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Abstract

The transeunt triangle was originally proposed by
Suprun [19] as the basis of an algorithm for synthesizing
fixed-polarity Reed-Muller (FPRM) expansions of symmet-
ric functions. However, he provided no proof that this tech-
nique produced the correct FPRM expansion. We provide
such a proof, thus establishing the validity of the transeunt
triangle technique. Further, we show the extent to which the
transeunt triangle reduces the computational work needed.
Because of the efficiency of the transeunt triangle, we are
able to do experimental studies on sets of n-variable sym-
metric functions for large values of n never before achiev-
able. For example, we show that a surprisingly large per-
centage of symmetric functions (35% for large n) are opti-
mally realized by just two (of n + 1) polarities. This is veri-
fied by exhaustive enumeration of symmetric functions with
up to 31 variables and by large sample sets (1,000,000) of
symmetric functions with up to 100 variables. This sug-
gests that even greater efficiency can be achieved through
a heuristic that restricts the polarities to one or both of the
favored polarities.

1 Introduction

Much is known about sum-of-product expressions in
which sum corresponds to Exclusive-OR and product cor-
responds to the AND of variables or complements of vari-
ables [4]. For example, such EXOR sum-of-product expres-
sions require, on the average, fewer product terms than OR

sum-of-products [14]. Also, such structures are known to be
easily testable [13]. AND-EXOR circuits have been used in
arithmetic, error correcting, and telecommunications appli-
cations [15], [16].

This paper focuses on the fixed polarity Reed-Muller
(FPRM) expansion [21, 22]. In an FPRM expansion of a
given function f(X), every variable appears either com-
plemented or uncomplemented; never in both forms. If all
variables are uncomplemented (complemented), the FPRM
expansion is called the Positive (Negative) Polarity Reed-
Muller or PPRM (NPRM) form. FPRM expansions are
unique [5]. Thus, only one representation exists for the
PPRM or NPRM or indeed any FPRM of f(X). This leads
to the question of which of the n + 1 FPRM’s produce the
fewest product terms [10, 11, 17].

This has inspired study of the FPRM expansion of an
important class of functions, symmetric functions. In 1995,
Suprun [20] showed the use of the transeunt triangle in con-
verting between various FPRMs. The origin of the transeunt
triangle is unknown. In 1986, Green [7] p. 141, mentioned
that a ”triangular structure” could produce the transforma-
tion produced by a transform matrix. The transeunt triangle
has shown to produce a fast (O(n3) time complexity) and
compact (O(n2) storage complexity) algorithm for synthe-
sis of symmetric functions [2]. Further, transeunt triangles
have simple structures and can be generated from only a few
basic triangles [3].

There have been many studies of symmetric functions
dating back to the early history of switching theory. In-
terest in this important area has continued to the present.
For example, many benchmark functions are symmetric. It



is known [6] that symmetric functions are very difficult to
minimize by Quine-McCluskey-like algorithms. Therefore,
they are ideal benchmark functions. That is, their mini-
mal forms are known, but algorithms have difficulty finding
them [12]. Although symmetric functions represent a mi-
nority of the set of switching functions, they often appear in
logic design. For example, basic gates, AND, OR, EXOR
are symmetric, as are parity checkers and majority gates. It
is known that any logic function has a symmetric function
realization in which certain variables are repeated [1].

While this paper focuses on binary-valued functions, it
is worth noting that interesting results have been produced
for multiple-valued functions. For example, Green [9]
has derived Reed-Muller expansions for four-valued func-
tions. A three-valued map has been demonstrated by Green
[8] to be useful in the synthesis of mixed-polarity binary
Reed-Muller expansions (both complemented and uncom-
plemented variables occur).

This paper is organized as follows. The next section
introduces the synthesis problem and the transeunt trian-
gle. The third section proves that the transeunt triangle
can be used as a basis for synthesizing FPRM expansions.
The fourth section discusses the algorithm’s time and space
complexity. The fifth section shows experimental results,
and the final section contains concluding remarks.

2 Notation and Fundamental Results

2.1 Symmetric Functions

Definition 2.1 Let Sn
A be a (totally)

symmetric function that is 1 iff m of its n vari-
ables are 1, where m ∈ A ⊆ {0, 1, . . . , n}.

Example 2.1 S3
{0,1,2} is a symmetric function that is 1 iff

0, 1, and 2 of its variables are 1. It is the NAND of three
variables. (End of Example)

Definition 2.2 The carrier vector Λ(Sn
A) =

[α0, α1, . . . , αn] of symmetric function Sn
A is a binary

n + 1-tuple, where αm is 1 if m ∈ A and is 0 otherwise.
αm is called an a− number [18].

Example 2.2 The carrier vector of S3
{0,1,2} is [1,1,1,0].

(End of Example)

2.2 Reed-Muller Expansions

The Reed-Muller expansion of a general switching func-
tion f is the exclusive OR of product terms of variables or
their complements. The term fixed polarity is used to de-
scribe Reed-Muller expansions in which each variable ap-
pears uncomplemented or complemented, and never in both
forms. For symmetric functions, the FPRM expansion has
a restricted form.

Definition 2.3 The polarity p Reed-Muller expansion
RMp(Sn

A) of symmetric function Sn
A is

RMp(Sn
A) = cp

0,0 ⊕ cp
0,1

p∑
⊕

i=1

x̄i ⊕ cp
1,0

n∑
⊕

j=p+1

xj ⊕ . . .

⊕cp
u,c

∑
⊕

1≤i1<i2<...<ic≤p

p+1≤j1<j2<...<ju≤n

x̄i1 x̄i2 . . . x̄ic
xj1xj2 . . . xju

⊕ . . .

⊕cp
n−p,px̄1x̄2 . . . x̄pxp+1xp+2 . . . xn, (1)

where
∑
⊕ is the exclusive OR of products of uncomple-

mented variables and complemented variables, and cp
u,c ∈

{0, 1} is its coefficient, such that there are exactly u uncom-
plemented variables and exactly c complemented variables.

As will be seen later, cp
u,c cannot, in general, be chosen ar-

bitrarily. Because a symmetric function is unchanged by a
permutation of variables, it makes no difference which vari-
ables in RMp appear complemented. To simplify the nota-
tion, however, we assume that x1, x2, . . . , and xp appear
complemented in RMp, while xp+1, xp+2, . . . , and xn ap-
pear uncomplemented.

Example 2.3 For S3
{0,1,2},

RM0(S3
{0,1,2})= 1⊕ x1x2x3,

RM1(S3
{0,1,2})=1⊕ x2x3 ⊕ x̄1x2x3,

RM2(S3
{0,1,2})=1⊕ x3 ⊕ (x̄1x3 ⊕ x̄2x3)⊕ x̄1x̄2x3, and

RM3(S3
{0,1,2})=(x̄1⊕x̄2⊕x̄3)⊕(x̄1x̄2⊕x̄1x̄3⊕x̄2x̄3)⊕x̄1x̄2x̄3.

(End of Example)

Definition 2.4 The coefficient matrix Cp(Sn
A) of the po-

larity p Reed-Muller expansion of symmetric function Sn
A

is a (p + 1) × (n − p + 1) matrix [cp
u,c], where cp

u,c is an
RMp(Sn

A) coefficient.

Example 2.4 For our running example,



(End of Example)

2.3 Transeunt Triangle

Definition 2.5 The transeunt triangle T (Sn
A) of symmet-

ric function Sn
A is a matrix [ti,j ] of logic values, where

1. ti,j = c0
n−j,0 i = 0 and 0 ≤ j ≤ n,

2. ti,j = ti−1,j⊕ti−1,j+1 1≤ i≤n and 0≤j≤n− i, and

3. ti,j is undefined otherwise,
(2)

where c0
n−j,0 is a coefficient in C0(Sn

A). Transeunt triangle
T (Sn

A) is said to be generated from C0(Sn
A).

Example 2.5 We construct T (S3
{0,1,2}) as follows. From

Definition 2.5
t0,0, t0,1, t0,2, t0,3 = c0

3,0, c0
2,0, c0

1,0, c0
0,0 = 1, 0, 0, 1

t1,0, t1,1, t1,2 = t0,0⊕t0,1, t0,1⊕t0,2, t0,2⊕t0,3 = 1, 0, 1
t2,0, t2,1 = t1,0 ⊕ t1,1, t1,1 ⊕ t1,2 = 1, 1
t3,0 = t2,0 ⊕ t2,1 = 0
ti,j is undefined otherwise. Fig. 1 shows the complete

Figure 1. Transeunt triangle, T (S3
{0,1,2}).

triangle. Its orientation is chosen for the benefit of repre-
senting embedded submatrices, our next topic. Undefined
elements are blank. Elements equal to the coefficients of
C0(S3

{0,1,2}) occur as the left side of the triangle.
(End of Example)

The specification of the transeunt triangle is a formalism
that allows us to make statements about the coefficients of
RMp(Sn

A). Of special interest are embedded submatrices
of T (Sn

A). For example, by construction, coefficient matrix
C0(S3

{0,1,2}) is an embedded submatrix of T (Sn
A).

Definition 2.6 Given transeunt triangle T (Sn
A) of symmet-

ric function Sn
A, an embedded submatrix Mp(Sn

A) is a
(p + 1)× (n− p + 1) matrix of values [mp

u,c], such that

mp
u,c = ti,j , (3)

where

1) u = n− p− j and 2) c = p− i. (4)

For p = 0, (3) and (4) yield m0
n−j,0 = t0,j (c = −i implies

c = i = 0). From (2), we can write m0
n−j,0 = c0

n−j,0, and

M0(Sn
A) = C0(Sn

A). (5)

That is, embedded submatrix M0(Sn
A) is identical to the

coefficient matrix from which T (Sn
A) was generated.

Example 2.6 Consider S3
{0,1,2}. The four embedded sub-

matrices associated with the transeunt triangle of S3
{0,1,2}

are shown in Fig. 2. (End of Example)

Figure 2. Submatrices Mp(S3
{0,1,2}) of transe-

unt triangle, T (S3
{0,1,2}).

Note that the origin c = u = 0 in each embedded sub-
matrix corresponds to a cell of the transeunt triangle in the
diagonal (lowest row) of the transeunt triangle. Note also,
that only diagonal elements occur in exactly one embedded
submatrix. We show, in the next section, that these elements
correspond to the carrier vector of Sn

A. All other elements
occur in two or more embedded submatrices. Indeed, the
origin i = j = 0 of the transeunt triangle occurs in all em-
bedded submatrices.



3 The Transeunt Triangle as the Basis for the
Synthesis of FPRM Expansions

Earlier, we observed that, when p = 0, the coefficient
matrix Cp(Sn

A) corresponds to Mp(Sn
A). This is equivalent

to the statement that the left side of the transeunt triangle is
the coefficient matrix of the PPRM expansion. Indeed, it is
also true that the right side of the transeunt triangle is the
coefficient matrix of the NPRM expansion. A formal proof
of the latter two statements appeared in [19]. The following
theorem extends this statement to all p. This was known by
Suprun [20], but, as far as we know, no formal proof has
been published.

Theorem 3.1 Let Cp(Sn
A) be the coefficient matrix of the

polarity p Reed-Muller expansion of symmetric function
Sn

A, and let Mp(Sn
A) be the p-th embedded submatrix of the

transeunt triangle for Sn
A. Then Cp(Sn

A) = Mp(Sn
A).

Proof
We show that Cp−1(Sn

A) = Mp−1(Sn
A) implies

Cp(Sn
A) = Mp(Sn

A), for 0 < p ≤ n. The hypothesis fol-
lows, since, by construction, C0(Sn

A) = M0(Sn
A).

Assume Cp−1(Sn
A) = Mp−1(Sn

A). Consider a coeffi-
cient cp

u,c in Cp(Sn
A). Let F p

u,c be the exclusive OR of
all product terms whose coefficient in RMp(Sn

A) is cp
u,c;

i.e. F p
u,c is the exclusive OR of all product terms that

have u uncomplemented and c complemented variables.
We form an expression for cp

u,c as a function of coef-
ficients in Cp−1(Sn

A) by substituting 1 ⊕ x̄p for xp in
RMp−1(Sn

A). Such a substitution transforms RMp−1(Sn
A)

into RMp(Sn
A).

From this last observation, we can write

cp
u,cF

p
u,c = cp−1

u,c F p−1
u,c |xp∈/ ⊕ cp−1

u+1,cF
p−1
u+1,c|xp∈

⊕ cp−1
u+1,c−1F

p−1
u+1,c−1|xp∈, (6)

where

cp−1
u,c F p−1

u,c |xp∈/ represents all terms in RMp−1(Sn
A)

that have u uncomplemented and c complemented
variables and do not contain xp (i.e. substituting 1⊕x̄p

for xp does not affect these terms),

cp−1
u+1,cF

p−1
u+1,c|xp∈ represents all terms in RMp−1(Sn

A)
that have u + 1 uncomplemented variables, including
xp, and c complemented variables (i.e. these terms do
not now have xp by virtue of substituting 1 of 1⊕ x̄p),
and

cp−1
u+1,c−1F

p−1
u+1,c−1|xp∈ represents all terms in

RMp−1(Sn
A) that have u + 1 uncomplemented vari-

ables, including xp, and c− 1 complemented variables
(i.e. these terms now have x̄p by virtue of substituting
x̄p of 1⊕ x̄p).

We distinguish three cases.

1) c = p. For this value of c, (6) yields

cp
u,pF

p
u,p = cp−1

u+1,p−1F
p−1
u+1,p−1|xp∈, (7)

since cp−1
u,p = cp−1

u+1,p = 0. F p
u,p = F p−1

u+1,p−1|xp∈, and

cp
u,p = cp−1

u+1,p−1. (8)

From (3) and (4),

mp
u,p = t0,n−p−u = mp−1

u+1,p−1.

Since, by assumption, mp−1
u+1,p−1 = cp−1

u+1,p−1, we can
conclude that mp

u,p = cp
u,p.

2) 0 < c < p. We claim,

cp
u,c = cp−1

u+1,c−1. (9)

On the contrary, if

cp
u,c = cp−1

u+1,c−1 ⊕ 1, (10)

for each product term in F p−1
u+1,c−1|xp∈, there is

an identical one in exactly one of F p−1
u,c |xp∈/ and

F p−1
u+1,c|xp∈. But, this is impossible; all product terms

in F p−1
u+1,c−1|xp∈ now contain x̄p, while all product

terms in F p−1
u,c |xp∈/ and F p−1

u+1,c|xp∈ do not now con-
tain xp. By an argument similar to that of Case 1), we
can conclude that mp

u,c = cp
u,c, for 0 < c < p.

3) c = 0. For this case, cp−1
u+1,c−1F

p−1
u+1,c−1|xp∈ = 0, and

cp
u,0F

p
u,0 = cp−1

u,0 F p−1
u,0 |xp∈/ ⊕ cp−1

u+1,0F
p−1
u+1,0|xp∈. (11)

No product term contains xp; indeed, all product terms
contain only uncomplemented variables. Since the
function is symmetric, both F p−1

u,0 |xp∈/ and F p−1
u+1,0|xp∈

contain all combinations of all u uncomplemented
variables, as does F p

u,0. It follows that

cp
u,0 = cp−1

u,0 ⊕ cp−1
u+1,0.

By assumption, mp−1
u,0 = cp−1

u,0 and mp−1
u+1,0 =

cp−1
u+1,0. From (3) and (4), mp−1

u,0 = tp−1,n−p+1−u and
mp−1

u+1,0 = tp−1,n−p−u. From (2),

tp,n−p−u = tp−1,n−p−u ⊕ tp−1,n−p+1−u.

Again, from (3) and (4),

mp
u,0 = tp,n−p−u.

Therefore,

mp
u,0 = cp

u,0.
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Figure 3. The distribution of optimal realizations of symmetric functions to polarity, for 2 ≤ n ≤ 28.

Example 3.7 Consider the transeunt triangle T (S3
{0,1,2}),

whose embedded submatrices are shown in Fig. 2. It can be
seen that each Mp(S3

{0,1,2}) is identical to the correspond-
ing coefficient matrix Cp(S3

{0,1,2}) shown in Example 2.4.
(End of Example)

Recall our remark earlier that the RMp(Sn
A) coefficients,

in general, cannot be chosen arbitrarily. Since the coeffi-
cient matrix is embedded in the transeunt triangle, individ-
ual coefficients are related by the exclusive OR.

4 Experimental Results

4.1 Number of Optimal Realizations ver-
sus Polarity

Because the transeunt triangle algorithm is so fast, we
are able to make a remarkable observation about the dis-
tribution of symmetric functions to the polarities that opti-
mally realize those functions. This is significant with re-
spect to heuristics one might devise to minimize FPRM’s.
The relative merit of a heuristic for determining the best
polarity to use in realizing a given symmetric function de-
pends on the distribution of optimal realizations to polarity.
A uniform distribution suggests that care is needed in mak-
ing this choice. A nonuniform distribution, and particularly
a polarity with a significantly higher propensity for optimal

realizations suggests that less care is needed, or even that
one should simply choose the favored polarity. Our next
result is counterintuitive; it shows that the latter holds.

By exhaustively enumerating all transeunt triangles, we
can determine how the number of optimal realizations are
distributed to the various polarities. Table 1 shows this dis-
tribution for n from 1 to 14. That is, if a n-variable function
is best realized by some polarity, it contributes 1 to the count
shown in the row associated with n and the column associ-
ated with that polarity. Certain functions contribute to more
than one count. For example, in the first row, corresponding
to n = 1, three functions are shown as best realized by po-
larity 0 and three as best realized by polarity 1, for a total of
six. However, there are only four symmetric functions. In-
deed, two functions, those with carry vectors [00] and [11],
are optimally realized by both polarities. For large n, the
data shows that only a small fraction of functions are best
realized by more than one polarity.

Fig. 3 shows this data graphically, for 2 ≤ n ≤ 28. It is
interesting that polarities 0 and n realize many more func-
tions optimally than other polarities, as shown by the two
ridges on each side. For example, for n = 28, polarities 0
and 28 each realize 21.9% of the total number of functions.
It should be noted that, for this value of n, only a small
fraction of the functions have more than one optimal real-
ization. That is, most of the functions have a unique optimal
polarity.

It is also interesting that the table and plot are symmet-
ric with respect to polarity. This is a consequence of the



Table 1. Number of optimal realizations of symmetric functions in the Reed-Muller expansion versus
polarity and n, the number of variables.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 3
2 5 3 5
3 10 6 6 10
4 16 8 6 8 16
5 26 11 12 12 11 26
6 51 14 13 15 13 14 51
7 90 26 25 27 27 25 26 90
8 165 44 31 36 39 36 31 44 165
9 312 89 44 64 67 67 64 44 89 312

10 604 146 76 82 113 119 113 82 76 146 604
11 1,219 282 101 173 150 219 219 150 173 101 282 1,219
12 2,288 582 214 227 345 340 395 340 345 227 214 582 2,288
13 4,411 1,148 364 659 467 703 596 596 703 467 659 364 1,148 4,411
14 8,578 2,296 687 1,087 1,226 891 1,165 1,251 1,165 891 1,226 1,087 687 2,296 8,578

following.

Theorem 4.2 For each symmetric function f(X) realized
optimally in a Reed-Muller expansion using polarity p, for
0 ≤ p ≤ n, there exists a symmetric function f ′(X) that is
realized optimally using polarity n− p.

Proof
Consider a p-polarity Reed-Muller expansion of f(X) that
is optimal. Complement all variables. The resulting expres-
sion is a Reed-Muller expansion of polarity n− p of f(X̄).
Since the original expansion is optimal, so also is the mod-
ified one.

From Theorem 4.2, it follows that the distribution of
the optimal polarities of symmetric functions is symmetric.
That is, if a symmetric function f(X) is optimally realized
by polarity p, then the anti-dual function fa(X), obtained
from f(X) by complementing the all variables, is optimally
realized by polarity n− p. It also implies that, if an optimal
realization of some self-anti-dual function fsad(X) occurs
with polarity p, then polarity n− p is also an optimal polar-
ity (a self-anti-dual function is invariant under complemen-
tation of all variables). If p 6= n − p, there are two distinct
polarities optimally realizing the same symmetric self-anti-
dual function; in Table 1, there is a contribution of 1 to the
distribution from both polarities p and n− p from the same
function.

4.2 Percentage of Optimal Realizations
versus n

As observed in the previous two figures, many symmet-
ric functions are optimally realized by polarities 0 and n.
The exact percentage is shown in Table 2. It can be seen
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Figure 4. The percentage of functions real-
ized optimally by polarity 0 or n versus n.

that this percentage ranges from 100% for n = 1 to be-
low 40% for large n. The plot of this data is shown in Fig.
4. Along the horizontal axis is the number of variables n,
where 1 ≤ n ≤ 100, and along the vertical axis is the per-
centage of symmetric functions optimally realized either by
polarity 0 or n. The figure shows two curves. The first,
denoted by circles and labeled ”Exact”, is based on an ex-
haustive enumeration of all symmetric functions. The curve
denoted by triangles and labeled ”1,000,000 Samples” was
produced by randomly generated symmetric functions. At
n = 100, 1,000,000 samples represents only 3.95×10−23%
of the set of all symmetric functions. Even for this small
percentage, the data is reasonably accurate, as shown by the
consistency of adjacent data points. The fact that we were
able to enumerate and analyze 1,000,000 samples of sym-
metric functions on 100 variables attests to the speed and



Table 2. Percentage of n-variable symmetric
functions optimally realized in a Reed-Muller
expansion of polarity 0 or n. (Italicized val-
ues were computed using a sample set of
1,000,000 example functions. Other values
are exact.)

n = number of variables
P0/n(n) = % optimally realized by polarity 0 or n
n P0/n(n) n P0/n(n) n P0/n(n)

1 100.00 22 46.15 43 40.49
2 87.50 23 45.67 44 40.25
3 87.50 24 45.25 45 40.10
4 87.50 25 44.80 46 39.94
5 71.88 26 44.39 47 39.80
6 69.53 27 44.15 48 39.72
7 64.06 28 43.86 49 39.48
8 61.13 29 43.55 50 39.48
9 58.20 30 43.31 51 39.29

10 57.52 31 42.99 52 39.17
11 58.25 32 42.81 53 39.04
12 55.14 33 42.50 54 38.86
13 53.43 34 42.27 55 38.75
14 51.89 35 42.13 56 38.71
15 50.67 36 41.87 57 38.55
16 49.91 37 41.74 58 38.46
17 49.23 38 41.38 59 38.30
18 47.89 39 41.27 60 38.20
19 47.49 40 40.93 61 38.15
20 47.03 41 40.79 62 38.08
21 46.63 42 40.64 63 37.95

efficiency of the transeunt triangle.

5 Concluding Remarks

If the distribution of the number of optimally realized
functions to polarity was uniform, we would observe a de-
crease in the percentage of all functions realized optimally
by the extreme two polarities similar to that of Fig. 4. At
n = 1, the percentage would also be 100%. However, it
would steadily decrease to 0, and at n = 100, it would be
about 2%, not 35%. This suggests that the extreme polar-
ities, which exhibit an inherent symmetry (the term asso-
ciated with each coefficient is symmetric), provide an ef-
ficiency in the realization of symmetric functions. It also
suggests that a heuristic in which any symmetric function is
realized by one of the two extremes will perform reasonably
well.
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