
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2004-10

A Method to Find the Best Mixed

Polarity Reed-Muller Expression Using

Transeunt Triangle

Dueck, Gerhard W.

A Method to Find the Best Mixed Polarity Reed-Muller Expression Using Transeunt Triangle,"

5th International Workshop on Applications of Reed-Muller Expansion in Circuit Design (RM),

Starkville, MS, August 2001, pp. 82-93

http://hdl.handle.net/10945/35774

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36728329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Method to Find the Best Mixed Polarity Reed-Muller

Expression Using Transeunt Triangle

Gerhard W. Dueck, Dmitry Maslov,
Department of Computer Science

University of New Brunswick
Fredericton, N.B. E3B 5A3 CANADA

Jon T. Butler,
Department of Electrical and

Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121, U.S.A.

Vlad P. Shmerko, and Svetlana N. Yanuskevich
Inst. of Comp. Science

Inf. Systems, Technical University
Zolnierska str. 49

71210 Szczecin, POLAND

October 28, 2004

Abstract

In this paper, we use the transeunt triangle in an efficient algorithm to find the mini-
mum mixed polarity Reed-Muller expression of a given function. This algorithm runs in
O(n3) time and uses O(n3) storage space. We demonstrate this algorithm on benchmark
functions, and we extend it to multi-output functions.

1

1 List of symbols

⊕ modulo-2 addition
+ integer addition
(γ1, γ2, ..., γn) ternary number of the element of RTT
(ε1, ε2, ..., εn) binary number of needed for a given polarity element
ei,j (i, j)-th element of transeunt triangle
P = (ρ1, ρ2, ..., ρn) polarity of a mixed polarity Reed-Muller expression
RTT restricted transeunt triangle
T transeunt triangle for the function f(x1, x2, ..., xn)
T0, T1, T2 leftmost, rightmost and upper sub-triangles of T

2 Introduction

Much research has been devoted to sum-of-product expressions in which sum is the Exclusive-
OR function and product is the AND of variables or complements of variables [1]. It is known
that such expressions require, on the average, fewer product terms than OR sum-of-products
[8]. Another advantage is ease of testability [7].

AND-EXOR circuits have been used in arithmetic, error correcting, and telecommuni-
cations applications [13], [9].

Such expression can be used to classify a given function into an equivalence class of
functions, where two functions are equivalent if one is transformed into the other by permuting
variables, complementing variables, and/or complementing the function [12], and is useful for
determining library cells in CAD tools. This is called Boolean matching and is important in
the determination of library cells for use by computer-aided design tools.

This paper focuses on a special class of AND-EXOR circuits, called mixed polarity Reed-
Muller (MPRM) expressions. In an MPRM expression of a given function f(x1, x2, ..., xn), ev-
ery variable appears either 1. complemented, 2. uncomplemented, or 3. in both forms, in which
case all terms contain the variable. If all variables are uncomplemented (complemented), the
MPRM expression is called the Positive (Negative) Polarity Reed-Muller or PPRM (NPRM)
form. A fixed polarity Reed Muller (FPRM) expression is one where each variable appears
either complemented or uncomplemented, but never in both forms. FPRM expression are a
subset of MPRM expressions. MPRM expressions are unique [2]. Thus, only one representa-
tion exists for the PPRM or NPRM or indeed any MPRM of f(x1, x2, ..., xn). This leads to
the question of which of the MPRM’s produces the fewest product terms [5], [6], [10].

3 Background

In this section we give the formal definitions of the terms used in this paper.

Definition 1. Let P = (ρ1, ρ2, ..., ρn) where ρ1, ρ2, ..., ρn ∈ {0, 1, 2} be the polarity of a
mixed polarity Reed-Muller expression for the function f(x1, x2, ..., xn), such that xi appears
complemented if ρi = 0, xi appears uncomplemented if ρi = 1 and xi appears mixed if ρi = 2.

2

If ρi = 2, then f can be decomposed as

f(x1, x2, ..., xn) = xif0(x1, ..., xi−1, xi+1, ..., xn)⊕ x̄if1(x1, ..., xi−1, xi+1, ..., xn),

where f0(x1, ..., xi−1, xi+1, ..., xn) and f1(x1, .., xi−1, xi+1, ..., xn) have polarity (ρ1, ..., ρi−1, ρi+1, ..., ρn).
I

Kronecker

Definition 2. The cost of a Reed-Muller expression is the number of all non-zero coefficients
of the corresponding polynomial. I

4 Minimization Algorithm

4.1 Transeunt Triangle

Let f(x1, x2, ..., xn) be a switching function of n variables, where xi ∈ {0, 1}. We seek a mixed
polarity Reed-Muller expression for f with minimal cost. An design algorithm based on the
transeunt triangle, previously applied to symmetric functions, [?], [?], [?], [11], is also useful
for arbitrary functions.

Definition 3. The transeunt triangle for f(x1, x2, ..., xn) is a triangle of 0’s and 1’s where
the bottom row is the truth vector of f . The j-th element in the i-th row of the triangle is
denoted by ei,j , where the indices run from left-to-right and top-to-bottom starting with i = 0
and j = 0, respectively. . The truth vector corresponds to the elements e2n,0, e2n,1, ..., e2n,2n−1.
The element e2n,k corresponds to f(α1, α2, ..., αn), where k = (α1, α2, ..., αn) is the binary
representation of integer k. Other elements are related by ei,j = ei+1,j ⊕ ei+1,j+1. I

Example 1. The transeunt triangle for f(x1, x2) = 1⊕ x1 ⊕ x2 is shown in Fig. 1.

0

1 1

1 0 1

1 0 0 1

Figure 1: transeunt triangle for f(x1, x2) = 1⊕ x1 ⊕ x2.

Note that a transeunt triangle for an n-variable function has a width of 2n and a height
of 2n. There are (4n + 2n)/2 elements in total. Besides the defining relation, there are other
relations among elements in the transeunt triangle, as shown below.

3

Lemma 1. For the transeunt triangle of f(x1, x2, ..., xn), ei,j = ei,j+2k⊕ei+2k,j+2k where k ≥ 0.

Proof. By induction: If k = 0, then ei,j = ei+1,j⊕ei+1,j+1 is true by the definition of transeunt
triangle. Assume the hypothesis is true for k = m− 1. Therefore,

ei,j = ei,j+2m−1 ⊕ ei+2m−1,j+2m−1 (1)

Similarly,
ei,j+2m−1 = ei,j+2m−1+2m−1 ⊕ ei+2m−1,j+2m−1+2m−1 (2)

and
ei+2m−1,j+2m−1 = ei+2m−1,j+2m−1+2m−1 ⊕ ei+2m−1+2m−1,j+2m−1+2m−1 (3)

Substituting (2) and (3) into (1) yields the hypothesis. ¥
Since the truth vector for functions with one or more variables has an even number of

entries, it can be divided evenly into two equal parts. Each part produces, on its own, two
subtriangles. Indeed, we can identify three subtriangles, as shown in Fig. 2.

� � � �

� � � �

�

�

� �
� �

�

�

Figure 2: Decomposition of the transeunt triangle T .

Lemma 2. Let T be transeunt triangle for a switching function f(x1, x2, ..., xn). If we divide
T onto 3 triangles T0, T1 and T2 as shown in Fig. 2, then

T0 is the transeunt triangle for the function f(0, x2, .., xn),
T1 is the transeunt triangle for the function f(1, x2, ..., xn) and T2 is the transeunt

triangle for the function f(0, x2, ..., xn)⊕ f(1, x2, ..., xn).

Proof. First, denote e0
i,j to be the (i, j)-th element from T0, e1

i,j to be the (i, j)-th element
from T1 and e2

i,j to be the (i, j)-th element from T2. T0 can be considered as the transeunt
triangle for f(0, x2, ..., xn) because it’s bottom row is the truth vector of f(0, x2, ..., xn) and
every element e0

i,j = e0
i+1,j ⊕ e0

i+1,j+1 by the construction of T . Similarly, T1 is the transeunt
triangle for f(1, x2, ..., xn).

Note, that by Lemma 1 and the statement that the height of transeunt triangle is a
power of two e2

i,j = e0
i,j ⊕ e1

i,j . Therefore, the bottom of T2 will be “exclusive or” of the
elements of bottom row of transeunt triangles for f(0, x2, ..., xn) and f(1, x2, ..., xn), which is the

4

“exclusive or” of truth vectors of f(0, x2, ..., xn) and f(1, x2, ..., xn), which is the truth vector
for f(0, x2, ..., xn)⊕ f(1, x2, ..., xn). Other (non-bottom) elements of T2 by the construction of
T are corresponding sums. So, T2 is the transeunt triangle for the function f(0, x2, ..., xn) ⊕
f(1, x2, ..., xn). ¥

The algorithm can be described intuitively, as follows. First, given a function f(x1, x2, ..., xn)
as a truth vector and a polarity P = (ρ1, ρ2, ..., ρn), we construct the corresponding transeunt
triangle. To obtain the cost, we divide the triangle into parts, extracting elements. First,
divide the transeunt triangle T onto the three triangles T0, T1 and T2. Consider variable x1

and the corresponding ρ1 in the polarity P . If ρ1 = 0 retain T0 and T2. If ρ1 = 1 retain T1

and T2. And, if ρ1 = 2 retain T0 and T1. In other words, if ρ1 = i where i ∈ {0, 1, 2}, then
delete Ti. Next, repeat this process with x2 (and ρ2). At the end of this step we have four
triangles. Continue this operation for all variables until each triangle is a single element. Such
a one-element triangles are called elementary triangles. There will be 2n of them. The sum of
all these 2n values is the cost for the given polarity (view logic values as integers and sum as
integer sum).

A formal version of the algorithm is shown in Fig. 3.

Algorithm 1

GetCost(T , P)
/* Calculate the cost for polarity P */
/* for a function T given as transeunt triangle */
if (|P | = 0) then

return e0,0 /* T is a triangle consisting of one element */
if (ρ1 = 0) then

return GetCost(T1, P ′) + GetCost(T2, P ′)
/* where P ′ is P with ρ1 deleted */

if (ρ1 = 1) then
return GetCost(T0, P ′) + GetCost(T2, P ′)

if (ρ1 = 2) then
return GetCost(T0, P ′) + GetCost(T1, P ′)

Figure 3: Recursive algorithm to find the cost for a given polarity.

Theorem 1. Given function f(x1, x2, ..., xn), Algorithm 1 finds the cost for a given polarity
P .

Proof. The proof is by the induction.
1. If n = 1 write f(x1) = x̄1f(0) ⊕ x1f(1) which gives us polarity P = (2), or f(x1) =

f(0)⊕x1(f(0)⊕f(1)) which gives us polarity P = (1), or f(x1) = f(1)⊕ x̄1(f(0)⊕f(1)) which
gives us polarity P = (1). In this simple case the cost of the polarity P = (2) is f(0) + f(1),
the cost of the polarity P = (1) is f(0) + (f(0)⊕ f(1))and the cost of the polarity P = (0) is
f(1) + (f(0)⊕ f(1)). The transeunt triangle for the given function will look like:

f(0)⊕ f(1)

5

f(0) f(1)

Note, that T0 = f(0) is the transeunt triangle for f(0), T1 = f(1) is the transeunt triangle
for f(1) and T2 = f(0) ⊕ f(1) is the transeunt triangle for f(0) ⊕ f(1). By the algorithm, if
ρ1 = 0 we should consider T1 and T2. These triangles are elementary, so we take the sum of
their elements. It is equal to the f(1) + (f(0)⊕ f(1)) which is actually the cost for the given
polarity as it was shown before. If ρ1 = 1 consider T0 and T2 and conclude that the sum of
their elements is equal to the cost of polarity P = (1) as it was shown. And the same goes for
P = (2).

2. Assume the theorem holds for n = k − 1. We can decompose f(x1, x2, ..., xk) as
follows:

f(x1, x2, ..., xk) = x̄1f(0, x2, ..., xk)⊕ x1f(1, x2, ..., xk)
= f(0, x2, ..., xk)⊕ x1(f(0, x2, ..., xk)⊕ f(1, x2, ..., xk))
= f(1, x2, ..., xk)⊕ x̄1(f(0, x2, ..., xk)⊕ f(1, x2, ..., xk))

From this formula we conclude that the final cost for every polarity P = (2, ρ2, ..., ρk)
will be the sum of the costs of polarity P ′ = (ρ2, ρ3..., ρk) for functions f(0, x2, ..., xk) and
f(1, x2, ..., xk). By the algorithm we had to consider triangles T0 and T1, which are transeunt
triangles for f(0, x2, ..., xk) and f(1, x2, ..., xk) correspondingly. By induction, the algorithm
works for functions f(0, x2, ..., xk) and f(1, x2, ..., xk) as functions from (k − 1) variables and
the cost for the given polarity P ′ will be the sum of given by the algorithm elementary triangles
inside T0 and T1. But this sum is equal to the sum of all given by the algorithm elementary
triangles of transeunt triangle for f(x1, x2, ..., xk) because at the first step we took T0 and T1

due to the algorithm. And, finally, the number which we obtained can be considered as the
sum of costs of polarity P ′ for f(0, x2, ..., xk) and f(1, x2, ..., xk) which is the cost of polarity
P = (2, ρ2, ..., ρk) for f(x1, x2, ..., xk) as it was shown before.

For cases P = (1, ρ2, ..., ρk) and P = (0, ρ2, ..., ρk) the induction step is similar to the
previous proof. ¥

**** Text below was changed **** **** In my opinion, there should be a black box end
marker for examples, as well as proofs. ****

Example 2. Given the function f(x1, x2, x3) whose truth vector is (0, 0, 1, 0, 1, 0, 1, 1) find the
cost of polarity P = (1, 2, 0). First, we build the transeunt triangle, and then, we identify
the MPRM coefficients associated with the given polarity according to Algorithm 1. The
coefficients identified are shown in Fig. 4 in black. Finally, we sum the coefficients in a cost of
4.

In the computer program implementation of the algorithm, we only consider a transeunt
triangle that has 3n elements. We call this a restricted transeunt triangle (RTT). The con-
struction of a RTT proceeds as follows: enumerate elements ei,j of transeunt triangle. The
ternary number (γ1, γ2, ..., γn) which corresponds the element ei,j of RTT for the function
f(x1, x2, ..., xn) is built as follows: first, γ1 is k, if ei,j ∈ Tk, where k ∈ {0, 1, 2}. Second, γ2, is
zero if ei,j lies in the bottom-left triangle, one if ei,j lies in the bottom-right triangle and two
if ei,j lies in the top triangle inside the chosen Tk. Continue this operation until all values are
obtained. For example, e7,3 in (Fig. 5) has ternary number (0, 1, 2), because it is in the second

6

�

�

�

�

�

��

�

�

�

�

�

�

�

� �

�

� �

�

��

�

�

�

��

� ��

��

�

�

�

�

Figure 4: transeunt triangle for the example

smallest triangle, which is inside bigger triangle with number 1, which in its turn, lies in the
bigger triangle number 0.

Lemma 3. If the element ei,j with the ternary number (γ1, γ2, ..., γn) has γk = 2 for k ∈
{1, 2, ..., n}, then it is equal to the exclusive or of two elements es,t and eu,v of RTT with
ternary numbers (γ1, ..., γk−1, 0, γk+1, ..., γn) and (γ1, ..., γk−1, 1, γk+1, ..., γn) respectively.

Proof. Notice, that by the construction of a ternary number for ei,j the change of k-th position
from 2 to 0 gives us element es,t, where s = i+2n−k and t = j. For the same reason the change
of k-th position of ei,j from 2 to 1 gives us element eu,v, where u = i + 2n−k and v = j + 2n−k.
Now we can apply Lemma 1 to prove the statement. ¥

The fact that all elements with ternary numbers (γ1, γ2, ..., γn) where γi ∈ {0, 1} lie in
lexicographic order in the bottom of the RTT together with the definition of transeunt triangle
gives us the following lemma.

Lemma 4. All elements with ternary numbers (γ1, γ2, ..., γn) where γi ∈ {0, 1} are equal to
f(γ1, γ2, ..., γn).

Given the truth vector of a function (the bottom row) we need 3n − 2n “exclusive or”
operations to build the remaining elements in the RTT. That is, there are 3n elements in the
RTT, of which 2n are the truth vector. Next, to find the best mixed polarity Reed-Muller
expression in our computer program implementation of the algorithm, we interpret switching
variables 0, 1 as integers and do the following: first, take 3n−1 3-element triangles of RTT.
Each of them has elements ei,j , ei+1,j , ei+1,j+1 and we

1. set ei,j to ei+1,j + ei+1,j+1,

2. set ei+1,j to ei,j + ei+1,j+1,

3. set ei+1,j+1 to ei,j + ei+1,j .

7

� �

�
��

��
��

� � � �

� �

�
��

��
��

� �

�
��

��
��

�

�

�
	

�

�
�

Figure 5: The example of building the ternary number

Note: the operations are performed simultaneously. To do this for the single 3-element
triangle we need 3 addition operations. For the first step we need 3 ∗ 3n−1 = 3n addition oper-
ations. In general, for the k-th step we take 3n−k of 3k-element triangles (decomposition of T
into smaller triangles is shown on the Fig. 7) and, within each of them by the same rules, obtain:
element-wise sum of Tβ1,β2,...,βk−1,0 and Tβ1,β2,...,βk−1,1 in Tβ1,β2,...,βk−1,2, element-wise sum of
Tβ1,β2,...,βk−1,1 and Tβ1,β2,...,βk−1,2 in Tβ1,β2,...,βk−1,0 and element-wise sum of Tβ1,β2,...,βk−1,2 and
Tβ1,β2,...,βk−1,0 in Tβ1,β2,...,βk−1,1, where βi ∈ {0, 1, 2} for i ∈ {1, 2, ..., k − 1}. To do this we
need 3k ∗ 3n−k = 3k+n−k = 3n addition operations. After all the steps (there will be (n-1) of
them) are done, costs of all 3n different mixed polarities are represented by the elements in
RTT. It is easy to see, that for polarity P = (ρ1, ρ2, ..., ρn) it’s cost is in the cell with ternary
number (γ1, γ2, ..., γn). To find the minimal cost we may apply any known method which finds
the minimal element of the array.

The final complexity will be:

• 3n − 2n binary additions to build RTT,

• (n− 1)3n natural addition operations to find all costs,

• 3n − 1 comparisons to find the minimal cost.

Needed memory is:

• 3n integers plus a few integer variables for intermediate assignments (we used 3).

4.2 Multiple Output Functions

Our method also works for multiple output functions. The truth vector is given as a list of
words rather than bits. To build transeunt triangle the words are “exclusive or”-ed bit by bit.
Before the cost is calculated, all entries in transeunt triangle are set to 1 if the word contains
at least one nonzero bit and are set to 0 otherwise. The cost of the best polarity is calculated
as before.

8

Algorithm 2

CalcAllCosts(T , n)
/* Calculate the cost for all polarities */
/* for a function T given as transeunt triangle */
/* Note: elements in T will contain costs */
if (n > 1) then

CalcAllCosts(T0, n− 1)
CalcAllCosts(T1, n− 1)
CalcAllCosts(T2, n− 1)

end if
T ′0 = T1 + T2 /* element by element addition */
T ′1 = T0 + T2

T ′2 = T0 + T1

T = T ′0, T
′
1, T

′
2 /* replace T with the 3 sub-triangles */

end CalcAllCosts

Figure 6: Recursive algorithm to find costs for all mixed polarities for a given function.

5 Experimental Results

We have implemented the algorithm using the C programming language. The program was
applied to several benchmark functions running on a Sun Enterprise 250 with two 400Mhz
Ultra Sparc II processors and 1GB of main memory. The results are summarized in Table 5.
In the first column, name, denotes the name of the function (from NCMC benchmarks ***
Maybe, this should be MCNC.***). Note: co14 is a symmetric function where the output is
one if exactly 1 input variable is 1. In general con is an n variable symmetric function whose
output is 1 if exactly one input is 1. The number of inputs (outputs) are given in in (out).
The minimum number of terms required for a fixed (mixed) polarity Reed Muller expression
are shown in cost fixed (cost mixed). OFDD time denotes the cpu time in seconds for the
OFDD implementation reported in [3] (run on a HP Apollo series 700 workstation). RTT
time gives the cpu time in seconds for our algorithm. Our results compare favorably with
previous implementations. We are able to minimize function with up to 18 variables. Memory
requirements make it impossible to minimize functions with more than 18 variables.

Green’s [4] algorithm (which has the same complexity) was never implemented. We
claim that our method is easier to program. Drechsler, Theobald and Becker’s [3] implementa-
tion is significantly slower than our program and their algorithm considers only fixed polarity
expressions. Derchsler et al. don’t provide a complexity analysis for their algorithm. However,
the execution time depends on the function as well as on the number of variables, whereas our
algorithm depends only on the number of variables.

Lui and Muzio [5] describe an algorithm with space complexity of O(2n) and time
complexity of O(6n).

9

� � �

��

�

�

� �

�

�

�

� �� � � � � � �

� � �

� � � � � �

� � �

� � � � � �

� � �

Figure 7: Decomposition of T into smaller triangles

6 Conclusion

We presented a new algorithm to minimize fixed and mixed polarity Reed Muller expressions.
The algorithm is easy to understand and to program. The results compare favorably to previous
algorithms, although we have not been able to reduce the complexity of O(3n) both in storage
and execution time.

An algorithm involving transeunt triangles has been devised to find the best polarity
for totally symmetric functions in O(n3) operations and O(n2) storage space [?]. Some of the
dramatic reduction in complexity can be achieved for partially symmetric functions. This area
is currently under investigation.

References

[1] M. Cohn. Inconsistent canonical forms of switching functions. IRE Transactions of Elec-
tronic Computers, EC-11:284–285, 1962.

[2] M. J. Davio, P. Deschamps, and A. Thayse. Discrete and switching functions. McGraw-Hill
Int. Book Co., 1978.

[3] R. Drechsler, M. Theobald, and B. Becker. Fast OFDD-based minimization of fixed
polarity Reed-Muller expressions. IEEE Transactions on Computers, 45:1294–1299, Nov.
1996.

[4] D. H. Green. Reed-Muller canonical forms with mixed polarity and their manipulations.
IEE Proceedings, Part E., 137:103–113, Jan. 1990.

[5] P. K. Lui and J. C. Muzio. Boolean matrix transforms for the minimization of modulo-2
canonical expressions. IEEE Transactions on Computers, 41:342–347, Mar. 1992.

10

name in out cost fixed cost mixed OFDD time (secs.) RTT time (secs.)
9sym 9 1 173 173 8.1 < 0.001
add6 12 7 132 132 295.1 0.17
co14 14 1 14 14 448.4 1.99
co15 15 1 15 15 6.68
co16 16 1 16 16 20.41
co17 17 1 17 17 64.51
co18 18 1 18 18 214.11
dist 8 5 185 157 12.5 < 0.001
gary 15 11 349 242 16216.1 6.44

mixex3 14 14 3536 1421 2.02
rd53 5 3 20 20 0.5 < 0.001
rd73 7 3 63 63 2.3 < 0.001
rd84 8 4 107 107 5.5 < 0.001
root 8 5 118 83 8.8 < 0.001
sao2 10 4 100 76 8.8 0.02

table3 14 14 1845 407 2.01
table5 17 15 2458 559 65.88
tial 14 8 3683 2438 8480.4 2.04

Table 1: Experimental results

[6] A. Mukhopadhyay and G. Schmitz. Minimization of exclusive-or and logical-equivalence
switching circuits. IEEE Trans. on Computers, pages 132–140, 1970.

[7] S. M. Reddy. Easily testable realisations for logic functions. IEEE Trans. on Computers,
pages 1183–1188, 1972.

[8] T. Sasao and Ph. W. Besslich. On the complexity of mod-2 sum pla’s. IEEE Trans. on
Computers, C-29:262–266, Feb. 1990.

[9] J. Saul. Logic synthesis for arithmetic circuits using the Reed-Muller representation. Proc.
Euro. Conf. Design Automation, pages 109–113, 1992.

[10] I. Schafer and M. A. Perkowski. Multiple-valued input generalized Reed-Muller forms.
Proc. of the Inter. Symp. on Multiple-Valued Logic, pages 40–48, 1991.

[11] V. P. Suprun. Fixed polarity Reed-Muller expressions of symmetric Boolean functions.
Proc. IFIP WG 10.5 Workshop on Application of the Reed-Muller Expansions in Circuit
Design, pages 246–249, 1995.

[12] Chien-Chang Tsai and M. Marek-Sadowska. Boolean Functions Classification via Fixed
Polarity Reed-Muller Forms. IEEE Trans. on Computers, C-46(2):173–186, Feb. 1997.

[13] T.Sasao. Switching theory for logic synthesis. Kluwer Academic Publishers, Norwell, MA,
1999.

11

