
Calhoun: The NPS Institutional Archive

Center for Information Systems Security Studies and Research (CISR)Faculty and Researcher Publications

1999

Passive, Domain-Independent,

End-to-End Message Passing

Performance Monitoring to Support

Adaptive Applications in MSHN

Schnaidt, Matt

http://hdl.handle.net/10945/35386

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36727973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Passive, Domain-Independent, End-to-End
Message Passing Performance Monitoring

to Support Adaptive Applications in MSHNϒ

Matt Schnaidt
Debra Hensgen

John Falby
Taylor Kidd

David St. John

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5118

 Abstract

This paper focuses on the problem of monitoring the end-to-end performance of message passing to support
adaptive applications to be executed using the MSHN system (Management System for Heterogeneous
Networks). Eight commercial and research tools and application components that attempt to measure
perceived end-to-end message passing performance were identified. Two were dismissed; one because of
recently published findings and the other because it is typically used in too many inconsistent
configurations. The remaining six are carefully described in the paper. We were able to characterize each
as either passive or active, determine whether they require domain-specific knowledge of an application,
identify sources of inaccuracies, and enumerate their limitations. Based upon this survey, and previous
analytical experiments, we conclude that the optimal monitoring mechanism: (1) should be passive; (2)
should not require domain-specific knowledge of an application; (3) should minimize sources of error; and
(4) should have few limitations. No single tool or application component surveyed has all of these
characteristics. Based upon the surveyed work and other recent research in distributed systems, we have
synthesized a new tool whose mechanisms have all of the desired characteristics. This paper describes our
mechanism, and how we implemented it, in detail.

1. Introduction

Any system managing a set of distributed heterogeneous resources, whether a

native distributed operating system or a resource management system, must maintain

status information concerning those resources. Some of the status information is slowly

changing, such as the speed of a particular CPU. Some of the information may change

more quickly, such as the version of the operating system, the type of security services,

ϒ This research is supported by DARPA Order E-583 under the DARPA QUORUM program and also, in
part, by the Institute for Joint Warfare Analysis

2

and the type of network card. Finally, some status information will change very quickly

such as the current length of the CPU queue, the amount of available memory, and the

current load on a network. Though possibly cumbersome, the first two types of

information can be manually entered into the management system’s database when new

hardware or software is installed. The third type of information, however, changes so

quickly that there must be a method for automatically collecting it. The Management

System for Heterogeneous Networks (MSHN1), an experimental distributed resource

management system (RMS) that we are building, requires an estimate of this quickly

changing information. Because users can place loads on some of the resources within

MSHN’s venue without submitting requests to MSHN, MSHN requires a mechanism that

can accurately estimate the end-to-end availability of each of the resources. This paper

documents our efforts to locate, and eventually, synthesize a mechanism to provide this

information for the network resources. In this section, we first briefly describe the

MSHN project, its place within the larger QUORUM program, and the reason why

MSHN requires end-to-end status information. We then describe exactly what status

information we currently need as well as the constraints under which a mechanism to

obtain this information must operate.

1.1 MSHN

In order to put the research described in this paper into perspective we provide a

brief overview of MSHN and we summarize the QUORUM program, under which

MSHN is a project. The goal of the QUORUM program is to develop a software

architecture, consisting of translucent layers, that delivers good end-to-end quality of

1 Pronounced “mission”

3

service (QoS) to a dynamically changing set of adaptive applications that are competing

for resources within a distributed, heterogeneous computing infrastructure. QUORUM

consists of many major research projects including ones that: (1) define languages and

models for expressing user-level QoS; (2) design and construct tools that convert user-

level QoS to resource requirements; (3) design and construct languages and databases for

describing resource requirements and resource characteristics; (4) design and construct

RMS’s; (5) define mechanisms for achieving translucence; (6) design appropriate

feedback mechanisms; (7) define benchmarks to be used as representatives of future

adaptive applications; and (8) research new ideas in distributed operating systems and

network protocols. MSHN is one of several RMSs being designed, implemented, and

tested under QUORUM. MSHN focuses on four basic areas: (i) the granularity of

resources and the protocols and policies used to allocate them required by RMS’s to

derive good schedules for adaptive applications; (ii) heterogeneous scheduling

algorithms; (iii) estimating the available resources as well as the required resources from

historical and recently collected resource usage data; and (iv) determining how to ensure

that RMSs remain in a stable state.

Given a set of jobs, MSHN will determine where and when to run each job along

with the appropriate version of the job to run. MSHN evolved from SmartNet, which

was a heterogeneous framework for minimizing the time at which the last job of a set of

computationally intensive jobs finishes on a suite of heterogeneous computing resources

[KIDD96]. SmartNet treated the set of compute resources available as one virtual

heterogeneous machine (VHM). SmartNet achieved superior performance by mapping

applications to resources based upon knowledge of the VHM and job characteristics.

4

MSHN differs from SmartNet in several ways: (1) it strives to support Input/Output

intensive and real-time jobs, in addition to compute-intensive jobs; (2) it accounts for the

fact that a job may need many different resources, not just a CPU, to execute; and (3) it

manages adaptive applications.

One of the important improvements of MSHN over traditional RMS’s is that

MSHN will support adaptive applications. Adaptive applications are those that can

produce results using one of a variety of algorithms or in one of a variety of forms.

MSHN has a client-server architecture. It is composed of a Client Library, a

Scheduling Advisor, a Resource Requirements Database, a Resource Status Server, and a

MSHN Daemon.

The following paragraphs provide an abstract description of each of the

components, and Figure 1 provides an overview of the entire architecture. Although

these components are shown together, they may in fact reside on separate machines, and,

in certain situations, be replicated. Usually, many different client applications will be

running at any given time.

The Client Library

The client library is linked with both adaptive and non-adaptive applications. It

provides a transparent interface to all of the MSHN services [KRES97]. The client

library performs at least the following functions: (1) it intercepts system calls to record

resource requirements; (2) it forwards requests to start another process, when

appropriate, to the Scheduling Advisor; and (3) it intercepts and performs the appropriate

action on requests from the Scheduling Advisor to adapt. It forwards the recorded

resource requirements to the Resource Requirements Database. The final implementation

5

of MSHN will be able to forward the performance measurements and resource

requirements through the MSHN daemon when that is more efficient.

The Scheduling Advisor

The Scheduling Advisor performs the highly complex task of scheduling multiple

jobs, from multiple users, onto one (or several) computers from a pool of heterogeneous

computing platforms. The sophisticated algorithms that the Scheduling Advisor will use

to make decisions are beyond the scope of this paper. However, this research requires

knowledge of the interfaces presented by the Scheduling Advisor.

The Scheduling Advisor will accept scheduling requests from the client libraries.

The Scheduling Advisor will query both the Resource Status Server and the Resource

Requirements Database. These queries must respond with near real-time information on

the status (load) of the distributed resources, and the resource requirements of the

application. Once the Scheduling Advisor receives this load information, it can calculate,

if possible, a mixture of computing and network resources that will, with high

probability, deliver the requested quality of service.

Additionally, in the event of a significant deviation from the initial resource status

estimate, the Scheduling Advisor will receive notification from the Resource Status

Server. For example, if a communications path is severed, or a machine fails, the

Scheduling Advisor will be notified and can recalculate a new scheduling solution for the

affected applications. The Scheduling Advisor may then signal the client library and

advise it that the application should begin using a different algorithm, or perhaps

recommend that it shift execution to a different set of resources. The granularity of

6

resource model needed by the Scheduling Advisor is a topic of major research in the

MSHN project.

The Resource Requirements Database

The Resource Requirements Database is a repository of information pertaining to

the execution of user applications. This database contains statistics on the run time

characteristics of jobs, such as CPU, memory, and disk usage. The Resource

Requirements Database provides this information to the Scheduling Advisor upon

request. While currently the MSHN client library is its only source of information, we

envision that other tools, currently under development within the QUORUM project

could also provide information for this database.

Figure 1: MSHN Architecture

Resource Requirement
Database

Resource Status
Server

Scheduling
Server

Update

Update

Call-Back

Call-Back

Query/
 Response

Query/Response

Query/
 Response

Application
Client Library

MSHN
Daemon

7

The Resource Status Server

The purpose of the Resource Status Server is to maintain a repository of the three

types of information about the resources available for MSHN to schedule: the relatively

static, the moderately dynamic, and the highly dynamic information. The Scheduling

Advisor will query the Resource Status Server to obtain an initial estimate of the

currently available computing and networking resources. After making a scheduling

decision, the Scheduling Advisor will notify the Resource Status Server of the additional

loads that it expects the client application to place on the compute and networking

resources. Much of this paper is dedicated to determining the best mechanisms for

obtaining this most dynamically changing type of information for network resources.

The MSHN Daemon

The MSHN Daemon executes on all compute resources available for scheduling

by the MSHN Scheduling Advisor. It is used to begin and control the execution of

processes that are submitted to MSHN. It is also used to filter information from the

client libraries which is destined for the Resource Requirements Database or Resource

Status Server when several different MSHN jobs are executing locally.

1.2 Constraints

 MSHN requires the gathering of resource usage information for applications that

run within the MSHN system as well as status information for resources within the scope

of the MSHN Scheduling Advisor. The MSHN Scheduling Advisor uses this information

to make scheduling decisions. The methods used to gather this information are subject to

three constraints: (1) the implementation must not require any changes to an operating

8

system; (2) modifications to the application code must be minimized; and (3) the

overhead imposed by the information gathering mechanism should not be excessive.

There are many reasons for the first requirement. Our ultimate goal is the

widespread acceptance of MSHN-type systems. Many potential users are reluctant to use

systems or tools that require that their operating system be modified. When routine

operating system upgrades do occur, we do not want to have to redesign and redistribute

our system to include the features or improvements of this new release. Addtionally, we

do not want to risk compromising the security features of the operating system by

changing the kernel. Finally, source code of all operating system releases may not be

available.

The second and third requirements address acceptance and usability issues. If the

application writer must modify his code, or if the use of our system incurs unacceptable

overhead, the system will not be used.

1.3 Organization of Remainder of Paper

The next section of this paper surveys existing mechanisms that we considered as

candidates for MSHN to use to estimate end-to-end network status. That section

describes the six that we considered as initially viable candidates in some detail and

summarizes their similarities and differences. In section 3, we describe the mechanism

that we are currently using in MSHN, which synthesizes the best attributes that we found

in our survey, as well as other recent theoretical and practical distributed system results.

Finally, we summarize our findings – including giving an empirically obtained

measurement of the worst-case overhead incurred and how we can reduce it – and outline

9

the set of experiments that we are currently conducting to assess the accuracy with which

we can predict quickly changing resource availability.

2. Existing Mechanisms for Estimating Network Availability

To support adaptive applications, the MSHN Scheduling Advisor requires end-to-

end status information for the resources at its disposal. One critical resource is the

network. The remainder of this paper addresses the issue of monitoring the current

network availability. We first review several tools, protocols, and application

components that estimate network availability and then summarize the desirable

characteristics of these systems.

To support MSHN’s end-to-end network monitoring, we initially considered eight

application components, protocols, and tools, from both the commercial and research

sectors: Ping, ftp (the File Transfer Protocol application), Netscape Communicator,

Network Weather Service (NWS), Netperf, BBN’s Communications Server

(Commserver), Resource Reservation Protocol (RSVP) and Simple Network

Management Protocol (SNMP). We quickly rejected two as inappropriate for MSHN:

SNMP and RSVP. We could not directly use the Simple Network Management Protocol

(SNMP) in MSHN because it provides link-based information and does not estimate end-

to-end throughput and latency between machines on remote, nonadjacent networks

[PERK97]. Any tool built on top of SNMP would necessarily have to change when

routing algorithms changed. We also considered RSVP, but have rejected it largely due

to recent results indicating that the bandwidth it allocates can be substantially different

from that requested[LEEC98]. We now discuss each of the six remaining in detail and

then compare and contrast advantages and disadvantages of each type.

10

2.1 Ping

The ping program is ubiquitous. Its primary use is for troubleshooting

networks. In its default configuration, if a network connection exists between two

machines, the execution of ping results in a short message making a round trip from the

local to the remote host and back. When ping completes, it prints the number of bytes

sent and the round trip time. Thus, ping provides a single packet measurement of

network throughput.

Ping packages its local timestamp in an Internet Control Message Protocol

(ICMP) packet and sends it to the targeted host. The targeted host receives this datagram,

its IP layer recognizes the type (ECHO_REQUEST) and immediately repackages the data

contained in the packet, sending it back to the pinger. The pinger receives the reply

datagram and subtracts its machine’s current time from the timestamp that the pinger

placed in the original datagram, thus determining round trip time. [BERK91]

2.2 The File Transfer Protocol Application

The File Transfer Protocol application (ftp) is used to transfer files between

machines connected by a network. We studied ftp because it estimates end-to-end

(meaning application to application) throughput after completing a file transfer. The ftp

application is a client-server application; the ftp server runs as a background process

listening on a fixed port for client connection requests. The user starts the ftp client in

order to issue requests to the ftp server on the remote machine. Because of the tight

coupling between the ftp server and client, it is possible for ftp to estimate the

throughput associated with transferring a file. We now summarize the actions that occur

11

in transferring a file, F, from the ftp server on computer A to the ftp client on

computer B.

The ftp server on computer A listens on port Y. The ftp client on computer B

connects to the server on computer A at port Y. The server on computer A accepts the

connection and generates a child process that will handle all future interactions with the

ftp client via the connection. We will call this connection the control connection. The

ftp client on computer B sends a request across the control connection to the ftp server

on computer A to send file F. Included in the request to A is the port number, X, that the

client on computer B will listen to. The ftp client on B then listens on port X. The

server sends the size, S, of file F to the ftp client over the control connection. The client

receives S. The server connects to the client on computer B at port X. The client accepts

the connection and records computer B’s time as TstartRead. We will call this connection

the data connection. Once the server sees that the client accepted the data connection, it

sends the file, F, across that connection and the client reads until it receives the entire file.

When the entire file has been received, the client records computer B’s time as TendRead.

The client then uses S and the time elapsed between TstartRead and TendRead to estimate

throughput.

2.3 Netscape Communicator

Netscape recently made the source code for their web browser freely available

[NETS98]. By examining this source code, we learned that they use an approach similar

to ftp’s to calculate throughput. Netscape Navigator displays a “thermometer” at the

bottom of the browser, showing the user the current download speed, the amount of the

file already downloaded, and the estimated time to complete the download. When

12

downloading large files, the system call read()must typically be invoked more than

once by the browser. Following each invocation of read(), Netscape updates the

thermometer’s data fields. The throughput estimate displayed on the thermometer is

cumulative in that each calculation is based upon the total number of bytes downloaded,

the total size of the file to download, and the total time since the first read() was called

for the current file.

2.4 Network Weather Service

The Network Weather Service (NWS) is a tool for predicting computer and

network performance for use by metacomputing applications [WOLS97] [SPRI97].

NWS makes periodic estimates of availability of resources for which it is responsible.

One of the estimates made by NWS is network availability, specifically, the latency and

throughput observed between two computers.

In order to measure the latency between two computers, A and B, a NWS process

on computer A sends a small message to a corresponding process on computer B. The

process on B immediately replies to the process on A, with the process on A recording

the round trip time. NWS approximates latency as half of this round trip time.

To estimate throughput, the NWS process on host A sends a large message to the

corresponding process on host B, and the process on B sends a small acknowledgement

message back to the process on A. The NWS process on computer A estimates the

transmission time of the large message as the round trip time, less the latency estimate

described above. Throughput is then estimated as the message size divided by estimated

transmission time. NWS keeps a record of previous estimates of throughput and latency,

which it uses to predict future resource availability using statistical modeling techniques.

13

The developers use a token passing scheme to avoid overloading the network.

They note that token passing does not scale well with large distributed systems.

Therefore, the accuracy of the throughput and latency estimates degrade as the size of the

network increases. Additionally, token passing can introduce security problems

[STAL98]. Finally, to capture fluctuations in network QoS, the developers note that

administrators must increase both message size and monitoring frequency.

2.5 Netperf

Netperf is a benchmark that can be used to measure different aspects of network

availability with a primary focus on actively measuring the throughput of bulk data

transfers and the request/response round trip time [HEWL96]. Netperf contains a rich

benchmarking suite with many options for simulating specific scenarios (e.g., http

protocols). Netperf’s bulk data transfer test can be used to estimate the throughput

between a local and remote host communicating over a network. It works by sending

data for a period of time (the default is 10 seconds), and then measuring the total amount

of data sent and received after the time period has elapsed. Netperf’s request/response

time test is very similar to that used by NWS to estimate latency: a short message is sent

from a local to a remote host; the remote host replies immediately; and the local host

measures round trip time and approximates latency as one half of this round trip time.

2.6 BBN’s Commserver

The Joint Task Force Advanced Technology Demonstration (JTF ATD) strives to

predict trends in the advances of future hardware and software. It also provides a

reference architecture into which such advances can be easily integrated. At the base of

the JTF architecture is the Commserver whose ultimate purpose is to permit applications

14

to be network aware. The job of the Commserver is to estimate the available bandwidth

between JTF users. The Commserver uses that bandwidth, along with the priorities of

various users (expressed as currency), and a list of the applications requiring execution to

allocate resources. [HAYE94]

Early experimentation with the JTF ATD Commserver [KRES98] revealed

several problems. First, the Commserver places a load on the network in order to

estimate end-to-end latency and bandwidth available. Second, it uses the throughput and

latency estimates directly, without reference to previous measurements, to estimate

network load. Due to the rapidly changing nature of network traffic, this technique can

return inaccurate or misleading results. Finally, the estimates returned are inaccurate

unless the network is sampled frequently which further increases the network load.

2.7 Characteristics of These Systems

We divide the mechanisms described above into two categories: passive and

active. Active mechanisms place additional loads on the resources that they are

monitoring; passive ones do not. Applying this definition, we see that ping, NWS,

Netperf and BBN’s Commserver all use active mechanisms, while ftp and Netscape use

passive mechanisms. Unfortunately, it is when the network is most busy that we need the

most accurate estimates. This is when there is no extra bandwidth available to give to

these active mechanisms. Passive mechanisms, on the other hand, do not add to the load

carried by the already scarce resource. For this reason, in MSHN we prefer passive

monitoring.

Another way of categorizing the previously discussed tools and application

components for measuring network performance attributes is to consider how closely tied

15

they are to applications. We note that the programmers of both ftp and Netscape used

domain-specific knowledge to obtain estimates of network throughput. MSHN prefers

that application writers not be required to also worry about measuring resource

availability; availability should be measured by the system.

Finally, there are sources of error and limitations associated with the previously

described mechanisms. When estimating throughput, all mechanisms start timers with a

handshake. The best ones then subtract off some multiple of an estimate of latency,

which they assume to be the amount of time required for the handshake, but which may

actually be substantially different due to operating system CPU scheduling policies.

Further, none of the passive monitoring techniques estimate latency, only throughput.

The MSHN system requires, at a minimum, the knowledge of both of these.

Based on these observations, we sought a passive mechanism that would

accurately estimate both bandwidth and latency without requiring the application

programmer to implement monitoring code. In the remainder of this paper we describe

such a mechanism.

3. A Passive Approach for Monitoring Network Performance

Before describing our domain-independent mechanism for passively obtaining

accurate network performance estimates, we enumerate some of the challenges we faced

in evolving such a mechanism.

3.1 Challenges

In order to avoid modifying either the operating system or the system libraries,

we chose to apply a technique developed by Condor [LIVN95]. That is, we chose to

implement an additional library that intercepts read() and write() calls and then

16

link applications’ object code with that library.2 This additional library will then be able

to pre-process parameters of read() and write() and post-process the results. We

will define this interception of system calls as wrapping system calls.

After identifying the mechanism required to implement “domain-independence”

and “passive monitoring” we turned our attention to the problem of accurately estimating

bandwidth and latency. In the remainder of this section we refer to a process that issues a

write() call to write across the network as the “writer” and the process that issues the

corresponding read() as the “reader.” In this paper, we also assume that the reader and

writer are using TCP.

In order to estimate latency, we must know when the writer writes the message,

and when the reader’s computer receives it. We face several problems in trying to

accurately obtain these times. First, the reader does not know when the writer wrote the

message to the network. Second, if we modify write() so that the writer appends its

local time to the beginning of the message, we still must compensate for the clock offset

between the reader and writer computers. Since these computers do not have

synchronized clocks, we cannot directly compare the writer’s send time to the reader’s

receive time. Finally, if the writer writes the message long before the reader is ready to

read the message, the message will be buffered on the reader’s machine. This makes it

difficult to estimate the time of reception. We will discuss these problems in some depth

after summarizing the corresponding problems associated with estimating throughput.

In estimating throughput, we face similar challenges. Because we do not have

control over the operating system, we have difficulty estimating transmission time. This

2 If object code is not available, techniques developed in Paradyn [PARA97] [LARU95] could be used to
link this library with the executable.

17

affects our ability to estimate throughput. From an application’s perspective, once it calls

read(), it blocks and remains blocked until the operating system returns with data in

the buffer. We could measure the total blocked time after an application makes a

read() system call and assume that this elapsed time is an estimate of total

transmission time. However, unless the write() that corresponds to the read()

occurred at the same time, this assumption would most likely result in incorrect

throughput estimates because of the composition of the blocked time.

We refer to two significant problems associated with estimating transmission time

as the “early reader-late writer” problem and the “late reader-early writer” problem. The

remainder of this section will further explain these problems.

In the “early reader-late writer” scenario, the reader calls read() and blocks

waiting for the writer to execute write(). Some time after the writer finally writes,

the reader receives the message and unblocks. In this case, the total blocked time is

composed of both the time spent transmitting as well as the time spent waiting for the late

writer. Because we cannot know how much of the blocked time was due to waiting for

the late writer, we cannot assume that blocked time is equivalent to the transmission time.

If we were to make such an assumption, we would underestimate throughput.

In the “late reader-early writer” scenario, the writer writes to the network on an

established connection, but the reader has not yet called read(). The operating system

on the reader’s host may buffer some or all of the data received from the writer. When

the reader finally calls read(), it reads the buffered portion of the message directly

from local memory. In this case, the total blocked time is composed of time spent

reading from local memory, as well as the time required to read the unbuffered portion of

18

the message from the network. In most systems, retrieving data from memory is

significantly faster than network transmission time, so using this total time would result

in an overestimate of throughput.

In summary, unless the read() and write() calls happen at exactly the same

time, we cannot simply use blocked time to estimate throughput. Additionally, we face

problems related to clock offset in estimating latency. Our approach to measuring

network QoS will recognize and take advantage of the “early reader-late writer” scenario

to aid in obtaining accurate latency and throughput estimates.

3.2 An Additional Observation That Helps

Many writes to the network by applications are large (e.g., files and graphics). As

we saw in Netscape, a read() from the network returns immediately upon receiving

data in the buffer. Even though an application writer specifies the amount to be read in

the read() system call, the call will return with the amount of data actually read

immediately upon receiving any data. To ensure that all desired data is read, the

application writer must implement the application so that it repeatedly calls read()

until it has read the entire message. We will use this observation in conjunction with the

“early reader-late writer” scenario to help estimate throughput.

3.3 Our Passive Monitoring Approach

In this section we describe the passive network monitoring approach that we

developed for MSHN. We will give an overview of our approach and then address the

following four areas: clock offset compensation, the cooperating writer, the cooperating

reader, and special considerations.

19

Overview of the MSHN Passive Network Monitoring Approach

Our approach exploits the “early reader-late writer” scenario. We have wrapped

the read() and write() library calls to recognize TCP connections. In our

approach, the read() system call recognizes the “early reader-late writer” scenario,

allowing the estimation of end-to-end latency, and when appropriate, throughput.

In measuring end-to-end latency, we must address the three problems raised

above. The first is that we do not know when the writer sent its message. We solve this

by wrapping the write() system call to append, to the front of the message, a

timestamp from the writer’s clock. The second problem results from the fact that the

reader’s clock and the writer’s clock are not synchronized, but the reader and writer need

to have reference to a common timeline. We will address this problem in the next

subsection. The final problem deals with the “late reader-early writer” scenario. We

avoid this problem by detecting this situation and only calculating latency when we are

sure that we are in the “early reader-late writer” scenario.

To estimate throughput, our mechanism must first estimate transmission time. In

the “early reader-late writer” scenario, blocked time is composed of the end-to-end

transmission time and the time spent waiting for the writer. We will exploit our

observation that many network writes are large. As mentioned above, when a large

message is read from the network, read() must be called repeatedly until the entire

message is received. The two necessary components for calculating throughput are the

number of bytes transmitted and transmission time for those bytes. Our algorithm

computes the difference between the times of the first read and the last read. This

difference is transmission time. Our technique “throws away” that first period of blocked

time consisting of time due both to end-to-end data transmission as well as time spent

20

waiting for the writer. It is safe to assume that the remaining time that it takes to read the

message is due primarily to transmitting the remainder of the message. The number of

bytes received will be the message size less the size returned by the first read(). This

allows us to estimate throughput between the reader and writer.

We use the term “cooperative” to refer to the reading and writing applications that

are linked with our library. We discuss cooperative readers and writers in more detail

shortly.

Compensating for Clock Offsets

Our passive network monitoring requires that the communicating hosts have

access to a common time reference. Since we cannot assume that the member hosts of

MSHN have perfectly synchronized clocks, we use a derivative of the Network Time

Protocol (NTP) to estimate clock offsets between machines [COUL96]. Our approach is

almost identical to the protocol as described in the reference, with the exception that we

eliminate the need for one of the timestamps. As the reference does, we call the estimated

clock offset oi and the estimated error, di. In this protocol, shorter round trip times result

in smaller errors. We exploit this observation by making multiple calls to the remote

timeserver, and then keeping the offset that results from the shortest round trip time.

In MSHN, we would expect estimates of oi and di to be available from the

Resource Status Server (RSS), but prior to adding this functionality to the RSS, we

implemented and tested our passive network performance monitoring algorithm by

wrapping the accept() and connect() system calls to trigger these estimates. This

extra code adds considerable overhead to these system calls. In the final implementation

of MSHN the RSS would periodically, at times of low system usage, poll MSHN

21

members and record clock offset and drift. To minimize added network traffic for

delivery, the distribution of oi and di can be included with security certificates [WRIG98].

The Cooperating Writer

We incorporated, into the MSHN library, a wrapper for the write() system call

that detects when write() has been called to write to a TCP connection. The wrapper

appends the following information to the front of such messages: the writer machine’s

current time, Tremote', and the size of the message.

The Cooperating Reader

Like the write() system call’s wrapper, the read() system call’s wrapper also

detects when it is reading from a TCP connection. We now enumerate the steps that the

wrapper takes if it detects that this is the first time that the read() is being called for the

particular data set:

1. It records a local clock time stamp, Tblocked, prior to (possible) blocking.

2. When the read() continues (unblocks), the wrapped system call records the
time, TstartRead.

3. Tremote′ and total message size are stripped from the first part of the message
received.

4. Tremote′ is adjusted for clock offset between the reader and writer machines and
this adjusted time is recorded as Tremote.

5. read() now tests to see whether the “early reader-late writer” situation has
occurred. If Tblocked occurred earlier than Tremote, then the reader was early. That
is, the reader was blocked for a while waiting on the writer to write. Only in this
case can latency be approximated.

Latency = TstartRead – Tremote.

6. The received message data is passed to the application, with the return value of
the read() system call decremented to account for the size of the timestamp and
total message size fields.

22

We now describe the actions taken when the read wrapper is invoked after the

initial read().

1. The size of the message remaining is decremented by the amount of data in the
buffer.

2. If the size of the message remaining is zero, the end of the message has been
found. In this case, throughput can be calculated.

3. The read() wrapper calculates throughput using:
 Throughput = (total message size – size of first part of message)/(TendRead -TstartRead)

We note that throughput is only calculated when more than one read() is invoked

to obtain the data that was sent. We also note that the throughput and latency estimates

are estimates of end-to-end throughput, which are, in fact, what MSHN is interested in.

Special Consideration

Latency and throughput can only be calculated for a subset of the total network

traffic, that is when the “early reader-late writer” scenario is true. We can modify the

algorithm to increase the opportunities to estimate throughput by “loosening” the “early

reader-late writer” requirement if we have a good estimate of the absolute minimum

latency, Latencymin between the communicating machines. Rather than requiring Tblocked

to occur before Tremote (that is, Tblocked – Tremote < 0), we could allow Tblocked to be up to

the minimum latency later than Tremote (Tblocked – Tremote < Latencymin). This seems

insignificant for machines connected locally over high speed networks where latency is in

the order of milliseconds or fractions of milliseconds. However, consider machines

connected over extended network links, especially those using satellite communication.

In this case, latency is in the order of 100’s of milliseconds and this loosened requirement

23

could prove significant. In this latter case, the opportunities to estimate throughput could

increase dramatically with this modification.

4. Summary

In our review of existing tools and application components, we classified the

network monitoring techniques as either passive or active. Passive monitoring has the

desirable attribute of minimal added overhead while active monitoring gives the ability to

measure latency and is not tied to any particular application. We then presented an

approach that makes use of the low overhead of passive monitoring, estimates end-to-end

latency and throughput, and is independent of any particular application. Preliminary

experiments show that our technique adds 6% to the required execution time of the

read() system call, confirming the low overhead of passive monitoring. We anticipate

that using the tools developed by Oregon Graduate Institute’s Synthetix team could

further reduce this overhead [PUCA96].

We plan further work to quantitatively assess the accuracy of predictions based

upon our mechanism.

5. Acknowledgements

We gratefully acknowledge Professor Cynthia Irvine’s suggestion that we use the

number of bytes to be sent rather than start and end flags. Although this solution is not

guaranteed to work with every implementation of write, when it does work, it certainly

reduces the overhead that we encounter when using start and end flags and bit stuffing.

6. References
[COUL96] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems, Concepts and Designs, 2d

Edition, Addison-Wesley, NY, 1996.
[BERK91] Berkeley Unix Distribution, Unix Man Pages, March 1991.

24

[HAYE94] G. Hayes-Roth, and L. Erman, The Joint Task Force Architecture Specification (JTFAS),
Teknowledge Federal Systems, Palo Alto, CA, 1994.

[HEWL96] Information Networks Division, Hewlett-Packard Company, Netperf: A Network Performance
Benchmark, Revision 2.1, February 1996.

[KIDD96] T. Kidd, D. Hensgen, R. Freund, L. Moore, “SmartNet: A Scheduling Framework for
Heterogeneous Computing”, ISPAN, 1996.

[KRES97] J. Kresho, Quality Network Load Information Improves Performance of Adaptive Applications,
Master’s Thesis, Naval Postgraduate School, Monterey, California, September 1997.

[KRES98] J. Kresho, D. Hensgen, T. Kidd, and G. Xie, Determining the Accuracy Required in Resource
Load Prediction to Successfully Support Application Agility, EURO-PDS98, 1998.

[LARU95] J. Larus and E. Schnarr, EEL:Machine-Independent Executable Editing, SIGPLAN PLDI 1995.
[LEEC98] C. Lee, J. Stepanek, B. Michel, I. Foster, C. Kesselman, R. Lindell, S. Hwang, J. Bannister, and

A. Roy, Qualis: the Quality of Service Component for the Globus Metacomputing System,
IWQoS98, Napa, CA, 1998.

[LIVN95] M. Livny, M. Litzkow, T. Tannenbaum, and J. Basney, Checkpoint and Migration of UNIX
Processes in the Condor Distributed Processing System, Dr Dobbs Journal, February 1995.

[NETS98] Netscape Communication’s Corporation, Netscape Communicator Source Code, March 1998.
[PARA97] Paradyn Project, Paradyn Parallel Performance Tools User’s Guide Release 2.0, University of

Wisconsin-Madison, 1997.
[PERK97] D. Perkins, and E. McGinnis, Understanding SNMP MIBs, Prentice-Hall, NJ, 1997.
[PUCA96] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J. Walpole, and K.

Zhang, Optimistic Incremental Specialization: Streamlining a Commercial Operating System,
Oregon Graduate Institute, 1996.

[SILB98] A. Silberschatz, and P. Bae Galvin, Operating Systems Concepts, 5th Edition, Addison-Wesley,
Menlo Park, CA, 1998.

[SPRI97] N. Spring, Network Weather Service for Mentat 3.0 User’s Guide, October 1997.
[STAL98] W. Stallings, Cryptography and Network Security, Principles and Practice, 2nd Edition,

Prentice Hall, Upper Saddle River, NJ, 1998.
[WOLS97] R. Wolski, N. Spring, and C. Peterson, Implementing a Performance Fore-casting system for

Metacomputing: The Network Weather Service, SC97 Technical Paper, 1997.
[WRIG98] R. Wright, D. Shifflett, and C. Irvine, Security for a Virtual Heterogeneous Machine, to appear

in Proceedings of the 12th CSA Conference, Scottsdale, AZ, 1998.

