
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2000-11

Comments on Sympathy: Fast exact

minimization of fixed polarity

Reed-Muller expansion for symmetric functions

Dueck, Gerhard W.

þÿ�C�o�m�m�e�n�t�s� �o�n� ��F�a�s�t� �e�x�a�c�t� �m�i�n�i�m�i�z�a�t�i�o�n� �o�f� �f�i�x�e�d� �p�o�l�a�r�i�t�y� �R�e�e�d�-�M�u�l�l�e�r� �e�x�p�a�n�s�i�o�n� �f�o�r� �s�y�m�m�e�t�r�i�c

þÿ�f�u�n�c�t�i�o�n�s ��, �� �I�E�E�E� �T�r�a�n�s�.� �O�n� �C�o�m�p�u�t�e�r�-�A�i�d�e�d� �D�e�s�i�g�n�,� �V�o�l�.� �1�9�,� �N�o�.� �1�1�,� �N�o�v� �2�0�0�0�,� �p�p�.� �1�3�8�6�-�1�3�8�8

http://hdl.handle.net/10945/35742

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36728297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1386 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2000

Comments on “Sympathy: Fast Exact Minimization of Fixed
Polarity Reed–Muller Expansion for Symmetric Functions”

Jon T. Butler, Gerhard W. Dueck, Vlad P. Shmerko, and
Svetlana Yanuskevich

Abstract—The above paper1 finds an optimal fixed-polarity Reed–Muller
expansion of an -variable totally symmetric function using an
OFDD-based algorithm that requires () time and () storage
space. However, an algorithm based on Suprun’s transeunt triangles
[1], [3], [4] requires only () time and () storage space. An
implementation of this algorithm yields computation times lower by several
orders of magnitude.

Index Terms—FPRM (fixed polarity Reed–Muller expressions), two-level
AND/EXOR forms, symmetric functions, logic synthesis, minimization.

I. INTRODUCTION

A recent program,Sympathy,1 for finding optimal polarity
Reed–Muller (FPRM) expansions of symmetric functions is based on
an algorithm whose data structure is an OFDD of the given function.
It requiresO(n7) operations andO(n6) storage space, wheren is
the number of variables. However, if one uses a more efficient data
structure, specifically the transeunt triangle of Suprun [1], [3], [4],
the same computation can be done withO(n3) operations andO(n2)
storage space. The improvement is achieved because coefficients
needed in various expansions are computed and stored only once,
whereas Sympathybuilds a new OFDD for each polarity. On bench-
mark functions, the speed improvement is by orders of magnitude

II. NOTATION

A FPRM expansion for a general functionf(x1; x2; . . . ; xn) is
f(x1; x2; . . . ; xn) = c0�c1x

�

1�c1x
�

2�� � ��cnx
�

n�cn+1x
�

1x
�

2

� � � ��c2 �1x
�

1x
�

2 � � � x
�

n (1)
wherex�i is eitherxi or xi everywhere. The termfixed-polarityrefers
to the fact that each variable occurs in the expression in only one way,
xi or xi. For example,f(x1; x2; x3) = x1x2x3 + x1x2x3 has the
following four FPRM expansions.

No variables complemented:1�[x1�x2�x3]�[x1x2�x1x3�

x2x3]
One variable complemented:x1 � x1x2 � x1x3 � x2x3
Two variables complemented:x3 � x1x2 � x1x3 � x2x3
All variables complemented:1�[x1�x2�x3]�[x1x2�x1x3�

x2x3]
Note the total number of product terms required to realize this func-

tion. In the first and fourth FPRM expansions, seven terms are required,
while in the second and third, only four are required. TheFPRM sim-
plification problemis to determine which ofn+1 polarities (number of
complemented variables) yields the FPRM expansion with the fewest

Manuscript received February 11, 2000. This paper was recommended by
Associate Editor M. Papaefthymiou.

J. T. Butler is with the Department of Electrical and Computer Engineering,
Naval Postgraduate School, Monterey, CA 93943-5121 USA.

G. W. Dueck is with the Department of Computer Science, University of New
Brunswick, Fredericton, N.B. E3B 5A3 Canada.

V. P. Shmerko and S. Yanuskevich are with the Insitute of Computer Science
and Inf. Science, Technical University of Szczecin, 71210 Szczecin, Poland.

Publisher Item Identifier S 0278-0070(00)10293-3.

1R. Drechsler and B. Becker, “Sympathy: Fast exact minimization of fixed
polarity Reed–Muller expansion for symmetric functions,”IEEE Trans. Com-
puter-Aided Design, vol. 16, pp. 1–5, Jan 1997.

Fig. 1. The transeunt triangle forf(x ; x ; x) = x x x + x x x .

Fig. 2. Reed–Muller expansion matrices embedded in the transeunt triangle of
f(x ; x ; x) = x x x + x x x .

terms. In this example, the two middle polarities are both optimum,
yielding an expansion of four terms each.

A function f(x1; x2; � � � xn) is (totally) symmetricif and only
if it is unchanged by any permutation of variables. For example,
f(x1; x2; x3) = x1x2x3 + x1x2x2 is symmetric. Certain coeffi-
cients in the FPRM expansion of a symmetric function are identical.
Let theReed–Muller expansion matrixof a symmetric function be an
(n + 1)� (n + 1) matrix of binary coefficients

RMi =

d00 d01 � � � d0n

d10 d11 � � � d1n
...

...
dn0 dn1 � � � dnn

(2)

wheredjk is the coefficient of a product term ofxi ’s in an FPRM
expansion (1) in whichj variables are complemented andk are not.
For the four FPRM expansions off(x1; x2; x3) = x1x2x3+x1x2x3,
we have

RM0 =

1 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

; RM1 =

1 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

RM2 =

1 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

; RM3 =

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 0

:

The bold values represent coefficients in the corresponding FPRM ex-
pansion. The 0s not in bold are 0 inall Reed–Muller expansion matrices
for thesamepolarity.

A symmetric function is completely specified by acarry vectorof
logic valuesA = [a0; a1; . . . ; an], such thatf(x1; x2; . . . ; xn) is
ai for all assignments of values tox1; x2; . . . ; xn that havei 1s,
where0 � i � n. For example, the carry vector off(x1; x2; x3) =
x1x2x3 + x1x2x3 is [1; 0; 0; 1].

III. T RANSEUNT TRIANGLE REPRESENTATION OFREED–MULLER

EXPANSIONS

Consider a triangle of 0s and 1s, where the base is a symmetric func-
tion’sn+1-bit carry vector. Immediately below this is a vector ofn 1s
and 0s formed by the exclusiveOR of adjacent bits in the carry vector.
Immediately below this is a vector ofn � 1 1s and 0s formed by the
exclusiveOR of adjacent bits in the previous vector, etc.. At the bottom
is a single 1 or 0. Doing this forf(x1; x2; x3) = x1x2x3 + x1x2x3
yields the triangle in Fig. 1.

The resulting triangle is thetranseunt triangle, originated by Suprun
[3], [4]. Notice that the bits along the triangle’s left side are coefficients
in RM0, while bits along the right side are coefficients inRM3. Ad-
ditionally, embedded rectangles represent the coefficients inRM1 and
RM2. This can be seen in Fig. 2.

0278–0070/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2000 1387

TABLE I
EXECUTION TIMES (IN SECS.) FOR SYMMETRIC BENCHMARK FUNCTIONS*

IV. THE ALGORITHM AND ITS TIME AND SPACE COMPLEXITY

A. The Algorithm

Note that a single element of the transeunt triangle represents one
or more coefficients in the various Reed–Muller expansion matrices.
The efficiency of the transeunt triangle is due to the fact that it is not
necessary to recompute this coefficient for each polarity.

Algorithm 1 [4]
1) Generate the transeunt triangle.
2) For each , extract the coefficients

(), and compute the number of product
terms.

3) Choose an with the fewest product
terms.

B. Time and Space Complexity

The following lemma gives both the time and space complexity of
the above algorithm. The time complexity is due to [4].

Lemma 4.1: Algorithm 1 is anO(n3)-time algorithm that re-
quiresO(n2) storage space for computing the optimal fixed-polarity
Reed–Muller expansion of a symmetric function onn variables.

Proof: In applying the algorithm, O(n2) storage locations are re-
quired for the coefficients in the triangles. O(n) locations are required
to store the number of product terms, one for each of then+ 1 polari-
ties, for a total of O(n2) locations.

The OFDD approach has time complexityO(n7) and space com-
plexityO(n6).Thus, Algorithm 1represents asignificant improvement.

V. EXPERIMENTAL RESULTS

Suprun [3], [4] did not apply his algorithm to benchmark functions.
Our implementation is calledSymphony, (symmetric phunction
optimizing system), which is written in C++ and compiled under

Microsoft’s Visual Studio Version 6.0 for Windows98. It was run on a
400 MHz. Pentium system.

A. Comparison of Symphony on benchmark functions

Table I shows, for certain symmetric benchmark functions, the exe-
cution time ofSymphonycompared to Sympathyand to FDD, another
OFDD-based minimizer that does not consider symmetry [2]. Table I
also shows the number of inputs (In), the Output Number (Out), the
Carrier Vector expressed as a regular expression (Car. Vec.), the po-
larity(ies) that produced the optimal realization (Opt. Pol.), and the
number of product terms in the optimal solution (Products). The three
execution times (FDD, Sympathy, andSymphony) are shown in sec-
onds.

As can be seen,Symphony is very fast, requiring no more than
0.0002 secs. on any of the functions considered by Dreschler and
Becker. Indeed, these execution times are less than the time interval
between real time clock interrupts. As a result, timing functions in
C++ return zero elapsed time for program execution. To achieve the
necessary resolution, each function was minimized 2 000 000 times
and the total time was divided by 2 000 000.

Each dbruijn_k entry in Table I is a d’Brujin sequence indexed by
k. That is, each sequence contains exactly one copy of each of the2k

binaryk-tuples. Overall, it contains a total of2k + k � 1 bits. This
sequence is such that decision diagram representations for such func-
tions will have many nodes, as there are few repeated subsequences.
As a result, algorithms based on decision diagrams will require more
computation time than for other symmetric functons.

Table II shows, for certain symmetric functions that are also
threshold functions, the relative execution times of FDD, Sympathy,
andSymphony. Again,Symphony is fast.

VI. CONCLUSION

Rather than computing the entire FPRM expansion for each polarity,
Symphony computes and stores expansion coefficients only once,

1388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2000

TABLE II
EXECUTION TIMES (IN SECS.) FOR SYMMETRIC THRESHOLDFUNCTIONS

using the transeunt triangle, and extracts them, as needed, to form
the various expansions. In this way, it achieves a major savings in
computation time and storage over Sympathy, which computes a
decision diagram for each polarity.

An abbreviated version ofSymphonycan be accessed at http://www.
oc.nps.navy.mil/~butler/transeunt.html (word length restrictions on the
server preclude carrier vectors with more than 31 bits). Users can input
a carrier vector and see the transeunt triangle along with the number of
product terms for each polarity.

ACKNOWLEDGMENT

The authors gratefully acknowledge the comments by the editors and
three referees which led to improvements.

REFERENCES

[1] J. T. Butler, G. W. Dueck, S. N. Yanushkevich, and V. P. Schmerko, “On
the number of generators for transeunt triangles,” Discrete Appl. Math.,
2000, to be published.

[2] R. Drechsler, M. Theobald, and B. Becker, “Fast OFDD based minimiza-
tion of fixed-polarity Reed–Muller expressions,” inProc. Eur. Design
Automation Conf., 1994, pp. 2–7.

[3] V. P. Suprun, “Polynomial expression of symmetric Boolean functions”
(in Russian),Izvestija AN USSR. Techn. Kibernetika, no. 4, pp. 123–127,
1985.

[4] , “Fixed polarity Reed–Muller expressions of symmetric Boolean
functions,” in Proc. IFIP WG 10.5 Workshop on Application of the
Reed–Muller Expansions in Circuit Design, 1995, pp. 246–249.

