− 1 n− 2 . . . 2 1 0 and is given as Nmax =

∑n−1
i=0 i i! = n!− 1. Denote n− 1 n− 2 . . . 2 1 0 as the

vector representation of Nmax.
2) A vector representation in which the elements are less

than or equal to the maximum value n−1 n−2 . . . 2 1 0
represents a unique number in this number system.

3) Given N , a greedy algorithm derives its vector represen-
tation, sn−1 sn−2 . . . s1 s0. For example, in Table I, the
left digit is the maximum sn−1 such that sn−1 (n−1)! ≤
N . Then, we form N −sn−1(n−1)! and repeat for sn−2,
etc.

B. Circuit Implementation

We propose a circuit that produces a permutation on n from
an index that is an implementation of the factorial number
system. It is based on the above three observations. Consider,
for example, the generation of permutations for n = 4. There
are 24 such permutations indexed from 0 to 23. Let index be
a 5-bit quantity that specifies which of the 24 permutations
should occur at the circuit output. Each of the four elements
of the permutation is an integer between 0 and 3, and is
represented by two bits. Therefore, output is an 8-bit binary
number representing the permutation corresponding to input
index.

Fig. 1 shows the circuit that computes the description above.
index comes in from the left, and output exits to the right.
There is an input permutation, which is typically fixed (e.g.
as the identity permutation). There are n − 1 stages. Each
stage uses the running index to compute the next element of
the permutation. The leftmost stage computes the first element,
the next stage the next element, etc. For example, the left stage
has index as input, and uses that to compute the first element.



 

ou
tp

ut
 –

 p
er

m
u

ta
ti

o
n

 
co

rr
es

p
o

n
d

in
g

 t
o

 in
de

x 

in
de

x 

0 

1 

3 

2 

 
A-B A 

B 
One-Hot MUX 

12 6 0 18 

 
A-B A 

B 
One-Hot MUX 

4 2 0 

 
A-B A 

B 
One-Hot MUX 

1 0 
>18 

>12 

>6 

>0 

>4 

>2 

>0 

>1 

>0 
0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

Stage 0 Stage 1 Stage 2 
Fig. 1. Index to Permutation Circuit for 4-Element Permutations.

It passes this first element on to the next stage along with the
remaining unassigned elements. This next stage computes the
next element and passes the top two elements onto the third
stage along with the remaining unassigned elements. At this
point, there are two unassigned elements. The right stage then
outputs these two elements interchanged or not depending on
the next digit in the running index. Note that this circuit can
be implemented as an LUT cascade [16].

At each stage of the LUT cascade, there are inputs and
outputs that carry a partially completed output. Also, there
are inputs and outputs that carry index reduced by the
values contributed by higher order digits. The rightmost stage
produces a 0 value at it index output, since there are no digits
to the right.

The circuit shown in Fig. 1 is combinatorial. Note that this
is easily pipelined. Pipeline registers can simply be inserted
between stages. Doing so, causes the latency to be n−1. Note
that, after the first codeword emerges, a codeword emerges at
each clock period.

C. Results

A Verilog program was written to implement the index to
permutation converter described above. It runs on an SRC-
6 reconfigurable computer from SRC Computers and uses the
Xilinx Virtex2p (Virtex2 Pro) XC2VP100 FPGA with Package
FF1696 and Speed Grade -5. Table II compares the rate of
processing permutations on this FPGA with the rate of a
typical microprocessor. In this case, we chose the Intel Xeon
microprocessor that is one of two microprocessors on the SRC-
6. A C program was written that implements the factorial
number system and produces, in sequence, the corresponding
permutations. Table II shows that the circuit described by the
Verilog code executes significantly faster on the SRC-6 than
the C code on the microprocessor. For example, for 10-element
permutations, the SRC-6 computes at a rate that is 1,820 faster
than the Xeon microprocessor.

TABLE II
COMPARISON OF THE COMPUTATION TIMES FOR A SINGLE PERMUTATION

ON THE SRC-6 RECONFIGURABLE COMPUTER VERSUS A XEON
MICROPROCESSOR

n SRC-6 Xeon #
time (ns) time (ns) iterations

2 10 195 2,000,000
3 10 523 2,000,000
4 10 1,230 2,000,000
5 10 2,446 2,000,000
6 10 4,154 500,000
7 10 6,571 25,000
8 10 9,571 5000
9 10 13,401 250
10 10 18,203 25

For the SRC-6, the 10 ns time shown in the column labeled
“SRC-6 time” is due to the fact that a single permutation is
computed from the index in one clock period of a 100 MHz
clock. The column labeled “Xeon time” represents processor
time of the Xeon microprocessor. Because the system’s clock
function provides only a crude measure of elapsed time when
small time differences are computed, we repeatedly (redun-
dantly) did the computations for many iterations and divided
the time durations by the number of iterations. The number of
iterations is shown in the column labeled “# iterations”. In the
circuit described by the Verilog code, each permutation was
represented by a single word. Here, each word has n�log2(n)�
bits, which is 36 for n = 9, for example. Although a word
width of 36 is easily accommodated in an FPGA, it is not in
a microprocessor. Therefore, in the C code version, we chose
each permutation to be represented as an array of ints.

D. Complexity of Implementation

In order to compare how the logic resources depend on n,
we synthesized the index to permutation circuit on the Altera



Stratix IV EP4SE530F43C3NES FPGA (this is the FPGA used
on the SRC-7, an upgrade to the SRC-6). Table III shows the
resource usage. For example, even though the SRC-6’s clock
frequency is much lower than the microprocessor’s, its rate of
generation is considerably faster.

The first column in Table III shows n. The second column
shows the frequency achieved. The third through the seventh
columns show how LUTs are used in the implementation,
while the eighth column shows the number of packed ALMs
used. The ninth column shows the number of registers used. It
is clear from this table that relatively few resources are used.

Another way to compute complexity is to count the number
of comparators. There are n − 1 stages; the first has n
comparators, the second has n − 1, · · · , and the last has
2 comparators, for a total of n + n − 1 + · · · + 2 + 1 − 1 =
(n+1)n

2 − 1 = n2+n−2
2 = O(n2) comparators. Since there are

n − 1 stages, the delay is O(n).

III. RANDOM PERMUTATION GENERATOR

A. Introduction

The generation of random permutations is an important
topic, e.g. in Monte Carlo simulations. They are also useful in
the assessment of sorting algorithms. For example, compared
to other sorting algorithms, the Insertion Sort is known to
be efficient when the list is “almost sorted”, and inefficient
when the list is “almost unsorted”. Oommen and Ng [14] show
how to generate random permutations with various distribution
functions. For example, one can build a distribution that
produces, with greater frequency, almost sorted permutations.
In this paper, we consider only uniformly distributed random
permutations. We consider two ways to generate random

Random 
Number 

Generator 
 

Constant 
k 

Right_Shift 
& Truncate 

Index to 
Permutation 
Converter 

Random 
Permutation 

x kx 

k 

i 

0 xx 1 0 iiiii k-1(integer) 0 kxx k 

Fig. 2. Block Diagram of a Random Permutation Generator.

permutations. In the first, the index is a random integer. Fig.
2 shows how a random number generator, which generates
a (pseudo) random number between 00 . . . 0 and 11 . . .1 can
be used to construct a (pseudo) random integer. The output
of the random number generator can be viewed as a number
x, such that 0 ≤ x < 1 (Let there be a virtual binary point
to the left of the most significant bit; all generated numbers
are less than 1). Multiplying this by integer k yields a value
y, such that 0 ≤ y < k. We choose k appropriately. For
example, in the circuit that converts an index from 0 to 23 to
an n = 4 permutation, we set k to 24. Thus, the input kx to
the Right Shift & Truncate block of Fig. 2 has the property
0 ≤ kx < k. With k = 24, the truncation of kx means that i,
the output of the Right Shift & Truncate block, is an integer
with the property 0 ≤ i ≤ 23. Note that the multiplier in Fig. 2

multiplies a constant value times a random variable. This can
be implemented as a shift-and-add multiplier with little delay.
The shift-and-add multiplier is much faster than the multiplier
typically found in an FPGA.

Note that the degree to which the random integers are
uniformly distributed depends on m, the number of bits used
in the random number generator. For example, in the n = 4
permutation generator, m = 5 is too small, because only 31
random numbers are distributed across 24 random integers.
This assumes that the random number generator is an LFSR,
in which case 31 random numbers (x in Fig. 2) would be
generated (the LFSR random number generator generates all
32 5-bit numbers except 00000). According to the pigeonhole
principle [12], at least one random integer will be generated
by at least one more random number than some other random
integer. In the circuit shown in Fig. 2, seven of the random
integers are generated from two random numbers, while 17 are
generated from one random number. As a result, seven random
integers are generated with a probability that is twice that of
17 other integers. Choosing a larger m reduces the difference
in probabilities of two random integers. For example, for
m = 32, the difference reduces to 5.6 × 10−7%.

A disadvantage of the random integer generator shown
in Fig. 2 is the large size of the index. For example, for
permutations on n = 64 elements, 296 bits are required to
represent the index. Alternatively, we consider another way to
implement a random permutation generator.

Fig. 3. Block Diagram of a Knuth Shuffle Random Permutation Generator.

In the second approach, the Knuth shuffle circuit is used.
It starts with any specified permutation, π0, for example the
identity permutation. It proceeds in n − 1 steps. In the first
step, the first (left) element of π0 is interchanged with any
other element including itself. These n choices occur randomly
with uniform probability. In this way, the left element of π 1 is
chosen as any element (and with equal probability). Next, the
second element from the left is interchanged with any element
to its right including itself. In this way, the second element
of π2 is chosen as any element except the left element. In a
similar manner, all other elements are chosen until finally, the
right two elements are either interchanged or left unchanged
with equal probability.



TABLE III
FREQUENCY AND RESOURCES USED TO REALIZE THE FACTORIAL NUMBER SYSTEM IMPLEMENTATION OF AN INDEX TO PERMUTATION CONVERTER ON

THE ALTERA STRATIX IV EP4SE530F43C3NES FPGA.

n Freq. # of LUTs of Various Inputs Est. # of Total # of
(MHz) 7- 6- 5- 4- 3- Packed ALMs Registers

2 392.8 0 0 0 0 - 1(0%) 1(0%)
3 406.3 0 0 0 2 5 6(0%) 11(0%)
4 406.3 0 1 4 10 11 19(0%) 36(0%)
5 406.3 0 0 11 25 23 41(0%) 69(0%)
6 259.0 0 1 34 48 36 79(0%) 117(0%)
7 267.6 0 7 43 84 48 123(0%) 174(0%)
8 229.8 0 12 80 113 86 186(0%) 242(0%)
9 197.7 0 12 110 173 100 260(0%) 332(0%)
10 180.5 1 25 176 211 121 355(0%) 436(0%)
16 153.0 10 36 253 563 3,652 2,331(0%) 1,029(0%)
32 106.1 28 506 1,073 3,391 34,804 20,953(9%) 5,349(1%)

B. Circuit Implementation

The circuit that implements the Knuth shuffle is shown in
Fig. 3. It is implemented as a cascade of n stages, where each
stage performs the interchange discussed above. At each stage,
an element is interchanged with itself or any of the elements
to its right. For example, the leftmost stage, s0 chooses from
n elements the first or left element. The choices are made
from among the n elements of the applied permutation, labeled
“Input Permutation”. Then, the second stage chooses from
among the remaining elements, etc. Each choice is random.
In stage s0, there are n choices, in stage s1, there are n − 1
choices, etc. In Fig. 3 there is a random integer generator for
each choice.

C. Results

Fig. 4 shows the output of the Knuth shuffle circuit in
producing 220 = 1, 048, 576 random 4-element permutations.
This circuit has three stages with one random number gener-
ator per stage. The input permutation is the identity permu-
tation, while the output represents a random permutation. We
choose to represent each element as a 2-bit binary number
as follows: 3 = 112, 2 = 102, 1 = 012, and 0 = 002.
For example, the bottom bar represents 43,399 occurrences
of the permutation 0123, and the second bar up represents
43,897 occurrences of the permutation 0132. It is clear that
the distribution is uniform. The vertical axis represents the
value of an 8-bit binary number, 0 through 255. Of the 256
possible output values, only 24 represent permutations. For
example, 00 01 10 11 and 00 01 11 10 represent 0123 and
0132, respectively. Thus, this bar chart has 24 bars, one for
each 8-bit binary number that corresponds to a permutation.
The permutations are shown along the right side. The vertical
axis on the left hand side represents the binary value of
the permutations. For example, permutations 0123 and 0132
correspond to 00 01 10 11 = 2710 and 00 01 11 10 = 3010,
respectively.

As another test of the random permutation generator, we
wrote Verilog code to compute the number of derangements on
the SRC-6 reconfigurable computer. A derangement is a per-

0 1 2 3 4 5

x 10
4

32

64

96

128

160

192

224

256

0123
0132
0213
0231
0312
0321
1023
1032

1203
1230
1302
1320
2013
2031
2103
2130

2301
2310
3012
3021
3102
3120
3201
3210

In
de

x 
to

 p
er

m
ut

at
io

ns

Number of permutations
Fig. 4. Distribution of Permutations Produced by the Knuth Shuffle Random
Permutation Generator

mutation in which all elements have moved from their original
positions; i.e. have no fixed points. For example, permutation
0123 has four fixed points (0, 1, 2, and 3), 0312 has one fixed
point (0), and 3210 has no fixed points (and is, therefore, a
derangement). It is known that the number of derangements
dn on n elements is given as dn = ‖n!/e‖, where ‖a‖
is the closest integer to a. In the generation of 1,048,576
random 4-element permutations used in Fig. 4, 392,712 of
them were derangements. Therefore, we can approximate e
as e ≈ 1048576/393661 = 2.665. Repeating this for n = 8
and n = 16, yields e ≈ 16777216/6174763 = 2.7171 and
e ≈ 16777216/6171117 = 2.7187, respectively.

When the random permutation generator and the derange-
ment generator were programmed to run on the SRC-6 recon-
figurable computer, in both cases, only 1% of the 4-input LUTs
were used, only 2% of the flip-flops were used, and only 3%
of the slices were occupied. Table IV shows how much of the
various resources are used in the Knuth shuffle implementation
versus various n when programmed for the the Altera Stratix



TABLE IV
FREQUENCY AND RESOURCES USED TO REALIZE THE KNUTH SHUFFLE RANDOM PERMUTATION GENERATOR ON THE ALTERA STRATIX IV

EP4SE530F43C3NES FPGA.

n Freq. # of LUTs of Various Inputs Est. # of Total # of
(MHz) 7- 6- 5- 4- 3- Packed ALMs Registers

2 1,520.2 0 0 1 1 - 6(0%) 10(0%)
3 528.4 0 0 2 1 17 19(0%) 28(0%)
4 810.7 0 0 3 6 24 32(0%) 56(0%)
5 500.8 0 1 6 10 43 54(0%) 87(0%)
6 496.6 0 5 8 25 43 77(0%) 125(0%)
7 424.0 2 9 18 34 51 110(0%) 167(0%)
8 347.7 1 21 32 42 63 139(0%) 199(0%)
9 388.3 2 12 55 60 62 181(0%) 284(0%)
10 329.9 1 23 94 56 75 219(0%) 328(0%)
16 173.5 10 70 507 186 373 951(0%) 1,145(0%)
32 153.4 84 863 2,384 695 2,499 5,499(2%) 5,434(1%)

IV EP4SE530F43C3NES FPGA. In both cases, the number
of elements includes the random number generator needed for
each stage. Indeed, a 32-bit random integer generator similar
to that shown in Fig. 2 was included in each stage.

If we measure the complexity of the Knuth Shuffle circuit
by the number of crossover circuits, the first stage has n− 1,
the second has n − 2, · · · , and the last has 1, for a total
of n − 1 + n − 2 + · · · + 1 = n(n−1)

2 = n2−n
2 = O(n2).

This is identical to the complexity of the index to permutation
generator. Similarly, the delay is also O(n).

IV. CONCLUDING REMARKS

We show two approaches to the generation of permutations

1) a factorial number system index to permutation converter
2) a Knuth shuffle random permutation generator

Both approaches can be implemented as a combinational
logic circuit or as a pipeline producing a permutation at
each clock. We have shown that the index to permutation
converter implemented on the SRC-6 reconfigurable computer
operates 1,820 times faster than a software implementation
on an Intel Xeon microprocessor. We have also shown that
our designs require modest resources on an Altera Stratix
IV EP4SE530F43C3NES FPGA. We have shown an efficient
circuit to produce random permutations, which is useful in
Monte Carlo simulations. For both circuits, the complexity is
O(n2), and the delay is O(n). We believe this is the first time
such circuits have appeared in the literature.

The alert reader will note that the factorial number system
circuit and the Knuth shuffle circuit can also serve as a sorting
network.

V. ACKNOWLEDGMENTS

This research is supported by a Grant-in-Aid for Scientific
Research of the Japan Society for the Promotion of Science
(JSPS) and a Knowledge Cluster Initiative (the second stage)
of MEXT (Ministry of Education, Culture, Sports, Science and
Technology). We appreciate the comments of four referees.

REFERENCES

[1] Z. Arnavut and S. Narumalini, “Application of permutations to lossless
compression of multispectral thematic mapper images”, Opt. Eng., Vol.
35, No. 12, 3442–3448, December 1996.

[2] J. Barbay and G. Navarro, “Compressed representations of permutations
and applications,” 26th International Symposium on Theoretical Aspects
of Computer Science (STACS 2009), Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, pp. 111-122, 2009.

[3] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Computers, Vol. C-35, No. 8, pp. 677-691, Aug.
1986.

[4] J. T. Butler and T. Sasao, “Index to constant weight codeword converter,”
Proc. of the 7th Inter. Symp. on Applied Reconfigurable Computing,
Proceedings Lecture Notes in Computer Science (LNCS 6576) Springer-
Verlag Berlin Heidelberg, 2011, A. Koch et al (Eds.), Belfast, N. Ireland,
March 23-25, 2011, pp. 193-204,

[5] D. Debnath and T. Sasao, “Fast Boolean matching under permutation by
efficient computation of canonical form,” IEICE Trans. Fundamentals,
No. 12, December 2004, pp. 3134-3140.

[6] S. Dolev, L. Lahiani, and Y. Haviv, “Unique permutation hash-
ing,” Stabilization, Safety, and Security of Distributed Systems,
Lecture Notes in Computer Science, Volume 5873. ISBN 978-
3-642-05117-3. Springer-Verlag Berlin Heidelberg, 2009, p. 777,
https://www.math.bgu.ac.il/ frankel/TechRep/09-01/09-03.pdf .

[7] Gosper, R. W. Item 175 in Beeler, M., Gosper, R. W.,
and Schroeppel, R., “HAKMEM,” Cambridge, MA: MIT
Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972.
http://www.inwap.com/pdp10/hbaker/hakmem/hacks.html#item175.

[8] D. E. Knuth, “Volume 2 Seminumerical Algorithms,” The Art of Com-
puter Programming, (3rd ed.), Addison-Wesley, p. 192, ISBN 0-201-
89684-2.

[9] D. E. Knuth, The Art of Computer Programming, “Generating all com-
binations and partitions,” Vol. 4, Fascicle 3, Addison-Wesley, pp. 5-6,
ISBN 0-321-58050-8.

[10] D. E. Knuth, The Art of Computer Programming, “Generating all
combinations and partitions,” Vol. 4, Fascicle 3, Addison-Wesley, pp.
5-6, ISBN 0-321-58050-8.

[11] C.-A. Laisant, “Sur la numération factorielle, application aux permu-
tations,” (http://www.numdam.org/item?id=BSMF 1988 16 176 0)
Bulletin de la Société Mathématique de France Vol. 16, pp. 176-183.

[12] C. L. Liu, “Elements of Discrete Mathematics,” McGraw-Hill, New
York, 1977, pp. 72-76.

[13] N. D. Memon, K. Sayood, and S. S. Magliveras, “Lossless compression
of multispectral image data,” IEEE Trans. Geosci. Remote Sensing, Vol.
32, No. 2, pp. 282–289 1994.

[14] B. J. Oommen and D. T. H. Ng, “On generating random permutations
with arbitrary distributions,” The Computer Journal, Vol 33, No. 4, 1990,
pp. 368-374.

[15] A. Parsons, “The symmetric group in data permutation, with applications
to high-bandwidth pipelined FFT architectures,” IEEE Signal Processing
Letters, Vol. 16, No. 6, June 2009.

[16] T. Sasao, Memory Based Logic Synthesis, 1st Edition, Springer, 2011,
ISBN 978-1-4419-8103-5.

[17] B. Schneier, Applied cryptography, 2nd Edition, John Wiley & Sons,
Inc. 1996.

[18] J. L. Shi and R. B. Lee, “Bit permutation instructions for accelerating
software cryptography,” Proceedings of the IEEE International Con-
ference on Application-Specific Systems, Architectures and Processors
(ASAP 2000), pp. 138-148, July 2000.


