
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2009-03

The Profession of IT, Is Software

Engineering Engineering?

Denning, Peter J.

Is Software Engineering Engineering? (with Richard Riehle)(March 2009) Software engineering

continues to be dogged by claims it is not engineering. Adopting more of a computer-systems

view may help.

http://hdl.handle.net/10945/35501

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36728072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Vviewpoints

march 2009 | vol. 52 | no. 3 | communications of the acm 1

I
t is a time of considerable in-
trospection for the computing
field. We recognize the need to
transcend the time-honored,
but narrow image of, “We are

programmers.” That image conveys
no hint of our larger responsibilities
as software professionals and limits us
in our pursuit of an engineering model
for software practice.

The search for an alternative to the
programmer image is already a gen-
eration old. In 1989 we asked: Are we
mathematicians? Scientists? Engi-
neers?3 We concluded that we are all
three. We adopted the term “comput-
ing,” an analogue to the European “in-
formatics,” to avoid bias toward any
one label or description.

Today, we want all three faces to be
credible in an expanding world. The
cases for computing as mathematics
and as science appear to be widely ac-
cepted outside the field.1 However, the
case for computing as engineering is
still disputed by traditional engineers.
Computer engineering (the architec-
ture and design of computing ma-
chines) is accepted, but software engi-

neering remains controversial.
In this column, we examine reasons

for the persistent questions about soft-
ware engineering and suggest direc-
tions to overcome them.

engineering Process
The dictionary defines engineering as
the application of scientific and math-
ematical principles to achieve the de-
sign, manufacture, and operation of
efficient and economical structures,
machines, processes, and systems.
When applied to software engineer-
ing, this definition calls attention to
the importance of science and math
principles of computing. Software en-
gineering has also contributed prin-
ciples for managing complexity in soft-
ware systems.

Some definitions insist that engi-
neering mobilizes properties of matter
and sources of energy in nature. Al-
though software engineering does not
directly involve forces of nature, this
difference is less important in modern
engineering.

The main point of contention is
whether the engineering practices for

software are able to deliver reliable,
dependable, and affordable software.
With this in mind, the founders of the
software engineering field, at the leg-
endary 1968 NATO conference, pro-
posed that rigorous engineering pro-
cess in the design and implementation
of software would help to overcome the
“software crisis.”

In its most general form, the “engi-
neering process” consists of a repeated
cycle through requirements, specifica-
tions, prototypes, and testing. In soft-
ware engineering, the process models
have evolved into several forms that
range from highly structured preplan-
ning (waterfalls, spirals, Vs, and CMM)
to relatively unstructured agile (XP,
SCRUM, Crystal, and evolutionary). No
one process is best for every problem.

Despite long experience with these
processes, none consistently delivers
reliable, dependable, and affordable
software systems. Approximately one-
third of software projects fail to de-
liver anything, and another one-third
deliver something workable but not
satisfactory. Often, even successful
projects took longer than expected and

the Profession of it
is software Engineering
Engineering?
Software engineering continues to be dogged by claims it is not engineering.
Adopting more of a computer-systems view may help.

doI:00.0000/000 Peter J. denning and Richard d. Riehle

2 communications of the acm | march 2009 | vol. 52 | no. 3

viewpoints

had significant cost overruns. Large
systems, which rely on careful preplan-
ning, are routinely obsolete by the time
of delivery years after the design start-
ed.2 Faithful following of a process, by
itself, is not enough to achieve the re-
sults sought by engineering.

engineering Practice
Gerald Weinberg once wrote, “If soft-
ware engineering truly is engineering,
then it ought to be able to learn from
the evolution of other engineering
disciplines.” Robert Glass and his col-
leagues provocatively evaluated how
often software engineering literature
does this.4 They concluded that the lit-
erature relies heavily on software anec-
dotes and draws very lightly from other
engineering fields. Walter Tichy found
that fewer than 50% of the published
software engineering papers tested
their hypotheses, compared to 90% in
most other fields.8

So software engineering may suffer
from our habit of paying too little at-
tention to how other engineers do engi-
neering. In a recent extensive study of
practices engineers expect but do not
always write down, Riehle found six we
do not do well.5

Predictable outcomes (principle of ˲

least surprise). Engineers believe that
unexpected behaviors can be not only
costly, but dangerous; consequently,
they work hard to build systems whose
behavior they can predict. In software
engineering, we try to eliminate surpris-
es by deriving rigorous specifications
from well-researched requirements,
then using tools from program veri-
fication and process management to
assure that the specifications are met.
The ACM Risks Forum documents a
seemingly unending series of surprises
from systems on which such attention
has been lavished. Writing in ACM SIG-

SOFT in 2005, Riehle suggested a cul-
tural side of this: where researchers and
artists have a high tolerance, if not love,
for surprises, engineers do everything
in their power to eliminate surprises.6
Many of our software developers have
been raised in a research tradition, not
an engineering tradition.

Design metrics, including design to ˲

tolerances. Every branch of modern
engineering involves design metrics
including allowable stresses, toler-
ances, performance ranges, structural
complexity, and failure probabilities
for various conditions. Engineers use
these metrics in calculations of risk
and in sensitivity analyses. Software
engineers do not consistently work
with such measures. They tend to use
simple retrospective measures such
as lines of code or benchmark per-
formance ranges. The challenge is to
incorporate more of these traditional
engineering design metrics into the
software development process. Sang-
wan gives a successful example.7

Failure tolerance. ˲ Henry Petroski
writes, “An idea that unifies all engi-
neering is the concept of failure. Vir-
tually every calculation an engineer
performs…is a failure calculation…
to provide the limits than cannot be
exceeded.” There is probably no more
important task in engineering than
that of risk management. Software en-
gineers could more thoroughly exam-
ine and test their engineering solutions
for their failure modes, and calculating
the risks of all failures identified.

Separation of design from imple- ˲

mentation. For physical world projects,
engineers and architects represent a
design with blueprints and hand off
implementation to construction spe-
cialists. In current practice, software

engineers do both, design and build
(write the programs). Would separa-
tion be a better way?

Reconciliation of conflicting forces ˲

and constraints. Today’s engineers face
many trade-offs between conflicting
natural forces and a dizzying array of
non-technical economic, statutory,
societal, and logical constraints. Soft-
ware engineering is similar except that
fewer forces involve the natural world.

Adapting to changing environments. ˲

Most environments that use comput-
ing constantly change and expand.
With drawn-out acquisition processes
for complex software systems, it is not
unusual for the system to be obsolete
by the time of delivery. What waste!
Mastering evolutionary development is
the new challenge.2

the system
The problems surrounding the six is-
sues listed here are in large measure
the consequence of an overly narrow
view of the system for which the soft-
ware engineer is responsible. Although
controlled by software, the system is
usually a complex combination of soft-
ware, hardware, and environment.

Platform independence is an ideal
of many software systems. It means
that the software should work under a
choice of operating systems and com-
puting hardware. To achieve this, all
the platform-dependent functions
are gathered into a platform inter-
face module; then, porting the system
to another platform entails only the
building of that module for the new
platform. Examples of this are the Ba-
sic Input-Output System (BIOS) com-
ponent of operating systems and the
Java Virtual Machine (JVM). When this
can be achieved, the software engineer
is justified in a software-centric view of
the system.

But not all software systems are
platform independent. A prominent
example is the control system for ad-
vanced aircraft. The control system is
implemented as a distributed system
across many processors throughout
the structure where they can be close to
sensors and control surfaces. Another
example is software in any large system
that must constantly adapt in a rapidly
changing environment. In these cases
the characteristics of the hardware, the
interconnections, and the environment

the main point of
contention is whether
the engineering
practices for
software are able
to deliver reliable,
dependable, and
affordable software.

software engineering
may suffer from our
habit of paying too
little attention to how
other engineers do
engineering.

viewpoints

march 2009 | vol. 52 | no. 3 | communications of the acm 3

continually influence the software de-
sign. The software engineer must ei-
ther know the system well, or must in-
teract well with someone who does. In
such cases adding a system engineer to
the team will be very important.

engineering team
No matter what process engineers use
to achieve their system objectives, they
must form and manage an engineering
team. Much has been written on this
topic. Software engineering curricula
are getting better at teaching students
how to form and work on effective
teams, but many have a long way to go.

Every software team has four im-
portant roles to fill. These roles can be
spread out among several people.

The software architect gathers the
requirements and turns them into
specifications, seeks an understanding
of the entire system and its trade-offs,
and develops an architecture plan for
the system and its user interfaces.

The software engineer creates a
system that best meets the architec-
ture plan. The engineer identifies and
addresses conflicts and constraints
missed by the architect, and designs
controls and feedbacks to address
them. The engineer also designs and
oversees tests. The engineer must have
the experience and knowledge to de-
sign an economical and effective solu-
tion with a predictable outcome.

The programmer converts the engi-
neering designs into working, tested
code. Programmers are problem-solv-
ers in their own right because they
must develop efficient, dependable
programs for the design. Moreover,
anyone who has been a programmer
knows how easy it is to make mistakes
and how much time and effort are
needed to detect and remove mistakes
from code. When the software engi-

neer has provided a good specification,
with known exceptions predefined and
controls clearly delineated, the pro-
grammer can work within a model that
makes the job of implementation less
error-prone.

The project manager is responsible
for coordinating all the parts of the
team, meeting the schedules, getting
the resources, and staying within bud-
gets. The project manager interfaces
with the stakeholders, architects, engi-
neers, and programmers to ensure the
project produces value for the stake-
holders.

In some cases, as noted previously,
a systems engineer will also be needed
on the team.

conclusion
We have not arrived at that point in
software engineering practice where
we can satisfy all the engineering cri-
teria described in this column. We still
need more effective tools, better soft-
ware engineering education, and wider
adoption of the most effective practic-
es. Even more, we need to encourage
system thinking that embraces hard-
ware and user environment as well as
software.

By understanding the fundamen-
tal ideas that link all engineering dis-
ciplines, we can recognize how those
ideas can contribute to better software
production. This will help us construct
the engineering reference discipline
that Glass tells us is missing from our
profession. Let us put this controversy
to rest.

References
1.	 Denning,	P.	Computing	is	a	natural	science.	Commun.

ACM 50,	7	(July	2007),	13–18.
2.	 Denning,	P.,	Gunderson,	C.,	and	Hayes-Roth,	R.	

Evolutionary	system	development.	Commun. ACM 51,	
12	(Dec.	2008),	29–31.

3.	 Denning,	P.	et	al.	Computing	as	a	discipline.	Commun.
ACM 32,	1	(Jan.	1989),	9–23.

4.	 Glass,	R.,	Vessey,	I.,	and	Ramesh,	V.	Research	in	
software	engineering:	An	analysis	of	the	literature.	
Information and Software Technology 44,	8	(2002),	
491–506.	

5.	 Riehle,	R.	An	Engineering	Context	for	Software	
Engineering.	Ph.D.	thesis,	2008;	theses.nps.navy.
mil/08Sep_Riehle_PhD.pdf.

6.	 Riehle,	R.	Engineering	on	the	surprise	continuum:	As	
applied	to	software	practice.	ACM SIGSOFT Software
Engineering News 30,	5	(Sept	2005),	1–6.

7.	 Sangwan,	R.,	Lin,	L-P,	and	Neill,	C.	Structural	
complexity	in	architecture-centric	software.	IEEE
Computer (Mar.	2008),	96–99.

8.	 Tichy,	W.	Should	computer	scientists	experiment	
more?	IEEE Computer (May	1998),	32–40.

Peter J. Denning (pjd@nps.edu)	is	the	director	of	the	
Cebrowski	Institute	for	Information	Innovation	and	
Superiority	at	the	Naval	Postgraduate	School	in	Monterey,	
CA,	and	is	a	past	president	of	ACM.

Richard Riehle	(rdriehle@nps.edu)	is	a	visiting	professor	
at	Naval	Postgraduate	School	in	Monterey,	CA,	and	is	
author	of	numerous	articles	on	software	engineering	and	
the	popular	textbook	Ada Distilled.

although controlled
by software, the
system is usually a
complex combination
of software,
hardware, and
environment.

We need to encourage
system thinking that
embraces hardware
and user environment
as well as software.

