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ANALYSIS OF MINIMIZATION ALGORITHMS 
FOR MULTIPLEVALUED PROGRAMMABLE LOGIC ARRAYS* 

Parthasarathy Tirumalai 
52L/57, Hewlett-Packard Company 

5301 Stevens Creek Boulevard 
Santa Clara, CA 95051 

ABSTRACT 

We compare the performance of three heuris- 
tic algorithms [3,6,13] for the minimization of 
sum-of-products expressions realized by the  newly 
developed multiplevalued programmable logic 
arrays [9]. Heuristic methods are important 
because exact minimization is extremely t i m e  
consuming. We compare the heuristics to the 
exact solution, showing that heuristic methods 
are reasonably close to  minimal. We use as a 
basis of comparison the average number of pro- 
duct terms over a set of randomly generated 
functions. All three heuristics produce nearly the 
same average number of product terms. 
Although the averages are close, there is surpris- 
ingly little overlap among the set of functions 
where the best realization is achieved. Thus, 
there is a benefit to  applying different heuristics 
and then choosing the best realization. 

I. INTRODUCTION 

The minimization of sum-of-products expres- 
sions in binary logic has received considerable 
attention for over 30 years. The complexity of 
the problem has been known for almost as long. 
Although minimal sum-of-products extraction 
appears to  be a special case of the general 
minimal set covering problem, it is not. This was 
proven by Gimpel [7] in 1965. That is, any 
instance of the set covering problem is an 
instance of the  minimal sum-of-products extrac- 
tion. In 1972, Karp[8] showed that  the set cover- 
ing problem is NP complete; thus, so also is 
minimal sum-of-products extraction. The best 
known algorithm then requires exponential time. 

Jon T. Butler 
Dept. of Electr. and Comp. Eng. 

Naval Postgraduate School 
Monterey, CA 93943-5100 

This is a real barrier; it precludes the exact 
minimization of functions with even a moderately 
low number of inputs, e.g. 20. As a result, con- 
siderable effort has been devoted to  heuristic 
minimization methods. For example, among the 
Berkeley VLSI tools is ESPRESSO-IIC [4], a C 
program tha t  minimizes binary functions by a set 
of operations on the prime implicants. 

Recently, there has been considerable interest 
in multiplevalued PLA's [ 1,2,3,5,6,9,10,11,13,14, 
151. Several have been proposed [11,14,15] and at  
least one implemented [9]. We know of three 
heuristic MVL sum-of-products minimization 
algorithms. Pomper and Armstrong [13] intro- 
duced in 1981 a heuristic method that  found a 
near-minimal sum-of-products expression as a 
direct cover of the function. The algorithm 
proceeds in two steps; 1. select a minterm and 2. 
find an implicant that  covers the minterm. The 
first step is accomplished by a random choice of 
minterm, while the second step is accomplished 
by choosing the largest implicant. In 1986, 
Besslich [3] introduced another direct cover 
method that seeks to  cover the "most isolated" 
minterms first. And in 1987, Dueck and Miller 
(61 introduced a method which also seeks the 
most isolated minterm first, but chooses a pro- 
duct term that  tends to introduce the fewest 
discontinuities when subtracted from the func- 
tion. 

There has been little study of the relative 
merits of heuristic algorithms. To the credit of 
Brayton, Hachtel, McMullen and Sangiovanni- 
Vincentelli (41, the realizations produced by 
ESPRESSO-IIC were compared with the realiza- 
tions of MINI, PRESTO, and POP [4] over a set 
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of 56 specifically chosen binary functions. How- 
ever, the justification of the newly introduced 
algorithms examined by us has rested on an 
intuitive notion, supported by examples. In this 
paper, we analyze six synthesis methods. 

1. Random minterm random implicant 
2. Pomper and Armstrong [13] 
3. Besslich [3] 
4. Dueck and Miller [6] 
5. Gold 
6. Absolute minimization 

over a set of 7000 randomly chosen 2-variable 4- 
valued functions. Our choice of 2-variable 
functions is influenced by a need to  compare 
heuristics (1-5) with absolute minimal realizations 
(6). Even with only 2 inputs, absolute minimiza- 
tion requires high computation times, on the 
order of days. Our choice of 4-values is 
influenced by the current interest in this radix. 
The three heuristic algorithms in [3,6,13] apply to 
sum-of-products expressions where sum is MAX. 
In all three algorithms, the case where sum is 
truncated SUM is also considered. Because the 
PLA's produced in CCD [9] use the SUM opera- 
tion, our analysis uses this operation. Further, 
we have adapted the heuristics to  the case of pro- 
duct terms consisting of interval literals, again 
since the CCD PLA's realize such functions. A 
motivation for the study reported here is the 
development of a minimization method for our 
CCD PLA CAD tool [lo]. 

This paper is organized as follows. The next 
section introduces notation and fundamental con- 
cepts. Section 111 describes the six synthesis 
methods, and Section IV describes the results of a 
comparative analysis of their performance. In the 
final section, we summarize the results. 

11. BACKGROUND AND NOTATION 

Let X = {il, x 2 ,  - - - , x,,} be a set of n vari- 
ables, where xi takes on values from 
R = {0,1, ..., r - l } .  A function f(X) is a m a p  
ping f : R " + R  ~ { r } ,  where r is the don't care 
value. Specifically, f(X) is said to  be an n- 
variable r-valued function. Fig. 1 below shows a 
map representation of a 2-variable 5-valued func- 
tion. Blank entries correspond to 0. An assign- 
ment z of values to  variables in X is called a 
minterm if f (2) # 0. In Fig. 1,  there are 12 min- 
terms all of which yield a 2. 

Functions realized by the PLA's described in 
Kerkhoff and Butler [9] are composed of three 
functions, 
1. MIN f (x1,22) = 21x2 (= MIN(q,x2)), 
2. SUM: f(x1,x2) = s l + 5 2 ( = x 1 + x 2 i f x 1 + x 2  

5 3 and = 3 otherwise, where + is viewed as 
ordinary addition and xi is viewed as an 
integer), and 

and = 0, otherwise). 
3. literal: f(xl) = 'x! (= r-1 if a 5 s 1 5 b  

1 1 0 2  
\xl x1,4! 

1 4 1  1 xz 

2 x l  52 
0 23  3 

3 32-4  
2=i  52 

Figure 1. Example of a 2-variable &valued function. 

In binary, the SUM, MIN, and literal correspond 
to  AND, OR, and z*, where x* E (5, ?E}. In the 
realization of functions by a multiplevalued 
PLA, constants and literals occur as operands of 
the MIN functions. A product term is the MIN 
of one nonzero constant and one or more literals. 
For example, f (x1,x2) = 22x14 'xi is a product 
term that  is 2 when x1 is 2, 3, or 4 and x 2  is 1. 
An implicant of function f(X) is a product term 
I ( X )  such that  f ( X )  L I ( X ) .  A prime implicant 
of f(X) is an implicant of f(X) such that  there 
is no other implicant I (X) of j ( X )  where 
I ' ( X ) > I ( X ) .  For example, 22x1 'xi is an 
implicant of the  function in Fig 1 but it is not a 
prime implicant. However, 2 'xf 'xi is a prime 
implicant. Any function can be expressed as the 
SUM of implicants (151. For example, the func- 
tion f(x1,x2) in Fig. 1 can be expressed as the 
SUM of 4 implicants, 

We use the term sum-of-products to  describe 
functions realized by such PLA's, where sum 
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refers to  SUM and product refers to  MIN. A 
sum-of-products expression for function f (X) is 
minimal if there is no other expression for f(X) 
with fewer product terms. For example, (1) is a 
minimal sum-of-products expression. Given 

implicant I ( X )  cowers a minterm at  z if 

has the property g ( z )  = 0, and we say that sub- 
tracting I ( X )  drives the minterm a t  z to  0. 

; IX)’ z) - I ( z ) .  Therefore, g(X) = f(X) - I ( X )  

It is interesting to  note that  the none of the 
implicants in (1) are prime. In fact, any sum-of- 
products expression for f (x1,x2) containing at 
least one prime implicant i s  not minimal. Such 
expressions require at least 5 product terms. 
Therefore, in contrast to  the case of conventional 
binary sum-of-products, it is necessary to con- 
sider all implicants. A similar observation was 
made with respect to  sum-of-products expres- 
sions, where sum is MAX and products are the 
MIN of unary functions of varying costs [12]. 

III. MINIMIZATION ALGORITHMS FOR 
SUM PLA’S 

We consider six synthesis methods. The first 
five are heuristic and are based on the direct 
cover approach. In this approach, a minterm is 
first chosen. Next, an implicant is chosen that  
covers this minterm. The implicant is then 
subtracted from the function and the process is 
repeated until there are no more minterms. 

1. Random Minterm Random Implicant 

In this heuristic, both the minterm and impli- 
cant are chosen randomly, with all choices equally 
likely. That  is, among all minterms, one is 
chosen randomly, and similarly in the case of 
implicants. As with the other algorithms, the 
chosen implicant is subtracted and the process 
repeated on the resulting function. Since no par- 
ticular characteristics of the function are used to 
determine the choice of minterm or implicant, it 
provides a basis of comparison for the next four 
heuristics, which use characteristics of the func- 
tions to  limit, t o  varying degrees, the choices of 
minterms and implicants. 

2. Pomper and Armstrong 

As in the Random Minterm Random Impli- 
cant heuristic, this heuristic chooses the minterm 
randomly. However, the implicant is chosen as 

the one, which when subtracted, drives the larg- 
est number of minterms to 0 or don’t care. If 
there is more than one such implicant, the largest 
is chosen. If there are more than one largest, the 
one generated first is chosen. The process is 
repeated until the function is completely covered. 
A formal description of this algorithm is given in 
Appendix I. 

Because the Random Minterm Random Impli- 
cant heuristic can choose from all possible covers 
of any function, there is a nonzero probability 
that  it will find a minimal realization. However, 
if the minimal realizations are a small percentage 
of the total number of realizations, non-minimal 
realizations will most likely result. Our analysis 
shows this clearly. There is then the question of 
whether the Pomper and Armstrong heuristic has 
a nonzero probability of finding a minimal reali- 
zation for all functions. The example in Fig. 1 is 
a function where this probability is 0. Here, a 
prime implicant is never in a minimal sum-of- 
products realization, and so, for this case, the 
Pomper and Armstrong heuristic does not pro- 
duce a minimal realization. 

3. Besslich 

Besslich [3] presents a direct cover approach 
for the heuristic minimization of multiple-valued 
logic functions using minterm weighting and 
implicant detecting transformations. In this 
heuristic, each minterm is assigned a weight that  
is a measure of the degree to which other min- 
terms cluster around it. Minterms in the center 
of clusters have the highest weight and isolated 
minterms the lowest. The minterm with the 
smallest weight is chosen. Next all implicants 
that  cover the chosen minterm are generated. For 
each, an efficiency factor equal to the cost of the 
implicant divided by the number of minterms it 
covers is calculated and the minterm with the 
largest factor is chosen. In a PLA, all implicants 
are realized with the same cost (one column). 
Therefore, for this case, only the number of min- 
terms driven to 0 or don’t care determines which 
implicant is chosen. The basic idea of the 
Besslich heuristic is t o  cover the most isolated 
minterms first and use implicants that  have a low 
cost per minterm covered. Besslich [3] does not 
mention of how ties are broken. We choose to 
break ties among implicants having the same 
efficiency factor by using only the largest impli- 
cants, and among these by choosing the first one 
generated. Thus, the choice of implicants is made 
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in the same way as in the Pomper and 
Armstrong heuristic. A formal description of the 
algorithm is given in Appendix 11. 

Dueck and Miller algorithm. A formal descrip- 
tion of our algorithm, modified to  the 
specifications of our problem, is given in Appen- 
dix 111. 

4. Dueck and Miller 
5. Gold 

Dueck and Miller [6] present a heuristic simi- 
lar t o  that  of Besslich’s with the intent of 
improving realizations using the SUM operation. 
In this approach, an isolation factor (IF’) is calcu- 
lated for each minterm with the smallest value 
(that is, all 1 minterms are considered first; if 
there are none, then 2 minterms are considered, 
etc.). The isolation factor of a minterm a t  z is 
inversely proportional t o  1 plus the number of 
adjacent minterms plus the number of logic vari- 
ables where there are a nonzero number of such 
minterms. Similar to the weight transform 
presented by Besslich, the isolation factor pro- 
vides a measure of the degree to  which a specific 
minterm can combine with other minterms in the 
function (the correlation is negative, however). 
The minterm with the highest isolation factor is 
chosen. All implicants that  cover this minterm 
are then generated. For each of these, a parame 
ter called the relative break count (RBC) is 
calculated. This provides a measure of the 
degree to  which the function is simplified if the 
implicant under consideration is chosen. The 
idea is to  judiciously choose implicants that  make 
the remaining function easy to  realize. Our use 
of ‘interval literals requires an adjustment to the 

Gold is a heuristic in which the heuristic algo- 
rithms of Pomper and Armstrong, Besslich, and 
Dueck and Miller are applied and the best realiza- 
tion is chosen. It was inspired by the observation 
that these algorithms displayed a diversity in 
realizations. That  is, no single algorithm is con- 
sistently better than the others over all functions; 
there are classes of functions where one algorithm 
does better than the others. 

6. Absolute Minimization 

An algorithm which produces the exact 
minimal sum-of-products was devised to compare 
with the results produced by the previous four 
algorithms. This does essentially an exhaustive 
search over all possible solutions, starting with 
the fewest. number of product terms. The algo- 
rithm requires considerable computer time. A 
complete description of the algorithm is given in 
Section VI. 

7. Summary 

Table I below summarizes the six algorithms. 

1. Random Min. Random Impli. Random Random 

2. Pomper and Armstrong [ 131 Drives most min. to 0 
3. Besslich [3] Smallest weight Drives most min. to 0 

4. Dueck and Miller [6] Largest IF Smallest RBC 

5. Gold 

Random 

Best of 2,3, and 4 

1 1 6 . t e  Minimization II Exhaustive search 

Table I. Summary of Minimization Algorithms I 
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W. COMPARISON OF ALGORITHM 
PERFORMANCE 

For the purpose of comparison, we separate 
all four-valued, two-variable functions into 17 
disjoint classes according to  the number of non- 
zero values in the function. For 14 of the 17 
classes, 500 random functions are generated. For 
each function, the six algorithms are applied and 
the number of product terms derived. For func- 
tions with less than three non-zero values, the 
average number of product terms can be calcu- 
lated as follows. 

0 non-zero values: There is only one (trivial) 
function, constant zero, in this class. This 
function requires no implicants in its cover, 
and all algorithms produce identical results. 

1 non-zero value: There are 48 functions in 
this class, and each requires uniquely one 
implicant. Thus, the average number of impli- 
cants required by all algorithms is 1. 

2 non-zero values: There are 32- (i6 ] = 1080 
such functions. All require two implicants 
unless there are two adjacent minterms with 
the same value, in which case a single impli- 

Product Terms 

12 

10 

8 

6 

4 

2 

Average 

cant is sufficient. Of the 1080 functions, 72 
can be covered by one implicant. Only the 
Random Minterm Random Implicant algo- 
rithm will fail to  find the minimal cover for 
all functions in this class. Specifically, func- 
tions with adjacent identical, minterms will be 
incorrectly minimized half the time, since a 
cover of a single minterm or two adjacent 
minterms are equally likely. For a uniformly 
distributed set of functions, the average and 
standard deviation on the number of impli- 
cants produced by the Random Minterm Ran- 
dom Implicant algorithm are 1.97 and 0.18, 
respectively. On the other hand, these values 
for all other algorithms are 1.93 and 0.25, 
respectively. Our random function generation 
program was tested on this class and yielded 
values very close to  these, to  within 0.18% for 
the average and t o  within 3.9% for the stan- 
dard deviation. 

For classes with a larger number of non-zero 
values, 500 functions were randomly generated. 
The functions generated had no don’t care values. 
However, they could develop don’t care values 
during the covering process. (Nota bene: A value 
of 3 in the original function becomes a don’t care 
when fully covered.) Fig. 2 shows the results. 

Random Minterm & Implicant: ----------- 
Pomper & Armstrong 

Besslich 

Dueck & Miller 

Gold 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _  

- - - - - - - - - -. 
Absolute Minimum 

2 4 6 8 10 12 14 16 
Number of Nonzero Values 

Figure 2. The Average Number of Product Terms Verses the Number of Nonzero Values 
for the Six Algorithms. 
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It can be seen that  the Random Minterm Ran- 
dom Implicant algorithm does quite poorly. 
Choosing the largest (prime) implicant, as in the 
Pomper and Armstrong algorithm, provides a 
significant improvement. There is very little 
difference between the performance of the Besslich 
and the Dueck and Miller algorithms; their 
curves in Fig. 2 are almost identical. Both algo- 
rithms choose the most isolated minterm first, 
and this gives some improvement over that  of the 
Pomper and Armstrong algorithm. Gold, taking 
advantage of the small overlap between the three 
heuristic algorithms, provides some further 
improvement. Still further improvement is 
achieved by absolute minimization, shown as the 
lowest curve in the figure. 

Another measure of comparison of the algo- 
rithms is the number of functions for which the 
absolute minimal solution is found. Fig. 3 shows 
how the six algorithms compare on this basis. 
Here there is a much larger distinction between 
the algorithms. As the number of non-zero 
values increases, the number of functions for 
which an optimum cover is found by the Random 
Minterm Random Implicant algorithm drops off 
sharply, t o  nearly zero. The  Pomper and 
Armstrong algorithm offers considerable improve 

Absolute Minimum 

Gold 

Dueck & Miller 

Besslich 

Pomper & Armstrong 
Number of Functions Where 

Absolute Yinimi. is Achieved 

ment, but even in this case only about 39% of 
the functions are completely minimized when the 
number of non-zero values is 14-16. The Besslich 
and Dueck and Miller algorithms are again very 
close t o  each other. Approximately, 52% of the 
functions are minimized for these two algorithms 
when the number of non-zero values is 1416. 
Gold shows a reasonable improvement, minimiz- 
ing about 75% of the functions with 14-16 non- 
zero values. 

Tables I1 and 111 show the numerical values 
obtained from the programs. Another run was 
made using different seeds for the random 
number generator streams. The results from 
both runs were very similar, indicating that  a 
sufficiently large sample set size was used. An 
examination of the data suggests the truth of the 
following. 

Conjecture: No more than 10 implicants are 
needed in a minimal sum-of-products expres- 
sion of a four-valued, two-variable function, 
where sum is the  SUM operation and the pro- 
ducts consist of the MIN of a constant and 
interval literals on the variables. 

The  absolute minimization program and the 

500 

400 

300 

200 

100 

4 Random Minterm & Implicant ----------- 
.- 

t 
I I I I I ----I I 

I I I I I I 

2 4 6 8 10 12 14 16 
Number of Nonzero Values 

Figure 3. The Number of Functions Where the Absolute Minimal Realization is Achieved 
Verses the Number of Nonzero Values. 
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Number 
of 

Nonzero 
Values 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 11.21 

Random 
Minterm 
Random 

Implicant 
0.00 
1 .OO 
1.97 
2.90 
3.80 
4.66 
5.53 
6.31 
7.04 
7.77 
8.50 
8.99 
9.78 

10.31 
10.54 
11.00 

7.55 

Pomper 

Armstrong 

0.00 
1 .00 
1.93 
2.79 
3.58 
4.35 
5.04 
5.66 
6.13 
6.67 
7.06 
7.34 
7.77 
7.90 
7.91 
7.81 

Besslich 

0.00 
1 .00 
1.93 
2.78 
3.58 
4.34 
5.02 
5.63 
6.07 
6.59 
6.97 
7.25 
7.56 
7.63 
7.62 
7.64 
7.33 

Dueck 

Miller 

0.00 
1 .oo 
1.93 
2.78 
3.57 
4.33 
5.00 
5.57 
6.03 
6.55 
6.9 1 
7.19 
7.57 
7.60 
7.60 
7.63 
7.24 

Gold 

0.00 
1 .00 
1.93 
2.78 
3.57 
4.31 
4.96 
5.53 
5 :95 
6.44 
6.75 
6.98 
7.32 
7.31 
7.30 
7.26 
6.99 

Absolute 

Minimiza. 

0.00 
1 .oo 
1.93 
2.78 
3.57 
4.3 1 
4.96 
5.52 
5.94 
6.40 
6.69 
6.92 
7.20 
7.17 
7.08 
6.97 
6.71 

Number 
of 

Nonzero 
Values 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Random 
Minterm 
Random 
Implicant 

500 
500 
483 
439 
384 
33 1 
252 
187 
113 
76 
43 
23 
12 
7 
3 
3 
1 

Pomper 

Armstrong 

500 
500 
500 
494 
493 
477 
460 
438 
405 
375 
334 
313 
268 
23 1 
191 
197 
202 

Besslich 

500 
500 
500 
499 
492 
483 
474 
450 
438 
414 
37 1 
349 
337 
304 
269 
240 
253 

Product Terms 

Dueck 

Miller 

500 
500 
500 
499 
497 
486 
483 
477 
455 
430 
399 
374 
338 
308 
284 
235 
285 

Gold 

500 
500 
500 
500 
499 
497 
500 
496 
493 
48 1 
470 
469 
44 1 
430 
394 
363 
365 

bsolute Minimi. is Achieved. 

Absolute 

Minimiza. 

500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 
500 

Table III. Number of Functions Where 
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random function generation routines were written 
in C. The heuristic algorithms were written in 
Pascal. The program was executed on a 
Hewlett-Packard Series 9000 Model 350 worksta- 
tion running HP-UX (HP’s extension of the UNJX 
operating system). The program took more than 
3 days to minimize 7000 randomly generated 
functions with 3 to  16 non-zero values. 

V. ABSOLUTE MINIMIZATION. 

The program to compute the absolute 
minimal realization of a function is a search over 
combinations of implicants. As observed in Sec- 
tion 11, it is necessary to  consider all implicants 
and not just the prime implicants. In the worst 
case for two-variable four-valued functions 
(f (z1,z2) = 3), this can be large, 300 implicants. 
Consider a function which has 100 implicants 
and requires 8 product terms in a minimal cover. 
Using a brute force enumeration technique, the 
proof that  this is the minimum, requires that  all 
combinations of seven or fewer implicants be 
examined. There are more than 17 billion such 
combinations, and assuming that  each combina- 
tion can be generated and examined in 200 
microseconds (a value that is better than in our 
program), it would take more than 944 hours, or 
39 days, to  examine all the combinations for one 
function! Clearly this is not acceptable. However, 
using the lemma given below, the search tree 
can be significantly reduced. 

Definition: U ( z )  is a constrained implicant set 
of minterm z for function f(X), if 
U ( z )  = U I ( X ) ,  where I ( X )  is an impli- 

cant of f 14). I z  > o  

Lemma 1: If U ( z )  is a constrained implicant set, 
then every minimal sum-of-products expres- 
sion of f(X) contains at least one implicant 
from U ( z ) .  

The proof follows from the fact that  at least one 
implicant is needed from each of the IC disjoint 
sets. 

Definition: U ( z )  is a minimal constrained impli- 
cant set of a function, if and only if 
0 < I U ( z )  15 IU(y) I for all yEX, where 
U ( z )  is a constrained implicant set. 

A minimal constrained implicant set is useful 
in an efficient search for the absolute minimal 

sum-of-products expression for a function. The 
search space can be represented by a tree where 
each node corresponds to  a function, and each 
edge to  an implicant. The  root node represents 
the input function, and all other nodes represent 
functions obtained by subtracting from the input 
function, the implicants in the path (from this 
node) to  the root. If a function has Q implicants, 
the root has Q descendents. Further, each of 
these has at most (and probably less than) Q - 1 
descendents. However, rather than consider all 
implicants at the root node, i t  is sufficient to  con- 
sider only implicants from a minimal con- 
strained implicant set, considerably reducing the 
search space. From Lemma 1, at least one of this 
set must be in a minimal sum-of-products expres 
sion. For example, the average number of impli- 
cants for a four-valued, two-variable function 
with one zero, (obtained from a randomly gen- 
erated sample set of 500 functions) is 111.2, 
while the average size of the minimal constrained 
implicant set is only 7.9. This is a considerable 
reduction. In fact, without i t  the computation of 
the absolute minimum algorithms would be 
impossible. 

The algorithm recursively finds the absolute 
minimum cover of the function at each node. Let 
G(f ) denote the minimum number of implicants 
needed in the minimal sum-of-products expression 
of function f ( X ) .  Let U ( z )  = {11(X),12(X), ..., 
Ik(X)} be any constrained implicant set of f ( X ) .  
Let gi(X) = f ( X )  - Ii(X) be the  function 
obtained by subtracting I i ( X )  from f ( X ) .  From 
the definition of a constrained implicant set, it 
follows that, G ( f )  = 1 + min{G(g,),G(g,), ..., 
G(g& 

ABSOLUTE MINIMIZATION ALGORITHM 

f t the input function; 
cur-best-solnjize c M {see below}; 
cur_aoln>ize +- 0; 
if f has no coverable minterms, then 

recursivelyJninimize(f); 
output cur-best-soln-size; 
stop; 

procedure recursivelyJninimize(f); 
U t some constrained implicant set off;  
while ((there exists another implicant in U) 

AND ((cur-soln-size + 1) < 
(cur-best- soln-size))) do begin 

output 0 and stop; 

I c the next implicant in U; 
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add I to the current solution; 
cur_soln-size t cur-soln-size + 1; 
g t f - I ;  
if g has no coverable minterms then 

make current solution set the current 

cur-best_soln-size t cur-soln-size; 
end; 
else if ((cur-soln-size + 1) < 

(cur-bestooln-size)) then 
begin 

recursively,minimize(g) ; 

begin 

best solution set; 

end; 
delete I from the current solution; 
cur-soln_aize t cur-soln-size - 1; 

end; 

M represents the starting value for the solu- 
tion size and is chosen as the best of the Pomper 
and Armstrong, Besslich, and Dueck and Miller 
solutions. 

The speed of the absolute minimization algo- 
rithm depends on the choice of the constrained 
implicant set. When U ( z )  is small, there are 
fewer choices for an implicant to  cover z, and 
thus less time is required. This suggests that all 
possible sets be scanned and the smallest chosen. 
Although this reduces the total number of impli- 
cants scanned, the extra time required at each 
node may increase the ouerall program execution 
time. A heuristic was used to decide whether to 
spend this extra time or not. In our implemen- 
tation, U ( z )  was first generated by taking a cov- 
erable minterm in the function. An improv+ 
ment was attempted only if the number of 
implicants in this set was greater than some 
threshold T. Values of 6 and 9 were tried with 
the former yielding a faster program. 

VI. CONCLUDING REMARKS 

There are three surprising results from this 
study. First, none of the three heuristic sum-of- 
products minimization algorithms [3,6,13] is 
clearly superior to  the others. Second, Gold, an 
algorithm that  picks the best of the three, does 
significantly better than any particular one. This 
indicates that  the nearly identical average case 
performance is due to  a diversity of performance 
on individual functions. Third, the computation 
times for absolute minimization far exceeded our 
~Y~WLILIUII. T!-*** what began as 'an investiga- 
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tion of heuristic methods ended as an investiga- 
tion of methods to  reduce the search required by 
absolute minimization. 
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APPENDM I 

POMPER AND ARMSTRONG [13] ALGORITHM 
USING INTERVAL LITERALS 

Orig_f is the given r-valued n-variable function. f is 
an intermediate function as it is covered in successive 
stages of the algorithm. Each minterm in f can have a 
value in the range [0 ... r] where r is the radix. A value of - 

0 was zero in origf or was in the range [1 ...( r-2)] in origf 
but has now been fully covered, 

1,2, ...,( r-1) still needs to be covered, 
r (don't care) was r in origf, or was (r-1) in o r i g f  but 

has now been fully covered. 

Algorithm: 

1. f + or igf  
2. I f f  has no minterms in the range [I ...( r-l)] then 

STOP; else choose one, ami,, randomly. 
3. From among all implicants that cover ami,,, 

choose the maximal implicant, I. 
4. Include I in the solution. 
5. f t f - I  
6. Go to step 2. 

Choosing the maximal implicant 

An im-plicant can. be written as, 
11'2 12 . . . In Jn I = p  2 1  22 =n - 

Let the size of this implicant be the number of 
locations where it is p, which is in the range [l..(r- 
I)]. The size is, 

IT ( i m  - im + 1) 
I s m  <n 

An implicant J is 'larger' than implicant I if the 
size of J is larger than the size of I. The maximal 
implicant is chosen as follows: 

cursize -00 
cur-terms-covered t - 00 
for each implicant I of f that completely covers 

Lterms-covered + the number of minterms in 
f that would be driven to  0 or r (don't care) if I 
is subtracted from f; 

amin, do begin 

Lsize t size of implicant I; 

if (I-terqs-covered > cur-terms-covered) OR 
((Lterms-covered - - cur-terms- 
covered) AND (Lsize > cursize)) then begin 

bestimplicant t I; 
cursize t Lsize; 
cur-terms-covered t Lterms-covered; 

end; 
end: 

APPENDM I1 

BESSLICH [3] ALGORITHM USING INTERVAL 
LITERALS 

Algorithm: 

Each location in or igf  corresponds to  an assign- 
ment of values in the range [O..(r-1)] to  the vari- 
ables z1,22, ..., 2,. The concatenation of these 
values is taken as an index which represents this 
location. 

1. f + 0rig-f 
2. If f has no terms in the range [l ...( r-l)], then 

STOP; else find the most isolated minterm 
amin in f. 

3. From among all implicants that cover amin, 
choose the maximal implicant, I. 

4. Include I in the solution. 
5. f t f - I 
6. Go to step 2. 

Finding the most isolated minterm 

Code the function values by mapping all 0's to -1; 
all r's to  0; and all other values to 1. Let cfn be 
the coded form of the function f. 
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Take the weight transform [3] of cfn and pick the 
minterm with the smallest weight as follows: 

cur-lowest-wt f- 00 
for each term a: in cfn such that cfn(a) = 1 do 

begin 

/* compute the weight of this term with all 
other terms and add */ 

wt(a) +- [.fn(B)*w(a:,P)l 
BEcf n 

if (wt(a:) < cur-lowest-wt) then ami,., t a:; 
end; 

On exit from the for loop, ami,., is chosen as the 
most isolated minterm. In the loop, w(a:,P) is com- 
puted as follows. 

Let in in-1 * - * * . . 
represent the terms a: and p. Then, compute 

i ,  i l  and j&  

Choosing the maximal implicant - Same as with 
Pomper and Armstrong 

APPENDIX 111 

DUECK AND MILLER [61 ALGORITHM USING 
INTERVAL LITERALS 

Algorithm: 

1. f + o r i g 3  
2. If f has no terms in the range [1 ...( r-1)], then 

STOP; else find the most isolated minterm 
amin in f. 

3. From among all implicants that cover amin, 
choose the maximal implicant, I. 

4. Include I in the solution. 
5. f +- f - I, i f f  2 I; otherwise, I t- r. 
6. Go to step 2. 

Finding the most isolated minterm 

Let min-val be the minimum value of all terms 
in f that are in the range l...(r-l) i.e, neither 0 
nor don’t care. For each term a! in the function 
with value equal to min-Val, compute the cluster- 
ing factor (CF) as follows - 

CF(a) = DEA a(r-1) + E&, 

where EAa is the number of minterms with 
which a can be combined in an interval literal and 
DE& is the number of variables (directions) in 
which a can be combined with a nonzero number 
of minterms. 

h e c k  and Miller actually define the isolation fac- 
tor (IF) to  be the reciprocal of the clustering fac- 
tor above and pick the minterm with the highest 
IF. The same result can be obtained by picking 
the minterm with the smallest CF, avoiding the 
division. Ties are broken arbitrarily. Let amin be 
the minterm thus chosen. 

Choosing the maximal implicant 

c u r r b c  +- 00 
for every valid implicant I in f that completely cov- 

ers ami,, do begin 
rbc +- calculated-rbc-ofJ-inf; 
if (rbc < cur-rbc) then begin 

bestjmplicant t I; 
c u r r b c  + rbc; 

end; 
end; 

Calculation of rbc 

rbc + 0; 
for each (I! in I such that la1 # r do begin 

along each dimension i = 1 to n do begin 
(if 5 I ID OR (if the neighbor fl immedi- 
ately before CY in this dimension (if such p 
exists) is not in I and is such that - I) OR (if the neighbor p immediately after 

in this dimension if such p exists) is not 
in I and is such that I PI = Ial- I) then 

(if the neighbor p immediately before a in 
this dimension (if such fl exists) is not in I 
and is such that IpI = Ia:b OR (if the 
neighbor p immediately after CY in this 
dimension (if such /3 exists) is not in I and is 
such that 1/31 = lab then 

= 

rbc + rbc -1; 

rbc +- rbc + 1; 
end; 

end; 
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