
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1988-05

Analysis of minimization algorithms for

multiple-valued programmable logic arrays

Tirumalai, Parthasarathy

Proceedings of the 18th International Symposium on Multiple-Valued Logic, May 1988, pp. 226-236

http://hdl.handle.net/10945/35767

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36728322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ANALYSIS OF MINIMIZATION ALGORITHMS
FOR MULTIPLEVALUED PROGRAMMABLE LOGIC ARRAYS*

Parthasarathy Tirumalai
52L/57, Hewlett-Packard Company

5301 Stevens Creek Boulevard
Santa Clara, CA 95051

ABSTRACT

We compare the performance of three heuris-
tic algorithms [3,6,13] for the minimization of
sum-of-products expressions realized by the newly
developed multiplevalued programmable logic
arrays [9]. Heuristic methods are important
because exact minimization is extremely t i m e
consuming. We compare the heuristics to the
exact solution, showing that heuristic methods
are reasonably close to minimal. We use as a
basis of comparison the average number of pro-
duct terms over a set of randomly generated
functions. All three heuristics produce nearly the
same average number of product terms.
Although the averages are close, there is surpris-
ingly little overlap among the set of functions
where the best realization is achieved. Thus,
there is a benefit to applying different heuristics
and then choosing the best realization.

I. INTRODUCTION

The minimization of sum-of-products expres-
sions in binary logic has received considerable
attention for over 30 years. The complexity of
the problem has been known for almost as long.
Although minimal sum-of-products extraction
appears to be a special case of the general
minimal set covering problem, it is not. This was
proven by Gimpel [7] in 1965. That is, any
instance of the set covering problem is an
instance of the minimal sum-of-products extrac-
tion. In 1972, Karp[8] showed that the set cover-
ing problem is NP complete; thus, so also is
minimal sum-of-products extraction. The best
known algorithm then requires exponential time.

Jon T. Butler
Dept. of Electr. and Comp. Eng.

Naval Postgraduate School
Monterey, CA 93943-5100

This is a real barrier; it precludes the exact
minimization of functions with even a moderately
low number of inputs, e.g. 20. As a result, con-
siderable effort has been devoted to heuristic
minimization methods. For example, among the
Berkeley VLSI tools is ESPRESSO-IIC [4], a C
program tha t minimizes binary functions by a set
of operations on the prime implicants.

Recently, there has been considerable interest
in multiplevalued PLA's [1,2,3,5,6,9,10,11,13,14,
151. Several have been proposed [11,14,15] and at
least one implemented [9]. We know of three
heuristic MVL sum-of-products minimization
algorithms. Pomper and Armstrong [13] intro-
duced in 1981 a heuristic method that found a
near-minimal sum-of-products expression as a
direct cover of the function. The algorithm
proceeds in two steps; 1. select a minterm and 2.
find an implicant that covers the minterm. The
first step is accomplished by a random choice of
minterm, while the second step is accomplished
by choosing the largest implicant. In 1986,
Besslich [3] introduced another direct cover
method that seeks to cover the "most isolated"
minterms first. And in 1987, Dueck and Miller
(61 introduced a method which also seeks the
most isolated minterm first, but chooses a pro-
duct term that tends to introduce the fewest
discontinuities when subtracted from the func-
tion.

There has been little study of the relative
merits of heuristic algorithms. To the credit of
Brayton, Hachtel, McMullen and Sangiovanni-
Vincentelli (41, the realizations produced by
ESPRESSO-IIC were compared with the realiza-
tions of MINI, PRESTO, and POP [4] over a set

*Research supported in part by NSF Grant MIP-8706553, in part by NATO Grant
423/84, and in part by an NF'S Foundation Grant.

U.S. Government Work. Not protected by
U.S. copyright.

226

of 56 specifically chosen binary functions. How-
ever, the justification of the newly introduced
algorithms examined by us has rested on an
intuitive notion, supported by examples. In this
paper, we analyze six synthesis methods.

1. Random minterm random implicant
2. Pomper and Armstrong [13]
3. Besslich [3]
4. Dueck and Miller [6]
5. Gold
6. Absolute minimization

over a set of 7000 randomly chosen 2-variable 4-
valued functions. Our choice of 2-variable
functions is influenced by a need to compare
heuristics (1-5) with absolute minimal realizations
(6). Even with only 2 inputs, absolute minimiza-
tion requires high computation times, on the
order of days. Our choice of 4-values is
influenced by the current interest in this radix.
The three heuristic algorithms in [3,6,13] apply to
sum-of-products expressions where sum is MAX.
In all three algorithms, the case where sum is
truncated SUM is also considered. Because the
PLA's produced in CCD [9] use the SUM opera-
tion, our analysis uses this operation. Further,
we have adapted the heuristics to the case of pro-
duct terms consisting of interval literals, again
since the CCD PLA's realize such functions. A
motivation for the study reported here is the
development of a minimization method for our
CCD PLA CAD tool [lo].

This paper is organized as follows. The next
section introduces notation and fundamental con-
cepts. Section 111 describes the six synthesis
methods, and Section IV describes the results of a
comparative analysis of their performance. In the
final section, we summarize the results.

11. BACKGROUND AND NOTATION

Let X = {il, x 2 , - - - , x,,} be a set of n vari-
ables, where xi takes on values from
R = {0,1, ..., r - l } . A function f(X) is a m a p
ping f : R " + R ~ { r } , where r is the don't care
value. Specifically, f(X) is said to be an n-
variable r-valued function. Fig. 1 below shows a
map representation of a 2-variable 5-valued func-
tion. Blank entries correspond to 0. An assign-
ment z of values to variables in X is called a
minterm if f (2) # 0. In Fig. 1, there are 12 min-
terms all of which yield a 2.

Functions realized by the PLA's described in
Kerkhoff and Butler [9] are composed of three
functions,
1. MIN f (x1,22) = 21x2 (= MIN(q,x2)),
2. SUM: f(x1,x2) = s l + 5 2 (= x 1 + x 2 i f x 1 + x 2

5 3 and = 3 otherwise, where + is viewed as
ordinary addition and xi is viewed as an
integer), and

and = 0, otherwise).
3. literal: f(xl) = 'x! (= r-1 if a 5 s 1 5 b

1 1 0 2
\xl x1,4!

1 4 1 1 xz

2 x l 52
0 23 3

3 32-4
2=i 52

Figure 1. Example of a 2-variable &valued function.

In binary, the SUM, MIN, and literal correspond
to AND, OR, and z*, where x* E (5, ?E}. In the
realization of functions by a multiplevalued
PLA, constants and literals occur as operands of
the MIN functions. A product term is the MIN
of one nonzero constant and one or more literals.
For example, f (x1,x2) = 22x14 'xi is a product
term that is 2 when x1 is 2, 3, or 4 and x 2 is 1.
An implicant of function f(X) is a product term
I (X) such that f (X) L I (X) . A prime implicant
of f(X) is an implicant of f(X) such that there
is no other implicant I (X) of j (X) where
I ' (X) > I (X) . For example, 22x1 'xi is an
implicant of the function in Fig 1 but it is not a
prime implicant. However, 2 'xf 'xi is a prime
implicant. Any function can be expressed as the
SUM of implicants (151. For example, the func-
tion f(x1,x2) in Fig. 1 can be expressed as the
SUM of 4 implicants,

We use the term sum-of-products to describe
functions realized by such PLA's, where sum

227

refers to SUM and product refers to MIN. A
sum-of-products expression for function f (X) is
minimal if there is no other expression for f(X)
with fewer product terms. For example, (1) is a
minimal sum-of-products expression. Given

implicant I (X) cowers a minterm at z if

has the property g (z) = 0, and we say that sub-
tracting I (X) drives the minterm a t z to 0.

; IX)’ z) - I (z) . Therefore, g(X) = f(X) - I (X)

It is interesting to note that the none of the
implicants in (1) are prime. In fact, any sum-of-
products expression for f (x1,x2) containing at
least one prime implicant i s not minimal. Such
expressions require at least 5 product terms.
Therefore, in contrast to the case of conventional
binary sum-of-products, it is necessary to con-
sider all implicants. A similar observation was
made with respect to sum-of-products expres-
sions, where sum is MAX and products are the
MIN of unary functions of varying costs [12].

III. MINIMIZATION ALGORITHMS FOR
SUM PLA’S

We consider six synthesis methods. The first
five are heuristic and are based on the direct
cover approach. In this approach, a minterm is
first chosen. Next, an implicant is chosen that
covers this minterm. The implicant is then
subtracted from the function and the process is
repeated until there are no more minterms.

1. Random Minterm Random Implicant

In this heuristic, both the minterm and impli-
cant are chosen randomly, with all choices equally
likely. That is, among all minterms, one is
chosen randomly, and similarly in the case of
implicants. As with the other algorithms, the
chosen implicant is subtracted and the process
repeated on the resulting function. Since no par-
ticular characteristics of the function are used to
determine the choice of minterm or implicant, it
provides a basis of comparison for the next four
heuristics, which use characteristics of the func-
tions to limit, t o varying degrees, the choices of
minterms and implicants.

2. Pomper and Armstrong

As in the Random Minterm Random Impli-
cant heuristic, this heuristic chooses the minterm
randomly. However, the implicant is chosen as

the one, which when subtracted, drives the larg-
est number of minterms to 0 or don’t care. If
there is more than one such implicant, the largest
is chosen. If there are more than one largest, the
one generated first is chosen. The process is
repeated until the function is completely covered.
A formal description of this algorithm is given in
Appendix I.

Because the Random Minterm Random Impli-
cant heuristic can choose from all possible covers
of any function, there is a nonzero probability
that it will find a minimal realization. However,
if the minimal realizations are a small percentage
of the total number of realizations, non-minimal
realizations will most likely result. Our analysis
shows this clearly. There is then the question of
whether the Pomper and Armstrong heuristic has
a nonzero probability of finding a minimal reali-
zation for all functions. The example in Fig. 1 is
a function where this probability is 0. Here, a
prime implicant is never in a minimal sum-of-
products realization, and so, for this case, the
Pomper and Armstrong heuristic does not pro-
duce a minimal realization.

3. Besslich

Besslich [3] presents a direct cover approach
for the heuristic minimization of multiple-valued
logic functions using minterm weighting and
implicant detecting transformations. In this
heuristic, each minterm is assigned a weight that
is a measure of the degree to which other min-
terms cluster around it. Minterms in the center
of clusters have the highest weight and isolated
minterms the lowest. The minterm with the
smallest weight is chosen. Next all implicants
that cover the chosen minterm are generated. For
each, an efficiency factor equal to the cost of the
implicant divided by the number of minterms it
covers is calculated and the minterm with the
largest factor is chosen. In a PLA, all implicants
are realized with the same cost (one column).
Therefore, for this case, only the number of min-
terms driven to 0 or don’t care determines which
implicant is chosen. The basic idea of the
Besslich heuristic is t o cover the most isolated
minterms first and use implicants that have a low
cost per minterm covered. Besslich [3] does not
mention of how ties are broken. We choose to
break ties among implicants having the same
efficiency factor by using only the largest impli-
cants, and among these by choosing the first one
generated. Thus, the choice of implicants is made

228

in the same way as in the Pomper and
Armstrong heuristic. A formal description of the
algorithm is given in Appendix 11.

Dueck and Miller algorithm. A formal descrip-
tion of our algorithm, modified to the
specifications of our problem, is given in Appen-
dix 111.

4. Dueck and Miller
5. Gold

Dueck and Miller [6] present a heuristic simi-
lar t o that of Besslich’s with the intent of
improving realizations using the SUM operation.
In this approach, an isolation factor (IF’) is calcu-
lated for each minterm with the smallest value
(that is, all 1 minterms are considered first; if
there are none, then 2 minterms are considered,
etc.). The isolation factor of a minterm a t z is
inversely proportional t o 1 plus the number of
adjacent minterms plus the number of logic vari-
ables where there are a nonzero number of such
minterms. Similar to the weight transform
presented by Besslich, the isolation factor pro-
vides a measure of the degree to which a specific
minterm can combine with other minterms in the
function (the correlation is negative, however).
The minterm with the highest isolation factor is
chosen. All implicants that cover this minterm
are then generated. For each of these, a parame
ter called the relative break count (RBC) is
calculated. This provides a measure of the
degree to which the function is simplified if the
implicant under consideration is chosen. The
idea is to judiciously choose implicants that make
the remaining function easy to realize. Our use
of ‘interval literals requires an adjustment to the

Gold is a heuristic in which the heuristic algo-
rithms of Pomper and Armstrong, Besslich, and
Dueck and Miller are applied and the best realiza-
tion is chosen. It was inspired by the observation
that these algorithms displayed a diversity in
realizations. That is, no single algorithm is con-
sistently better than the others over all functions;
there are classes of functions where one algorithm
does better than the others.

6. Absolute Minimization

An algorithm which produces the exact
minimal sum-of-products was devised to compare
with the results produced by the previous four
algorithms. This does essentially an exhaustive
search over all possible solutions, starting with
the fewest. number of product terms. The algo-
rithm requires considerable computer time. A
complete description of the algorithm is given in
Section VI.

7. Summary

Table I below summarizes the six algorithms.

1. Random Min. Random Impli. Random Random

2. Pomper and Armstrong [131 Drives most min. to 0
3. Besslich [3] Smallest weight Drives most min. to 0

4. Dueck and Miller [6] Largest IF Smallest RBC

5. Gold

Random

Best of 2,3, and 4

1 1 6 . t e Minimization II Exhaustive search

Table I. Summary of Minimization Algorithms I

229

W. COMPARISON OF ALGORITHM
PERFORMANCE

For the purpose of comparison, we separate
all four-valued, two-variable functions into 17
disjoint classes according to the number of non-
zero values in the function. For 14 of the 17
classes, 500 random functions are generated. For
each function, the six algorithms are applied and
the number of product terms derived. For func-
tions with less than three non-zero values, the
average number of product terms can be calcu-
lated as follows.

0 non-zero values: There is only one (trivial)
function, constant zero, in this class. This
function requires no implicants in its cover,
and all algorithms produce identical results.

1 non-zero value: There are 48 functions in
this class, and each requires uniquely one
implicant. Thus, the average number of impli-
cants required by all algorithms is 1.

2 non-zero values: There are 32- (i6] = 1080
such functions. All require two implicants
unless there are two adjacent minterms with
the same value, in which case a single impli-

Product Terms

12

10

8

6

4

2

Average

cant is sufficient. Of the 1080 functions, 72
can be covered by one implicant. Only the
Random Minterm Random Implicant algo-
rithm will fail to find the minimal cover for
all functions in this class. Specifically, func-
tions with adjacent identical, minterms will be
incorrectly minimized half the time, since a
cover of a single minterm or two adjacent
minterms are equally likely. For a uniformly
distributed set of functions, the average and
standard deviation on the number of impli-
cants produced by the Random Minterm Ran-
dom Implicant algorithm are 1.97 and 0.18,
respectively. On the other hand, these values
for all other algorithms are 1.93 and 0.25,
respectively. Our random function generation
program was tested on this class and yielded
values very close to these, to within 0.18% for
the average and t o within 3.9% for the stan-
dard deviation.

For classes with a larger number of non-zero
values, 500 functions were randomly generated.
The functions generated had no don’t care values.
However, they could develop don’t care values
during the covering process. (Nota bene: A value
of 3 in the original function becomes a don’t care
when fully covered.) Fig. 2 shows the results.

Random Minterm & Implicant: -----------
Pomper & Armstrong

Besslich

Dueck & Miller

Gold

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _

- - - - - - - - - -.
Absolute Minimum

2 4 6 8 10 12 14 16
Number of Nonzero Values

Figure 2. The Average Number of Product Terms Verses the Number of Nonzero Values
for the Six Algorithms.

230

It can be seen that the Random Minterm Ran-
dom Implicant algorithm does quite poorly.
Choosing the largest (prime) implicant, as in the
Pomper and Armstrong algorithm, provides a
significant improvement. There is very little
difference between the performance of the Besslich
and the Dueck and Miller algorithms; their
curves in Fig. 2 are almost identical. Both algo-
rithms choose the most isolated minterm first,
and this gives some improvement over that of the
Pomper and Armstrong algorithm. Gold, taking
advantage of the small overlap between the three
heuristic algorithms, provides some further
improvement. Still further improvement is
achieved by absolute minimization, shown as the
lowest curve in the figure.

Another measure of comparison of the algo-
rithms is the number of functions for which the
absolute minimal solution is found. Fig. 3 shows
how the six algorithms compare on this basis.
Here there is a much larger distinction between
the algorithms. As the number of non-zero
values increases, the number of functions for
which an optimum cover is found by the Random
Minterm Random Implicant algorithm drops off
sharply, t o nearly zero. The Pomper and
Armstrong algorithm offers considerable improve

Absolute Minimum

Gold

Dueck & Miller

Besslich

Pomper & Armstrong
Number of Functions Where

Absolute Yinimi. is Achieved

ment, but even in this case only about 39% of
the functions are completely minimized when the
number of non-zero values is 14-16. The Besslich
and Dueck and Miller algorithms are again very
close t o each other. Approximately, 52% of the
functions are minimized for these two algorithms
when the number of non-zero values is 1416.
Gold shows a reasonable improvement, minimiz-
ing about 75% of the functions with 14-16 non-
zero values.

Tables I1 and 111 show the numerical values
obtained from the programs. Another run was
made using different seeds for the random
number generator streams. The results from
both runs were very similar, indicating that a
sufficiently large sample set size was used. An
examination of the data suggests the truth of the
following.

Conjecture: No more than 10 implicants are
needed in a minimal sum-of-products expres-
sion of a four-valued, two-variable function,
where sum is the SUM operation and the pro-
ducts consist of the MIN of a constant and
interval literals on the variables.

The absolute minimization program and the

500

400

300

200

100

4 Random Minterm & Implicant -----------
.-

t
I I I I I ----I I

I I I I I I

2 4 6 8 10 12 14 16
Number of Nonzero Values

Figure 3. The Number of Functions Where the Absolute Minimal Realization is Achieved
Verses the Number of Nonzero Values.

23 I

Number
of

Nonzero
Values

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 11.21

Random
Minterm
Random

Implicant
0.00
1 .OO
1.97
2.90
3.80
4.66
5.53
6.31
7.04
7.77
8.50
8.99
9.78

10.31
10.54
11.00

7.55

Pomper

Armstrong

0.00
1 .00
1.93
2.79
3.58
4.35
5.04
5.66
6.13
6.67
7.06
7.34
7.77
7.90
7.91
7.81

Besslich

0.00
1 .00
1.93
2.78
3.58
4.34
5.02
5.63
6.07
6.59
6.97
7.25
7.56
7.63
7.62
7.64
7.33

Dueck

Miller

0.00
1 .oo
1.93
2.78
3.57
4.33
5.00
5.57
6.03
6.55
6.9 1
7.19
7.57
7.60
7.60
7.63
7.24

Gold

0.00
1 .00
1.93
2.78
3.57
4.31
4.96
5.53
5 :95
6.44
6.75
6.98
7.32
7.31
7.30
7.26
6.99

Absolute

Minimiza.

0.00
1 .oo
1.93
2.78
3.57
4.3 1
4.96
5.52
5.94
6.40
6.69
6.92
7.20
7.17
7.08
6.97
6.71

Number
of

Nonzero
Values

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Random
Minterm
Random
Implicant

500
500
483
439
384
33 1
252
187
113
76
43
23
12
7
3
3
1

Pomper

Armstrong

500
500
500
494
493
477
460
438
405
375
334
313
268
23 1
191
197
202

Besslich

500
500
500
499
492
483
474
450
438
414
37 1
349
337
304
269
240
253

Product Terms

Dueck

Miller

500
500
500
499
497
486
483
477
455
430
399
374
338
308
284
235
285

Gold

500
500
500
500
499
497
500
496
493
48 1
470
469
44 1
430
394
363
365

bsolute Minimi. is Achieved.

Absolute

Minimiza.

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Table III. Number of Functions Where

232

random function generation routines were written
in C. The heuristic algorithms were written in
Pascal. The program was executed on a
Hewlett-Packard Series 9000 Model 350 worksta-
tion running HP-UX (HP’s extension of the UNJX
operating system). The program took more than
3 days to minimize 7000 randomly generated
functions with 3 to 16 non-zero values.

V. ABSOLUTE MINIMIZATION.

The program to compute the absolute
minimal realization of a function is a search over
combinations of implicants. As observed in Sec-
tion 11, it is necessary to consider all implicants
and not just the prime implicants. In the worst
case for two-variable four-valued functions
(f (z1,z2) = 3), this can be large, 300 implicants.
Consider a function which has 100 implicants
and requires 8 product terms in a minimal cover.
Using a brute force enumeration technique, the
proof that this is the minimum, requires that all
combinations of seven or fewer implicants be
examined. There are more than 17 billion such
combinations, and assuming that each combina-
tion can be generated and examined in 200
microseconds (a value that is better than in our
program), it would take more than 944 hours, or
39 days, to examine all the combinations for one
function! Clearly this is not acceptable. However,
using the lemma given below, the search tree
can be significantly reduced.

Definition: U (z) is a constrained implicant set
of minterm z for function f(X), if
U (z) = U I (X) , where I (X) is an impli-

cant of f 14). I z > o

Lemma 1: If U (z) is a constrained implicant set,
then every minimal sum-of-products expres-
sion of f(X) contains at least one implicant
from U (z) .

The proof follows from the fact that at least one
implicant is needed from each of the IC disjoint
sets.

Definition: U (z) is a minimal constrained impli-
cant set of a function, if and only if
0 < I U (z) 15 IU(y) I for all yEX, where
U (z) is a constrained implicant set.

A minimal constrained implicant set is useful
in an efficient search for the absolute minimal

sum-of-products expression for a function. The
search space can be represented by a tree where
each node corresponds to a function, and each
edge to an implicant. The root node represents
the input function, and all other nodes represent
functions obtained by subtracting from the input
function, the implicants in the path (from this
node) to the root. If a function has Q implicants,
the root has Q descendents. Further, each of
these has at most (and probably less than) Q - 1
descendents. However, rather than consider all
implicants at the root node, i t is sufficient to con-
sider only implicants from a minimal con-
strained implicant set, considerably reducing the
search space. From Lemma 1, at least one of this
set must be in a minimal sum-of-products expres
sion. For example, the average number of impli-
cants for a four-valued, two-variable function
with one zero, (obtained from a randomly gen-
erated sample set of 500 functions) is 111.2,
while the average size of the minimal constrained
implicant set is only 7.9. This is a considerable
reduction. In fact, without i t the computation of
the absolute minimum algorithms would be
impossible.

The algorithm recursively finds the absolute
minimum cover of the function at each node. Let
G(f) denote the minimum number of implicants
needed in the minimal sum-of-products expression
of function f (X) . Let U (z) = {11(X),12(X), ...,
Ik(X)} be any constrained implicant set of f (X) .
Let gi(X) = f (X) - Ii(X) be the function
obtained by subtracting I i (X) from f (X) . From
the definition of a constrained implicant set, it
follows that, G (f) = 1 + min{G(g,),G(g,), ...,
G(g&

ABSOLUTE MINIMIZATION ALGORITHM

f t the input function;
cur-best-solnjize c M {see below};
cur_aoln>ize +- 0;
if f has no coverable minterms, then

recursivelyJninimize(f);
output cur-best-soln-size;
stop;

procedure recursivelyJninimize(f);
U t some constrained implicant set off;
while ((there exists another implicant in U)

AND ((cur-soln-size + 1) <
(cur-best- soln-size))) do begin

output 0 and stop;

I c the next implicant in U;

233

add I to the current solution;
cur_soln-size t cur-soln-size + 1;
g t f - I ;
if g has no coverable minterms then

make current solution set the current

cur-best_soln-size t cur-soln-size;
end;
else if ((cur-soln-size + 1) <

(cur-bestooln-size)) then
begin

recursively,minimize(g) ;

begin

best solution set;

end;
delete I from the current solution;
cur-soln_aize t cur-soln-size - 1;

end;

M represents the starting value for the solu-
tion size and is chosen as the best of the Pomper
and Armstrong, Besslich, and Dueck and Miller
solutions.

The speed of the absolute minimization algo-
rithm depends on the choice of the constrained
implicant set. When U (z) is small, there are
fewer choices for an implicant to cover z, and
thus less time is required. This suggests that all
possible sets be scanned and the smallest chosen.
Although this reduces the total number of impli-
cants scanned, the extra time required at each
node may increase the ouerall program execution
time. A heuristic was used to decide whether to
spend this extra time or not. In our implemen-
tation, U (z) was first generated by taking a cov-
erable minterm in the function. An improv+
ment was attempted only if the number of
implicants in this set was greater than some
threshold T. Values of 6 and 9 were tried with
the former yielding a faster program.

VI. CONCLUDING REMARKS

There are three surprising results from this
study. First, none of the three heuristic sum-of-
products minimization algorithms [3,6,13] is
clearly superior to the others. Second, Gold, an
algorithm that picks the best of the three, does
significantly better than any particular one. This
indicates that the nearly identical average case
performance is due to a diversity of performance
on individual functions. Third, the computation
times for absolute minimization far exceeded our
~Y~WLILIUII. T!-*** what began as 'an investiga-

234

tion of heuristic methods ended as an investiga-
tion of methods to reduce the search required by
absolute minimization.

REFERENCES

111

(21

131

141

151

161

171

181

191

E. A. Bender and J. T. Butler, "On the size of PLA's
required to realize binary and multiple-valued func-
tions," forthcoming IEEE Trans. on Comput., Jan.
1989.

E. A. Bender, J. T. Butler, and H. G. Kerkhoff, "Com-
paring the SUM with the MAX for use in four-valued
PIA",'' Proceedings of the 15th International Sympo-
sium on Multiple-Valued Logic, May 1985, pp. 30-35.

P. W. Besslich, "Heuristic minimization of MVL func-
tions: A direct cover approach," IEEE Trans. on
Comput., February 1986, pp. 134-144.

R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A.
Sangiovanni-Vincentelli, Logic Minimization Algo-
rithms for VLSI Synthesis, Kluwer Academic, Boston
1984.

J. T. Butler and H. G. Kerkhoff, "Analysis of input
and output configurations for use in four-valued pro-
grammable logic arrays," Proceedings of the IEE-E:
Computers and Digital Techniques, July 1987, pp.
168-176.

G. W. Dueck and D. M. Miller, "A direct cover MVL
minimization using the truncated sum," Proc. of the
17th Inter. Symp. on Multiple-valued Logic, May
1987, pp. 221-227.

J. F. Gimpel, "A method of producing a Boolean func-
tion having an arbitrarily prescribed prime implicant
table," IEEE Trans. on Electron. Comput., June 1965,
pp. 485-488.

R. M. Karp, "Fteducibility among combinatorial prob-
lems," in R. E. Miller and J. W. Thatcher, Complexity
of Computer Computations, Plenum Press, New York
1972, pp. 85103.

H. G. Kerkhoff and J. T. Butler, 'besign of a high-
radix programmable logic array using profiled peris-
taltic- charge-coupled devices," Proceedings of the
16th International Symposium on Multiple- Valued
Logic, May 1986, pp. lOG103.

[IO] H. G. Kerkhoff and J. T. Butler, "A module compiler
for the design of high-radix CCD PLA'sl0 preprint.

[I11 H.-L. Kuo and K.-Y. Fang, "The multiple-valued pro-
grammable logic array and its application in modular
design," Proc. of the Inter. Symp. on Multiple-Valued

Logic, May 1985, pp. 1G18.

1121 D. M. Miller and J. C. Muzio, "On the minimization
of many-valued functions," Proc. of the Inter. Symp.
on Multiple-Valued Logic, May 1979, pp. 294-299.

1131 G. Pomper and J. A. Armstrong, "Ftepresentation of
multivalued functions using the direct cover method,"
IEEE Trans. on Comput. Sept. 1981, pp. 674-679.

[14] T. Sasm, "On the optimal design of multiple-valued
PIA'S,'' Proc. of the Inter. Symp. on Multiple-valued
Logic May 1986 pp. 214-223.

[15] P. Tirumalai and J. T. Butler, "On the realization of
multiple-valued logic functions using CCD PLA's,"
Proceedings 01 the 1984 International Symposium on
Multiple- Valued Logic, May 1984, pp. 33-42.

APPENDM I

POMPER AND ARMSTRONG [13] ALGORITHM
USING INTERVAL LITERALS

Orig_f is the given r-valued n-variable function. f is
an intermediate function as it is covered in successive
stages of the algorithm. Each minterm in f can have a
value in the range [0 ... r] where r is the radix. A value of -

0 was zero in origf or was in the range [1 ...(r-2)] in origf
but has now been fully covered,

1,2, ...,(r-1) still needs to be covered,
r (don't care) was r in origf, or was (r-1) in o r i g f but

has now been fully covered.

Algorithm:

1. f + or igf
2. I f f has no minterms in the range [I ...(r-l)] then

STOP; else choose one, ami,, randomly.
3. From among all implicants that cover ami,,,

choose the maximal implicant, I.
4. Include I in the solution.
5. f t f - I
6. Go to step 2.

Choosing the maximal implicant

An im-plicant can. be written as,
11'2 12 . . . In Jn I = p 2 1 22 =n -

Let the size of this implicant be the number of
locations where it is p, which is in the range [l..(r-
I)]. The size is,

IT (i m - im + 1)
I s m <n

An implicant J is 'larger' than implicant I if the
size of J is larger than the size of I. The maximal
implicant is chosen as follows:

cursize -00
cur-terms-covered t - 00
for each implicant I of f that completely covers

Lterms-covered + the number of minterms in
f that would be driven to 0 or r (don't care) if I
is subtracted from f;

amin, do begin

Lsize t size of implicant I;

if (I-terqs-covered > cur-terms-covered) OR
((Lterms-covered - - cur-terms-
covered) AND (Lsize > cursize)) then begin

bestimplicant t I;
cursize t Lsize;
cur-terms-covered t Lterms-covered;

end;
end:

APPENDM I1

BESSLICH [3] ALGORITHM USING INTERVAL
LITERALS

Algorithm:

Each location in or igf corresponds to an assign-
ment of values in the range [O..(r-1)] to the vari-
ables z1,22, ..., 2,. The concatenation of these
values is taken as an index which represents this
location.

1. f + 0rig-f
2. If f has no terms in the range [l ...(r-l)], then

STOP; else find the most isolated minterm
amin in f.

3. From among all implicants that cover amin,
choose the maximal implicant, I.

4. Include I in the solution.
5. f t f - I
6. Go to step 2.

Finding the most isolated minterm

Code the function values by mapping all 0's to -1;
all r's to 0; and all other values to 1. Let cfn be
the coded form of the function f.

235

Take the weight transform [3] of cfn and pick the
minterm with the smallest weight as follows:

cur-lowest-wt f- 00
for each term a: in cfn such that cfn(a) = 1 do

begin

/* compute the weight of this term with all
other terms and add */

wt(a) +- [.fn(B)*w(a:,P)l
BEcf n

if (wt(a:) < cur-lowest-wt) then ami,., t a:;
end;

On exit from the for loop, ami,., is chosen as the
most isolated minterm. In the loop, w(a:,P) is com-
puted as follows.

Let in in-1 * - * * . .
represent the terms a: and p. Then, compute

i , i l and j&

Choosing the maximal implicant - Same as with
Pomper and Armstrong

APPENDIX 111

DUECK AND MILLER [61 ALGORITHM USING
INTERVAL LITERALS

Algorithm:

1. f + o r i g 3
2. If f has no terms in the range [1 ...(r-1)], then

STOP; else find the most isolated minterm
amin in f.

3. From among all implicants that cover amin,
choose the maximal implicant, I.

4. Include I in the solution.
5. f +- f - I, i f f 2 I; otherwise, I t- r.
6. Go to step 2.

Finding the most isolated minterm

Let min-val be the minimum value of all terms
in f that are in the range l...(r-l) i.e, neither 0
nor don’t care. For each term a! in the function
with value equal to min-Val, compute the cluster-
ing factor (CF) as follows -

CF(a) = DEA a(r-1) + E&,

where EAa is the number of minterms with
which a can be combined in an interval literal and
DE& is the number of variables (directions) in
which a can be combined with a nonzero number
of minterms.

h e c k and Miller actually define the isolation fac-
tor (IF) to be the reciprocal of the clustering fac-
tor above and pick the minterm with the highest
IF. The same result can be obtained by picking
the minterm with the smallest CF, avoiding the
division. Ties are broken arbitrarily. Let amin be
the minterm thus chosen.

Choosing the maximal implicant

c u r r b c +- 00
for every valid implicant I in f that completely cov-

ers ami,, do begin
rbc +- calculated-rbc-ofJ-inf;
if (rbc < cur-rbc) then begin

bestjmplicant t I;
c u r r b c + rbc;

end;
end;

Calculation of rbc

rbc + 0;
for each (I! in I such that la1 # r do begin

along each dimension i = 1 to n do begin
(if 5 I ID OR (if the neighbor fl immedi-
ately before CY in this dimension (if such p
exists) is not in I and is such that - I) OR (if the neighbor p immediately after

in this dimension if such p exists) is not
in I and is such that I PI = Ial- I) then

(if the neighbor p immediately before a in
this dimension (if such fl exists) is not in I
and is such that IpI = Ia:b OR (if the
neighbor p immediately after CY in this
dimension (if such /3 exists) is not in I and is
such that 1/31 = lab then

=

rbc + rbc -1;

rbc +- rbc + 1;
end;

end;

236

