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Abstract —We derive the average and worst case number of nodes in
decision diagrams of r-valued symmetric functions of n variables. We

show that, for large n, both numbers approach nr

r ! . For binary decision

diagrams (r = 2 ), we compute the distribution of the number of
functions on n variables with a specified number of nodes. Subclasses
of symmetric functions appear as features in this distribution. For

example, voting functions are noted as having an average of n 2

6

nodes, for large n, compared to n 2

2 , for general binary symmetric

functions.

Index Terms —Decision diagrams, BDD, symmetric functions, multiple-
valued functions, complexity, asymptotic approximation, average case.

————————  ✦  ————————

1 INTRODUCTION

DURING the past ten years, significant effort has been devoted to
the study of the (ordered) binary decision diagram (BDD). With
origins that predate VLSI (Akers [1]), BDDs were set on a firm
mathematical basis when Bryant [2] proved that, for each switch-
ing function, there exists a canonical BDD. A natural extension is
the multiple-valued decision diagram (MDD), used to represent a
multiple-valued function, f : Rn Æ R, where R= {0, 1, 2, º, r - 1}.

To construct the MDD for a given function f(x1, x2, º, xn), we
use a root vertex to represent the function itself, and attach r
children to represent f(0, x2, º, xn), f(1, x2, º, xn), and so on up
to f(r - 1, x2, º, xn). To each of these children, attach r children to
represent the assignments to x2, and continue until all variables are
assigned. The leaf nodes represent the functions 0, 1, and so on up
to r - 1. Whenever some function appears more than once in the
graph, we merge all instances of that function into a single node.
We also delete a node that has identical children.

An important measure of MDD complexity is the number of
nodes. For example, the first two MDDs in Fig. 1 are BDDs of
functions on nine variables. For a complete description of this fig-
ure, the reader is referred to Section 2. Fig. 1a represents the AND
function, while Fig. 1b represents the deBruijn function, so called
because it corresponds to a Hamiltonian cycle in the deBruijn

graph B3 (Fredricksen [5] and Wegener [10]). A deBruijn function

is a function on n = 2k + k - 2 variables, represented by a string s
that contains one (and only one) copy of every possible substring
of length k. Nodes in this BDD correspond to every distinct sub-

string of s. The number of such nodes is asymptotic to n2

2  for large
n, as is suggested by Fig. 1b in which the arrangement of nodes is
approximately one half a square of size n by n. This represents the
worst case.

In this paper, we enumerate nodes in BDDs of totally symmet-
ric functions. This is an important subset of all functions, in which
the function is unchanged by any permutation of variables. From
now on, we will use the term “symmetric” to denote totally sym-
metric functions. There are at least four papers that discuss the
worst case number of nodes in BDDs of symmetric functions. Bryant
[2] noted, in passing, that the worst case complexity of BDDs for
symmetric functions is O(n2). Two complete papers have been
devoted to the calculation of the worst case number of nodes, the
first of which is Ross et al. [8]. In the second, Heap [6] presented a
correction to the results in [8]. Independently, Sasao [9] derived a
similar expression. The last paper is an example of the growing
number of papers on MDDs, e.g., Miller [7]. Within binary, we
know of only one other paper devoted to the average number of
nodes in a class of switching functions. Butler and Sasao [3] con-
sider a special class of threshold functions called Fibonacci functions.

An interesting and important question is whether the typical
BDD of a symmetric function has a complexity more representa-
tive of the BDD in Fig. 1a or of the BDD in Fig. 1b. We answer this
question, showing that the typical BDD is more like that of Fig. 1b.
Our results, however, go beyond this. We derive the average
number of nodes in MDDs of r-valued functions of n variables,
where n is large. Since the worst case number nodes for general
MDDs has not been previously demonstrated, we do this too,
showing that, in the limit as n approaches infinity, both numbers
are asymptotically the same. Another contribution of this paper is
the experimental results shown in Section 4. Here, we show the
actual distribution of BDDs with respect to the number of nodes
and the number of functions. Important subclasses of the symmet-
ric functions, e.g., AND, OR, and other voting functions, are seen
as ridges in this distribution. Finally, we compare the general
symmetric function to voting functions, showing that the worst
case number of nodes in BDDs of voting functions is one-half that
of general binary functions, while the average number of nodes in
BDDs of voting functions is one-third that of general binary sym-
metric functions.

2 MDDS OF SYMMETRIC FUNCTIONS

A symmetric function f(X) on n binary variables can be repre-
sented by a binary string of length n + 1, b0b1 º bi º bn, where bi
is the value of f(X) when i of the n variables are 1. For example,
binary string representations 001, 010, 101, and 011 correspond
to the AND, Exclusive OR, Exclusive NOR, and OR function,
respectively, on two variables. With f(X) represented as a binary
(n + 1)-tuple, Bf = b0b1 º bi º bn, any substring, bsbs+1 º bt of Bf
represents a function that is a node in the BDD of Bf. This can be
seen in Fig. 1a. The root node is labeled by 0000000001, which rep-
resents the AND function on nine variables; i.e., the function that
is 1 iff all nine variables are 1. One of the two successor nodes is
labeled 000000001, the AND of eight variables. Indeed, there is a
succession of nodes representing the AND function from the root
down to the terminal nodes.

We can use triangles to represent three-valued symmetric
functions. For example,
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shows the use of a triangle to represent the MODSUM function on
three three-valued variables. The circled 1 means that the function
evaluates to 1 when there are zero 0s, two 1s, and one 2 among the
variables. Fig. 1c shows the MDD of the MODSUM function of
three three-valued variables. In the case of this example, the root
node (the MODSUM function itself) is represented by the 4 ¥ 4
triangle shown above, while all nodes at the next level down cor-
respond to distinct 3 ¥ 3 subtriangles, nodes in the next level down
by distinct 2 ¥ 2 subtriangles, and nodes in the last level by distinct
1 ¥ 1 subtriangles; i.e., by the three logic values. Extending this to
four values results in a symmetric function representation that is a
tetrahedral.

A general representation can be obtained as follows. Let P be the
set of ordered partitions of n into r nonnegative parts. That is, P con-

sists of r-tuples (n0, n1, ..., nr-1), where ni ≥ 0 represents the number

of variables that take on logic value i, and n0 + n1 + ... + nr-1 = n.
The number of such partitions is the number of ways of choosing n

objects from r with repetition or n r
r
+ -

-
FH IK

1
1 . A symmetric function f

on n r-valued variables can be represented as a mapping Ff : P Æ R,

where R = {0, 1, ..., r - 1} is the set of logic values of f. The number

of such mappings is r
n r

r
+ -

-
F
H

I
K

1
1 .

If h is a node in the MDD of a given symmetric multiple-valued

function f, then the function fh associated with h is a symmetric
function obtained from f by assigning values to certain variables.
Because f is symmetric, it makes no difference which variables are

assigned, and fh depends only on the number of variables to which

each logic value is assigned. Let vi be the number of variables as-

signed the logic value i, for 0 £ i £ r - 1. Then, F n vfh 0 0-c he ,

n v n v F n n nr r f r1 1 1 1 0 1 1- - =- - -c h c hj c h, , , , ,L L , whenever ((n0 - v0),

(n1 - v1), …, (nr-1 - vr-1)) is an ordered partition, i.e., whenever

ni - vi ≥ 0, for all 0 £ i £ r - 1.

3 AVERAGE AND WORST CASE NUMBER OF NODES

We have

THEOREM 1. Both the average and worst case number of nodes in the

MDDs of r-valued symmetric functions are asymptotic to nr

r !  for
large n, where n is the number of variables.

We calculate the average number of nodes in MDDs of n-variable,
r-valued symmetric functions by calculating the expected number
of nodes at any level. Specifically, we show that, as n approaches
infinity, this number is close to the largest number possible num-
ber, for all levels except those near the bottom.

Let k index the levels of the MDD, where k = 0 corresponds
to the root node and the given function. k represents the num-
ber of variables that have been assigned values so far in the
MDD. Therefore, at level k = 1, there are at most r nodes corre-
sponding to the assignment of a value to the first variable, and
at level k = n, there are at most r nodes, corresponding to the r
possible logic values in the function. In general, there are at most

(a)

(b)

(c)

Fig. 1. Examples of decision diagrams of symmetric functions.
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N k r
r= + -

-
F
H

I
K

1
1  nodes at level k, since there can be no more

nodes than there are ways to choose k logic values from r with
repetition. Each of these N nodes can represent one of

M r
n k r

r=
- + -

-
F
H

I
K

1
1

 different symmetric functions. That is, each
symmetric function is specified by a mapping from a partition to

the set {0, 1, º, r - 1}. The number of elements in the domain of

this mapping is n k r
r

- + -
-

F
H

I
K

1
1 , since at level k, n - k variables

remain to be assigned values, and this corresponds to choosing n

- k values from r with repetition. We can now state

LEMMA 2. The worst case number of nodes in the MDDs of symmetric

functions on n r-alued variables is asymptotic to n
r

r
! , for large n.

PROOF. Because there are at most N k r
r= + -

-
F
H

I
K

1
1  nodes at level k,

the total number of nodes in the MDD is at most

k r
r

k

n + -
-

F
H

I
K

=
Â 1

1
0

.

This sum has a simple form. We can choose r of n + r num-
bered balls by identifying the largest number. That is, if we
choose the ball with the largest number to be k + r, there are

k r
r
+ -

-
F
H

I
K

1
1  ways to choose the remaining balls. Summing

over 0 £ k £ n yields the sum shown above. However,
n r

r
+F

H
I
K  is also the number of ways to choose r of n + r balls.

Thus, the above expression is equivalent to

n r
r
+F

H
I
K .

But, for large n, n r
r
+F

H
I
K  is asymptotic to nr

r ! . �

The likelihood that any given pair of nodes at level k represents

the same function is 1
M . Since there are N

2
FH IK  pairs of nodes, the

expected number of matches is

N

M
N
M

2 2
F
H

I
K

£ ,

and the expected number of distinct nodes (functions) is at least
If we choose

k k n r r nr
r£ = + - - -

max 1 2
1

1! log ,c h
then we have

M r n
n k r
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When n > r (so n + r < 2n ), we have

N
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Therefore, the likelihood that no two functions at level k are the
same is at least

1
2

1

1

1-
-

-

+

r

rr n

b g

b g! ,

which approaches 1 as n approaches infinity. Thus, at level k, the
expected number of different symmetric functions is at least

k r
r r n

r

r
+ -

-
F
H

I
K -

-

F
H
GG

I
K
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-
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Over the complete MDD of a random symmetric function on n
r-valued variables, the expected number of nodes is at least

1
2

1
1

1 1
1

1

1

1
0
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max
max

Here, the sum in the left term can be replaced by 
k rmax

r
+F

HG
I
KJ  by

Lemma 2. Since n r
r
+F

H
I
K  is asymptotic to nr

r !  for large n, the average

number of nodes in r-valued symmetric functions on n variables is

asymptotic to nr

r ! .

4 EXPERIMENTAL RESULTS FOR BINARY DECISION
DIAGRAMS

Fig. 2 shows the distribution of BDDs with respect to the number
of nodes, as computed by a program that counts the exact num-
ber of BDDs (shown along the vertical axis) of n-variable sym-
metric functions (with n plotted along one axis in the horizontal
plane) that have a given number of nodes (shown along the
other axis in the horizontal plane). This is an exact distribution,
not a sampled one. One horizontal axis corresponds to n, the
number of variables, while the other corresponds to the number
of nodes in a BDD with n variables. The vertical axis shows the
number of n-variable functions with the number of nodes shown.

The worst case can be clearly seen as a limit (which follows an n2

2

curve) beyond which there are no functions. Also, the proximity of
the average case to the worst case is seen as large, vertical exten-
sions near the limit.

Fig. 2. Distributions of n-variable symmetric functions with respect to
the number of nodes.

Note that the vertical axis plots the log of the number of
cases to show detail of the function over a wide range of n. This
also allows patterns to be discerned among the data. Specifi-
cally, ridges extending from the origin have various slopes and
characterize certain classes of functions. These functions generate
BDDs of minimal size, and the exact number of nodes is easily
calculated. For example, the ridge labeled 0 º 0001/1 º 1110 in
Fig. 2 corresponds to the AND function and its complement. These
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functions are represented by BDDs with n + 2 nodes. Other ridges
in the figure correspond to symmetric functions with the string
representation 0v1w (v 0s followed by w 1s, where v + w = n + 1).
These are the voting functions, which are 1 if and only if at least w
of n variables are 1. In the BDD of such a function, a node can be
labeled by i 0s followed by j 1s, where 1 £ i £ v and 1 £ j £ w, or
with a 0 or a 1, for a total of vw + 2 nodes. Table 1 gives the size
of the BDDs of voting functions and of the parity function on n
variables.

It is interesting to compare our results above with the special
case of binary voting functions. It can be shown that the average

number of nodes in n-variable voting functions is n2

6  (see Butler
et al. [4]), for large n, or one-third that of n-variable symmetric
functions. Further, the worst case number of nodes in n-variable

voting functions is n2

4 , for large n, or one-half that of n-variable
symmetric functions.
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TABLE 1
NUMBER OF NODES IN SAMPLE BDDS OF BINARY FUNCTIONS

Function String representation BDD node count

Constant 0 00 … 0 1

AND (n of n voting function) 00 … 01 n + 2

n – 1 of n voting function 00 … 011 2n

n – 2 of n voting function 00 … 0111 3n – 4

0
v
1

w
 (w of n voting function) 00 … 011 …1 (v 0s, w 1s) vw + 2

OR (1 of n voting function) 011 … 1 n + 2

Constant 1 11 … 1 1

Parity 0101 … 01 2n + 1


