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1 Introduction

The purpose of this paper is to illustrate the application of of thermodynamics as
a pedagogy for the organization, dimensional reduction and analysis of data. To
accomplish this it is necessary to build a bridge between the world of everyday
experience(a sequence of events occurring in time) and the more abstract world
of constant energy surfaces, microcanonical distributions and the notions of
work and heat.

Both worlds meet at the path, although an experimentalist may speak of it
in terms of observations contained in a data record and a theorist may speak of
trajectories in a phase space. In order to not obscure the core concepts, more
abstract orderings or partial orderings of primitive events are not discussed but
the careful reader will be able to find appropriate launch points off the main
storyline for application specific digressions.

The initial connections are made using the Birkhoff version of the Ergodic
Theorem but before implications of that theorem are spun off some preparatory
review of equilibrium thermodynamics and necessary conventions for reference
frames are introduced.

Further fundamental connections are made once the Principle of Matched
Invariants is introduced. This principle, and its implications, nail down the
temperature field in time up to an ambiguity in the sense of orientation and a
choice of scale. The orientation ambiguity is resolved insisting on the notion of
an absolute zero and an appeal to casuality. The notion of heat and work are
introduced along with the first law of thermodynamics.

Warning: The second law is not introduced as a foundational principle but
instead, as an example of a nonstandard application of the foregoing first law
apparatus (and as a way to enter a discussion of the second law in a concrete
setting) the thermodynamic interpretation of a simple closed queueing model is
presented. It is argued that the context of that discussion allows for the least
upper bound of the heating rate to be specifically identified.
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2 Definitions and Conventions

In classical equilibrium thermodynamics it is supposed that the trajectory of
the total system moves under the influence of its Hamiltonian and that at all
times the trajectory lies on a surface of contant energy, i.e. that total system
energy is conserved.

Of special interest in this work is the situation where only a subset of the
total system is observed directly. Energies resident in the modes of the observed
subsystem at a particular time are considered to be fluctuations derived from
the total system as it moves on the constant energy surface.

In this case, the total system Hamiltonian is considered to be the sum of a
Hamiltonian which governs the motion of the bath (the total system minus the
subsytem) and a second Hamiltonian which governs the motion of the subsystem
itself. Concerns about the lack of an interaction Hamiltonian are not relevant
to the present purpose.

In the event that the energy of the total system is changed, the trajectories of
the total system leave the former surface (at the old constant energy) and inhabit
a new surface(at the new total energy). These energies surfaces are indexed
by temperature. In what follows the raising or lowering of the total system
trajectory from one energy surface to another is taken to be, by convention, a
temperature change.

Mathematically, the same effect of raising or lowering the surface on which
the total system energy resides could be achieved say, by addition of a reference
energy to the subsystem Hamiltonian. In this work, by convention, once a ref-
erence energy is selected further uniform change of the subsystem state energies
is interpreted as a temperature change of the total system.

From the point of view of the subsystem, an arbitrary reassignment of state
energies may always be uniquely decomposed into changes about the old refer-
ence point which leave it unchanged (herein termed zero-sum changes), followed
by a uniform shift in the reference point(interpreted as a temperature change in
the bath). The zero sum changes will be interpreted as changes to the subsystem
Hamiltonian.

For the sake of simplicity, consider a finite system with finitely many possible
energies.1 Let the set of states available to the subsystem be denoted by

υ = {υ(1), υ(2), . . . , υ(N)} (1)

A data record consists of a finitely long sequence of states visited along with
the length of time each visit in the sequence lasted. For any given data record
there is a rare state. That is, the one state that the system spent the least

1As an assurance for the reader please note that the conventions adopted in this section
leave us with subsystems and subsystem Hamiltonians the properties of which are consistent
with and are in fact shared by the popular Ising Model for a bounded portion of a lattice
magnet in finite dimensions. Further, a projection of the total dynamics onto N states may be
accomplished in a variety of ways. Presentation of such a computation, at this point, would
obscure the development of the fundamentals.
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amount of discrete time in.2 A data record may contain one, two or more visits
to the rare state. The data record may be decomposed into cycles beginning
and ending with visits to the rare state and the following cycle statistics may
be collected:

the average number of discrete visits to each state during a data record
averaged cycle,

π = {π1, π2, . . . , πN} (2)

the average rate of a visit for each state during a data record averaged cycle,

q = {q1, q2, . . . , qN}. (3)

That is, q−1

i is the continuous time length of a typical visit to the ith state.
The Carlson depth in this setting is the continuous time length of the char-

acteristic cycle between visits to the rare state given by

CD =
π1

q1

+
π2

q2

+ . . . +
πN

qN

. (4)

All of the quantities introduced so far are, in principle, easily computed from
a sufficiently detailed data record. On the other hand, of equal interest to the
theoretically minded observer is the the Hamiltonian of the subsystem and the
temperature of the bath it is connected to(by way of fluctuation exchanges). In
what follows, it is supposed that energy and temperature have the same units,
i.e. that the Boltzmann “k” has been absorbed into the temperature parameter.
At this point the notions of energy and temperature are taken to be primitives
but as the development proceeds that will begin to change.

To each state υ(i) ∈ υ let there be an energy assignment Hi. Introduce

H = {H1, H2, . . . , HN} (5)

The assignments in (5) are taken to be real numbers with units of energy and
serve as the Hamiltonian for the subsystem. The entire subsystem is assigned a
single temperature value, denoted by the symbol θ. θ takes its numerical values
in the positive real numbers. It carries units of energy.

The following constraint ensures that the changes made to the Hamiltonian
do not include uniform additive shifts in reference point(which will expressed as
temperature changes),

ΣHk = 0.3 (6)

2.1 Two Great Measures and Ergodicity

While pursuing implications of the Birkhoff–Von Neumann quasi-ergodic hy-
pothesis is one of the chief goals of this paper a detailed dissection of the argu-
ment is not. For the purposes of continuity in the storyline it is simply noted

2In case of a tie-pick your favorite!
3The fixed choice of energy reference. This state of affairs is implicit in the Ising model,

for a familiar example.
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that according to the Liouville Theorem the fraction of time spent in the neigh-
borhood of a phase point along the trajectory is proportional to the volume of
the neighborhood, which is preserved by the motion. That is, it is suggested
that two measures are at play and that the observations contained in a data
record using either language should be directly comparable.

The first measure is based on the (relative)amount of time spent in particular
region of the phase space. The second is based on the (relative)volume of the
region. As is well known, in the case of thermal equilibrium, the volume based
measure takes on the form of Gibbs-Boltzmann fame in which the dependency
on the energy of the region of phase space and temperature of the bath is made
explicit.

In accord with these principles, in the context considered in this paper, two
measures are taken to be directly comparable.

The first measure is the amount of time the observed system spent in a
particular state υ(k) ∈ υ relative to the total length of the data record. In the
terminology of equation(4)

Prob(υ(k)) =

πk

qk

CD
. (7)

The second measure is the microcanonical one, i.e. the relative volume of
the region in phase space,

Prob(υ(k)) =
e−

H
k

θ

Z
(8)

where,

Z = e−
H1

θ + e−
H2

θ + · · · + e−
HN

θ . (9)

A first easy consequence of (7), (8), and (6) is

Hk = θ log
( Π

xk

)

(10)

where,

xk =
πk

qk

k = 1, 2, . . . , N (11)

Π =
(

x1x2 · · ·xN

)
1

N

(12)

and the xk take values in the positive real numbers and carry dimensions of
time.

Equation (10) is an inspiration. It suggests that, within the range of validity
of the conventions and conditions adopted, more is contained in the experimen-
talist’s data record than mere statistics. The path itself is described there and
perhaps implicit in the time and frequency description of the path lies the en-
ergy and temperature description. If only θ were known as a function of the
(x1, x2, . . . , xN ) equation (10) would deliver the state energies.
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It is perhaps somewhat surprising at the outset, that there is so very little
ambiguity in what the function that maps θ to (x1, x2, . . . , xN ) must be. In fact,
figure 1 at the end of the next section, is a perspective of a constant temperature
surface in time for a subsystem with three states, i.e. the case N = 3.4

The next section develops machinery to seek out surfaces of constant tem-
perature in time. Before leaving this section, please note that a dilatation of
the energy temperature space, i.e. the mapping

(H; θ) → (H + ǫH; θ + ǫθ)

where ǫ is the real valued dilatation parameter, leaves the probabilities in (8)
invariant.

Similarly, a dilatation of the time coordinates (x1, x2, . . . , xN ) from (11)
leaves the probabilities described in (7) invariant. That is, probabilites are
constant along rays in either space. A moments reflection reveals that dilatation
is the only mapping that leaves the pointwise probabilities invariant. 5

3 Matched Invariants Principle

A single experiment is performed and two observers are present and taking notes.
The first observer creates a data record from which the quantities referenced in
(2) and (3) may be computed. The second observer creates a data record in
such a way that the quantities in (5) and θ are readily computed. The goal is
to discover the method of observer number two.

The output of a single experiment then is two data points(one per observer):
a single point in in the (x1, x2, . . . , xN ) space and a single point in the (H ; θ)
space.

In the event that another experiment is performed and the observers repeat
the activity of the previous paragraph, the data points generated are either both
the same as the ones they produced as a result of the first experiment or else
both are different. This is the essence of the principal-the two observers are
using different languages to describe a single event. It is convenient to think
that a series of experiments are under observation. The sequence of data points
generated by an observer traces out a curve. There will be one curve in each
space. It is assumed that the curves share a single, common parameterization.
That is, that the two observers share the same clock.

The principle follows : in terms of probabilites, the two observers will con-
tinue to produce consistent results in the special case where the data points in
their respective spaces have changed from the first experiment to the second
but the probabilites have not. That is, if one observer experiences a dilatation
so does the other.

4Constant temperature surfaces may be computed for arbitrary finite N but it is tough to
produce the figure! Hence, N = 3.

5For example, a rotation may leave the total probability of a set unchanged(for example a
cone symmetric about the axis of rotation) but the N probabilities of any single point in the
set will not be invariant under the rotation.
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Of course, if the observers are able to agree if dilatation has occurred they are
also able to agree that it has not. In particular, in terms of differential displace-
ments of the data points, the observers are able to decompose a displacement
into a components parallel to the dilatation direction and perpendicular to it.
Further, the observers are able to agree which component is which.

A good local set of coordinates for the observers consists of the dilatation
direction (that’s one dimension so far...) and any N-1 of the N probability
gradients, ∇Pk, k = 1, 2 . . . , N . A concrete example of what these gradients
are and how they are applied to compute constant temperature surfaces via the
matched invariants principle will be developed in the next few subsections.

It is useful to note that, in either space, all probability gradients are per-
pendicular to the direction of dilatation. 6 As a consequence of the matched
invariants principle, the two observers can agree on the event that the computed
probabilities change and that the asociated trajectories in thier respective spaces
are perpendicular to the dilatation direction at each point. 7

Summary: The probabilty invariant direction is the dilatation direction. In
the setting of a system with N possible states, the N-1 dimensional space perp
to the dilatation is spanned by any set of N-1 probability gradients.

3.1 Comparison of Trajectories Perpendicular to the Di-

latation Direction

As was foretold, the ultimate purpose of this subsection is to apply the matched
invariants principle and develop the machinery that will allow observer number
one to compute constant θ surfaces in (x1, x2, . . . , xN ) space.

For the purposes of keeping those calculations straightforward, albeit at the
cost of some clarity in the theoretical development, a specific reference frame
is introduced and eventually a specific number of dimensions will be chosen. It
is hoped that the symmetry of the result, displayed in the figure 1, will serve a
posteriori to boost the level of theoretical clarity.

In what follows observer number one chooses coordinates (x1, x2, . . . , xN ) 8

and observer two chooses independent coordinates (H1, H2, . . . , HN−1, θ).
9

Local trajectories are decomposed into components along the probability
gradients and along the dilatation direction. The form of these gradients is
displayed next.

6Pointwise probabilities are invariant under dilatation
7If a trajectory may be expressed as a sequence of displacements each displacement per-

pendicular to the dilatation direction then the trajectory lies on the surface of a sphere. That
is, the differential relation

x · dx = 0 (13)

defines the surface of the sphere.
8Recall equation (11)
9Recall equation (6).
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On the observer one side, consider p1 for example: 10

∇p1 =
1

CD
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(14)

Note that ∇p1 · x = 0.
Meanwhile, on the observer two side: 11

∇p1 = p1
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pN−pN−1

θ

U
θ2











































(15)

Note that ∇p1 · (H; θ) = 0.
Beyond dilatation, another thing that observers can agree upon is the magni-

tude of changes in the state probabilities. 12 In particular, probability changes
that arise due to transitions in the plane perpendicular to the dilatation direc-
tion can be agreed upon. Recall that this space is spanned by any N-1 of the
probability gradients.

Consider a specific example, the case where N = 3. A finite size step, ∆x,
(suitable for use in a numerical scheme) perpendicular to the dilatation direction
has the form

∆x = ∆1

∇p1√∇p1 · ∇p1

+ ∆2

∇p2√∇p2 · ∇p2

(16)

where ∆1 and ∆2 are small numbers. That is, (16) is an experimentalist’s
approximation of the mathematician’s differential. Once limits are taken, the
change in probabilities incurred by the displacement (16) are given by:

dp1 = ∇p1 · dx (17)

dp2 = ∇p2 · dx (18)

Similar equations hold in the energy space. In the case where N = 3,
the general displacement perpendicular to the direction of dilatation is lies in
the space spanned by any two of the probability gradients in that space. In

10Recall equations (7) and (11). Derivatives have been taken with respect to the coordinates
x1, x2, . . . , xN .

11Recall (8). Derivatives have been taken with respect to H1, H2, . . . , HN−1, θ.
12See the discussion surrounding ergodicity and the direct comparison of (7) and (8).
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(H1, H2, . . . , HN−1, θ) coordinates, observer number two’s analog of equation
(16) is a linear combination of those gradients

(δH, δθ) = δ1

∇p1√∇p1 · ∇p1

+ δ2

∇p2√∇p2 · ∇p2

. (19)

The second observer’s analog of (17) and (18) are

dp1 = ∇p1 · (dH, dθ) (20)

dp2 = ∇p2 · (dH, dθ) (21)

Observers agree on the probability changes seen so that:

dp1 = dp1 (22)

dp2 = dp2 (23)

Importantly, equations (22) and (23) provide a relation between the ∆.’s
from equation (16) and the δ.’s from equation (19)





δ1

δ2



 =







‖∇p1‖ ∇p1·∇p2

‖∇p2‖

∇p2·∇p1

‖∇p1‖
‖∇p2‖







−1




dp1

dp2



 . (24)

Equation (24) is the relation that observer one was looking for. If observer
two supplies the δ.’s observer one can translate them into ∆.’s using (24), (22),
(23), (17), (18) and (16). That is, changes in θ can be translated into changes
in the time coordinates.

A consequence of (22) and (23) under the agreement that the observers share
the same clock is

ṗ1 = ṗ1 (25)

ṗ2 = ṗ2 (26)

where the dot denotes differentiation with respect to the single, common
curve parameter.

3.2 Consequence of Matched Invariants Principle

Another consequence of the mathched invariants principle is that, as one moves
perpendicularly to the dilatation direction from one point to the next along
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the surface of a sphere in the (x1, x2, . . . , xN ) space, the ratio of temperature
changes along the ray (the dilatation of temperature) remains constant.13

Further aspects of the example, N = 3, from the previous section are devel-
oped in this subsection. Consider two nearby points along the same ray, rinitial

in (x1, x2, x3) space: A = {x1, x2, x3} and A′ = {x1 + αx1, x2 + αx2, x3 + αx3}
where α << CD. Since the two points are on the same ray they generate the
same probabilities (as do their images in (H; θ) space) and in particular

Hk − U

θ
(A) =

H′
k − U′

θ′
(A′) (27)

Suppose points A and A′ on ray rinitial undergo a small displacement A → B

and A′ → B′ perpendicular to rinitial (the direction of dilatation of the two
points). Further suppose that points were displaced in such a way that the
displaced points B and B′ both lie on a ray, rfinal.

Denote the temperature at A by θ and at A′ by θ′. The temperature at B
is given according to equations (19) and (15) by

θ +
[

p1

H1 − U

θ

] 1

θ

δ1

‖∇p1‖
+

[

p2

H2 − U

θ

] 1

θ

δ2

‖∇p2‖
(28)

The quantities in square brackets above are invariant along the ray and thus
are the same at B and at B′. The scaling of the probability gradients along the
ray from point A to A′ may be observed from (15), for example as follows

∇p1

∣

∣

∣

A
=

θ′

θ
∇p1

∣

∣

∣

A′

(29)

The scaling of the δK is obtained from equation (24) and the requirement
that both B and B′ lie on rfinal, i.e. that the probability changes incurred along
path A → B are the same as those along A′ → B′. For example, in the case of
the first coordinate,

δ1

∣

∣

∣

A→B
=

θ

θ′
δ′1

∣

∣

∣

A′→B′

(30)

Thus the temperature at B′ is obtained from equations (28), (29) and (30)
is found to be

θ′

θ

(

θ +
[

p1

H1 − U

θ

] 1

θ

δ1

‖∇p1‖
+

[

p2

H2 − U

θ

] 1

θ

δ2

‖∇p2‖
)

(31)

Comparison of (28) and (31) reveals that the original ratio of temperatures
at points A and A′ on ray rinitial is maintained by the motion A → B and
A′ → B′ described above.

13The discussion which follows keeps the matched invariants principle to the fore. A sim-
pler geometrical demonstration (obscuring the notion of observation of probabilities) goes as
follows. Let two points on the θ-axis be labelled θ and θ′. Consider a rigid rotation in the
(H1, H2, . . . , HN−1, θ) space (L2 moduli of the original line segments on the theta axis main-
tained). The temperature at the rotated images are easily obtained by vector dot product
with the theta axis. In the ratio the cosines disappear and the original ratio of the L2 moduli
is maintained.
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3.3 The Sense of Direction and Choice of Scale of the

Theta to Centerline Map

Observer Two reports that along the θ axis in (H1, H2, . . . , HN−1, θ) space the
probabilities in (8) are uniform. Observer one reports that the same is true of
the centerline axis, i.e. ray from the origin containing the {1, 1, . . . , 1} vector,
in (x1, x2, . . . , xN ) space. This simple observation identifies the image of the
theta axis in the (x1, x2, . . . , xN ) space as the centerline.

Taking into account the results of the last two subsections, it is clear that
knowing the behaviour of θ along the centerline allows Observer one to determine
the θ field in (x1, x2, . . . , xN ) space completely.

Recall, that an algorithm has been prescribed which gives the evolution of
θ along a spherical surface in the (x1, x2, . . . , xN ) space given the value of θ at
the intersection of the surface with the centerline.

Once the θ values on a single spherical surface are obtained the rest of the
field is determined via the preservation of θ dilatation property discussed in the
previous subsection. Take the mapping of the θ axis to the centerline as the
reference.

So what can be said about the centerline map? Important features of any
continuous, one to one, and onto map between one-dimensional spaces include
the sense of orientation (as one moves toward infinity along the centerline in
(x1, x2, . . . , xN ) space is θ going to infinity or is θ moving to zero?) and for a
given orientation, a choice of scale, i.e. the local stretching or shrinking of the
map.

For example, the identity map θ(CD) = CD is a choice of temperature scale
oriented such that theta goes to infinity as one moves out to infinity along the
centerline. A simple inversion θ(CD) = 1

CD
is a choice of scale that takes theta

to zero as one moves out to infinity along the centerline.
Note that the sense of direction of the map may be obtained form the follow-

ing thought experiment: An experiment is conducted in a laborory frame that
produces a set of set changes in time-a data flow. One might think of this as a
sort of information “velocity”, the rate at which an observer becomes aware that
a state change has taken place. An observer in the laboratory frame measures
the Carlson depth of the data flow.14

Now a second observer, moving at a constant “velocity” (with respect to the
laboratory frame) forward into the data flow, sees exactly the same probabilities
of events as the laboratory frame observer but witnesses the time inbetween
visits to the rare state to pass by more quickly than the observer in the lab
frame. In fact, the observer may move forward at arbitrarily large constant
“velocity” and witness, the same sequence of ordered events occurring with the
same probability as the laboratory frame observer but the Carlson depth shrinks
to zero as the observer’s speed relative to the lab frame tends to infinity.

A third observer, moving more slowly than the observer in the laboratory
frame, sees the data pass by more slowly than the lab observer. But, impor-

14Recall (4).
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Surface of Constant Temperature in Time for the Three State System
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Figure 1: Isothermal Surface Drawn in Space of Statewise Contributions to
Fundamental System Period for a Three State System

tantly, this decrease in “velocity” relative to the lab observer may not increase
without bound. A point is reach when the travelling observer is moving away
from the data at the same rate at which the data is moving toward her at which
point: nothing changes. Identify this notion of total absence of change of the
state of the system with the notion of absolute zero.

Hence we adopt the convention, consistent with the principle of casuality,
that as the temperature is decreased to zero the recurrence time of the system
is observed to increase and conversely.

This convention prescribes the sense of orientation of the map. It does not
suggest a choice of scale. In fact, one conjectures that given many reasonable
choices of scale there is some one-dimensional parameterized family of accelerat-
ing frames of observation that would produce results consistent with it. Analysis
of those structures is not considered here.15

In the figure, a θ to centerline mapping θ(CD) = A
CD

, where A is a positive
real constant, was taken as the choice of scale along the centerline. Note that
the centerline axis is perpendicular to the surface at their intersection. Local
to the centerline axis, the system period fixes the temperature (within a choice
of scale). The reader may have their own favorite choice of temperture scale
to which the Matched Invariants Principle may then be applied to generate the

15The author is indebted to S. Huntsman for pointing out the the analogy between the
proceeding arguments and the Unruh-Davies Effect.
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temperature field from which surfaces of constant θ (consistent with that choice
of scale) may be isolated.

4 Application of the Foregoing to Closed Queue-

ing System

In the previous sections, particular characteristics of the experiment generating
the observed dynamics were never explicitly stated. The subject never came up.
As a simple example of an application of the foregoing to a non-standard system,
in this section, some thermodynamical aspects associated with the dynamics of
a closed queueing network are derived.

Necessary fundamentals from elementary queueing theory and elementary
thermodynamics are introduced, as required, along the way. The following
queue construction is standard.16 Connections with the ”Stosszahlansatz” may
be found in work of Kac, Uhlenbeck and Siegert.17

Recall that a closed queueing system consists of N buckets and M balls. Tra-
ditionally the N buckets represent N servers say at the office of some goverment
bureaucracy and the M balls are clients waiting to be served. That is, they wait
in line to get to the counter at which time they are told they are in the wrong
line and need to go to a different counter, hence closed.

At any moment in time an observer might see m1 people at counter 1 (that is,
m1 balls in bucket 1) and m2 balls in bucket 2 etc. The list of bucket occupancies
observed, denoted by (m1, m2, ..., mN ), determines the instataneous state of the
system. An instantaneous state of the system will herein be referred to as a
configuration. Let υ denote the set, indexed by the natural numbers, of all
possible system configurations.

When the queue is observed in action, the list of configurations it visits in
time (a list of lists indexed by time) forms the experimental record. It is the
trajectory of the system as it moves through its state space.

Once a trajectory is in hand the statistics in (2), (3) and (11) may be col-
lected. Further, it is known from the previous sections that there is only one
way, consistent with the Matched Invariants Principle and the observers choice
of temperature scale, to define a temperature field in (x1, x2, . . . , xN ) space
where the computed statistics of the trajectory reside. By way of (10), the
vector field of energies is generated next.

In the context of a specific system, like the present example, one can go
further. It makes sense to look for work and heat.

Recall from elementary thermodynamics that the macroscopic observable
energy is defined by

U = p ·H (32)

16See for example, Kleinrock, L. Queueing Systems, Wiley, New York, 1975.
17See for example, A.J Siegert, On the Approach to Statistical Equilibrium,The Physical

Review, v76, 1949.
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where p is given by (8) and H by (5).
Take a derivative with repect to time to obtain

U̇ = ṗ ·H + p · Ḣ. (33)

In the equilibrium setting, the RHS of (33) decomposes the rate of energy
change into work rate and heat rate respectively.

That is to say the work rate is given by

Ẇ = p · Ḣ (34)

and the heating rate by

Q̇ = ṗ ·H (35)

4.1 Compute pḢ

Now the two vectors appearing in the dot product in the RHS of (34) are
elements of a high-dimensional space (the cardinality of υ)while the work rate
itself is a single scalar quantity. So in switching form the RHS to the LHS in
(34) one also switches levels of description and goes from too much information
to perhaps not enough. Thermodynamic tradition insists on the introduction of
an alternative, a middle ground between information overload and ignorance.

What is required are two low dimensional vectors (low in comparison to the
the number of microscopic states υ represents) that contain sufficient informa-
tion to characterize the observed trajectory and are equivalent to p and Ḣ in
the sense that the inner product is the same in both sets of descriptions of the
dynamics. Famous examples of such conjugate pairs are the pressure and rate of
volume change in a gas and the average magnetization and applied field change
in the case of a lattice magnet.

A good starting point is simply to write out exactly what the high-dimensional
form of the work rate looks like.

Recall from (10)

H. = θ log
( Π

x.

)

(36)

where,

Π =
(

x1x2 · · ·xN

)
1

N

. (37)

Equivalently,

H. = θ log
(

ג

p.

)

(38)

where,

ג =
(

p1p2 · · · pN

)
1

N

. (39)
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Therefore

Ḣ. = θ̇ log
(

ג

p.

)

+ θ
(

ג̇

ג
− ṗ.

p.

)

(40)

and so

p · Ḣ = θ̇ log
(

ג

Λ

)

+ θ
(

ג̇

ג

)

(41)

with
Λ =

(

p
p1

1 p
p2

2 · · · ppN

N

)

. (42)

4.2 In Particular for the Closed Queue

The goal is to obtain a form of the work rate suitable for the closed queueing
system. The calculations involved are simple but some further details about the
construction of the queue are necessary before system specific calculations can
begin.

A closed queue of M servers is constucted as a Markov process by charac-
terizing the holding times of the servers, the interaction among the servers and
the state space of the queue.

The characteristic times of the M servers are the rates in the exponential dis-
tribution that characterizes a particular servers processing time. Routing from
one server to another is governed by an M × M matrix of transition probabili-
ties, herein called the routing table. A basic transition occurs as follows: at the
completion of a service time the server looks to the routing table for instruction.
The length of the service is at the discretion of the server. The location of the
client’s next service is decided by the router.

It is well known that such a transition matrix admits an eigenvector with all
positive coefficients. Without loss of generality take the minimum component
of the eigenvector to have value 1(the rare state gets visited once).

If m is the total number of clients in the system then the states of the
queueing network are all M-long sequences of non-negative integers(zero is ok)
that sum to m. As is well known, that number is given by

N =

(

M + m − 1

m

)

(43)

In summary then, the equilibrium distribution of the closed queueing net-
work is given by specifying the parameters for the exponentially distributed
service times

q = {(q1, q2, · · · , qM ) : q. ∈ R
+}. (44)

The eigenvector, with eigenvalue 1, of the M × M matrix of probabilities
(the routing table)

π = {(π1, π2, · · · , πM ) : π. ∈ [1,∞) and πrare = 1} (45)
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and the state space

υ = {(υ1, υ2, · · · , υM ) : υ. ∈ Z
+; υ1 + υ2 + · + υM = m}. (46)

The equilibrium distribution for a closed queue is given by

Prob(α1, α2, · · · , αM ) =
(π1

q1

)α1(π2

q2

)α2 · · · (πM

qM
)αM

∑

υ(π1

q1

)υ1(π2

q2

)υ2 · · · (πM

qM
)υM

. (47)

In this setting, the quantity ג from (39) takes a particularly pleasing form

ג =

[

π1

q1

π2

q2

· · · πM

qM

]
α

N

∑

υ(π1

q1

)υ1(π2

q2

)υ2 · · · (πM

qM
)υM

(48)

where

α =
∑

k=0

m−1

(m − k)

(

(M − 1) + k − 1

(M − 1) − 1

)

. (49)

Note that
α

N
=

m

M
. (50)

The heart of the right hand side of (34) for the queue involves the particular
expression

ג̇

ג
=

�

[

π1

q1

π2

q2

· · · πM

qM

]
α

N

[

π1

q1

π2

q2

· · · πM

qM

]
α

N

−

�

[

∑

υ
(π1

q1

)υ1(π2

q2

)υ2 · · · (πM

qM
)υM

]

[

∑

υ
(π1

q1

)υ1(π2

q2

)υ2 · · · (πM

qM
)υM

] . (51)

After straightforward calculation this simplifies to

ג̇

ג
=

α

N

( ˙[π1

q1

]
π1

q1

+
˙[π2

q2

]
π2

q2

+ · · ·
˙[πM

qM
]

πM

qM

)

−
( 〈υ1〉 ˙[π1

q1

]
π1

q1

+
〈υ2〉 ˙[π2

q2

]
π2

q2

+ · · ·
〈υM 〉 ˙[πM

qM
]

πM

qM

)

, (52)

where the angle brackets denote the average is taken over the set (46) with
respect to measure (47).

First of all, note that the description of the dynamics appearing on the RHS
of (52)is low dimensional. Recall that M is the number of buckets and compare
this with (43). Equally important, the pieces comprising the right hand side of
(52) are easily recognizeable.

Let Υ denote the average state of the system over an observation period,

Υ = p · υ (53)
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that is, the average ball count per bucket.
Let η contain the performance information for each the M servers in the

form of M ratios: average number of customers assigned to that server per
characteristic cycle scaled by the servers characteristic rate

η =
{π1

q1

,
π2

q2

, . . . ,
πM

qM

}

. (54)

In terms of these quantities the workrate takes the form

Ẇ =
θ̇

θ
U +

( α

N
1− Υ

)

· η̇

η
. (55)

In the event that the work takes place at constant temperature we have
simply

Ẇ =
( α

N
1− Υ

)

· η̇

η
(56)

The macroscopic work rate in the RHS of (56 )does all the things we need it
to. The number of dimensions of the vectors involved have been greatly reduced
and the M-dimensional vectors obtained represent meaningful coarse character-
istics of the system. The dot product, i.e the scalar value of the work rate,
has been preserved. The first law of thermodynamics is observed by definition.
What about the second law?

The second law question will be the subject of the next subsection. Before
getting there two additional famous thermodynamic quantities are presented for
this system. The calculations are similar to the example just given and will be
omitted.

The Helmholtz Free Energy:

F = − log
(

∑

γ∈υ

(
π1

q1

)γ1−
α

N (
π2

q2

)γ2−
α

N · · · (πM

qM

)γM− α

N

)

(57)

The Internal Energy:

U = θ
〈

log
(

(
π1

q1

)υ1−
α

N (
π2

q2

)υ2−
α

N · · · (πM

qM

)υM− α

N

) 〉

(58)

where the angle brackets denote the average is taken over the set (46) with
respect to measure (47).

4.3 2nd Law for the Closed Queue

The purpose of last subsection was to gather together and present a few famous
thermodynamical highlights of this queue system.

Among these highlights however there is one quantity that is more than just
a mere calculation. This quantity is the the least upper bound for the heating
rate of the queue and is a specific example of what is considered, in its abstract
form, to be at the very heart of the Second Law.
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If a least upper bound for the system can be identified concretely then it
does not need a Law to justify its exisitence. It is a simply a matter of proving
that an inequality is sharp.

In this particular system, the existence of a least upper bound for the heating
rate is very nearly obvious. The proof is simply a matter of making the right
definitions. Perhaps the following heuristic argument for sharpness will suffice.
Consider that there are two probabilities at play: (7) and (47).

In equilibrium18, the two measures are the same, equal. But what happens
when the queue transitions to a new equilibrum? Suppose, for example, that the
routing table is changed very slowly in such a way that no work is performed19

and that the energy is increased.
Since the routing table has changed, its eigenvector, (45) may also change

and so also the probabilities given by description (47). The probabilities given
in (7) will eventually converge to the the new (47).

An observer watching the routing table needs to see each altered element
of the M × M table route quite a few customers before being satisified that
the new table values have been empirically discovered and the new equilibrium
achieved.

However, an observer watching the state space υ needs to see each of the N
states, recall (43), transition many times before being satisifed that the proba-
bilities of each microscopic state given in (7) have been empirically discovered.

Note that a microstate transition cannot occur without a routing table ac-
tion, i.e. the two “step” in time at exactly the same scale but that, in practice,
the number N dwarfs the number M squared.

In this situation, it is not unreasonable to suppose that the observer of
the routing table will become empirically satisifed that the table entries have
converged to their new values and that the new energy level has been attained
long before the υ observer sees each microstate in the state space visited even
once, let alone visited sufficiently many times that there is some empirical sense
of convergence. 20

Still one might imagine, along with Carnot, a series of very small perturba-
tions of the routing table with very long periods of time inbetween such that
the two descriptions (7) and (47) are very nearly equal at all times.

The heating upper bound proposed for this system is given by

Q̇+ = θ
η̇

η
· [ 〈 υ(·) k 〉 − 〈 υ(·) 〉〈k 〉 ] (59)

where the angle brackets denote the average is taken over the set (46) with

18Equilibrium in this context is taken to mean that the routing table values and service
rates are constant in time,

19The work rate is identically zero throughout the transition.
20In short, the “covering time of the routing table” is much, much smaller than the covering

time of the state space: the steps of the covering walks occur at identical rates (in fact they
step at exactly the same time, every time), the graphs are comparable(the routing table graph
is approximately a quotient space of the set of edges of the υ graph, mod out by “direction”)
but obviously one, the υ graph, is much much bigger.
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respect to measure (47),

k = log
(

(
π1

q1

)
α

N
−υ1(

π2

q2

)
α

N
−υ2 · · · (πM

qM

)
α

N
−υM

)

(60)

and

υ(·) =
{

υ1, υ2, . . . , υM

}

(61)

denotes an element of the set υ from (46).21

The derivation of (59) is of the same type as the derivation of the work rate
presented above except that the starting point is (35) instead of (34).

The heating rate stands unadorned

Q̇ = ṗ · H (62)

where recall,

Hk = θ log
( Π

xk

)

, (63)

and

xk =
πk

qk

, k = 1, 2, . . . , N. (64)

The π’s and q’s are obtained by observing the trajectory on υ. This definiton
of heating rate is consistent with the usual notion of heat as a microscopic
quantity.

Note that when the system is at equilibrium (7) and (8) are directly compa-
rable and Q̇ is the heating rate per (25), (26) and (35).

21Of course, 〈υ(·)〉 is simply Υ from (53).
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