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Under the Ansatz that the occupation times of a system with finitely many states are given by
the Gibbs distribution, an effective temperature is uniquely determined (up to a choice of scale),
and may be computed de novo, without any reference to a Hamiltonian for empirically accessible
systems. As an example, the calculation of the effective temperature for a classical Bose gas is
outlined and applied to the analysis of computer network traffic.
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a. Introduction. It is commonplace to characterize
communications channels and chaotic and complex sys-
tems through the use of some type of entropy mea-
sure. However, further dynamical characterizations are
often discipline-specific: e.g., fidelity for quantum error-
correcting codes, rates of divergence or Lyapunov expo-
nents, attractor reconstruction methods, etc. [1] While
system-specific differences are to be expected, it is always
desirable to have more versatile tools for characterization.
This viewpoint suggests the potential to apply fundamen-
tal concepts from statistical physics beyond entropy that
have yet to be developed in subject areas outside of their
historically derived roles. Meanwhile, a common feature
in the methods listed above (and indeed the fundamental
property of any dynamical characterization, regardless of
its actual purpose) is a functional dependence on the dy-
namical time evolution. The emergence of a general dy-
namical measure would complement the widely adopted
class of characterizations constructed from density matri-
ces and their ilk, of which entropies are the most promi-
nent. An ideal candidate for such a measure is an ef-
fective temperature [2]. We review the construction of
such a temperature here. Its form (see equation (13)) is
uniquely determined by the requirement of consistency
with equilibrium statistical physics, and its applicability
is enhanced by the virtue that it is a function only of the
state occupation times (equivalently, the state probabil-
ities and recurrence time). In consequence, we arrive at
the following result of interest: rather than playing the
role of an environmental parameter in calculations with
detailed models, temperature can be regarded as an in-
trinsic quantity that can be computed de novo purely on
the basis of time averages. By closing the Gibbs relation,
the same point of view can be extended to the state en-
ergies. We expect that the framework presented here can
be fruitfully applied to the analysis of generic empirically
accessible systems.

Our work is a natural outgrowth of several recent de-
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velopments, one set of which is reviewed in [2]. It is now
well known how to calculate the temperature from time
averages for a given Hamiltonian [3], [4], [5]. In a more
abstract setting, it has also been illustrated how energies
and probabilities or time averages suffice [6], [7].

The requirement of empirical accessibility for our
framework appears to exclude much of the traditional
domain of statistical physics from applications, but it
also suggests completely new applications in the spirit of
information theory, e.g. to data from networks and mar-
kets, or more generically to large data sets. One such
application of immediate interest is to computer network
traffic: the use of thermal variables other than entropy
to describe computer network traffic has been considered
previously [8], [9]. Another area worthy of investigation
is temperature in granular media [10], [11].

b. Two sets of coordinates. Let us make it clear at
the outset that our goal is to describe systems using the
idiom of equilibrium statistical physics in the canonical
ensemble. Consider a finite system with n states, with
nonzero occupation probabilities {pk}nk=1 and character-
istic recurrence time t∞. We begin in earnest by noting
that we may stipulate that the (otherwise as yet unde-
termined) state energies satisfy the zero-point constraint

E1 + · · ·+ En = 0. (1)

(Note that this is not the same as fixing the internal en-
ergy.) Keeping (1) in mind, we introduce an empirical
temperature parameter Θ ≡ kBT and two sets of coor-
dinates. The experimentalist’s coordinates are given by
the characteristic state occupation times:

t := (t1, . . . , tn), (2)

with tk := t∞pk (or in shorthand t = t∞p), and the
theorist’s coordinates are given by

H := (E1, . . . , En,Θ). (3)

t-coordinates lie in Xt := {t : tk > 0,∀k}; H-coordinates
typically (but not necessarily always [12]) lie in XH :=
{H : (Θ > 0) ∧ (E1 + · · ·+ En = 0)}.

It is natural to ask how to transform from one set of
coordinates to the other. The transformation from XH
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to Xt is the usual aim of statistical physics. The main
issue in this direction is the computation of the partition
function, which is trivial for finite systems in the sense
that the computation can be effected in O(n) arithmetic
steps. The other direction, from Xt to XH , is far less
explored: navigating it raises the prospect of bringing the
tools of thermodynamics and statistical physics to bear
on a host of real-world problems that may have hitherto
appeared to lie outside their domain.

Without any constraints (e.g., without fixing the in-
ternal energy of the system à la Jaynes [13]), the Gibbs
Ansatz for the state occupation probabilities is underde-
termined, i.e., the assignment (with β := Θ−1)

tk/t∞ =: p(t)
k ≡ p

(H)
k := e−βEk/Z, (4)

still does not uniquely specify a point in XH , but only a
ray, since ctk/ct∞ = tk/t∞ and (β/c)(cEk) = βEk.

c. Preliminaries. To begin a condensation and re-
finement of [14], the equations (1) and (4) imply that

βEk =
1
n

n∑
j=1

log
pj
pk
, (5)

and we can use this to obtain βH = (βE1, . . . , βEn, 1).
The angle φ between the unit vector eΘ := (0, . . . , 0, 1)∗
and H is given by

cosφ :=
〈
e∗Θ,

βH

‖βH‖

〉
=

1
‖βH‖

. (6)

The temperature is therefore given by

Θ(t) = ‖H‖ cosφ, (7)

where

cosφ =
1

‖βH‖
=

(
n∑
k=1

(βEk)2 + 1

)−1/2

. (8)

To obtain Θ(t), it remains only to compute ‖H‖. To do
this we shall require two preliminary results. The first
result is a scaling behavior of the type suggested by the
Wick rotation/correspondence β! it in finite temper-
ature field theory: this will be examined from several
points of view. The second result is a geometrical result
called the radial foliation lemma.

d. POV 1: dimensional analysis. It is clear from
dimensional considerations that T ≡ Θ/kB must de-
pend on some governing parameter x besides kB and t.
W/l/o/g, x carries units of action and may be set to ~,
so T ≡ f(~, kB , t) for some f . Now the Buckingham Π-
theorem [15], [16] implies that there is a non-dimensional
function Φ(p) such that T = ~k−1

B t−1
∞ Φ(p), i.e.

Θ = ~t−1
∞ Φ(p). (9)

Therefore Θ scales as 1/t∞. Moreover, it is clear from (9)
that using a unit of action other than ~ as a governing
parameter merely amounts to a change of scale for Θ.

e. POV 2: two ideal gas systems. Consider the fol-
lowing thought experiment, in which we have two sys-
tems, comprised respectively of finite ideal gas sam-
ples with particle masses m and Cm, each in identical
freefalling containers in contact with its own isotropic
thermal bath, and with the same initial conditions in
phase space. Insofar as the system microstates are not
of interest in equilibrium, the systems may be respec-
tively described by, e.g. the quintuples (m, v, t∞; p, β)
and (Cm, v/C,Ct∞; p, Cβ), where the rms velocities and
momenta are indicated. Each system follows the same
trajectory through phase space, albeit at rates that dif-
fer by constant factors, and we see that Θ scales as 1/t∞
for ideal gases, and hence (by means of a suitable cou-
pling with an ideal gas bath) for general systems also.

f. POV 3: extended canonical transformation. Con-
sider a Hamiltonian H(X,P ). Dilating the dynamical
rate by a factor C has the effect that t∞ 7→ t′∞ = t∞/C
and amounts to a change of units, as it also induces the
extended canonical transformation X 7→ X ′ = X,P 7→
P ′ = CP,H 7→ H ′ = CH. Meanwhile, β 7→ β′ and e−βH
is invariant, so it follows that β′ = β/C and Θ scales as
1/t∞.

g. POV 4: thermal time hypothesis. Let H be a
Hamiltonian on a finite-dimensional Hilbert space. The
thermal density matrix is ω = Z−1Tr(e−βH), and the
time evolution of an observable A is given as usual by
τt(A) = eiHt/~Ae−iHt/~.

Now the one-parameter modular group of ω that ap-
pears in the Tomita-Takesaki theory of von Neumann
algebras [17] can be shown to coincide with the time evo-
lution group [18]: if s is the modular parameter and t is
the physical time, then

t = βs/~. (10)

In particular, s does not depend on β.
The thermal time hypothesis (TTH) articulated by

Connes and Rovelli [18] (see also [19], [20], [21], [22])
states that physical time is determined by the modular
group, which is in turn determined by the state. The
TTH simultaneously inverts and generalizes the Kubo-
Martin-Schwinger condition [23], so that temperature
provides the physical link between time evolution and
equilibria. Moreover, the TTH implies Hamiltonian me-
chanics and the Gibbs postulate. Its key implication here
though is simply (10), which implies that Θ scales as
1/t∞.

h. The radial foliation lemma. We now establish the
radial foliation lemma. As mentioned after (4), the state
probabilities are constant on rays in both Xt and XH .
Let e(t)

r , e
(H)
r denote radial unit vectors in Xt and XH ,

respectively. We will make the mild assumption that any
relevant partial derivatives exist on the interiors of Xt

and XH . It is easy to see that

dt = d‖t‖e(t)
r ⇐⇒ dH = d‖H‖e(H)

r ,

i.e., one of the differentials is purely radial iff both are,
and in such an event the probabilities remain constant;
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likewise, one of the differentials dt, dH is purely angu-
lar iff both are, and in such an event the probabilities
change. We therefore obtain the lemma: that any rea-
sonably smooth map between Xt and XH that respects
(4) sends rays and sphere orthants in Xt to rays and
hemispheres in XH , respectively.

i. The effective temperature. By the radial foliation
lemma, ‖H(t)‖ = ‖H(‖t‖1̂)‖ ≡ Θ

(
‖t‖1̂

)
, so that (7)

takes the form

Θ(t) = Θ
(
‖t‖1̂

)
cosφ, (11)

where 1̂ is the unit vector with all components equal to
n−1/2. Meanwhile, the form implied by the scaling be-
havior of Θ w/r/t t∞ for the term Θ

(
‖t‖1̂

)
on the RHS

of (11) is

Θ
(
‖t‖1̂

)
= K/‖t‖, (12)

where K is a fixed constant with dimensions of action
(say, ~) whose value we may set to unity w/l/o/g.

In the language of an earlier paper [9], (12) is a topolog-
ically admissible uniform temperature map. This means
first that the LHS of (12) is bijective in ‖t‖, which is es-
sentially the zeroth law of thermodynamics, and second
that Θ→ 0 (resp., ∞) as t∞ →∞ (resp., 0). Combined
with bijectivity, this implies in particular that the LHS
of (12) must be monotone decreasing in ‖t‖.

Combining (8) and (12) using (11) leads to a simple
formula for Θ:

Θ(t) =
K

t∞‖p‖

 n∑
k=1

 1
n

n∑
j=1

log
pj
pk

2

+ 1


−1/2

(13)

FIG. 1: Contour plot of (the logarithm of) Θ for a two-state
system as a function of the occupation times, with t∞ = t1 +
t2. The picture in higher dimensions is qualitatively similar.

j. Temperature of a classical Bose gas. We now con-
sider the example of a classical Bose gas [24]. (The equiv-
alent system in queueing theory is known as a Gordon-
Newell or closed Jackson queue [25], [26], and similar
but distinct model physical systems include generalized
Ehrenfest models [27], [28].) The gas consists of b par-
ticles with B internal states in continuous time, where
the particles independently execute state transitions. A
microstate of the gas (versus a state of a single particle)
is given by an element of the space X ≡ XB,b := {α ∈
ZB : (|α| = b) ∧ (α > 0)}, where we employ standard
notation for multi-indices.

Write qj for the transition rate from the jth (internal
particle) state, and write Rjk for the probability of a
particle transition to the kth state from the jth state.
For j 6= k, the probability that a particle attempts to
transition from state j to state k (regardless of whether
or not any particles are actually in state j) is then given
in the limit by

Qα,α−ej+ek

j 6=k
:= lim

∆t→0

P
(
α

∆t−→ α− ej + ek

)
∆t

= qjRjk.

(14)
Now R is a stochastic matrix and (we shall assume it

to be irreducible, so that) it possesses a unique invariant
distribution satisfying π = πR. Set ηj := πj/qj . It is not
hard to show (see appendix) that the induced invariant
distribution on XB,b is of the form

P(α) = ηα/z(η). (15)

z is a so-called complete homogeneous symmetric func-
tion. It can be shown (see e.g. exercise 7.4 of [29], al-
though this result is apparently not well known in either
the physics or queueing theory literature) that

z(η) =
B∑
k=1

ηB+b−1
k∏

m 6=k(ηk − ηm)
(16)

if the components of η are distinct. By omitting duplicate
components and reducing B accordingly, the appropriate
generalization of (16) follows.

Write ∂(J) := {α : αj = 0 ⇐⇒ j ∈ J} and J(#J) ≡
J . Now the recurrence time is given by the average in-
verse net transition rate, viz. t∞ =

∑
αP(α)/λ(q, α),

where the net transition rate at α ∈ ∂(J(d)) is given in
turn by λ(q, α) ≡ λ(q, J(d)) :=

∑
j /∈J(d)

qj , i.e., the net
transition rate is constant on each “facet” ∂(J(d)) of X.
Thus

t∞ =
1

z(η)

∑
d

∑
J(d)

1
λ(q, J(d))

∑
α∈∂(J(d))

ηα, (17)

and the RHS can be evaluated using (16).
If p denotes the invariant distribution on X, then

a brief calculation yields ‖p‖ = z1/2(η2)/z(η). More-
over, (5) yields βEα = 〈α0 − α, log η〉, where α0 :=
z(1)−1

∑
α α and the logarithm is taken componentwise.
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In order to obtain a closed-form expression for Θ, it is
necessary to evaluate the sum

∑
α(βEα)2 in closed form.

It is easy to see that this reduces to evaluating
∑
α〈α, h〉2

for h a generic B-tuple. This can in turn be accomplished
given a formula for

∑u
k=0 k

w
(
s+k
k

)
with s, u, w integral:

and this may finally be obtained by writing kw as a linear
combination of binomial coefficients and considering the
sums

∑u
k=0

(
k
v

)(
s+k
k

)
for 0 ≤ v ≤ w [30]. The relevant

calculations are performed in an appendix.
So, Θ can be evaluated in closed form for the closed

queue along the lines sketched above. The final result
has a lengthy and unenlightening expression, and so we
content ourselves here with the simple case of B = 2 and
b > 1. Writing r := R21/R12, we have that for b large (so
that finite size effects do not dominate) and q2 ≡ 1 (and
in fact more generally), Θ is greatest when the dynamics
approaches that of an unbiased random walk: here, this
is when q1 ≈ r.

FIG. 2: Psuedo-grayscale plot of log Θ for B = 2 and b =
2, 4, 8, 16 as a function of r and q1 with q2 ≡ 1.

k. Discussion. We shall make a few general points
before proceeding with a further application to computer
network traffic monitoring.

First, if the system under consideration is not station-
ary, so that {pk} and t∞ vary with time (but are pre-
sumably still well-defined), then so will Θ and {Ek}, but
the language of equilibrium statistical physics is still ad-
equate even if the system is not actually in equilibrium.
That is, there is no need for (e.g.) detailed balance or
a maximum-entropy variational principle to be satisfied
in order for Θ to be well-defined: equation (13) can be
taken as an extension of the language of equilibrium sta-
tistical physics. Though the details of how {pk} and t∞
should be calculated from theory or estimated from mea-
surements are important and nontrivial, these may be ne-
glected here. Once we have {pk} and t∞, we may treat
the system at any instant as if it were in a stationary
state of equilibrium.

Second, many systems of interest in statistical physics
are specified by an energy function (in which case there

is usually no need for the formalism in this paper), rather
than some more detailed rule such as a bona fide Hamil-
tonian system that allows us to compute the dynami-
cal evolution of the system and its characteristic recur-
rence time. A notable exception is the Ising model with
Glauber dynamics, and the application of the formula
(13) to a Glauber spin is discussed elsewhere [31].

Third, it is not obvious how to generalize this frame-
work to systems whose state space Γ has infinite mea-
sure. However if Γ is endowed with an appropriate fi-
nite measure µ (as when for example Γ is naturally re-
alized as a bounded set in RN with smooth boundary,
and µ is induced from Lebesgue measure), the adapta-
tion is comparatively straightforward provided that t∞
is well defined and p and log p are in L1 ∩ L2, since
‖βE‖2 = ‖log p‖2 − 1

µ(Γ)

∫
Γ

log p dµ.
Fourth, the vast majority of finite systems of potential

interest are amenable to measurement first, and calcu-
lation second, if at all. This raises the prospect of us-
ing (13) as a tool for data analysis in the same spirit
as entropies are often employed. The potential to ap-
ply similar ideas to computer network traffic has been
considered by others (see, e.g. [8]) and an application is
sketched below.

Finally, in those cases where we can measure every-
thing, it is still possible and generally also preferable to
deal with coarsened quantities instead. Then the problem
of determining a proper coarsening to work with arises.
This is a direct analogue of the Gibbs paradox (where
the value of the entropy depends on the level of descrip-
tion of the system). [32] In applications such as the one
considered below, these sorts of issues will typically loom
large.

l. Application to computer network traffic analysis
and characterization. The Bose gas framework can be
applied to traffic analysis provided that each of the
B states corresponds to a (type of) source or desti-
nation in a communications or other network. Time-
inhomogeneous rates qj and probabilities Rjk can be
readily estimated from the number of connections with
origin (type) j and destination (type) k, and this pro-
cedure in effect couples the traffic to a Bose gas. [9]
In general, most traffic data sets of interest will have a
large number of physical or logical addresses and addi-
tional metadata which must be aggregated in order to
provide a meaningful context for the traffic and to keep
B reasonably small. A simple example of this sort of ag-
gregation for computer network traffic will be sketched
below.

Both the Gibbs paradox and the renormalization group
inform the aggregation process. By effectively separating
both internal levels of description and external scales, the
bulk traffic can generally be understood using relatively
few parameters, and traffic exhibiting greater complex-
ity can be examined separately and in more detail. The
assertion that bulk traffic can be described with a few
parameters amounts to saying that the bulk traffic is un-
derstandable in the first place, and can be expected to
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follow from the fact that a communications or other net-
work of interest for traffic analysis is engineered (even
if the engineering process is distributed or collaborative)
and its general function is knowable at the outset.

The separation of external scales is essentially the con-
verse of data fusion, where the idea is to identify states at
different sensors in an appropriate fashion and compute
the corresponding fused rates q and probabilities R. In
practice this procedure may be easier than it might seem
at first. For example, each of several streams of multi-
plexed computer network traffic may be best examined
using the same source/destination types, with identically
defined tables of observed ports, network addresses, or
communications sockets that are individually populated
on a per-stream basis. In this case the states for each
traffic stream are identical, and if the ath stream has
N

(a)
jk transitions from state j to state k during the time

interval [t, t+ ∆t), then setting Njk :=
∑
aN

(a)
jk and (af-

ter suitable conditioning if necessary) qj :=
∑
kNjk/∆t

and Rjk := Njk/
∑
kNjk effects a simple data fusion pro-

cedure. Note that (all other things being equal) the ef-
fective temperature of data fused in this way will scale as
the number of fused traffic streams, but this scaling can
be offset by dividing qj by the number of fused streams.

In order to keep the remainder of the discussion nom-
inally self-contained, we provide a brief overview of the
types of computer network traffic considered here. For
more information on network protocols, see [33].

The Internet Protocol (IP) is a connectionless network-
layer protocol responsible for routing network packets be-
tween sources and destinations. The Internet Control
Message Protocol (ICMP) is a network/transport-layer
protocol, though ICMP messages are encapsulated within
IP datagrams. Comforming ICMP messages can be cate-
gorized as either requests, responses, or errors. The User
Datagram Protocol (UDP) is a connectionless transport-
layer protocol, commonly associated with the Domain
Name Service (DNS), Simple Network Management Pro-
tocol (SNMP), streaming media (e.g., voice over IP), etc.
Although UDP is connectionless, notification of packet
reception errors over ICMP is a common protocol behav-
ior (though its enabling or disabling depends on local net-
work policy). Therefore it is often appropriate to analyze
UDP and ICMP in the same framework. Towards that
end, and after analyzing benign UDP and ICMP traffic
from an independently operated gigabit network testbed
simulating a large network enclave connected to the in-
ternet, an exhaustive set of states that reflected the bulk
features of the network traffic source/destination pair at-
tributes was formulated.

Each UDP or ICMP packet, along with its encapsulat-
ing IP header, corresponds to an attempted state tran-
sition of a single-particle Bose gas. (Multi-particle Bose
gases may also be considered; however, increasing the
particle number can increase both artificial “crosstalk”
[which may or may not be desirable] and noise.) IP
addresses along with UDP ports or ICMP types corre-

sponding to well-known services, ephemeral client-side
connections, or message types were considered as source
and destination attributes defining the internal states
according to the figure below. The Bose gas statistics
were autonomously updated approximately every second
(a “stopping time” update protocol that bounds update
intervals from below was actually used).

FIG. 3: Packet classification tree for source and destination
types. “X” is a shorthand for “other”; “Q”, “R”, and “E” for
ICMP requests, responses, and errors, respectively. Although
not done for the data presented here, it is convenient for a
number of reasons to force ICMP with source attributes in-
volving X to have destination attributes involving E and vice
versa, and similarly for Q and R. Also note that the set of
states is automatically exhaustive by virtue of the tree struc-
ture.

Sophisticated classes of internal states can be defined
and implemented, e.g., “IP address inside the network
and present in observed traffic between 1 and 10 times
during the last approximately 5 seconds; UDP port not
present in observed traffic during the last approximately
1 minute”, but the dynamic nature of such states effec-
tively precludes the sort of analysis presented here, which
relies on memoryless source/destination types.

The bulk of benign UDP and ICMP traffic was DNS,
and the well-known Slammer worm was introduced onto
the testbed during the time interval indicated by the
shaded areas on the following figures. Although the traf-
fic levels associated with the worm were found to be an
order of magnitude greater than the benign traffic, the
concomitant source and destination state pairs were dis-
tinct from the benign traffic in such a way as to enable
the determination of temperature (as well as entropy)
characteristics based on the presence of all, a portion,
or none of the worm traffic. (Furthermore, a slight but
detectable change in the effective temperature slightly
preceded the corresponding change in traffic rate.) This
in turn allowed us to determine that the effective tem-
perature was significantly more robust as a discriminator
of the worm activity than the entropy, as demonstrated
by the simple expedient of removing the ICMP errors
caused by the worm (and responsible for roughly half of
the offending traffic) as well as varying amounts of the
actual worm traffic itself via post-processing.

At a finer level of detail, anomalous network activity
was detectable through analysis of certain of the power
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FIG. 4: Effective temperature of a one-particle Bose gas
coupled to a network testbed. The period of Slammer worm
activity is highlighted. Time in this and similar figures is in
hours.

FIG. 5: Entropy of a one-particle Bose gas coupled to a
network testbed. The period of worm activity is highlighted.

FIG. 6: Signal to noise ratio behavior of the effective tem-
perature.

components

Ẇj =
(
b

B
− 〈α〉j

)
·Dt(Θ log ηj) (18)

where
∑
j Ẇj ≡ Ẇ ≡

∑
α pαĖα and

U̇ =
∑
α

ṗαEα +
∑
α

pαĖα ≡ Q̇+ Ẇ . (19)

In particular, we show two of the integrated compo-
nents for testbed UDP/ICMP traffic with all the periods
of malicious activity on the testbed highlighted. The
worm corresponds to the penultimate period, a set of
scans to the period before that, and the remainder of
periods to other types of malicious traffic, generally in-
volving a handful of packets. The components shown
below are significantly more effective discriminators of
anomalous activity than most others.

FIG. 7: A work component of the one-particle UDP Bose
gas. Each of the larger spikes in this or similar figures either
occurred simultaneously with a malicious packet or at a time
for which log file data from the testbed was later found to be
unavailable.

Next, we show two of the more effective integrated
components for testbed Transmission Control Protocol
(TCP) traffic, with a similar classification scheme in
which mail, web, FTP, and two other service ports were
differentiated; all other low ports were aggregated, as
were all high ports. To accommodate the static nature
of these decision tree nodes for analytical purposes, FTP
sessions from high ports to high ports were disabled,
though a tree node taking recent IP addresses into ac-
count would more than compensate for any effects of this.

In particular, the lack of accounting for connection or
flow status (TCP is a connection-oriented protocol), ad-
dress and/or port frequencies, the number of bytes trans-
ferred, TCP sequence and acknowledgement numbers,
etc. means that malicious traffic directed at internal web
or email servers from outside the enclave would gener-
ally be difficult to distinguish from genuinely anomalous
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FIG. 8: Another work component of the one-particle UDP
Bose gas.

FIG. 9: A work component of the one-particle TCP Bose gas.
The lack of activity during some periods of malicious traffic
besides the worm interval can be attributed to the simple
memoryless nature of the classification procedure used here.

FIG. 10: Another work component of the one-particle TCP
Bose gas.

or malicious traffic directed to internal addresses on web
or email ports, but that is only due to the simple na-
ture of the classification tree in this example. In practice
it would generally be advantageous to separate web and
email traffic into streams for detailed analysis (possibly
including states tied to the application layer of the proto-
col stack), or at least to treat web and email servers differ-
ently in the source/destination type association scheme.

Although such a procedure was not carried out
here (partially in order to keep the analysis pre-
sented here comparatively straightforward), note that the
UDP/ICMP and TCP work components here combine to
unambiguously indicate malicious activity in each of the
highlighted periods through a simple thresholding pro-
cedure. During those periods where sufficiently accurate
logs detailing the malicious traffic were available (the en-
tire period for UDP/ICMP and the last period of mali-
cious traffic for TCP) each of the values of these work
components above appropriate thresholds occurred at a
timestamp for malicious activity. While this sort of ap-
proach does not in itself determine the difference between
malicious and anomalous traffic, an interactive visual
traffic analysis engine and autonomous offloaded domain-
specific methods can both aid the characterization of nor-
mal traffic and perform more contextual analysis of any
anomalous traffic. [34] This suggests the possibility of
a practical technique for network traffic monitoring that
incorporates interactive configuration (i.e., refinements
of classification trees combined with separation of traf-
fic streams and timescales, all mediated through queries
of, e.g., the routing time series Rjk down to the level
of individual transactions) followed by automated detec-
tion with low computational requirements and attractive
performance characteristics.

m. Conclusion. Our discussion turns at last to a few
concluding remarks. Though the usual state of affairs is
for temperature to be regarded as an environmental pa-
rameter in calculations, the logic can be turned on its
head: through the simple expedient of measuring occu-
pation times, we can directly obtain an effective temper-
ature (and the corresponding energy levels) of a finite
system without recourse to a Hamiltonian, and typically
using appropriate observables of our choosing. Without
a Hamiltonian, we cannot predict the system’s exact mi-
croscopic evolution, but we can still efficiently describe
the macroscopic evolution using the idiom of equilibrium
statistical physics. It is desirable to describe systems in
this way precisely because this approach has proven so
successful at ignoring irrelevant microscopic details while
still providing the most relevant information about a sys-
tem. While a proper interpretation of an effective tem-
perature in purely information-theoretical terms is not
yet known (and a recent philosophical study of thermom-
etry notes that “[in] fact, there are complicated philo-
sophical disputes about just what kind of quantity tem-
perature is” [35]), we believe that the connection between
information theory and statistical physics may eventu-
ally be extended to encompass temperature and energy
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as well.

APPENDIX A: EVALUATING A CERTAIN SUM

Let h ∈ RB and consider the sum∑
α

〈α, h〉2. (A1)

We have that∑
α

〈α, h〉2 =
∑
j

h2
j

∑
α

α2
j +

∑
j 6=k

hjhk
∑
α

αjαk, (A2)

so in order to evaluate the LHS it suffices to compute

σ2 :=
∑
α

α2
j (A3)

and

σ11 :=
∑
α

αjαk (j 6= k) (A4)

(note that there is no real dependence on j or k in the
RHS of either of the preceding two equations).

The σ-coefficients can be readily evaluated by first
evaluating sums of the form

n∑
k=0

kp
(
r + k

k

)
(A5)

with p a positive integer. This in turn is accomplished by
writing kp as a linear combination of binomial coefficients
and considering

n∑
k=0

(
k

q

)(
r + k

k

)
(A6)

for 0 ≤ q ≤ p [30]. The relevant results of this procedure
for the present purpose are

n∑
k=0

(
r + k

k

)
=
(
n+ r + 1
r + 1

)
(A7)

n∑
k=0

k

(
r + k

k

)
= (r + 1) ·

(
n+ r + 1
r + 2

)
(A8)

and
n∑
k=0

k2

(
r + k

k

)
= ((r + 2)n+ 1) · r + 1

r + 3
·
(
n+ r + 1
r + 2

)
.

(A9)
Some wholly elementary but tedious manipulations us-

ing equations (A7)-(A9) along with the fact that z(1) =∑
α 1 =

(
B+b−1

b

)
quickly lead to the results

σ2 =
B + 2b− 1
b− 1

σ11 (A10)

where

σ11 =
(
B + b− 1
B + 1

)
. (A11)

We will briefly outline these manipulations while omit-
ting a few trivial steps for the case of equation (A10).

Now

σ2 =
∑
α

α2
1 =

b∑
α1=0

α2
1zB−1,b−α1(1), (A12)

so

σ2 =
b∑
s=0

s2

(
B − 2 + b− s

b− s

)
=

b∑
l=0

(b−m)2

(
r +m

m

)
(A13)

where we have made the substitutions r := B − 2,m :=
b−s. Expanding the squared term and using the forumlae
above before undoing the substitutions yields

σ2 = b2
(
B + b− 1
B − 1

)
+ (1− b(B + 2))

B − 1
B + 1

(
B + b− 1

B

)
.

Finally, a few lines of algebra yields the result (A10).
Equation (A11) follows similarly.

Summarizing, we have that (A1) equals

(
B + b− 1
B + 1

)
·

∑
j 6=k

hjhk +
B + 2b− 1
b− 1

∑
j

h2
j

 . (A14)

APPENDIX B: INVARIANT DISTRIBUTION OF
THE CLASSICAL BOSE GAS

If Q is the generator of a well-behaved continuous-time
Markov process on a finite state space, its invariant dis-
tribution p is the unique solution of the eigenproblem
pQ = 0 satisfying |p| = 1.

In the case of the classical Bose gas, the nontrivial
entries of the generator are given by (14). Define

♦(α) := {(j, k) : j 6= k ∧ α− ej + ek ∈ XB,b} (B1)

and note that ♦(α) = {(j, k) : j 6= k∧αj 6= 0}. Since the
rows of the generator must sum to zero, we have

−Qα,α =
∑

(j,k)∈♦(α)

Qα,α−ej+ek
=

∑
(j,k)∈♦(α)

qjRjk. (B2)

Now (pQ)α = 0 iff

− pαQα,α =
∑

(j,k)∈♦(α)

pα−ej+ek
Qα−ej+ek,α (B3)

or equivalently

pα
∑

(j,k)∈♦(α)

qjRjk =
∑

(j,k)∈♦(α)

pα−ej+ek
qkRkj . (B4)
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Under the Ansatz pα = ηα/z, this takes the form∑
(j,k)∈♦(α)

qjRjk =
∑

(j,k)∈♦(α)

ηk
ηj
qkRkj . (B5)

Writing the summation indices explicitly and recalling
that η = π/q, we obtain∑

j:αj 6=0

qj
∑
k 6=j

Rjk =
∑

j:αj 6=0

1
ηj

∑
k 6=j

πkRkj . (B6)

Using πR = π and
∑
k 6=j Rjk = 1−Rjj this simplifies to

∑
j:αj 6=0

qj(1−Rjj) =
∑

j:αj 6=0

1
ηj
πj(1−Rjj). (B7)

At this point equality is clear, establishing that pα =
ηα/z is in fact the invariant distribution.
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