<
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive

Center for Information Systems Security Studies and Research (CISRfaculty and Researcher Publications

1998

The Relative Performance of Various
Mapping Algorithms is Independent of
Sizable Variances in Run-time Predictions

Robert Armstrong

‘: D U DLEY Calhoun is a project of the Dudley Knox Library at MPS, furthering the precepts and
uﬁm goals of open government and government transparency. All information contained

K H DK herein has been approved for release by the NPS Public Affairs Officer.
LIBRARY

Dudley Knox Library / MNaval Postgraduate School
411 Dyer Road / 1 University Circle

hittps/fwwwinps.edu/library Monterey, California USA 93943

https://core.ac.uk/display/36727972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Relative Performance of Various Mapping Algorithms is
Independent of Sizable Variances in Run-time Predictions *

Robert Armstrong
Debra Hensgen
Taylor Kidd

Computer Science Department
Naval Postgraduate School
Monterey, CA 93940

Abstract

In this paper we study the performance of four map-
ping algorithms. The four algorithms include two na-
ive ones: Opportunistic Load Balancing (OLB), and
Limited Best Assignment (LBA), and two intelligent
greedy algorithms: an O(nm) greedy algorithm, and an
O(n*m) greedy algorithm. All of these algorithms, ex-
cept OLB, use expected run-times to assign jobs to ma-
chines. As expected run-times are rarely deterministic
m modern networked and server based systems, we
first use experimentation to determine some plausible
run-time distributions. Using these distributions, we
next erecute simulations to determine how the map-
ping algorithms perform. Performance comparisons
show that the greedy algorithms produce schedules that,
when executed, perform better than nawe algorithms,
even though the eract run-times are not available to
the schedulers. We conclude that the use of intelligent
mapping algorithms is beneficial, even when the expec-
ted time for completion of a job is not deterministic.

1 Introduction

This paper describes the experiments and simula-
tions that we executed to determine the relative per-
formance of certain mapping algorithms in different
heterogeneous environments. In this paper we assume
that all jobs are independent of one another. That is,
they do not communicate or synchronize with one an-
other. This type of architecture is common in today’s
LAN-based distributed server environment.

Our goal was to determine whether using intelli-
gent mapping algorithms would be beneficial, even if

*This research was supported by DARPA under contract
number KE583. Additional support was provided by the
Naval Postgraduate School and the Institute for Joint Warfare
Analysis.

the jobs did not run for exactly the amount of time
expected. Intelligent mapping algorithms utilize the
expected run-times of each job on each different ma-
chine to attempt to minimize some scalar performance
metric. For our experiments, this metric is the time at
which the last job completes. In particular, we were
concerned about whether it would still be beneficial
to use intelligent mapping if one or several jobs run
for a substantially different amount of time than ex-
pected, but are still accurately characterized statist-
ically. Because determining a perfect mapping is an
NP-complete problem, we examined the performance
of several different (polynomial) heuristics. The al-
gorithms we chose are listed below.

¢ A naive O(n) algorithm known as Opportunistic Load
Balancing (OLB). This algorithm simply places each
job, in order of arrival, on the next available machine.

e A simple O(nm) algorithm known as Limited Best
Assignment (LBA). This algorithm uses the expected
run-time of each job on each machine. It assigns each
job to the machine on which it has the least expected
run-time, ignoring any other loads on the machines,
including that produced by the jobs that it has as-
signed.

This algorithm, though easily implementable in a
scheduling framework that automatically assigns jobs
to machines, is very similar to the algorithm used by
many users who remotely start their jobs by hand
at supercomputer centers without examining queue
lengths.

e Two greedy algorithms, one of order O(nm) and the
other of order O(n?m). Both of these algorithms make
use of the expected run-time of each job on each ma-
chine as well as the expected loads on each machine.
These algorithms will be more fully described in Sec-
tion 2.

The primary reasons for our study are both that
jobs rarely execute for exactly the expected run-time
and often the expected run-times are not exactly
known. In a system where each job has exclusive use
of a machine, differences between actual and predicted
run-times occur either because (1) all of the compute
characteristics [10] are not known or enumerated by
the designer of the program, or (2) because the time
to access memory and disk is stochastic and not de-
terministic. Of course, in many environments, addi-
tional non-determinism is due to other jobs running on
the machine or simultaneously using a shared network
or a shared file server. This paper focuses on those
cases where one or more of the jobs being scheduled
have run-times that could differ substantially from the
expected run-time. For those cases, we seek to de-
termine whether there is still an advantage to using
an algorithm that makes use of expected run-times or
whether a computationally simpler algorithm that does
not require estimating run-times, such as Opportun-
istic Load Balancing (OLB), might not yield equival-
ently good performance.

In the next section, we describe the two greedy al-
gorithms that we used in our experiments and simu-
lations. We then describe our experiments concerning
the non-determinism of expected run-times and exam-
ine, using the derived distributions in simulations, the
performance of the intelligent algorithms. That is, we
collect run-times for various jobs on various machines,
analyze their distributions, and extrapolate these dis-
tributions for use in our simulations. We conclude the
paper with a short summary and comparison to related
work.

2 The Greedy Algorithms

In addition to the simple OLB and LBA algorithms
described in the previous section, our experiments
used two greedy algorithms. We now describe those
algorithms in detail.

The first algorithm is an O(nm) algorithm, where n
is the number of jobs and m 1s the number of machines,
and the second algorithm is of order O(n*m). Each
algorithm first estimates the expected run-time of each
job on each machine, assuming that if a job cannot
execute on a particular machine, the estimation will be
set to some very large number. As we describe these
algorithms we will consider these expected run-times
as elements of a 2-dimensional, n by m matrix called
A. That is, A[i, j] is the expected run-time of job i on
machine j.

The O(nm) algorithm, which, like in the SmartNet
documentation [6], we will call Fast Greedy, considers

the jobs in the order requested'. It first determines
the value A; ;, such that 4; ; < Ay, Vke{l.m} It
then assigns job 1 to machine j. Following this, it adds
Ay toall A; ; Vi€ {2..n}. Then, for each remaining
job, p € {2..m}, it determines the value A, ;, such
that A, ; < Ap x V k € {1..m}. It then assigns job p to
machine j. Following this, it adds A, ; to all A; ; Vi €
{p+ 1..n}. At each step, then, it is assigning each job
to its best machine, given the previous assignments.
We note that the jobs are assigned in the order in which
they were requested.

The O(n?m) algorithm, which again borrowing
from SmartNet nomenclature we call simply Greedy,
actually computes two mappings using two different
sub-algorithms and then chooses the mapping that
gives the smallest sum of the predicted run-times, min-
imized over all machines. The two sub-algorithms are
similar to the first greedy algorithm above, differing
only in the order in which they assign jobs to machines.
We first enumerate the steps of the first sub-algorithm.

1. Initialize the set { RemainingJobs} to contain all jobs.

2. V 1 € {RemainingJobs}, find A;; < A;x V k €
{Machines}. Call such an A; ;, Aimin,-

3. Determine p such that Apmin, < Aimin, ¥V 1 €
{RemainingJobs}.

4. Remove p from {RemainingJobs}, scheduling job p
on machine ming.

5. Add Ap min, t0 Aimin, Vi € {RemainingJobs}.
6. If {RemainingJobs} is not empty, return to step 2.

The idea behind this first sub-algorithm is that, at
each step, we attempt to minimize the time at which
the last job, which has been thus far scheduled, fin-
ishes.

The second sub-algorithm differs from the first sub-
algorithm in that, at the third step, it finds p such
that Ay nin, > Aimin, V i € {RemainingJobs}. This
algorithm, then tries to minimize the worst case time
at each step.

3 Effect of Non-Determinism on Al-
gorithm Performance

We now examine the effect of non-determinism on
the performance of the greedy and LBA algorithms
that we described above. Our reason for studying this

'Tn describing these algorithms, we use the term order re-
quested to mean the order in which the job requests have been
placed prior to invocation of the algorithm. We also investig-
ated the performance of these algorithms if jobs are first sorted
before these algorithms are invoked.

is because both the LBA and the greedy algorithms use
the expected run-time to produce their mappings. One
of our major motivations for this work is to determ-
ine whether such intelligent algorithms are still useful if
the actual run-time is non-deterministic, that is, essen-
tially sampled from a distribution around the expected
run-time. In order to determine what distributions we
should sample our run-times from in our simulation,
we first conducted some experiments with actual pro-
grams to try to determine what types of distributions
characterize their run-times.

3.1 Job Run-time Distributions

We have already explained why job-machine run-
times are typically not constant, but rather vary ac-
cording to some distribution. To test the performance
of our algorithms, 1t 1s essential to draw samples of
the run-times of jobs from a particular distribution;
but first we need to determine some realistic distribu-
tions that we can use in our simulations. Therefore,
we repeatedly executed some parallel and sequential
programs, gathered run-time statistics, and analyzed
them.

We performed several experiments using the NAS
Benchmarks [3]. These benchmarks were used to de-
termine the types of run-time distributions that may
be typical for at least some jobs on some machines.
We needed to determine sample parameters for these
run-time distributions so that they could be repro-
duced by our simulator. While performing our tests,
we controlled the following environmental character-
istics: server location, network and server load, num-
ber of processors, amount of memory, and processor
speed. Table 1 summarizes the configurations of our
machines caesar and elvis upon which we ran our
experiments.

caesar elvis

Type SGI Challenge L. | Onyx
Proc Speed (MHz) 200 150

Proc Type (MIPS) R4400 R4400

7t of Processors 4 4
Memory (Mbytes) 64 192
Secondary Unified

Cache 4 Mb 1 Mb

Table 1: Configuration of SGI machines caesar and
elvis, both running TRIX64 v6.2.

The jobs that we used throughout these experiments
were from two sources: NASA’s reference implement-
ation for some of the NAS Benchmarks, and our own

implementations of other NAS Benchmarks that met
the required criteria. Four of the experiments use some
version of the NAS Integer Sort (IS) Benchmark, im-
plemented either in parallel on four processors, or in
single processor mode. Two other experiments used
the NAS Embarrassingly Parallel (EP) Benchmark run
on a single processor. We now explain our experiments
and their results.

3.1.1 Integer Sort, Executed on Four Pro-
cessors

This experiment examined the run-time distribution of
a version of the NAS Integer Sort Benchmark executed
on four processors. We implemented the integer sort
using a counting sort [5, pages 175-178] algorithm. We
used Silicon Graphic’s light weight process (thread)
support functions, including mfork(), to implement
our version of this benchmark.

We ran this sort across a heavily loaded network,
obtaining both the executable and the data from a file
server that was also heavily loaded. When run on
caesar, the run-time distribution, for 100 executions,
appears Gaussian.? Figure 1 shows a histogram of this
distribution. When run on elvis, the run-time distri-
bution, again for 100 executions, appears exponential
and is shown in Figure 2. We note that the origin
of the exponential distribution shown in Figure 2 is
translated to approximately 3.0. That means that the
sort had to run for at least 3.0 seconds before stopping.
The distribution that we see very closely matches an
exponential distribution with a mean of around 0.20,
translated 3.0 seconds to the right. We expect that
many jobs would have a distribution similar to this,
because all jobs must run at least some amount of
time3.

In these experiments, we also see that memory size,
and so, the need to swap to local disk, can have a
definite effect upon the run-time distribution of a job.
The integer sort on elvis completes, on average, 30%
sooner than the same job on caesar. We note that, in
this case, the amount of memory has more influence

2The form of the distributions were determined by carefully
selecting the bin size and then curve fitting. The authors are
familar with both visual and analytical tests for normality, but
analytical tests were not used given the strong visual similarity
of the frequency plots to that of a Normal curve. (The fact that
some sample point frequencies lie above and below the selected
Normal distribution is due to the number of samples being finite.
Such phenomena would have appeared even if 100 data points
had been sampled from a known Normal run-time distribution.)

3An exponential distribution is defined to start at 0.0. If
applied, without translation, in this case, that would mean there
is a strong possibility of near-zero run-times.

Parallel Counting Sort on Caesar

16 T T AT T T
Y "feaesar.dat" -¢--
4] 100 Samples P 1
Loaded network ' ‘ ‘
12F Mean: 9.093 1
Sigma: 0.0983
10 1 $ “<>: 1
. .
°l
2 .
5 8+ kY ~
3
6 Q 1
4r ° b
2t ¢ 1
ES oo
04 R I I I | .
8.8 89 9 9.1 9.2 9.3 94

Run-time, seconds

Figure 1: Forked counting sort, caesar.

Parallel Counting Sort on Elvis
80 T T T T T T T

"felvis.dat" B—

100 Samples
Loaded network
Mean: 3.04
Sigma: 0.234 R

Frequency

3.6 38 4 42 44 46
Run-time, seconds

Figure 2: Forked counting sort, elvis.

on the run-time of the job than does the speed of the
processor. Of primary importance, however, is the ob-
servation indicating that the same job, running on two
different machines, not only has different mean run-
times, but the distribution of run-times is different,
yielding a Gaussian-like distribution on one machine
and an exponential-like distribution on the other.

3.1.2 Integer Sort, Single Processor

This experiment is the same as that discussed in the
last section, with the exception of being run on a single
processor instead of being distributed across four pro-
cessors. Although a slightly different C4++ implement-
ation was used, we again based our program on the
counting sort.

When the integer sort was run on caesar and
elvis, the run-time distribution was not easily char-
acterized; however, it appears related to a Gaussian
distribution. Histograms of the distributions, sim-
ilar to that shown in Figure 4, are possibly multi-
modal, which indicates that multiple distributions may
be present. While this experiment does not provide
us with definitive results, it does point to the fact that
run-time distributions can be quite complex. We sus-
pect that these conditions are related to changes in the
network and server loads.

Counting Sort on Caesar, Single Processor
20 T T T T T T

"scaesar.dat” E—

100 Samples
Loaded network b
Mean: 7.642

Sigma: 0.723

Frequency
=
T

0 Il Il Il L L ulz/g\& E/E\D

12 13 14 75 7.6 17 78 19 8 8.1
Run-time, seconds

Figure 3: Counting sort, caesar, single processor.

Once again, this set of experiments showed us that
additional memory can greatly enhance run-time per-
formance. The tests on elvis ran 7 times faster than
those run on caesar, which has the faster processors.
The tests also show that run-time distributions can be
very complex, and may be difficult to reproduce in a
simulation. Although our simulations did not use such
complex distributions, they should be modeled in fu-
ture work.

Counting Sort on Elvis, Single Processor
30 T T T T T T T Al T

"selvis.dat" B—

PANS 100 Samples R
Loaded network
Mean: 1.053
20r R
Sigma: 0.0988
»
9
5
z, I5F b
[

I I /?_E\ I & I I I

0
0885 089 0895 09 0905 091 0915 092 0925 093 0935
Run-time, seconds

Figure 4: Counting sort, elvis, single processor.

3.1.3 Embarrassingly Parallel NAS Bench-
mark

The next set of experiments that we describe com-
pared the run-time distributions of compute intens-
ive jobs run from local disk to those run across the
network from a file server. The tests that we de-
scribe in this section were executed only on caesar be-
cause elvis did not have a sufficiently large local disk
available. We used the reference implementation [3],
from NASA, of the NAS Embarrassingly Parallel (EP)
Benchmark. This implementation uses the portable
Message Passing Interface (MPI) [12] to parallelize the
code. The tests we ran, however, were compiled to be
executed on a single processor?. The EP Benchmark
was run 100 times for each test. See Figures 5 and 6.

3.2 Simulation Experiments

We now describe our simulation experiments that
are aimed at examining how well the mapping al-
gorithms performed when the jobs scheduled did not
execute for exactly the mean run-time. The matrices
that we refer to in the description below have rows in-
dexed by the job and columns indexed by the machine.

o Matrix Format. We used different matrices contain-
ing jobs and machines of varying characteristics. Each
matrix contained mean run-times for each of five dif-
ferent jobs on each of ten different machines. The av-
erage means of the corresponding columns and rows

4The MPI mechanism is still utilized in the EP Benchmark

when it is compiled for a single processor.

epAl NAS Benchmark on Caesar
T T

80 T T T T T
9 "epAl-caesar.dat" -¢--
0 F 4
60 ‘:‘ 100 Samples 1
Code on Machine; no network involved
L S Mean: 74372 g
» Sigma: 1.57
9
8
Y :]
[:
0t i j
8
20 L 9
10 | 9
0 6 L v L 4 L FUNIDEL IR
740 45 750 755 760 765 770 715 780

Run-time, seconds

Figure 5: epA1 NAS Benchmark, with executable residing
on local disk.

¢pAl NAS Benchmark on Caesar

35 T T T T T T
"epAl-aquarius.dat” S—
30 R
100 Samples
Br Run over network b
Mean: 743.717
Sigma: 1.568
> 20r R
g
g
o 15F 4
10 p R
5 b 4
0 1 1 1 1 1 1
742 743 744 745 746 47 748 749

Run-time, seconds

Figure 6: epAl NAS Benchmark, files obtained over a
lightly loaded network.

were the same for all matrices and the jobs themselves
were quite heterogeneous.

e Job Request Sets. In order to obtain different results
for each matrix, we generated two random sequences
of 125 job requests, which we will call 125-1 and
125-2, where each individual request was chosen ac-
cording to a uniform random distribution from among
five different jobs. We also generated two more ran-

dom sets, this time of 500 job requests, calling them
500-3 and 500-4. We did this to look at perform-
ance variations between job request orderings, as well
as to examine any performance differences that might
occur because fewer or more jobs were requested.

e Job Request Format. We generated each of the 5
jobs, for each request, at random. Thus, in these ex-
periments, the jobs were requested in random order.
This was done because the order of job request af-
fects the schedule. The Fast Greedy Algorithm maps
and schedules the jobs on machines in the order in
which they are submitted. The Greedy Algorithm
uses the order to break ties. We chose to execute
these randomly ordered requests both because they
more closely mimic a real environment where differ-
ent jobs are submitted by different users and because
we wished to examine whether these algorithms per-
formed better or worse when unsorted, as opposed to
sorted, requests were submitted.

e Run-time Generation for Simulations. We executed
each simulation 15 times. In each run, a different
value was used to seed the random number generator
that was used to generate the simulated “actual” run-
time duration. The total time required to execute each
schedule was summed and the average was computed.
Multiple seeds were used to ensure that our results
were not skewed?®.

e Baseline Calculations. In addition to simulations
where we generated simulated run-times from particu-
lar distributions, we performed some baseline calcu-
lations. These baseline calculations provided results
that were, in effect, equivalent to running the simula-
tion where the run-time of a job on a given machine

was always exactly its expected run-time.

e Actual Run-time Distributions. When we generated

run-times that were different from the mean predicted
run-times, we ran experiments for both Gaussian and
exponential distributions. Based upon our experi-
ments with the NAS IS and EP Benchmarks above,
we chose to implement a translated exponential dis-
tribution.
Again, based upon our earlier experiments described
in Section 3.1, we chose to use a truncated Gaussian
distribution in our simulation experiments to mimic
the Gamma distribution that best fit our data. We
chose to truncate left of the mean at y — o.

3.3 Results of Simulation Experiments
where Jobs Ran for Times Different
from the Predicted Run-times

This set of experiments examined the performance
of intelligent mapping algorithms when job run-times

5This is a common method to reduce the influence of a single
random number generation sequence that may be biased.

differed from the expected run-times that were used to
develop the mappings. Using the distributions identi-
fied in the previous experiments, we instantiated spe-
cific parameters in order to simulate some typical jobs.
We simulated jobs with both exponential and trun-
cated Gaussian run-time distributions. In this pa-
per we summarize results; individual results from ad-
ditional individual experiments, which are consistent
with the conclusions that we make in this paper, can
be found in Armstrong’s thesis [2].

The graphs in this section compare the final com-
pletion times of the jobs under the various mappings.
We use the label Baseline to mean that the value rep-
resented would be the completion time if all of the
jobs ran for exactly their predicted mean run-times.
In order to emphasize the differences between the val-
ues that we plot in the graph, we do not include the
OLB run-times. The OLB run-times, for the expo-
nential and Gaussian distribution simulations that we
discuss below, averaged around 10,000 seconds in all
cases shown, i.e., 500 requests.

3.3.1 Exponential Distribution Experiments

The results of these experiments compare the perform-
ance of the various mapping algorithms when all jobs
have an exponential run-time distribution. We re-
call that the sample run-times from those experiments
closely fit a shifted exponential distribution with mean

of 3.0.

Submission Sequence
500-4

w

M Baseline
(] Exponential

Thousands
N

Run-time in seconds
—

Iba fast greedy
greedy

Figure 7: Exponential run-time distribution results,

500-4.

We now compare the time at which the last job fin-
ishes if executed according to each of the mappings,
assuming that a job is not started on a machine until
the last job completes. The figures in this section show
both the expected completion time assuming determ-
inistic run-times as well as under the assumption that
the run-times are exponentially distributed, shifted to
the right such that its mean matches the expected run-
time.

Figure 7 shows these comparisons for some matrices
that we used in our simulations. This figure shows
that the schedules built by the intelligent mapping
algorithms are still effective even though the actual
run-time of a given job on a given machine can differ
greatly from its expected run-time.

3.3.2 Truncated Gaussian Experiments

We then performed additional simulations to exam-
ine the performance of the the intelligent mapping al-
gorithms when all jobs had approximately Gamma
run-time distributions. We determined from our ex-
periments that we could approximate such a distribu-
tion by truncating a Gaussian distribution to the left
of the mean at roughly pt — o. Throughout this exper-
iment, the mean, p, was the expected run-time for the
individual job/machine pair, and o? was set to 300%
of p. Therefore, these experiments are useful in de-
termining whether, when the variance is very large for
all jobs, the greedy algorithms still performed much
better than both the LBA and OLB algorithms. No
negative run-times were generated in our experiments
because the truncation value was always positive.

The results in Figure 8 show that the schedules are
finishing up to 25% later than in the previous exper-
iments. This not unexpected, as truncation will shift
the mean of the resulting distribution to the right. In
the next section we provide a theoretical discussion as
to why we would expect the times to be at least 20%
later. The results also show that the greedy algorithms
still perform better than the OLB and LBA algorithms
when job run-time distributions are truncated Gaus-
sian with very large variances. Our experiments, and
the theoretical explanation below, imply that it may
be worthwhile to update the mapping as the jobs are
being executed, to minimize the effect of the large job
variances.

Submission Sequence

500-3

5
3 4
5
13
ca H Baseline
'g é’ 5 B T-Gaussian
Tk
Z

Iba greedy fast greedy

Figure 8: Truncated Gaussian run-time distribution
results, 500-4.

3.3.3 Theoretical Explanation for Longer
Run-times shown in Gaussian Experi-
ments

To theoretically predict the new mean of the truncated
distribution described in the last section, we can use
simple Gaussian statistics [1]. Without loss of general-
ity, our explanation uses a standard Gaussian distribu-
tion with a mean of 0 and a standard deviation of 1. If
A(#1) is the area under the distribution from the mean,
z =0, to z = 71, then it can be easily shown that the
NEW Mean, fipeqy, for our truncated distribution is

(1)

P [.5 - A(l)]

2

Using this, we see that the new mean should be pi,,¢ =

200.

Unfortunately, the truncation of the Gaussian dis-
tribution only accounts for a 20% increase in the mean.
Therefore, this explanation alone leaves some 5% un-
accounted for. The remaining 5% is due to two factors.
The first can be traced to the fact that we are using a
truncated Gaussian instead of a Gamma distribution.
The second 1is the fact that the expected value of the
maximum of several Gaussian distributions is not the
maximum of the expected values. The application of
this well-known probability result to quality of service
metrics is documented elsewhere [9].

3.3.4 Comparison of the Two Greedy Al-
gorithms

We note that in our results, presented both here and
in Armstrong’s thesis, the Greedy and Fast Greedy
algorithms appeared to perform similarly. Over all of
our experiments we only saw the Greedy Algorithm
performing up to 15% better than the Fast Greedy Al-
gorithm. Other work has suggested that the improve-
ment should be much higher. However, the other work,
to our knowledge, was based upon presenting sorted
requests to these mapping algorithms. The theoretical
explanation for these results is beyond the scope of this
paper and is discussed in another paper [7].

4 Related Work

To our knowledge, no one else has studied the
performance of intelligent heterogeneous mapping
algorithms when the run-times of jobs are non-
deterministic, by using the distributions of run-times
for actual programs determined under different re-
source loadings.

Tbarra and Kim [8] were the first to study the
performance of the algorithms upon which we con-
centrated. Their analytical study centered around
determining the worst-case performance of the al-
gorithms. Weissman [15] used simulation to study
interference-based policies; that is, policies that take
into account the fact that as you increase the load on
any shared resource, the rate of execution of other jobs
decreases. Our policies, and simulations, assumed that
the jobs were executed on a first-come, first-served
basis. Although we did not study their performance
here, genetic algorithms have been proposed as a good
way to schedule tasks on heterogeneous resources, par-
ticularly when communication or synchronization is
needed between tasks [13], [14]. Many systems have
followed the lead of SmartNet [6] in implementing in-
telligent schedulers, such as those we describe here, in
their resource management systems [11], [4], [16].

5 Summary

In this paper, we experimented with several applica-
tions on resources with differing loads and fitted their
run-times to distributions. We then used these dis-
tributions to determine via simulation whether, when
the run-times are non-deterministic, it is still benefi-
cial to use intelligent algorithms that make use of the
expected run-times to compute a mapping. We found
that 1t continues to be beneficial even when the expec-
ted run-time distributions have large variances. As
the distributions in our simulations were derived from
the execution of actual programs, our distributions are
realistic. However, there are additional distributions

that are also realistic that we have not yet examined.
We intend to pursue these in future work.

References
[1] ALDER, H. L., AND ROESSLER, E. B. Introduc-
tion to Probability and Statistics, third ed. Free-
man, London, England, 1964.

[2] ArRMSTRONG, R. K. Investigation of Effect of

Different Run-time Distributions on SmartNet
Performance. Master’s thesis, U.S. Naval Post-
graduate School, September 1997.

[3] BALEY, D., ET AL. The NAS Parallel Bench-
marks 2.0. Tech. Rep. NAS-95-020, NASA Ames
Research Center, December 1995.

[4] BEGUELIN, A., ET AL. HeNCE: A User’ Guide.
Oak Ridge National Laboratory and University of
Tennessee, December 1992. The document itself
is available on the web at cs.utk.edu.

[6] CorMmEN, T. H., Leiserson, C. E., AND
RivesT, R. L. Introduction to Algorithms. The
MIT Press, Cambridge, Massachusetts, 1990.

[6] FrREUND, R., Kipp, T., HENSGEN, D., AND
Moorg, L. Smartnet: A Scheduling Frame-
work for Heterogeneous Computing. Proceedings
of the International Symposium on Parallel Ar-
chitectures, Algorithms and Networks (1996).

[7] HENSGEN, D., KipD, T., AND ARMSTRONG, R.
Comparison of greedy algorithms for scheduling

jobs in a heterogeneous environments. In pro-
gress.

[8] TBARRA, AND KiM. Heuristic Algorithms for
Scheduling Independent Tasks on Nonidentical
Processors. Journal of the ACM (1977).

[9] KipD, T., AND HENSGEN, D. Why the mean is

inadequate for accurate scheduling decisions. In
progress.

[10] Kipp, T., HENsGEN, D., FrREUND, R., Kus-
sow, M., AND CaMPBELL, M. Compute Char-

acteristics: A Useful Characterization of Job
Runtimes. In preparation for submission (1998).

[11] NEUuMAN, B. C., AND Rao, S. The Prospero Re-
source Manager: A Scalable Framework for Pro-
cessor Allocation in Distributed Systems. Con-
currency: Practice and Frperience (1994).

[12] PacHECO, P. A User’s Guide to MPI. Tech.
rep., Department of Mathematics, University of
San Francisco, March 1995.

[13] SiNGH, H., AND YOUSSEF, A. Mapping and
Scheduling Heterogeneous Task Graphs using Ge-
netic Algorithms. Proceedings of the Heterogen-
eous Computing Workshop (1996).

[14] Wana, L., SiEGeL, H. J., AND RoYCHOW-
DHURY, V. P. A Genetic-Algorithm-Based Ap-
proach for Task Matching and Scheduling in Het-
erogeneous Computing Environments. Proceed-
wngs of the Heterogeneous Computing Workshop
(1996).

[15] WEIssMaN, J. B. The Interference Paradigm for
Network Job Scheduling. Proceedings of the Het-
erogeneous Computing Workshop (1996).

[16] ZHOU, ZHENG, WANG, AND DELISLE. Utopia:
A load sharing facility for lage heterogeneous dis-
tributed computer systems. Software: Practice
and Experience (1993).

Biographies

Major Robert K. Armstrong is currently in
charge of the Modeling and Simulation Laboratory
for the Marine Corps Air Ground Combat Center,
Twentynine Palms, California. He received his BS in
Engineering from the United States Naval Academy in
1985, 1s a graduate of the Amphibious Warfare School
in Quantico, Virginia, and has earned an MS in Com-
puter Science from the Naval Postgraduate School,
Monterey, California in 1997. Major Armstrong has
served in the capacity of Artillery Officer with the
1st Marine Division in Korea, Somalia, and Kuwait.
His interests include computer architecture, distrib-
uted systems, and modeling and simulation for train-
ing.

Debra Hensgen received her Ph.D. in Computer
Science, in the area of Distributed Operating Systems
from the University of Kentucky in 1989. She is cur-
rently an Associate Professor of Computer Science at
the Naval Postgraduate School in Monterey, Califor-
nia. She moved to Monterey from the University of
Cincinnati three years ago where she was first appoin-
ted as an Assistant Professor and then a tenured Asso-
ciate Professor of Electrical and Computer Engineer-
ing. Her research interests include resource manage-
ment and allocation systems and tools for concurrent
programming. She has authored numerous papers in
these areas. She is currently a Subject Area Editor
for the Journal of Parallel and Distributed Computing
and is the chief architect and a co-Principal Investig-
ator for the DARPA-funded MSHN project which is
part of DARPA’s larger QUORUM program.

Taylor Kidd is an Associate Professor of Com-
puter Science at the Naval Postgraduate School (NPS)
in Monterey, California. He received his Ph.D. in Elec-
trical and Computer Engineering from the University
of California at San Diego (UCSD) in 1991. He re-
ceived his MS and BS, also in Electrical and Computer

Engineering, from UCSD in 1986 and 1985 respect-
ively. Prior to accepting a position at the NPS, he was
a researcher at the Navy’s NRaD laboratory in San
Diego, California. His current interests include dis-
tributed computing and the application of stochastic
filtering and estimation theory to distributed systems.
He is a co-Principal Investigator, along with Debra
Hensgen, for the DARPA-funded MSHN project which
is part of DARPA’s larger QUORUM program.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

