
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

2013-01

State Estimation of Non-monotonic,

Partially Non-deterministic Software with

Sparse Probing using an Unscented

Kalman Filter combined with Logic Reasoning

Drusinsky, Doron

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/35408

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36727987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NPS-CS-13-004

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited

Prepared for: Office of Naval Research (ONR) -
 One Liberty Center, 875 North Randolph Street, Suite 1425
 Arlington, VA 22203-1995

STATE ESTIMATION OF NON-MONOTONIC,

PARTIALLY NON-DETERMINISTIC SOFTWARE
WITH SPARSE PROBING USING AN UNSCENTED

KALMAN FILTER COMBINED WITH LOGIC
REASONING

 by

Doron Drusinsky

January 2013

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RDML Jan E. Tighe Douglas A. Hensler
Interim President Provost

The report entitled “State Estimation of Non-monotonic, Partially Non-deterministic
Software with Sparse Probing using an Unscented Kalman Filter combined with Logic
Reasoning” was prepared for and funded by the Office of Naval Research (ONR), One
Liberty Center, 875 North Randolph Street, Suite 1425, Arlington, VA 22203-1995.

Further distribution of all or part of this report is authorized.

This report was prepared by:

Doron Drusinsky, Associate Professor
Computer Science Department

Reviewed by: Released by:

Peter J. Denning, Chairman Jeffrey D. Paduan
Computer Science Department Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN
YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE
January 2013

2. REPORT TYPE
Technical Report

3. DATES COVERED (From - To)
 1 July 2012 – 31 December 2013

4. TITLE AND SUBTITLE
State Estimation of Non-monotonic, Partially Non-deterministic
Software with Sparse Probing using an Unscented Kalman Filter
combined with Logic Reasoning

5a. CONTRACT NUMBER
N0001412AF00002

 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
 6. AUTHOR(S)

Doron Drusinsky

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
1411 Cunningham Road
Monterey, CA 93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

NPS-CS-13-004

 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S
ACRONYM(S)

Code 822, Office of Naval Research (ONR) - One Liberty
Center, 875 North Randolph Street, Suite 1425 , Arlington, VA

11. SPONSOR/MONITOR’S REPORT

 NUMBER(S)
 12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
The views expressed in this report are those of the author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.
14. ABSTRACT

This report describes a technique for assessing the state of a general-purpose system using partial probing. The technique
utilizes an Unscented Kalman Filter (UKF) combined with in-process and post-process reasoning.
While Kalman Filters (KF) Extended Kalman Filres (EKF), and UKF are typically applied to state-space systems, where
an underlying theory provides the a-priori knowledge, this report suggests the application of UKF to monitor general-
purpose software systems that do not have an underlying first-principles theory. The suggested technique uses a reasoning
component compute the a-priori evaluation.
An important aspect differentiating state-space systems from general-purpose software is that the latter is often concurrent,
with a plurality or concurrently executing threads, processes, or devices. As a result, relative execution time of these
components (and the derivative state space) is for all intents and purposes non-deterministic. In addition, the suggested
technique enables monitoring with probing that is sparse in time and space namely, probing that occurs only one in n
cycles or probing that only probes a subset of the software-systems state-space.

15. SUBJECT TERMS
Kalman Filter, state estimation, probing
16. SECURITY CLASSIFICATION OF:

17.
LIMITATION
OF ABSTRACT

18.
NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON
Doron Drusinsky

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

UU 32 19b. TELEPHONE NUMBER
(include area code)
831 656 2168
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

THIS PAGE INTENTIONALLY LEFT BLANK

 1

1. INTRODUCTION
State estimation is often used in process control and performance monitoring

applications, where there are many uncertainties to deal with, such as model
uncertainties, measurement uncertainties and various noise sources. In such an
environment, representing the model state by an (approximated) probability density
function (pdf) enables the propagation the pdf of the system states over time, often in
some optimal way. It is most common to use the Gaussian pdf, as characterized by its
mean and covariance, to represent the model state, process and measurement noises. It is
well known that the Kalman Filter (KF) propagates the mean and covariance of the pdf
of the model state of linear dynamic systems in an optimal (minimum mean square error)
way [1].

In practice, real-world processes are rarely purely linear. The Extended Kalman
Filter (EKF) is a well-known technique for applying the KF to nonlinear system. In the
EKF, the pdf is propagated through a linear approximation of the system around the
operating point at each time instant, using the Jacobian matrices. Jacobians however, are
often difficult to calculate, especially in the case of time-sensitive applications. In
addition, the EKF’s linear system-approximation often introduces state-estimation errors
that diverge over time.

Ulmann et-al developed the Unscented Kalman Filter (UKF) [2], which operates
on non-linear systems too. The UKF propagates the pdf in a simple and effective way
and it is accurate up to second order in estimating mean and covariance.

This report describes the application of the UKF combined with logic-reasoning
to the monitoring of general-purpose software using sparse probing. General-purpose
software is typically not the type of system usually being monitored using KF techniques
because: (i) it lacks well formed state-equations based on first-principles, (ii) its state
space often suffers from abrupt changes and is non-monotonic, and (iii) many general-
purpose systems, such as multi-threaded systems, are non-deterministic.

We decided to use the UKF because it incorporates the use of general-purpose a-priori
knowledge. We use logic reasoning within the a-priori next state UKF computation.

The rest of the paper is organized as follows. Section 2 provides an overview of
KF and EKF techniques. Section 3 provides an overview of the UKF technique. Section
4 describes the problem domain and the suggested UKF-based solution using the UKF.

2. THE KALMAN FILTER AND EXTENDED KALMAN FILTER
All forms of the KF (i.e., KF, EKF, UKF, etc.) operate in two phases per

iteration: the prediction phase and correction phase, as depicted in Figure 1. The
prediction phase uses prediction formulas, usually based on first-principles (a-priori
knowledge), to predict the estimated state. An example of a first-principles formula used
for this phase is the representation of a moving vehicle’s state (its location and velocity)
at time t as a function of the state at time t-1, using the laws of motion. Key to the KF

 2

techniques is that one need not record more than a single (or a limited) history of system
states.

In the measurement state, the KF integrates a-posteriori knowledge in the form of
actual measurements; for the moving vehicle example a measurement is in the form of a
GPS state approximation received by the satellite triangulation.

The components of the KF estimation process of Figure 1 are:

• A time-update phase, based on a-priori information given as linear update
equations.

• A measurement-update phase, where measurements are incorporated into
the compound state-estimate; it is based on the Kalman gain which
represents the relative proportion of the measurement and time-update
components that are used in the state-estimate output

The beauty of the KF set of techniques is that it integrates both forms of
knowledge in an optimal way, resulting in a state estimate that is superior to the estimate
generated by the a-priori or a-posteriori information alone.

Figure 1. The Kalman Filter

The Kalman Filter is designed for optimal estimation of linear systems. Most
interesting real-life system estimation however, are concerned with non-linear systems.

 3

The Extended Kalman Filter (EKF) operates on non linear but differentiable transfer
functions. The EKF operates by approximating the state distribution as a Gaussian
random variable (GRV) and then propagating it through the first-order linearization of
the nonlinear system.

The update equations for EKF are1:

where the state transition and observation matrices are defined to be the following

Jacobians:

Unlike the KF, the EKF is not generally optimal when applied to non-linear

systems optimal estimator. In addition, if the original estimation is wrong then the
estimator often diverges quickly. Also, calculating the Jacobian is computationally
expensive.

3. THE UNSCENTED KALMAN FILTER
While EKF approximates state distribution using Gaussian Random Variables

(GRV) which are propagated through a first-order linearization of the non-linear system.
The UKF [2] replaced this technique with a deterministic sampling approach, where the
GRV is represented using a minimal set of chosen sample points. While EKF achieves
first order accuracy the UKF captures the posterior mean and covariance accurately to
the 2nd order Taylor series expansion, as demonstrated by Jullier and Ullman [2]. The

1 http://en.wikipedia.org/wiki/Extended_Kalman_filter

 4

UKF’s basic framework involves the state estimation of a discrete-time nonlinear
dynamic system,

 xk+1 = F(xk, uk, vk)

 yk = H(xk, nk)

where:

• xk represents the unobserved system-state

• uk is a known exogenous input

• yk is the observed measurement signal

• vk is the process noise and nk is the observation noise.

The block-diagram of Figure 2 depicts such a system. State estimation is concerned with
estimating xk as a Random Variable (RV). It is typically assumed xk is Gaussian; hence
state-estimation is about estimating its mean and covariance.

The Unsecented Transform (UT) is a method for calculating statistics of a RV which
undergors a nonlinear transformation [2]. Suppose a RV x of dimension L is propagated
through a nonlinear function y = f(x), and that x has mean and covariance Px. We
create a matrix X of 2L+1 sigma vectors Xi as follows:

X0 =
Xi = + ()i for i=1,…,L
Xi = - ()i-L for i=L+1,…,2L

Where = (L+)-L is a scaling parameter, and determines the spread of the sigma
points around . is also a scaling parameter usually set to 0 or 3-L.

These sigma points are propagated through the non-linear function f(), resulting in Yi
=f(Xi) The mean and covariance of Y are then approximated using a weighted sample
mean and covariance of the posterior sigma points,

 = Yi

Py = {Yi- }{Yi- }T

Where the weights are given by:

W0
(m) = / (L+)

W0
(c) = / (L+) + (1- +)

Wi(m) = Wi(c) = 1/{2 (L+))} i = 1,…2L.

Figure 3 is a block-diagram illustrating the UT process.

The UKF extends UT to the recursive estimation of sigma points but where the state RV
is redefined as the concatenation of the original state RV and the noise variables:

 5

xk
a = [xk

T vk
T nk

T]. Sigma points are selected for the new augmented state RV, instead of
for xk alone.

Figure 2. Block diagram of a discrete-time nonlinear dynamic system [2].

Figure 3. Block diagram of the UT [2]

Java code for the UKF is provided in Appendix B.

 6

4. MONITORING GENERAL PURPOSE SOFTWARE WITH
SPARSE PROBING

Applying a KF derivative to general-purpose software is untraditional for the
following reasons:

• Most often is no first-principles formula that can be used to compute the
a-priori knowledge. We use reasoning instead.

• The state space often changes abruptly and non-monotonically.

• Many general-purpose software systems are not fully deterministic, as in
the case of multi-threaded software; the game example described in the
sequel is such an example.

Nevertheless, we show that the UKF can be used to monitor the state of such
systems, using logic reasoning for the UKF’s a-priori knowledge propagation
component.

In addition to our interest in general-purpose software systems, we are interested
in monitoring systems using probing that is sparse in time and space. Temporally sparse
probing is one that occurs at a lower frequency than the a-priori knowledge propagation
frequency as determined by the logic-reasoning component. Spatially sparse probing
probes a subset of the state space. Clearly, when probing general-purpose systems whose
state space contains a large volume of state variables, it is not always possible to probe
all such states.

4.1. AN EXAMPLE: A TWO PLAYER GAME

The example of general-purpose software used in this report is the following two-player
game, called the Shooting Game. A player is a computation thread running concurrently
to the other with a relative execution cycle drift of +/- d%. To gain points, each player
takes virtual shots constrained by the following rules.

• A virtual shot taken by player i always counts towards that players number of
shooting attempts – denoted as Att(i). A virtual shot is sometimes also counted as
a hit, denoted as Hit(i).

• When player i makes a shot in counts as c(n, i) hits, where c(n, i) = n/100 *
(abs(Att(j) – Hit(i))) > 1 ? 1: 0), and n is determined by the stage of the game, as
discussed below. We call this operation shoot and increment, although a player
might not actually increment his or her count, depending on f. Shoot and
decrement is defined in a dual manner.

• Initially, both players shoot and increment using n=50. The first player
accumulate two hits acquires the (unique) lock.

• The player that owns the lock shoots and increments with n=75. If s/he misses
s/he shoots and decrements n=25.

 7

• The player that does not own the lock and is waiting for the lock (i.e., s/he has 2
hits) gets a 5% chance to flip the lock, i.e., to own the lock while resetting the
opponent’s hit count of (get the lock and reset the opponent) - the chance is
based on the reading of a millisecond timer.

• A player with 6 or more hits, shoots with n=80-(m%2==1 ? 0: 40) chance shots,
where m is time in milliseconds.

• Once player i reaches 10 hits s/he wins the game provided that 3*Hit(j)>Att(i).
Otherwise, the player starts over the game, i.e., his or hers Hit(j) and Att(i) values
are reset to 0.

This game also represents a situation in which the a general-purpose software being
monitored is not fully deterministic, with the relative execution time cycle of a player
drifts +/- d% relatively to the other player.

Code for the Player game is available in Appendix A.

4.2. UKF REASONING COMPONENT FOR THE SHOOTING GAME
Our UKF-based state estimation system estimates the state of the shooting game

by probing, Hit(1), Att(1), and Hit(2). Note that Hit(1) depends on Att(2) which is not
probed. This is an example of spatially sparse probing. We also assume probing is
temporally sparse.

We use reasoning within the f() component of the UT transform of Figure 3, the
component responsible for the a-priori transformation. The reasoning component for the
game is written in Java as a collection of Propositional Logic rules. The rules were
derived directly from the game specification. Two examples of such a rule are:

• If Player 2 (named Ted) has less than two hits then increment his count
according to c(50, 2).

• If Ted has between 6 and 10 hits then increment his count according to
c(60, 2). Note that the game specification for this range is more elaborate,
with a non deterministic choice between c(80, 2) and c(40, 2); since one
cannot reason accurately about non-deterministic events we chose a fair
coin toss approach, using c(60, 2).

Java code for the first reasoning rule is:
if (Math.floor(nNumberofHits_TedPS) < 2) {

boolean b = shootTed(50, nNumberofHits_EdPS, nNumberOfAttempts_EdPS,
nNumberofHits_TedPS);

 if (b) {
 nNumberofHits_TedNS++;
 }
}

The Java code for the reasoning component is provided in Appendix D. Several
important factors distinguish the reasoning component from the implementation of a
Player:

 8

• Reasoning is not necessarily complete. For example, our reasoning does not reason
about the lock. One of many reasons for doing so was that when both players have
two hits then non-deterministic execution time determines which player obtains the
lock. Another example is the absence of reasoning about non-deterministic timer
based choices within the game, as discussed per the second reasoning rule above.

• Reasoning can be performed on probed state variables (Hit(1), Att(1), and Hit(2)),
and un-probed state variables (Att(2)) alike. Note that as prescribed by the UKF, the
reasoning component generates 2L+1 (where L=3) transformations of the state vector
per game cycle, while only a single transform the non-probed variable is required per
game cycle.

4.3. SHOOTING STATE ESTIMATION RESULTS
Clearly, we cannot analyze the overall Mean Square Error (MSE) of the proposed

approach, because it depends heavily on the nature of the software system being
monitored (e.g. the degree of non-determinism within the program) and the quality of the
reasoning component. Hence we just show somewhat anecdotal results for the shooting
game.

We played the game with 100 cycles per player. We performed temporally sparse
probing for all 3 probed values (i.e., Hit(1), Att(10, and Hit(2)), where probing was
performed once per K=4 cycles of the game performance. The graphs of Figure 4
demonstrate the effectiveness of the suggested approach.

a. Hit(1)

 9

b. Hit(2)

c. Att(1)

Figure 4. True (blue) vs. UKF (red) state estimates for the Player game

Accuracy results are as follows:

• RMSE of estimate for Hit(1) is 2.7306244242593904; when
normalized it is 0.3049048607132327

• RMSE of measurement for Hit(1) is 3.1352830813181765; when
normalized it is 0.39191038516477206

• RMSE of estimate for Hit(2) is 2.6694017499675726; when

normalized it is 0.26019228200858496
• RMSE of measurement for Hit(2) is 3.1064449134018135; when

normalized it is 0.3883056141752267

• RMSE of estimate for Att(1) is 2.956916917326075; when
normalized it is 0.29347430505348177

• RMSE of measurement for Att(1) is 3.2526911934581184; when
normalized it is 0.4065863991822648

Note the role of the UKF α variable, which is responsible for adjusting the sigma
point distance from the mean.

 10

4.4.POST UKF REASONING VS UKF-REASONING
Post UKF reasoning is reasoning that is not embedded in the UKF loop. As

discussed earlier, UKF reasoning, which is performed within the f() method of Figure 3,
is performed on each of the 2L+1 sigma points, i.e., points that are approximately a
standard deviation away from the mean. In contrast, post-UKF reasoning is perfumed
after a UKF cycle ends. Some examples of post-UKF reasoning for the shooting game
are:

• If the measurement drops to zero from a previous cycle then prefer the
reasoning over the UKF computed value.

• If UKF computed value is smaller than zero then use zero instead.

5. CONCLUSION
We have demonstrated an effective approach for state estimation of general-

purpose software in which there is no a-priory first principles state equation, the software
is possibly non-deterministic, and probing is sparse in space and time. Our approach uses
the UKF augmented with propositional logic reasoning with a domain of discourse that
contains both the measured (probed) state variables within the UKF and the unmeasured
ones.

Given the nature of the sponsored research, we were unable to specific
assumptions about the nature of the system under-estimation. We hope to provide more
specific technique when we focus on more specific types of software systems.

6. CONTINUING RESEARCH
We plan on developing and demonstrating a technique for monitoring time series

properties pertaining-to or asserting-about) the statistics of a software system being
estimated via the above mentioned technique. Since the underlying system states are
actually random variables, one can only reason about them probabilistically. Our planned
technique will allow the specification of properties using existing formal specification
techniques and methodologies, yet using a monitoring technique that caters for random
variables rather than deterministic propositions.

For example, consider the shooting-game property P1: “Hit(1) + Hit(2) <= 2 for
no more than 3 consecutive cycles”. To monitor this temporal property we can use he
following, existing techniques:

1. Represent the property as a formal specification using a specification language
such as Statechart assertions, and then monitor the measured values using a
corresponding runtime verification tool, such as the StateRover [4, 5].

2. Represent and monitor the property as in (1) but monitor the mean value of the
estimated (hidden) values rather than measured values.

3. Represent the property as in (1 and 2) but monitor the mean and covariance
values. Monitoring in this case is not deterministic, which will require a new
approach, to be developed.

 11

Clearly, approaches (2) and (3) monitor values that are more accurate than the values
monitored by approach (1), resulting in more accurate monitoring. Approach (3) is
more powerful than (2) in the following sense. Suppose the mean values of Hit(1)
and Hit(2) conform to P1 but other values, which are rather probable (e.g. probability
of 0.7) do not conform to P1. In such a case, the end user observing the monitored
results might be interested to know that such a possibility exists (the possibility and
its likelihood).

7. REFERENCES
[1] A. H. Jazwinski, ”Stochastic Processes and Filtering Theory”, Mathematics in

Science and Engineering, vol. 64, Academic Press, NewYork and London, 1970.
[2] S. Julier and J. K. Uhlmann, ”Unscented filtering and nonlinear estimation”,

Proceedings of the IEEE, vol. 92, 2004, pp.401-422.
[3] E. Wan and R. van der Merwe, The Unscented Kalman Filter, In Kalman Filtering

and Neural Networks, Editor(s): Simon Haykin, John Wiley and Sons, 2002,
ISBN: 9780471369981

[4] D. Drusinsky, Modeling and Verification Using UML Statecharts, A Working Guide
to Reactive System Design, Runtime Monitoring and Execution-based Model
Checking. Elsevier, 2006. ISBN: 978-0-7506-7949-7

[5] D. Drusinsky, Practical UML-based Specification, Validation, and Verification of
Mission-critical Software. Space Exploration and Defense Software Examples in
Practice. Dog Ear Publishing, 2010, ISBN: 978-145750-494-5.

http://www.elsevier.com/wps/find/bookdescription.cws_home/707940/description#description
http://www.elsevier.com/wps/find/bookdescription.cws_home/707940/description#description
http://www.elsevier.com/wps/find/bookdescription.cws_home/707940/description#description

 12

8. APPENDIX A. THE GAME
package game;
import java.util.Calendar;
import java.util.Random;
import stateestimation.GameObserver;
/**
 *
 * @author dorondru
*/

public class Player implements Runnable {
 public final static int PLAYERS_INVOCATION_SKEW = 5; // from -2 to 2
 public static final double RATIO = 3;
 Random random;
 Random randomMillisForDebug;
 Random rSleepSkew;
 private boolean bFinished;
 int nNoOfCycles;
 boolean bPauseForDebug;
 public static final int ED = 1;
 public static final int TED = 2;

 private final int nID;
 private Player friend;
 private MyLock sharedLock;
 private int nNumberOfHits = 0;
 private int nNumberOfAttempts = 0;
 private int nNumberOfWins = 0;
 private boolean singleCycle2getMillisec = false;

 public Player(int nID, Random rSleepSkew, int nNoOfCycles, MyLock
sharedLock) {
 this.nID = nID;
 random = new Random(100);
 randomMillisForDebug = new Random(150);
 this.rSleepSkew = rSleepSkew;
 this.nNoOfCycles = nNoOfCycles;
 this.sharedLock = sharedLock;
 bFinished = false;
 resetMe(0,"construction", true);
 nNoOfCycles = -1; // temporary
 this.bPauseForDebug = false;
 }

 public void setFriend(Player friend) {
 this.friend = friend;
 }

 public int getID() {
 return this.nID;
 }

 public MyLock getSharedLock() {
 return sharedLock;
 }

 public int getNumberOfHits() {
 return nNumberOfHits;
 }

 13

 public int getNumberOfAttempts() {
 return nNumberOfAttempts;
 }

 public int getNumberOfWins() {
 return nNumberOfWins;
 }

 public boolean getSingleCycle2getMillisec() {
 return singleCycle2getMillisec;
 }

 @Override
 public void run() {
 for (int i = 0; i < nNoOfCycles; i++) {
 try {
 while (bPauseForDebug) {
 Thread.sleep(10);
 }
 int nSleepSkew = 0;
 if (rSleepSkew != null) {
 nSleepSkew = rSleepSkew.nextInt(PLAYERS_INVOCATION_SKEW)
- PLAYERS_INVOCATION_SKEW/2; //[-2,2]
 }
 Thread.sleep(10+ nSleepSkew);
 } catch (InterruptedException e) {}
 singleCycle(i);

 }
 bFinished = true; // for the case I won
 }

 boolean isFinished() {
 return bFinished;
 }

 // implements single cycle in game
 public void singleCycle(int nCycle) {

 try {
 printDebug(nCycle, "---nNumberOfHits=" + nNumberOfHits + ";
nNumberOfAttempts=" + nNumberOfAttempts + "; SingleCycle #" + nCycle + "- nID="
+ nID);
 singleCycle2getMillisec = false;
 if (nNumberOfHits < 2) {
 boolean b = shoot(50, nCycle); // 50% chance
 if (b) {
 nNumberOfHits++;
 printDebug2(nCycle,"incrementing #1: nNumberOfHits=" +
nNumberOfHits + ";- nID=" + nID);
 }
 }
 else if (nNumberOfHits >= 2 && nNumberOfHits < 6) {
 boolean lockIsMine = false;
 if (nNumberOfHits == 2) {
 sharedLock.tryLock(nID);
 printDebug2(nCycle,"tring to get lock - nID=" + nID);
 }
 lockIsMine = sharedLock.isLockOwnedByThisPlayer(nID);
 if (lockIsMine) {

 14

 printDebug2(nCycle,"LockIsMine - nID=" + nID);
 boolean b = shoot(75, nCycle);
 if (b) {
 nNumberOfHits++;
 printDebug2(nCycle,"incrementing #2:
nNumberOfHits=" + nNumberOfHits + ";- nID=" + nID);
 } else {
 b = shoot(25, nCycle);
 if (b && nNumberOfHits>0) nNumberOfHits--;
 }
 } else { // I don't have the lock
 printDebug2(nCycle,"Lock is NOT Mine - nID=" + nID);
 boolean b = false;
 if (!b) { // I missed - check time in millis
 long millis = getMillisec(nCycle);
 if (millis < 0) millis = 0-millis;// unexpected
 singleCycle2getMillisec = true;
 int n5 = (int)(millis%100);
 if (n5 < 5) {
 sharedLock.flipLock(nID);
 this.friend.resetMe(nCycle, "Reset due to 5%
chance lock flip", false);
 printDebug2(nCycle,"Incrementing my friends
count - I'm nID=" + nID);
 }
 }
 }
 } // (nNumberOfHits >= 2 && nNumberOfHits < 6)
 else if (nNumberOfHits >= 6 && nNumberOfHits <= 10) {// here
nNumberOfHits = 6 or 0, but 0 will be treated in the next cycle
 printDebug2(nCycle,"nNumberOfHits between 6 and 10=" +
nNumberOfHits + " - nID=" + nID);
 if (nNumberOfHits == 6) {
 printDebug2(nCycle,"unlocking lock (if locked) - nID=" +
nID);
 unlock();
 }
 singleCycle2getMillisec = true;
 long millis = getMillisec(nCycle);
 int m = millis%2==1?0:40;
 boolean b = shoot(80-m, nCycle); // 80-m% chance
 if (b) {
 printDebug2(nCycle,"incrementing: nNumberOfHits=" +
nNumberOfHits + ";- nID=" + nID);
 nNumberOfHits++;
 if (nNumberOfHits == 10) {
 int scaledNoOfHits =
(int)((double)nNumberOfHits * RATIO);
 if (nNumberOfAttempts < scaledNoOfHits) { //
start over
 System.out.println("reset due to
nNumberOfAttempts > scaledNoOfHits for nID=" + nID);
 resetMe(nCycle, "reset due to
nNumberOfAttempts > scaledNoOfHits for nID=" + nID, true);
 }
 else {
 //winner: when not learning mode then
finish, otherwise: just do another round of learning
 nNumberOfWins++;
 resetToGameStart(nCycle);
 printDebug2(nCycle, "nID="+nID+ " has
nNumberOfWins="+nNumberOfWins + " wins");

 15

 }
 }
 }
 }
 } catch (Exception e) {
 System.err.println("Exception in Player.singleCycle(nCycle), for
nCycle=" + nCycle + ";" + e);
 }
 }

 // f(n, i) = n/100 * (abs(#attempts-of-player-j minus #-hits-of-player-i))
>1? true:false
 boolean shoot(int nProbability, int nCycle) {
 nNumberOfAttempts++;
 int nNoAttemptsOtherPlayer = friend.getNumberOfAttempts();
 int nDiff = Math.abs(nNoAttemptsOtherPlayer - nNumberOfHits);
 double d = (double)nDiff * (double)nProbability / 100.0f;
 if (d > 1.0) return true;
 return false;
 }

 synchronized void unlock() {
 sharedLock.unlock();
 }

 void resetToGameStart(int nCycle) {
 resetMe(nCycle,"reseting due to game start - nID=" + nID, true);
 friend.resetMe(nCycle,"reseting due to game start - nID=" + nID, true);
 }

 void resetMe(int nCycle, String sMsg, boolean bResetNumberOfAttempts) {
 try {
 printDebug(nCycle,"------->reseting due to " + sMsg + " - nID=" +
nID);
 nNumberOfHits = 0;
 if (bResetNumberOfAttempts) nNumberOfAttempts = 0;
 if (sharedLock.isLockOwnedByThisPlayer(nID)) unlock();
 } catch (Exception e) {
 System.err.println("Exception in resetMe; " + e);
 }
 }

 private long getMillisec(int nCycle) {
 Calendar lCDateTime = Calendar.getInstance();
 long l = lCDateTime.getTimeInMillis();
 if (GameObserver.LOCK_STEP) l = randomMillisForDebug.nextInt(100);//
capturing random behavior for deterministic debug
 return l;

 }

 void setGameOver() {
 bFinished = true;
 }

 void setPauseForDebug() {
 bPauseForDebug = true;
 }

 16

 void resetPauseForDebug() {
 bPauseForDebug = false;
 }

 public static void printDebug(int i, String s) {
 System.out.println(s);
 }
 public static void printDebug2(int i, String s) {
 //printDebug(i, s);
 }
}

 17

9. APPENDIX B – UKF IN JAVA2

package stateestimation;

import static java.lang.Math.*;
public class UnscentedKalmanFilter
{

 //Instance variables
 /** Number of states. */
 private int L;

 /** Number of measurements*/
 private int m;

 /** Tunable. */
 private double alpha;

 /** Tunable. */
 private double ki;
 /** Tunable. */
 private double beta;

 /** Scaling factor. */
 private double lambda;

 /** Scaling factor. */
 private double c;
 /** Weights for means. */
 private Matrix Wm;

 /** Weights for covariance. */
 private Matrix Wc;

 //Extensive generall debug: 0 = no debug, 1 = debug on PC, 2 = debug on
brick

private static final int DEBUG = 0;
private final boolean DEBUG_LIGHT = false;

 private final boolean DEBUG2 = false; //ukf.ut()
 private final boolean DEBUG3 = false; //ukf.sigmas()*/

 /**Constructor
 * @param L number of states, Doron: N in paper=_Paper
 * @param m number of measurements
 */
 public UnscentedKalmanFilter(int L, int m)
 {
 //Logger.println("Creating UKF for tracking");
 this.L = L;
 this.m = m;
 alpha=1f; // alpha should change according to the target
software system
 ki=0; //default
 beta=2f;//pow(alpha, 2) -0.9f; //lower bound -2; 10 5 10000 -
2* -1 0 1 def:2; default, tunable
 lambda=pow(alpha, 2)*(L+ki)-L;

 c=L+lambda;

2http://code.google.com/p/cats/source/browse/trunk/simulation/particle_filter/GSim/src/GSim/Unscent
edKalmanFilter.java?r=651

 18

 Wm = new Matrix(1, (2*L+1), 0.5/c);
 Wm.set(0,0,lambda/c);
 Wc=Wm.copy();
 Wc.set(0,0, Wc.get(0,0) + 1 - pow(alpha, 2) + beta);
 c=sqrt(c); }

 /**
 * UKF, Unscented Kalman Filter, for nonlinear dynamic systems.
 * [x, P] = ukf(f,x,P,h,z,Q,R) returns state estimate x and state
covariance P
 * for nonlinear dynamic system (for simplicity, noises are assumed as
additive):
 * x_k+1 = f(x_k) + w_k
 * z_k = h(x_k) + v_k
 * where w ~ N(0,Q) meaning w is gaussian noise with covariance Q and
 * v ~ N(0,R) meaning v is gaussian noise with covariance R.
 * @param f function handle for f(x), nonlinear state equations
 * @param x "a priori" state estimate
 * @param P "a priori" estimated state covariance
 * @param h fanction handle for h(x), measurement equation
 * @param z current measurement
 * @param Q process noise covariance
 * @param R measurement noise covariance
 * @return "a posteriori" state estimate and P: "a posteriori" state
covariance
 */
 public Matrix[] run_ukf(IFunction f, Matrix[] x_and_P, IFunction h,
Matrix z, Matrix Q, Matrix R) throws Exception //Cholesky can throw exception
 {

 //long time_start_run_ukf = System.currentTimeMillis();

 if (DEBUG != 0)
 { debug("Entering ukf with the following parameters:");
 debug("Debug: ukf, x dim= " +
x_and_P[0].getRowDimension() + " x " + x_and_P[0].getColumnDimension() + ", x=
");
 debug(Matlab.MatrixToString(x_and_P[0]));
 debug("Debug: ukf, P dim= " +
x_and_P[1].getRowDimension() + " x " + x_and_P[1].getColumnDimension() + ", P=
");
 debug(Matlab.MatrixToString(x_and_P[1]));
 debug("Debug: ukf, z dim= " + z.getRowDimension() + " x
" + z.getColumnDimension() + ", z= ");
 debug(Matlab.MatrixToString(z));
 debug("Debug: ukf, Q dim= " + Q.getRowDimension() + " x
" + Q.getColumnDimension() + ", Q= ");
 debug(Matlab.MatrixToString(Q));
 debug("Debug: ukf, R dim= " + R.getRowDimension() + " x
" + R.getColumnDimension() + ", R= ");
 debug(Matlab.MatrixToString(R));
 debug("Debug: ukf, Wm dim= " + Wm.getRowDimension() + "
x " + Wm.getColumnDimension() + ", Wm= ");
 debug(Matlab.MatrixToString(Wm));
 debug("Debug: ukf, Wc dim= " + Wc.getRowDimension() + "
x " + Wc.getColumnDimension() + ", Wc= ");
 debug(Matlab.MatrixToString(Wc));
 debug("Starting calculations");
 if (x_and_P[0].getRowDimension() != L ||
x_and_P[0].getColumnDimension() != 1) debug("WARNING: The dimension of the
state vector (matrix) x is incorrect! Expected dim = " + L +" x 1");

 19

 if (x_and_P[1].getRowDimension() != L ||
x_and_P[1].getColumnDimension() != L) debug("WARNING: The dimension of the
state covariance matrix P is incorrect! Expected dim = " + L +" x " + L);
 if (Q.getRowDimension() != L || Q.getColumnDimension()
!= L) debug("WARNING: The dimension of the covariance of process matrix Q is
incorrect! Expected dim = " + L +" x " + L);
 if (z.getRowDimension() != m || z.getColumnDimension()
!= 1) debug("WARNING: The dimension of the measurement vector (matrix) z is
incorrect! Expected dim = " + m +" x 1");
 if (R.getRowDimension() != m || R.getColumnDimension()
!= m) debug("WARNING: The dimension of the covariance of measurement matrix P
is incorrect! Expected dim = " + m +" x " + m);
 }

 Matrix X = sigmas(x_and_P[0],x_and_P[1],c); //sigma points
around x, NB: c has been set in the constructor

 if (DEBUG != 0)
 {
 debug("Debug: ukf, X dim= " + X.getRowDimension() + " x
" + X.getColumnDimension() + ", X (after sigmas())= ");
 debug(Matlab.MatrixToString(X));
 }

 Matrix[] ut_f_matrices= ut(f,X,Wm,Wc,L,Q); //unscented
transformation of process
 Matrix x1 = ut_f_matrices[0];
 Matrix X1 = ut_f_matrices[1];
 Matrix P1 = ut_f_matrices[2];
 Matrix X2 = ut_f_matrices[3];

 if (DEBUG != 0)
 {
 debug("Debug: ukf, x1 dim= " + x1.getRowDimension() + "
x " + x1.getColumnDimension() + ", x1= ");
 debug(Matlab.MatrixToString(x1));
 debug("Debug: ukf, X1 dim= " + X1.getRowDimension() + "
x " + X1.getColumnDimension() + ", X1= ");
 debug(Matlab.MatrixToString(X1));
 debug("Debug: ukf, P1 dim= " + P1.getRowDimension() + "
x " + P1.getColumnDimension() + ", P1= ");
 debug(Matlab.MatrixToString(P1));
 debug("Debug: ukf, X2 dim= " + X2.getRowDimension() + "
x " + X2.getColumnDimension() + ", X2= ");
 debug(Matlab.MatrixToString(X2));
 }

 Matrix[] ut_h_matrices =ut(h,X1,Wm,Wc,m, R); //unscented
transformation of measurments
 Matrix z1 = ut_h_matrices[0];
 Matrix Z1 = ut_h_matrices[1];
 Matrix P2 = ut_h_matrices[2];
 Matrix Z2 = ut_h_matrices[3];
 //long time_after_ut_h = System.currentTimeMillis();
 if (DEBUG != 0)
 {
 debug("Debug: ukf, z1 dim= " + z1.getRowDimension() + "
x " + z1.getColumnDimension() + ", z1= ");
 debug(Matlab.MatrixToString(z1));

 20

 debug("Debug: ukf, Z1 dim= " + Z1.getRowDimension() + "
x " + Z1.getColumnDimension() + ", Z1= ");
 debug(Matlab.MatrixToString(Z1));
 debug("Debug: ukf, P2 dim= " + P2.getRowDimension() + "
x " + P2.getColumnDimension() + ", P2= ");
 debug(Matlab.MatrixToString(P2));
 debug("Debug: ukf, Z2 dim= " + Z2.getRowDimension() + "
x " + Z2.getColumnDimension() + ", Z2= ");
 debug(Matlab.MatrixToString(Z2));
 }

 Matrix P12 = (X2.times(Matlab.diagFromColumn(Wc))
).times(Z2.transpose()); //transformed cross-covariance
 if (DEBUG != 0)
 {
 debug("Debug: ukf, P12 dim= " + P12.getRowDimension() +
" x " + P12.getColumnDimension() + ", P12= ");
 debug(Matlab.MatrixToString(P12));
 }
Matrix K = Matrix.identity(P12.getRowDimension(), P12.getColumnDimension());
 try { // Doron - added
 K = P2.transpose().solve(P12.transpose()).transpose();
 } catch (Exception e) {
 // Doron - added -- just keep diag K
 }

 if (DEBUG != 0)
 {
 debug("Debug: ukf, K dim= " + K.getRowDimension() + " x
" + K.getColumnDimension() + ", K= ");
 debug(Matlab.MatrixToString(K));
 }

 x_and_P[0] = x1.plus(K.times(z.minus(z1))); //state update,
 x_and_P[1] = P1.minus(K.times(P12.transpose())); //covariance
update,
if (DEBUG != 0)
 {
 debug("Leaving ukf with the following results:");
 debug("Debug: ukf, x_updated dim= " +
x_and_P[0].getRowDimension() + " x " + x_and_P[0].getColumnDimension() + ",
x_updated= ");
 debug(Matlab.MatrixToString(x_and_P[0]));
 debug("Debug: ukf, P_updated dim= " +
x_and_P[1].getRowDimension() + " x " + x_and_P[1].getColumnDimension() + ",
P_updated= ");
 debug(Matlab.MatrixToString(x_and_P[1]));
 }

return x_and_P;
 }//end of ukf()

 /**
 * Unscented Transformation
 * @param f nonlinear map
 * @param X sigma points
 * @param Wm weights for mean
 * @param Wc weights for covariance
 * @param n number of outputs of f
 * @param R additive covariance
 * @return y: transformed mean, Y: transformed sampling points, P:

 21

transformed covariance, Y1: transformed deviations
 */
 private Matrix[] ut(IFunction func, Matrix X, Matrix Wm, Matrix Wc, int
n, Matrix R) throws Exception
 {
 int L = X.getColumnDimension();
 Matrix y = Matlab.zeros(n,1);
 Matrix Y = Matlab.zeros(n,L);

int X_row_dim = X.getRowDimension();points
 int Y_row_dim = Y.getRowDimension();
 int y_row_dim = y.getRowDimension();
 Matrix row_in_X;
 for (int k=0; k<L; k
 {
 //for all columns in X, compute fstate for the given
row vector and put the result in Y
 row_in_X = X.getMatrix(0, X_row_dim-1, k, k);
 Y.setMatrix(0, Y_row_dim-1, k, k, func.eval(row_in_X)
);
 y.setMatrix(0, y_row_dim-1, 0, 0, ((Y.getMatrix(0,
Y_row_dim-1, k, k)).times(Wm.get(0, k))).plus(y));

 }

 Matrix Y1 = Y.minus(y.times(
Matlab.ones(1,Y.getColumnDimension())));

 Matrix P = Y1.times(Matlab.diagFromColumn(Wc));
 P = P.times(Y1.transpose());
 P.plusEquals(R);

 //create output matrix array
 Matrix[] output = {y,Y,P,Y1};
 return output;
 }//end of ut()

 /**
 *
 * Sigma points around reference point
 * @param x reference point
 * @param P covariance
 * @param c coefficient
 * @return Sigma points // Doron: there s.b. 2L+1 (2N+1, using
paper=_Paper terminology) points
 */
 private Matrix sigmas(Matrix x, Matrix P, double c) throws Exception
//Cholesky can throw exception
 {

Matrix A = new Matrix(Cholesky.cholesky(P.getArray()));.
 A = A.times(c);
 A.transpose();

 int n = x.getRowDimension();

 //Create Y
 Matrix Y = new Matrix(n, n, 1);
 for (int j=0; j<n; j++) //columns
 {
 Y.setMatrix(0, n-1, j, j, x);
 }

 22

 //Create X
 Matrix X = new Matrix(n,(1+n+n));

 X.setMatrix(0, n-1, 0, 0, x);

 Matrix Y_plus_A = Y.plus(A);
 X.setMatrix(0, n-1, 1, n, Y_plus_A);

 Matrix Y_minus_A = Y.minus(A);
 X.setMatrix(0, n-1, n+1, n+n, Y_minus_A

 return X;
 }//end of sigmas()

 /**
 * Prints a filter object
 */
 public String toString()
 {

 String s ="";
 s = " L = " + L + "\n m = " + m + "\n";
 s += " alpha = " + alpha + "\n ki = " + ki + "\n beta = " +
beta +
 "\n lambda = " + lambda + "\n c = " + c + "\n Wm = " +
Matlab.MatrixToString(Wm) + " Wc = " + Matlab.MatrixToString(Wc);

 return s;
 }

 private static void debug(String s)
 {
 if (DEBUG == 0)
 return;
 if(DEBUG == 1){
 System.out.println(s);
 }
 else
 Logger.println(s);
 }

}//end of class

 23

10. APPENDIX C – REASONING COMPONENT
The reasoning component for the game is written in Java as a collection of

Propositional Logic rules. The rules were derived directly from the game specification.

public Matrix eval(Matrix x) {
 Matrix output = new
Matrix(x.getRowDimension(),x.getColumnDimension());
 double nNumberofHits_EdPS = x.get(0, 0);
 double nNumberofHits_EdNS = nNumberofHits_EdPS;

 double nNumberOfAttempts_EdPS = x.get(1, 0);
 double nNumberOfAttempts_EdNS = nNumberOfAttempts_EdPS+1;

 double nNumberofHits_TedPS = x.get(2, 0);
 double nNumberofHits_TedNS = nNumberofHits_TedPS;

 if (Math.floor(nNumberofHits_EdPS) > 2 &&

nNumberofHits_EdPS < 6 && Math.floor(nNumberofHits_TedPS) > 2 &&
nNumberofHits_TedPS < 6) {

 if (nNumberofHits_TedPS < nNumberofHits_EdPS) {
 nNumberofHits_TedPS = 2.0;
 } else {
 nNumberofHits_EdPS = 2.0;
 }
 }

 // Ted
 if (Math.floor(nNumberofHits_TedPS) < 2) {
 boolean b = shootTed(50, nNumberofHits_EdPS,
nNumberOfAttempts_EdPS, nNumberofHits_TedPS);
 if (b) {
 nNumberofHits_TedNS++;
 }
 }
 else if (nNumberofHits_TedPS < 6.0) {
 //boolean lockIsMine = false; // not modeling lock
 if (true /*lockIsMine*/) {
 boolean b = shootTed(75,
nNumberofHits_EdPS, nNumberOfAttempts_EdPS, nNumberofHits_TedPS);
 if (b) {
 nNumberofHits_TedNS++;
 } else {
 b = shootTed(25,
nNumberofHits_EdPS, nNumberOfAttempts_EdPS, nNumberofHits_TedPS);
 if (b && nNumberofHits_TedNS > 0)
nNumberofHits_TedNS--;
 }
 } else { // I don't have the lock
 // not implemented in Estimator
 }
 }
 else if (nNumberofHits_TedPS >= 6 &&
Math.ceil(nNumberofHits_TedPS) < 10) {
 boolean b = shootTed(60, nNumberofHits_EdPS,

 24

nNumberOfAttempts_EdPS, nNumberofHits_TedPS); // using half way between 80 and
40
 if (b) nNumberofHits_TedNS++;
 }
 else if (Math.ceil(nNumberofHits_TedPS) >= 10) {
 if (nNumberofHits_TedPS * Player.RATIO >
nNumberOfAttempts_Ted_estimated) { // NOTE inaccuracy s.b ">="
 nNumberofHits_TedNS = 0;
 nNumberOfAttempts_Ted_estimated = 0;
 nNumberofHits_EdNS = 0;
 nNumberOfAttempts_EdNS = 0;
 } else {
 nNumberofHits_TedNS = 0;
 nNumberOfAttempts_Ted_estimated = 0;
 }
 }

 //== Ed
 if (Math.floor(nNumberofHits_EdPS) < 2) {
 boolean b = shootEd(50, nNumberofHits_EdPS,
nNumberOfAttempts_EdPS, nNumberofHits_TedPS);
 if (b) {
 nNumberofHits_EdNS++;
 }
 }
 else if (nNumberofHits_EdPS < 6.0) {
 if (nNumberofHits_TedPS < 2 || nNumberofHits_TedPS
>= 6) {
 boolean b = shootEd(75,
nNumberofHits_EdPS, nNumberOfAttempts_EdPS, nNumberofHits_TedPS);
 if (b) {
 nNumberofHits_EdNS++;
 } else {
 b = shootEd(25,
nNumberofHits_EdPS, nNumberOfAttempts_EdPS, nNumberofHits_TedPS);
 if (b && nNumberofHits_EdNS > 0)
nNumberofHits_EdNS--;
 }
 } else {/*lockIsMine*/// not implemented in Estimator

 }
 }
 else if (nNumberofHits_EdPS >= 6 &&
Math.ceil(nNumberofHits_EdPS) < 10) {
 boolean b = shootEd(60, nNumberofHits_EdPS,
nNumberOfAttempts_EdPS, nNumberofHits_TedPS); // using half way between 80 and
40
 if (b) nNumberofHits_EdNS++;
 }
 else if (Math.ceil(nNumberofHits_EdPS) >= 10) {
 if (nNumberofHits_EdPS * Player.RATIO >
nNumberOfAttempts_EdNS) { // NOTE inaccuracy s.b ">="
 nNumberofHits_EdNS = 0;
 nNumberOfAttempts_EdNS = 0;
 nNumberofHits_TedNS = 0;
 nNumberOfAttempts_Ted_estimated = 0;
 } else {
 nNumberofHits_EdNS = 0;
 nNumberOfAttempts_EdNS = 0;
 }
 }

 25

 output.set(0, 0, nNumberofHits_EdNS);
 output.set(1, 0, nNumberOfAttempts_EdNS);
 output.set(2, 0, nNumberofHits_TedNS);

 return output;
 }

 26

INITIAL DISTRIBUTION LIST

1. Dr. Sukarno Mertoguno, Office of Naval Research
Office of Naval Research (ONR) -
One Liberty Center, 875 North Randolph Street, Suite 1425
Arlington, VA 22203-1995

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Research Sponsored Programs Office, Code 41
Naval Postgraduate School
Monterey, CA 93943

4. Professor Doron Drusinsky

Naval Postgraduate School
Monterey, California

	THIS PAGE INTENTIONALLY LEFT BLANK
	THIS PAGE INTENTIONALLY LEFT BLANK
	1. Introduction
	2. The Kalman filter and Extended Kalman filter
	3. the unscented kalman filter
	4. Monitoring general purpose software with sparse probing
	4.1. An Example: A Two Player Game
	4.2. UKF Reasoning Component for the Shooting Game
	4.3. shooting State estimation results
	4.4. post ukf reasoning vs ukf-reasoning

	5. conclusion
	6. continuing research
	7. References
	8. Appendix A. The Game
	9. Appendix B – UKF in Java1F
	10. Appendix C – reasoning component
	INITIAL DISTRIBUTION LIST

