
Calhoun: The NPS Institutional Archive

Center for Information Systems Security Studies and Research (CISR)Faculty and Researcher Publications

1999-06

Dynamic Mapping of a Class of

Independent Tasks onto Heterogeneous

Computing Systems

Maheswaran, Muthucumaru

http://hdl.handle.net/10945/35384

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36727971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dynamic Mapping of a Class of Independent Tasks
onto Heterogeneous Computing Systems

Muthucumaru Maheswaran‡, Shoukat Ali†, Howard Jay Siegel†,
Debra Hensgen�, and Richard F. Freund�

‡Department of Computer Science †Purdue University
University of Manitoba School of Electrical and Computer Engineering

Winnipeg, MB R3T 2N2 Canada West Lafayette, IN 47907-1285 USA
Email: maheswar@cs.umanitoba.ca Email: �alis,hj�@ecn.purdue.edu

�Department of Computer Science �NOEMIX Inc.
Naval Postgraduate School 1425 Russ Blvd. Ste. T-110
Monterey, CA 93940 USA San Diego, CA 92101 USA

Email: hensgen@cs.nps.navy.mil Email: noemix@home.com

June 1999

Accepted to the Journal of Parallel and Distributed Computing
Special Issue on Software Support for Distributed Computing

This research was supported by the DARPA/ITO Quorum Program under the NPS subcontract numbers N62271-97-M-0900,
N62271-98-M-0217, and N62271-98-M-0448, and under the GSA subcontract number GS09K99BH0250. Some of the equip-
ment used was donated by Intel and Microsoft.

Dynamic Mapping of a Class of Independent Tasks onto Heterogeneous...

Corresponding Author:

Shoukat Ali
Mailbox 64
1285 School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907-1285 USA
Phone: 765 494 3750
Fax: 765 494 2706
Email: alis@ecn.purdue.edu

Abstract

Dynamic mapping (matching and scheduling) heuristics for a class of independent tasks using hetero-
geneous distributed computing systems are studied. Two types of mapping heuristics are considered: im-
mediate mode and batch mode heuristics. Three new heuristics, one for batch mode and two for immediate
mode, are introduced as part of this research. Simulation studies are performed to compare these heuristics
with some existing ones. In total, five immediate mode heuristics and three batch mode heuristics are ex-
amined. The immediate mode dynamic heuristics consider, to varying degrees and in different ways, task
affinity for different machines and machine ready times. The batch mode dynamic heuristics consider these
factors, as well as aging of tasks waiting to execute. The simulation results reveal that the choice of which
dynamic mapping heuristic to use in a given heterogeneous environment depends on parameters such as: (a)
the structure of the heterogeneity among tasks and machines, and (b) the arrival rate of the tasks.

Keywords: batch mode mapping, dynamic mapping, mapping heuristics, meta-task mapping,
immediate mode mapping.

1. Introduction

In general, heterogeneous computing (HC) is the coordinated use of different types of machines, net-

works, and interfaces to maximize their combined performance and/or cost-effectiveness [6, 9, 18]. HC is

an important technique for efficiently solving collections of computationally intensive problems [7]. As ma-

chine architectures become more advanced to obtain higher peak performance, the extent to which a given

task can exploit a given architectural feature depends on how well the task’s computational requirements

match the machine’s advanced capabilities. The applicability and strength of HC systems are derived from

their ability to match computing needs to appropriate resources. HC systems have resource management

systems (RMSs) to govern the execution of the tasks that arrive for service. This paper describes and com-

pares eight heuristics that can be used in such an RMS for dynamically assigning independent tasks to

machines.

In a general HC system, schemes are necessary to assign tasks to machines (matching), and to compute

the execution order of the tasks assigned to each machine (scheduling) [3]. The process of matching and

scheduling tasks is referred to as mapping. Dynamic methods to do this operate on-line, i.e., as tasks arrive.

This is in contrast to static techniques, where the complete set of tasks to be mapped is known a priori,

the mapping is done off-line, i.e., prior to the execution of any of the tasks, and more time is available to

compute the mapping (e.g., [4, 27].

In the HC environment considered here, the tasks are assumed to be independent, i.e., no

communications between the tasks are needed. This scenario is likely to be present, for instance, when

many independent users submit their jobs to a collection of shared computational resources. A dynamic

scheme is needed because the arrival times of the tasks may be random and some machines in the suite may

1

go off-line and new machines may come on-line. The dynamic mapping heuristics investigated in this study

are non-preemptive, and assume that the tasks have no deadlines or priorities associated with them.

The mapping heuristics can be grouped into two categories: immediate mode and batch mode heuristics.

In the immediate mode, a task is mapped onto a machine as soon as it arrives at the mapper. In the batch

mode, tasks are not mapped onto the machines as they arrive; instead they are collected into a set that is

examined for mapping at prescheduled times called mapping events. The independent set of tasks that is

considered for mapping at the mapping events is called a meta-task. A meta-task can include newly arrived

tasks (i.e., the ones arriving after the last mapping event) and the ones that were mapped in earlier mapping

events but did not begin execution. While immediate mode heuristics consider a task for mapping only once,

batch mode heuristics consider a task for mapping at each mapping event until the task begins execution.

The trade-offs among and between immediate mode and batch mode heuristics are studied experimen-

tally. Mapping independent tasks onto an HC suite is a well-known NP-complete problem if throughput

is the optimization criterion [12]. For the heuristics discussed in this paper, maximization of throughput is

the primary objective, because this performance measure is the most common one in production oriented

environments.

Three new heuristics, one for batch mode and two for immediate mode, are introduced as part of this

research. Simulation studies are performed to compare these heuristics with some existing ones. In total, five

immediate mode heuristics and three batch mode heuristics are examined. The immediate mode heuristics

consider, to varying degrees and in different ways, task affinity for different machines and machine ready

times. The batch mode heuristics consider these factors, as well as aging of tasks waiting to execute.

Section 2 describes some related work. Section 3 defines an optimization criterion and discusses the

mapping approaches studied here. The simulation procedure is given in Section 4. Section 5 presents the

2

simulation results.

This research is part of a DARPA/ITO Quorum Program project called MSHN (pronounced “mission”)

(Management System for Heterogeneous Networks) [11]. MSHN is a collaborative research effort that in-

cludes the Naval Postgraduate School, NOEMIX, Purdue, and University of Southern California. It builds

on SmartNet, an implemented scheduling framework and system for managing resources in an HC environ-

ment developed at NRaD [8]. The technical objective of the MSHN project is to design, prototype, and refine

a distributed resource management system that leverages the heterogeneity of resources and tasks to deliver

the requested qualities of service. The heuristics developed here, or their derivatives, may be included in the

Scheduling Advisor component of the MSHN prototype.

2. Related Work

Related work in literature was examined to select a set of heuristics appropriate for the HC environment

considered here, and then perform comparative studies. This section is a sampling of related literature, and

is not meant to be exhaustive.

In the literature, mapping tasks onto machines is often referred to as scheduling. Several researchers

have worked on the dynamic mapping problem from areas including job shop scheduling and distributed

computer systems (e.g., [13, 16, 23, 25]).

The heuristics presented in [12] are concerned with mapping independent tasks onto heterogeneous

machines such that the completion time of the last finishing task is minimized. The problem is recognized

as NP-complete, and worst case performance bounds are obtained for the heuristics. Some of these heuristics

are designed for a general HC environment, while the rest target either a heterogeneous two machine system

or a general homogeneous system. Of the heuristics designed for a general HC environment, the A-schedule,

3

B-schedule, and C-schedule heuristics are variations of the minimum completion time heuristic used here.

The Min-min heuristic that is used here as a benchmark for batch mode mapping is based on the D-schedule,

and is also one of the heuristics implemented in SmartNet [8].

The scheme in [13] is representative of techniques for mapping communicating subtasks to an HC suite,

considering data dependency graphs and communication times between machines. Thus, an environment

very different than the set of independent tasks considered here is used. Hence, the heuristics developed for

that different environment are not appropriate for the HC environment considered here.

Two dynamic mapping approaches, one using a distributed policy and the other using a centralized

policy, are developed in [16]. Both of these approaches are very similar to the minimum completion time

heuristic (used as a benchmark in the studies here) except that they incorporate communication times in

calculating the minimum completion time for a task. For the distributed approach, the mapper at a given node

considers the local machine and the k highest communication bandwidth neighbors to map the tasks in the

local queue. Therefore, the mapper based on the distributed strategy assigns a task to the best machine among

the k�1 machines. The simulation results provided in [16] show that the heuristic with the centralized policy

always performs better than the distributed heuristic. Hence, the minimum completion time heuristic used

here represents the better of the two heuristics presented in [16].

A survey of dynamic scheduling heuristics for job-shop environments is provided in [25]. It classifies the

dynamic scheduling algorithms into three approaches: knowledge-based approach, conventional approach,

and distributed problem solving approach. The heuristics with a knowledge-based approach take a long time

to execute, and hence are not suitable for the particular dynamic environment considered here. The classes

of heuristics grouped under the conventional and distributed problem solving approaches are similar to the

minimum completion time heuristic considered in this paper. However, the problem domains considered

4

in [25] involve precedence constraints among the tasks, priorities, or deadlines, and thus differ from the

domain here.

In distributed computer systems, load balancing schemes have been a popular strategy for mapping tasks

onto machines (e.g., [19, 23]). In [19], the performance characteristics of simple load balancing heuristics

for HC distributed systems are studied. The heuristics presented in [19] do not consider task execution times

when making their decisions. In [23], a survey of dynamic scheduling heuristics for distributed computing

systems is provided. All heuristics, except one, in [23] schedule tasks on different machines using load

sharing techniques, without considering task execution times. (The one heuristic in [23] that does not use

load sharing, employs deadlines to schedule tasks, and therefore falls out of the problem domain discussed

here.) The load balancing heuristic used in this research is representative of the load balancing techniques

in [19] and [23].

SmartNet [8] is an RMS for HC systems that employs various heuristics to map tasks to machines

considering resource and task heterogeneity. In this paper, some SmartNet heuristics appropriate for the HC

environment considered here are included in the comparative study (minimum completion time, Min-min,

and Max-min).

3. Mapping Heuristics

3.1. Overview

The expected execution time ei j of task ti on machine mj is defined as the amount of time taken by mj

to execute ti given mj has no load when ti is assigned. The time ei j includes the time to move the ti code and

data from each of their corresponding single fixed sources to machine mj. The expected completion time

ci j of task ti on machine mj is defined as the wall-clock time at which mj completes ti (after having finished

5

any previously assigned tasks). Let m be the total number of machines in the HC suite. Let K be the set

containing the tasks that will be used in a given test set for evaluating heuristics in the study. Let the arrival

time of the task ti be ai, and let the time ti begins execution be bi. From the above definitions, ci j � bi� ei j.

Let ci be the completion time for task ti, and is equal to ci j where machine mj is assigned to execute task ti.

The makespan [21] for the complete schedule is then defined as maxti�K�ci�. Makespan is a measure of the

throughput of the HC system, and does not measure the quality of service imparted to an individual task.

One other performance metric is considered in [17].

In the immediate mode heuristics, each task is considered only once for matching and scheduling, i.e.,

the mapping is not changed once it is computed. When the arrival rate is low enough, machines may be

ready to execute a task as soon as it arrives at the mapper. Therefore, it may be beneficial to use the mapper

in the immediate mode so that a task need not wait until the next mapping event to begin its execution.

Recall from Section 1, in immediate mode the mapper assigns a task to a machine as soon as the task

arrives at the mapper, and in batch mode a set of independent tasks that needs to be mapped at a mapping

event is called a meta-task. (In some systems, the term meta-task is defined in a way that allows inter-task

dependencies.) In batch mode, for the i-th mapping event, the meta-taskMi is mapped at time τi, where i� 0.

The initial meta-task,M0, consists of all the tasks that arrived prior to time τ0, i.e.,M0 � �t j � a j � τ0�. The

meta-task, Mk, for k � 0, consists of tasks that arrived after the last mapping event and the tasks that had

been mapped, but did not start executing, i.e.,Mk � �t j � τk�1 � a j � τk���t j � a j � τk�1�b j � τk�.

In batch mode, the mapper considers a meta-task for matching and scheduling at each mapping event.

This enables the mapping heuristics to possibly make better decisions than immediate mode heuristics. This

is because the batch mode heuristics have the resource requirement information for a whole meta-task, and

know about the actual execution times of a larger number of tasks (as more tasks might complete while

6

waiting for the mapping event). When the task arrival rate is high, there will be a sufficient number of tasks

to keep the machines busy in between the mapping events, and while a mapping is being computed. (It

is, however, assumed in this study that the running time of each mapping heuristic is negligibly small as

compared to the average task execution time.)

Both immediate mode and batch mode heuristics assume that estimates of expected task execution times

on each machine in the HC suite are known. The assumption that these estimated expected times are known

is commonly made when studying mapping heuristics for HC systems (e.g., [10, 15, 24]). (Approaches for

doing this estimation based on task profiling and analytical benchmarking are discussed in [18].) These

estimates can be supplied before a task is submitted for execution, or at the time it is submitted.

The ready time of a machine is the earliest wall clock time that machine is going to be ready after

completing the execution of the tasks that are currently assigned to it. Because the heuristics presented here

are dynamic, the expected machine ready times are based on a combination of actual task execution times

(for tasks that have completed execution on that machine) and estimated expected task execution times (for

tasks assigned to that machine and waiting to execute). It is assumed that each time a task t i completes on a

machinemj a report is sent to the mapper, and the ready time form j is updated if necessary. The experiments

presented in Section 5 model this situation using simulated actual values for the execution times of the tasks

that have already finished their execution.

All heuristics examined here operate in a centralized fashion and map tasks onto a dedicated suite of

machines; i.e., the mapper controls the execution of all jobs on all machines in the suite. It is assumed that

each mapping heuristic is being run on a separate machine. (While all heuristics studied here are functioning

dynamically, the use of some of these heuristics in a static environment is discussed in [4].)

7

3.2. Immediate mode mapping heuristics

Five immediate mode heuristics are described here. These are (i) minimum completion time, (ii) min-

imum execution time, (iii) switching algorithm, (iv) k-percent best, and (v) opportunistic load balancing.

Of these five heuristics, switching algorithm and k-percent best have been proposed as part of the research

presented here.

The minimum completion time (MCT) heuristic assigns each task to the machine that results in that task’s

earliest completion time. This causes some tasks to be assigned to machines that do not have the minimum

execution time for them. The MCT heuristic is a variant of the fast-greedy heuristic from SmartNet [8]. The

MCT heuristic is used as a benchmark for the immediate mode, i.e., the performance of the other heuristics is

compared against that of the MCT heuristic. As a task arrives, all the machines in the HC suite are examined

to determine the machine that gives the earliest completion time for the task. Therefore, it takes O�m� time

to map a given task.

The minimum execution time (MET) heuristic assigns each task to the machine that performs that task’s

computation in the least amount of execution time (this heuristic is also known as limited best assignment

(LBA) [1] and user directed assignment (UDA) [8]). This heuristic, in contrast to MCT, does not consider

machine ready times. This heuristic can cause a severe imbalance in load across the machines. The ad-

vantages of this method are that it gives each task to the machine that performs it in the least amount of

execution time, and the heuristic is very simple. The heuristic needs O�m� time to find the machine that has

the minimum execution time for a task.

The switching algorithm (SA) is motivated by the following observations. The MET heuristic can po-

tentially create load imbalance across machines by assigning many more tasks to some machines than to

8

others, whereas the MCT heuristic tries to balance the load by assigning tasks for earliest completion time.

If the tasks are arriving in a random mix, it is possible to use the MET at the expense of load balance until

a given threshold and then use the MCT to smooth the load across the machines. The SA heuristic uses the

MCT and MET heuristics in a cyclic fashion depending on the load distribution across the machines. The

purpose is to have a heuristic with the desirable properties of both the MCT and the MET.

Let the maximum (latest) ready time over all machines in the suite be rmax, and the minimum (earliest)

ready time be rmin. Then, the load balance index across the machines is given by π � rmin�rmax. The

parameter π can have any value in the interval �0�1�. If π is 1.0, then the load is evenly balanced across the

machines. If π is 0, then at least one machine has not yet been assigned a task. Two threshold values, π l

(low) and πh (high), for the ratio π are chosen in �0�1� such that πl � πh. Initially, the value of π is set to

0.0. The SA heuristic begins mapping tasks using the MCT heuristic until the value of load balance index

increases to at least πh. After that point in time, the SA heuristic begins using the MET heuristic to perform

task mapping. This typically causes the load balance index to decrease. When it decreases to π l or less, the

SA heuristic switches back to using the MCT heuristic for mapping the tasks and the cycle continues.

As an example of the functioning of the SA with lower and upper limits of 0.6 and 0.9, respectively, for

� K �� 1000 and one particular rate of arrival of tasks, the SA switched between the MET and the MCT two

times (i.e., from the MCT to the MET to the MCT), assigning 715 tasks using the MCT. For �K �� 2000 and

the same task arrival rate, the SA switched five times, using the MCT to assign 1080 tasks. The percentage

of tasks assigned using MCT gets progressively smaller for larger � K �. This is because the larger the � K �,

the larger the number of tasks waiting to execute on a given machine, and therefore, the larger the ready

time of a given machine. This in turn means that an arriving task’s execution time will impact the machine

ready time less, thereby rendering the load balance index less sensitive to a load-imbalancing assignment.

9

At each task’s arrival, the SA heuristic determines the load balance index. In the worst case, this takes

O�m� time. In the next step, the time taken to assign a task to a machine is of order O�m� whether SA uses

the MET to perform the mapping or the MCT. Overall, the SA heuristic takes O�m� time irrespective of

which heuristic is actually used for mapping the task.

The k-percent best (KPB) heuristic considers only a subset of machines while mapping a task. The

subset is formed by picking the m� �k�100� best machines based on the execution times for the task, where

100�m� k� 100. The task is assigned to a machine that provides the earliest completion time in the subset.

If k� 100, then the KPB heuristic is reduced to the MCT heuristic. If k � 100�m, then the KPB heuristic is

reduced to the MET heuristic. A “good” value of k maps a task to a machine only within a subset formed

from computationally superior machines. The purpose is not as much as matching of the current task to

a computationally well-matched machine as it is to avoid putting the current task onto a machine which

might be more suitable for some yet-to-arrive tasks. This “foresight” about task heterogeneity is missing

in the MCT, which might assign a task to a poorly matched machine for a local marginal improvement in

completion time, possibly depriving some subsequently arriving better matched tasks of that machine, and

eventually leading to a larger makespan as compared to the KPB. It should be noted that while both the KPB

and SA combine elements of the MCT and the MET in their operation, it is only in the KPB that each task

assignment attempts to optimize objectives of the MCT and the MET simultaneously. However, in cases

where a fixed subset of machines is not among the k% best for any of the tasks, the KPB will cause more

machine idle time compared to the MCT, and can result in much poorer performance. Thus the relative

performance of the KPB and the MCT may depend on the HC suite of machines, and characteristics of the

tasks being executed.

For each task, O�m logm� time is spent in ranking the machines for determining the subset of machines

10

Table 1: Initial ready times of the machines (arbitrary units).

m0 m1 m2
75 110 200

to examine. Once the subset of machines is determined, it takes O�m�k100 � time, i.e., O�m� time to determine

the machine assignment. Overall the KPB heuristic takes O�m logm� time.

The opportunistic load balancing (OLB) heuristic assigns a task to the machine that becomes ready

next, without considering the execution time of the task onto that machine. If multiple machines become

ready at the same time, then one machine is arbitrarily chosen. The complexity of the OLB heuristic is

dependent on the implementation. In the implementation considered here, the mapper may need to examine

allmmachines to find the machine that becomes ready next. Therefore, it takesO�m� to find the assignment.

Other implementations may require idle machines to assign tasks to themselves by accessing a shared global

queue of tasks [26].

As an example of the working of these heuristics, consider a simple system of three machines, m0, m1,

and m2, currently loaded so that expected ready times are as given in Table 1. Consider the performance

of the heuristics for a very simple case of three tasks t0, t1, and t2 arriving in that order. Table 2 shows the

expected execution times of tasks on the machines in the system. All time values in the discussion below

are the expected values.

The MET finds that all tasks have their minimum completion time on m2, and even though m2 is already

heavily loaded, it assigns all three tasks to m2. The time when t0, t1, and t2 will all have completed is 245

units.

The OLB assigns t0 to m0 because m0 is expected to be idle soonest. Similarly, it assigns t1 and t2 to m1

11

Table 2: Expected execution times (arbitrary units).

m0 m1 m2
t0 50 20 15
t1 20 60 15
t2 20 50 15

and m0, respectively. The time when t0, t1, and t2 will all have completed is 170 units.

The MCT determines that the minimum completion time for t0 will be achieved on m0, and makes this

assignment, even though the execution time of t0 on m0 is more than twice that on m1 (where the completion

time would have been only slightly larger). Then MCT goes on to assign t1 to m0, and t2 to m1 so that the

time when t0, t1, and t2 will all have completed is 160 units.

The SA first determines the current value of the load balance index, π, which is 75�200 or 0�38. Assume

that πl is 0�40 and that πh is 0�70. Because π � πl, the SA chooses the MCT to make the first assignment.

After the first assignment, π � 110�200� 0�55� πh. So the SA continues to use the MCT for the second

assignment as well. It is only after third assignment that π� 145�200� 0�725� πh so that the SA will then

use the MET for the fourth arriving task. The time when t0, t1, and t2 will all have completed here is the

same as that for the MCT.

Let the value of k in the KPB be 67% so that the KPB will choose from the two fastest executing

machines to assign a given task. For t0, these machines are m1 and m2. Within these two machines, the

minimum completion time is achieved on m1 so t0 is assigned to m1. This is the major difference from the

working of the MCT; m0 is not assigned t0 even though t0 would have its minimum completion time (over

all machines) there. This step saves m0 for any yet-to-arrive tasks that may run slowly on other machines.

One such task is t2; in the MCT it is assigned to m1, but in the KPB it is assigned to m0. The time when t0,

12

t1, and t2 will all have completed using the KPB is 130 units. This is the smallest among all five heuristics.

3.3. Batch mode mapping heuristics

Three batch mode heuristics are described here: (i) the Min-min heuristic, (ii) the Max-min heuristic,

and (iii) the Sufferage heuristic. The Sufferage heuristic has been proposed as part of the research presented

here. In the batch mode heuristics, meta-tasks are mapped after predefined intervals. These intervals are

defined in this study using one of the two strategies proposed below.

The regular time interval strategy maps the meta-tasks at regular intervals of time (e.g., every ten

seconds). The only occasion when such a mapping will be redundant is when: (1) no new tasks have

arrived since the last mapping, and (2) no tasks have finished executing since the last mapping (thus, ma-

chine ready times are unchanged). These conditions can be checked for, and so redundant mapping events

can be avoided.

The fixed count strategy maps a meta-task Mi as soon as one of the following two mutually exclusive

conditions are met: (a) an arriving task makes �Mi � larger than or equal to a predetermined arbitrary number

κ, or (b) all tasks in the set � K � have arrived, and a task completes while the number of tasks which yet

have to begin is larger than or equal to κ. In this strategy, the time between the mapping events will depend

on the arrival rate and the completion rate. The possibility of machines being idle while waiting for the

next mapping event will depend on the arrival rate, completion rate, m, and κ. (For the arrival rates in the

experiments here, this strategy operates reasonably; in an actual system, it may be necessary for tasks to

have a maximum waiting time to be mapped.)

The batch mode heuristics considered in this study are discussed in the paragraphs below. The com-

plexity analysis performed for these heuristics considers a single mapping event, and the meta-task size is

13

assumed to be equal to the average of meta-task sizes at all actually performed mapping events. Let the

average meta-task size be S.

The Min-min heuristic shown in Figure 1 is from [12], and is one of the heuristics implemented in

SmartNet [8]. In Figure 1, let r j denote the expected time machine mj will become ready to execute a task

after finishing the execution of all tasks assigned to it at that point in time. First the ci j entries are computed

using the ei j and r j values. For each task ti, the machine that gives the earliest expected completion time is

determined by scanning the i-th row of the c matrix (composed of the ci j values). The task tk that has the

minimum earliest expected completion time is determined and then assigned to the corresponding machine.

The matrix c and vector r are updated and the above process is repeated with tasks that have not yet been

assigned a machine.

Min-min begins by scheduling the tasks that change the expected machine ready time status by the

least amount. If tasks ti and tk are contending for a particular machine mj, then Min-min assigns m j to

the task (say ti) that will change the ready time of mj less. This increases the probability that tk will still

have its earliest completion time on m j, and shall be assigned to it. Because at t � 0, the machine which

finishes a task earliest is also the one that executes it fastest, and from thereon Min-min heuristic changes

machine ready time status by the least amount for every assignment, the percentage of tasks assigned their

first choice (on basis of expected execution time) is likely to be higher in Min-min than with the other batch

mode heuristics described in this section (this has been verified by examining the simulation study data

[17]). The expectation is that a smaller makespan can be obtained if a larger number of tasks is assigned to

the machines that not only complete them earliest but also execute them fastest.

The initialization of the c matrix in Line (1) to Line (3) of Figure 1 takes O�Sm� time. The do loop of

the Min-min heuristic is repeated S times and each iteration takes O�Sm� time. Therefore, the heuristic takes

14

(1) for all tasks ti in meta-task Mv (in an arbitrary order)
(2) for all machines mj (in a fixed arbitrary order)
(3) ci j � ei j� r j
(4) do until all tasks in Mv are mapped
(5) for each task in Mv find the earliest completion

time and the machine that obtains it
(6) find the task tk with the minimum earliest

completion time
(7) assign task tk to the machine ml that gives the
(8) earliest completion time
(9) delete task tk from Mv

(10) update rl
(11) update cil for all i
(12)enddo

Figure 1: The Min-min heuristic.

O�S2m� time.

The Max-min heuristic is similar to the Min-min heuristic, and is one of the heuristics implemented

in SmartNet [8]. It differs from the Min-min heuristic (given in Figure 1) in that once the machine that

provides the earliest completion time is found for every task, the task tk that has the maximum earliest

completion time is determined and then assigned to the corresponding machine. That is, in Line (6) of

Figure 1, “minimum” would be changed to “maximum.” The Max-min heuristic has the same complexity

as the Min-min heuristic.

TheMax-min is likely to do better than the Min-min heuristic in cases where there are manymore shorter

tasks than longer tasks. For example, if there is only one long task, Max-min will execute many short tasks

concurrently with the long task. The resulting makespan might just be determined by the execution time

of the long task in this case. Min-min, however, first finishes the shorter tasks (which may be more or less

evenly distributed over the machines) and then executes the long task, increasing the makespan compared to

15

the Max-min.

The Sufferage heuristic (shown in Figure 2) is based on the idea that better mappings can be generated

by assigning a machine to a task that would “suffer” most in terms of expected completion time if that

particular machine is not assigned to it. Let the sufferage value of a task ti be the difference between its

second earliest completion time (on some machine my) and its earliest completion time (on some machine

mx). That is, using mx will result in the best completion time for ti, and using my the second best.

(1) for all tasks tk in meta-task Mv (in an arbitrary order)
(2) for all machines mj (in a fixed arbitrary order)
(3) ck j � ek j� r j
(4) do until all tasks in Mv are mapped
(5) mark all machines as unassigned
(6) for each task tk in Mv (in a fixed arbitrary order)

/* for a given execution of the for statement,
each tk in Mv is considered only once */

(7) find machine mj that gives the earliest
completion time

(8) sufferage value � second earliest completion
time � earliest completion time

(9) if machine mj is unassigned
(10) assign tk to machine mj, delete tk

from Mv, mark mj assigned
(11) else
(12) if sufferage value of task ti already

assigned to mj is less than the
sufferage value of task tk

(13) unassign ti, add ti back to Mv,
assign tk to machine mj,
delete tk from Mv

(14) endfor
(15) update the vector r based on the tasks that

were assigned to the machines
(16) update the c matrix
(17)enddo

Figure 2: The Sufferage heuristic.

16

The initialization phase in Lines (1) to (3), in Figure 2, is similar to the ones in the Min-min and Max-

min heuristics. Initially all machines are marked unassigned. In each iteration of the for loop in Lines (6)

to (14), pick arbitrarily a task tk from the meta-task. Find the machine mj that gives the earliest completion

time for task tk, and tentatively assign mj to tk if mj is unassigned. Mark mj as assigned, and remove tk

from meta-task. If, however, machine mj has been previously assigned to a task ti, choose from ti and tk the

task that has the higher sufferage value, assign mj to the chosen task, and remove the chosen task from the

meta-task. The unchosen task will not be considered again for this execution of the for statement, but shall

be considered for the next iteration of the do loop beginning on Line (4). When all the iterations of the for

loop are completed (i.e., when one execution of the for statement is completed), update the machine ready

time of each machine that is assigned a new task. Perform the next iteration of the do loop beginning on

Line (4) until all tasks have been mapped.

Table 3 shows a scenario in which the Sufferage will outperform the Min-min. Table 3 shows the

expected execution time values for four tasks on four machines (all initially idle). In this case, the Min-

min heuristic gives a makespan of 93 and the Sufferage heuristic gives a makespan of 78. Figure 3 gives a

pictorial representation of the assignments made for the case in Table 3.

From the pseudo code given in Figure 2, it can be observed that first execution of the for statement on

Line (6) takes O�Sm� time. The number of task assignments made in one execution of this for statement

depends on the total number of machines in the HC suite, the number of machines that are being contended

for among different tasks, and the number of tasks in the meta-task being mapped. In the worst case, only

one task assignment will be made in each execution of the for statement. Then meta-task size will decrease

by one at each for statement execution. The outer do loop will be iterated S times to map the whole meta-

17

task. Therefore, in the worst case, the time T �S� taken to map a meta-task of size S will be

T �S� � Sm��S�1�m��S�2�m� � � ��m

T �S� � O�S2m�

In the best case, there are as many machines as there are tasks in the meta-task, and there is no contention

among the tasks. Then all the tasks are assigned in the first execution of the for statement so that T �S� �

O�Sm�. Let ω be a number quantifying the extent of contention among the tasks for the different machines.

The complexity of the Sufferage heuristic can then be given as O�ωSm�, where 1 � ω � S. It can be seen

that ω is equal to S in the worst case, and is 1 in the best case; these values of ω are numerically equal to the

number of iterations of the do loop on Line (4), for the worst and the best case, respectively.

Table 3: An example expected execution time matrix that illustrates the situation where the Sufferage
heuristic outperforms the Min-min heuristic.

m0 m1 m2 m3
t0 40 48 134 50
t1 50 82 88 89
t2 55 68 94 93
t3 52 60 78 108

The batch mode heuristics can cause some tasks to be starved of machines. Let Hi be a subset of meta-

task Mi consisting of tasks that were mapped (as part of Mi) at the mapping event i at time τi but did not

begin execution by the next mapping event at τi�1. Hi is the subset of Mi that is included in Mi�1. Due to

the expected heterogeneous nature of the tasks, the meta-task Mi�1 may be mapped so that some or all of

the tasks arriving between τi and τi�1 may begin executing before the tasks in set Hi do. It is possible that

some or all of the tasks in Hi may be included in Hi�1. This probability increases as the number of new

18

tasks arriving between τi and τi�1 increases. In general, some tasks may be remapped at each successive

mapping event without actually beginning execution (i.e., the task is starving for a machine). This impacts

the response time the user sees (this is examined as a “sharing penalty” in [17]).

0
0

t
 o

n
m t

 o
n

m
3

1
t

 o
n

m
2

1
t

 o
n

m
2

3

t
 o

n
m

3
0 t

 o
n

m
0

1
t

 o
n

m
2

1
t

 o
n

m
3

2

using Sufferageusing Min-min

Figure 3: An example scenario (based on Table 3) where the Sufferage gives a shorter makespan than
the Min-min (bar heights are proportional to task execution times).

To reduce starvation, aging schemes are implemented. The age of a task is set to zero when it is mapped

for the first time and incremented by one each time the task is remapped. Let σ be a constant that can be

adjusted empirically to change the extent to which aging affects the operation of the heuristic. An aging

factor, ζ � �1� age�σ�, is then computed for each task. For the experiments in this study, σ is arbitrarily

set to 10 (e.g., in this case the aging factor for a task increases by one after every ten remappings of the

task). The aging factor is used to enhance the probability of an “older” task beginning before the tasks

that would otherwise begin first. In the Min-min heuristic, for each task, the completion time obtained in

Line (5) of Figure 1 is multiplied by the corresponding value for 1ζ . As the age of a task increases, its age-

19

compensated expected completion time (i.e., one used to determine the mapping) gets increasingly smaller

than its original expected completion time. This increases its probability of being selected in Line (6) in

Figure 1.

For the Max-min heuristic, the completion time of a task is multiplied by ζ. In the Sufferage heuristic,

the sufferage value computed in Line (8) in Figure 2 is multiplied by ζ.

4. Simulation Procedure

The mappings are simulated using a discrete event simulator (e.g., [5, 14, 22]). The task arrivals are

modeled by a Poisson random process. The simulator contains an ETC (expected time to compute) matrix

that contains the expected execution times of a task on all machines, for all the tasks that can arrive for

service. The ETC matrix entries used in the simulation studies represent the ei j values (in seconds) that the

heuristic would use in its operation. The actual execution time of a task can be different than the value given

by the ETC matrix. This variation is modeled by generating a simulated actual execution time for each

task by sampling a Gaussian probability density function with variance equal to three times the expected

execution time of the task and mean equal to the expected execution time of the task (e.g., [2, 20]). If the

sampling results in a negative value, the value is discarded and the same probability density function is

sampled again (i.e., a truncated Gaussian distribution is sampled). This process is repeated until a positive

value is returned by the sampling process.

In an ETC matrix, the numbers along a row indicate the estimated expected execution times of the

corresponding task on different machines. The average variation along the rows is referred to as the machine

heterogeneity [2]. Similarly, the numbers along a column of the ETC matrix indicate the estimated expected

execution times of the machine for different tasks. The average variation along the columns is referred to as

20

the task heterogeneity [2]. One classification of heterogeneity is to divide it into high heterogeneity and low

heterogeneity. Based on the above idea, four categories were proposed for the ETC matrix in [2]: (a) high

task heterogeneity and high machine heterogeneity (HiHi), (b) high task heterogeneity and low machine

heterogeneity (HiLo), (c) low task heterogeneity and high machine heterogeneity (LoHi), and (d) low task

heterogeneity and low machine heterogeneity (LoLo).

The ETC matrix can be further classified into two classes, consistent and inconsistent [2], which are

orthogonal to the previous classifications. For a consistent ETC matrix, if machine mx has a lower execution

time than machine my for task tk, then the same is true for any task ti. The ETC matrices that are not consis-

tent are inconsistent ETC matrices. Inconsistent ETC matrices occur in practice when: (1) there is a variety

of different machine architectures in the HC suite (e.g., parallel machines, superscalars, workstations), and

(2) there is a variety of different computational needs among the tasks (e.g., readily parallelizable tasks,

difficult to parallelize tasks, tasks that are floating point intensive, simple text formatting tasks). Thus, the

way in which a task’s needs correspond to a machine’s capabilities may differ for each possible pairing of

tasks to machines.

As a subclass of inconsistent ETC matrices, a semi-consistent class could also be defined. A semi-

consistent ETC matrix is characterized by a consistent sub-matrix. In the semi-consistent ETC matrices used

here, 50% of the tasks and 25% of the machines define a consistent sub-matrix. Furthermore, it is assumed

that for a particular task the execution times that fall within the consistent sub-matrix are smaller than those

that fall out. This assumption is justified because one way for some machines to perform consistently for

some tasks is to be very much faster for those tasks than the other machines.

Let an ETC matrix have tmax rows and mmax columns. Random ETC matrices that belong to the different

categories are generated in the following manner:

21

1. Let Γt be an arbitrary constant quantifying task heterogeneity, being smaller for low task heterogeneity.

Let Nt be a number picked from the uniform random distribution with range [1�Γt].

2. Let Γm be an arbitrary constant quantifying machine heterogeneity, being smaller for low machine

heterogeneity. Let Nm be a number picked from the uniform random distribution with range [1�Γm].

3. Sample Nt tmax times to get a vector q�0���tmax�1��.

4. Generate the ETC matrix, e�0���tmax�1��0���mmax�1�� by the following algorithm:

for ti from 0 to (tmax�1)

for mj from 0 to (mmax�1)

pick a new value for Nm

e[i, j] = q[i] * Nm

endfor

endfor

From the raw ETC matrix generated above, a semi-consistent matrix could be generated by sorting the

execution times across a random subset of the machines for each task in a random subset of tasks. An

inconsistent ETC matrix could be obtained simply by leaving the raw ETC matrix as such. Consistent ETC

matrices were not considered in this study because they are least likely to arise in the current intended

MSHN environment.

In the experiments described here, the values of Γt for low and high task heterogeneities are 1000 and

3000, respectively. The values of Γm for low and high machine heterogeneities are 10 and 100, respectively.

These heterogeneous ranges are based on one type of expected environment for MSHN.

22

5. Experimental Results and Discussion

5.1. Overview

The experimental evaluation of the heuristics is performed in three parts. In the first part, the immediate

mode heuristics are compared using various metrics. The second part involves a comparison of the batch

mode heuristics. The third part is the comparison of the batch mode and the immediate mode heuristics.

Unless stated otherwise, the following are valid for the experiments described here. The number of machines

is held constant at 20, and the experiments are performed for � K � � �1000� 2000�. All heuristics are

evaluated in a HiHi heterogeneity environment, both for the inconsistent and the semi-consistent cases,

because these correspond to some of the currently expected MSHN environments.

For each value of � K �, tasks are mapped under two different Poisson arrival rates, λh and λl, such

that λh � λl. The value of λh is chosen empirically to be high enough to allow at most 50% tasks to have

completed when the last task in the set arrives. That is, for λh, when at least 50% of the tasks execute no

new tasks are arriving. This may correspond to a situation when tasks are submitted during the day but not

at night.

In contrast, λl is chosen to be low enough to allow at least 90% of the tasks to have completed when the

last task in the set arrives. That is, for λl , when at most 10% of the tasks execute no new tasks are arriving.

This may correspond more closely than λh to a situation where tasks arrive continuously. The difference

between λh and λl can also be considered to represent a difference in burstiness.

Some experiments were also performed at a third arrival rate λt , where λt was high enough to ensure

that only 20% of the tasks have completed when the last task in the set arrived. The MCT heuristic was used

as a basis for these percentages. Unless otherwise stated, the task arrival rate is set to λh.

23

Example comparisons are discussed in Subsections 5.2 to 5.4. Each data point in the comparison charts

is an average over 50 trials, where for each trial the simulated actual task execution times are chosen inde-

pendently. The makespan for each trial for each heuristic has been normalized with respect to the benchmark

heuristic, which is the MCT for immediate mode heuristics, and the Min-min for the batch mode heuristics.

The Min-min serves as a benchmark also for the experiments where batch mode heuristics are compared

with immediate mode heuristics. Each bar (except the one for the benchmark heuristic) in the comparison

charts gives a 95% confidence interval (shown as an “I” on the top of bars) for the mean of the normalized

value. Occasionally the upper bound, lower bound, or the entire confidence interval is not distinguishable

from the mean value for the scale used in the graphs here. More general conclusions about the heuristics’

performance are in Section 6.

5.2. Comparisons of the immediate mode heuristics

Unless otherwise stated, the immediate mode heuristics are investigated under the following conditions.

In the KPB heuristic, k is equal to 20%. This particular value of k was found to give the lowest makespan

for the KPB heuristic under the conditions of the experiments. For the SA, the lower threshold and the upper

threshold for the load balance index are 0.6 and 0.9, respectively. Once again these values were found to

give optimum values of makespan for the SA.

In Figure 4, the immediate mode heuristics are compared based on normalized makespan for inconsistent

HiHi heterogeneity. From Figure 4, it can be noted that the KPB heuristic completes the execution of the

last finishing task earlier than the other heuristics (however, it is only slightly better than the MCT). For

k � 20% and m = 20, the KPB heuristic forces a task to choose a machine from a subset of four machines.

These four machines have the lowest execution times for the given task. The chosen machine would give

24

the smallest completion time as compared to other machines in the set.

Figure 5 compares the normalized makespans of the different immediate mode heuristics for semi-

consistent HiHi heterogeneity. As shown in Figures 4 and 5, the relative performance of the different

immediate mode heuristics is impacted by the degree of consistency of the ETC matrices. However, the

KPB still performs best, closely followed by the MCT.

0

1

2

3

4

5

6

1000 2000

no
rm

al
iz

ed
 m

ak
es

pa
n

number of tasks

MCT
KPB

SA
MET
OLB

Figure 4: Makespan for the immediate mode heuristics for inconsistent HiHi heterogeneity.

For the semi-consistent type of heterogeneity, machines within a particular subset perform tasks that

lie within a particular subset faster than other machines. From Figure 5, it can be observed that for semi-

consistent ETC matrices, the MET heuristic performs the worst. For the semi-consistent matrices used in

these simulations, the MET heuristic maps half of the tasks to the same machine, considerably increasing the

load imbalance. Although the KPB considers only the fastest four machines for each task for the particular

value of k used here (which happen to be the same four machines for half of the tasks), the performance

does not differ much from the inconsistent HiHi case. Additional experiments have shown that the KPB

25

performance is quite insensitive to values of k as long as k is larger than the minimum value (where the

KPB heuristic is reduced to the MET heuristic). For example, when k is doubled from its minimum value

of 5%, the makespan decreases by a factor of about five. However a further doubling of k brings down the

makespan by a factor of only about 1.2.

0

1

2

3

4

5

6

1000 2000

no
rm

al
iz

ed
 m

ak
es

pa
n

number of tasks

MCT
KPB

SA
MET
OLB

Figure 5: Makespan of the immediate mode heuristics for semi-consistent HiHi heterogeneity.

5.3. Comparisons of the batch mode heuristics

Figure 6 compares the batch mode heuristics based on normalized makespan. In these comparisons,

unless otherwise stated, the regular time interval strategy is employed to schedule meta-task mapping events.

The time interval is set to 10 seconds. This value was empirically found to optimize makespan over other

values. From Figure 6, it can be noted that the Sufferage heuristic outperforms the Min-min and the Max-

min heuristics based on makespan (although, it is only slightly better than the Min-min). The Sufferage

heuristic considers the “loss” in completion time of a task if it is not assigned to its first choice in making

26

0

1

2

3

4

5

1000 2000

no
rm

al
iz

ed
 m

ak
es

pa
n

number of tasks

Min-min
Sufferage
Max-min

Figure 6: Makespan of the batch mode heuristics for the regular time interval strategy and inconsistent
HiHi heterogeneity.

the mapping decisions. By assigning their first choice machines to the tasks that have the highest sufferage

values among all contending tasks, the Sufferage heuristic reduces the overall completion time.

Furthermore, it can be noted that the makespan given by the Max-min is much larger than the makespans

obtained by the other two heuristics. Using reasoning similar to that given in Subsection 3.3 for explaining

better expected performance for the Min-min, it can be seen that the Max-min assignments change a given

machine’s ready time status by a larger amount than the Min-min assignments do. If tasks t i and tk are

contending for a particular machine mj, then the Max-min assigns m j to the task (say ti) that will increase

the ready time ofmj more. This decreases the probability that tk will still have its earliest completion time on

mj and shall be assigned to it. Experimental data shows that the percentage of tasks assigned their minimum

execution time machine is likely to be lower for the Max-min than for other batch mode heuristics [17]. It

might be expected that a larger makespan will result if a larger number of tasks is assigned to the machines

27

that do not have the best execution times for those tasks. Although not shown here, the results for makespan

for semi-consistent HiHi are similar to those for inconsistent HiHi.

The impact of aging on batch mode heuristics is shown in Figure 7. The Min-min without aging is

used here to normalize the performance of the other heuristics. The Max-min benefits most from the aging

0

1

2

3

4

5

6

1000 2000

no
rm

al
iz

ed
 m

ak
es

pa
n

number of tasks

Min-min
Min-min (aging)

Sufferage
Sufferage (aging)

Max-min
Max-min (aging)

Figure 7: Makespan for the batch mode heuristics for the regular time interval strategy with and without
aging for inconsistent HiHi heterogeneity.

scheme. Recall that the Min-min performs much better than the Max-min when there is no aging. Aging

modifies the Max-min’s operation so that tasks with smaller completion times can be scheduled prior to

those with larger completion times, thus reducing the negative aspects of that technique. This is discussed

further in [17].

Figure 8 shows the result of repeating the above experiments with a fixed count strategy for a batch

size of 40. This particular batch size was found to give an optimum value of the makespan for the Min-

min heuristic. The Min-min with regular time interval strategy (interval of ten seconds) is used here to

28

normalize the performance of the other heuristics. Figure 8 compares regular time interval strategy and

fixed count strategy on the basis of normalized makespans given by different heuristics for inconsistent

HiHi heterogeneity. It can be seen that the fixed count approach gives similar results for the Min-min

and the Sufferage heuristics. The Max-min heuristic, however, benefits considerably from the fixed count

approach; makespan drops to about 60% for � K �� 1000, and to about 50% for � K �� 2000 as compared

to the makespan given by the regular time interval strategy. A possible explanation lies in a conceptual

element of similarity between the fixed count approach and the aging scheme. The value of κ � 40 used

here resulted in batch sizes that were smaller than those using the ten second regular time interval strategy.

Thus, small tasks waiting to execute will have fewer tasks to compete with, and, hence, less chance of being

delayed by a larger task. Although not shown here, the results for the semi-consistent case show that as

compared to the inconsistent case, the regular time interval approach gives slightly better results than the

fixed count approach for the Sufferage and the Min-min. For the Max-min, however, for both inconsistent

and semi-consistent cases, the fixed count strategy gives a much larger improvement over the regular time

strategy.

It should be noted that all the results given here are for inconsistent HiHi heterogeneity. For other

types of heterogeneity the results might be different. For example, for inconsistent LoLo heterogeneity, the

performance of the Max-min is almost identical to that of the Min-min [17].

5.4. Comparing immediate mode and batch mode heuristics

In Figure 9, two immediate mode heuristics, the MCT and the KPB, are compared with two batch mode

heuristics, the Min-min and the Sufferage. The comparison is performed with Poisson arrival rate set to

λh. It can be noted that for this “high” arrival rate and � K �� 2000, batch mode heuristics are superior to

29

0

1

2

3

4

5

6

1000 2000

no
rm

al
iz

ed
 m

ak
es

pa
n

number of tasks

Min-min
Min-min (count)

Sufferage
Sufferage (count)

Max-min
Max-min (count)

Figure 8: Comparison of the makespans given by the regular time interval strategy and the fixed count
strategy for inconsistent HiHi heterogeneity.

immediate mode heuristics. This is because the number of tasks waiting to begin execution is likely to be

larger in the above circumstances than in any other considered here, which in turn means that rescheduling

is likely to improve many more mappings in such a system. The immediate mode heuristics consider only

one task when they try to optimize machine assignment, and do not reschedule. Recall that the mapping

heuristics use a combination of expected and actual task execution times to compute machine ready times.

The immediate mode heuristics are likely to approach the performance of the batch ones at low task arrival

rates, because then both classes of heuristics have comparable information about the actual execution times

of the tasks. For example, at a certain low arrival rate, the 100-th arriving task might find that 70 previously

arrived tasks have completed. At a higher arrival rate, only 20 tasks might have completed when the 100-th

task arrived. The above observation is supported by the graph in Figure 10, which shows that the relative

performance difference between immediate and batch mode heuristics decreases with a decrease in arrival

30

rate. Given the observation that the KPB and the Sufferage perform almost similarly at this low arrival rate,

it might be better to use the KPB heuristic because of its smaller computational complexity.

Figure 11 shows the performance difference between immediate and batch mode heuristics at an even

faster arrival rate of λt . It can be seen that for � K �� 2000 batch mode heuristics outperform immediate

mode heuristics with a larger margin here. Although not shown in the results here, the makespan values for

all heuristics are larger for lower arrival rate. This is attributable to the fact that at lower arrival rates, there

typically is more machine idle time.

0

0.2

0.4

0.6

0.8

1

1000 2000

no
rm

al
iz

ed
 m

ak
es

pa
n

number of tasks

Min-min
Sufferage

KPB
MCT

Figure 9: Comparison of the makespan given by batch mode heuristics (regular time interval strategy)
and immediate mode heuristics for inconsistent HiHi heterogeneity and an arrival rate of λh.

6. Conclusions

New and previously proposed dynamic matching and scheduling heuristics for mapping independent

tasks onto HC systems were compared under a variety of simulated computational environments. Five

31

0

0.2

0.4

0.6

0.8

1

1000 2000

no
rm

al
iz

ed
 m

ak
es

pa
n

number of tasks

Min-min
Sufferage

KPB
MCT

Figure 10: Comparison of the makespan given by batch mode heuristics (regular time interval strategy)
and immediate mode heuristics for inconsistent HiHi heterogeneity and an arrival rate of λ l.

0

0.2

0.4

0.6

0.8

1

1000 2000

no
rm

al
iz

ed
 m

ak
es

pa
n

number of tasks

Min-min
Sufferage

KPB
MCT

Figure 11: Comparison of the makespan given by batch mode heuristics (regular time interval strategy)
and immediate mode heuristics for inconsistent HiHi heterogeneity and an arrival rate of λt .

32

immediate mode heuristics and three batch mode heuristics were studied.

In the immediate mode, for both the semi-consistent and the inconsistent types of HiHi heterogeneity,

the KPB heuristic outperformed the other heuristics (however, the KPB was only slightly better than the

MCT). The relative performance of the OLB and the MET with respect to the makespan reversed when the

heterogeneity was changed from the inconsistent to the semi-consistent. The OLB did better than the MET

for the semi-consistent case.

In the batch mode, for the semi-consistent and the inconsistent types of HiHi heterogeneity, the Sufferage

performed the best (though, the Sufferage was only slightly better than the Min-min). The batch mode

heuristics were shown to give a smaller makespan than the immediate ones for large � K � and high task

arrival rate. For smaller values of � K � and lower task arrival rates, the improvement in makespan offered by

batch mode heuristics was shown to be nominal.

This study quantifies how the relative performance of these dynamic mapping heuristics depends on

(a) the consistency property of the ETC matrix, and (b) the arrival rate of the tasks. Thus, the choice of

the heuristic that is best to use in a given heterogeneous environment will be a function of such factors.

Therefore, it is important to include a set of heuristics in a resource management system for HC, and then

use the heuristic that is most appropriate for a given situation (as will be done in the Scheduling Advisor for

MSHN).

Researchers can build on the evaluation techniques and results presented here in future efforts by consid-

ering other non-preemptive dynamic heuristics, as well as preemptive ones. Furthermore, in future studies,

tasks can be characterized in more complex ways (e.g., inter-task communications, deadlines, priorities [3])

and using other environmental factors (e.g., task arrival rates, degrees of heterogeneity, number of machines

in the HC suite, impact of changing the variance when simulating actual task execution times). Thus, the

33

studies given in this paper illustrate some evaluation techniques, examine important heuristics, and provide

comparisons, as well as act as a framework for future research.

Acknowledgments: A preliminary version of portions of this paper was presented at the 8th IEEE Het-

erogeneous Computing Workshop (HCW ’99), April 1999. The authors thank Taylor Kidd, Surjamukhi

Chatterjea, and Tracy D. Braun for their valuable comments and suggestions.

34

References

[1] R. Armstrong, D. Hensgen, and T. Kidd, The relative performance of various mapping algorithms

is independent of sizable variances in run-time predictions, in “7th IEEE Heterogeneous Computing

Workshop (HCW ’98),” pp. 79–87, 1998.

[2] R. Armstrong, “Investigation of Effect of Different Run-Time Distributions on SmartNet Perfor-

mance,” Master’s thesis, Department of Computer Science, Naval Postgraduate School, 1997 (D. Hens-

gen, Advisor).

[3] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D.

Theys, and B. Yao, A taxonomy for describing matching and scheduling heuristics for mixed-machine

heterogeneous computing systems, in “1998 IEEE Symposium on Reliable Distributed Systems,” pp.

330–335, 1998.

[4] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D.

Theys, B. Yao, R. F. Freund, and D. Hensgen, A comparison study of static mapping heuristics for

a class of meta-tasks on heterogeneous computing systems, in “8th IEEE Heterogeneous Computing

Workshop (HCW ’99),” pp. 15-29, 1999.

[5] A. H. Buss, A tutorial on discrete-event modeling with simulation graphs, in “1995 Winter Simulation

Conference (WSC ’95),” pp. 74–81, 1995.

[6] M. M. Eshaghian (ed.), “Heterogeneous Computing,” Artech House, Norwood, MA, 1996.

[7] I. Foster and C. Kesselman (eds.), “The Grid: Blueprint for a New Computing Infrastructure,” Morgan

Kaufmann, San Fransisco, CA, 1999.

1

[8] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen, E. Keith, T. Kidd,

M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust, and H. J. Siegel, Scheduling resources in multi-

user, heterogeneous, computing environments with SmartNet, in “7th IEEE Heterogeneous Computing

Workshop (HCW ’98),” pp. 184–199, 1998.

[9] R. F. Freund and H. J. Siegel, Heterogeneous processing, IEEE Computer, 26, No. 6 (June 1993),

13–17.

[10] A. Ghafoor and J. Yang, Distributed heterogeneous supercomputing management system, IEEE Com-

puter, 26, No. 6 (June 1993), 78–86.

[11] D. A. Hensgen, T. Kidd, D. St. John, M. C. Schnaidt, H. J. Siegel, T. D. Braun, M. Maheswaran,

S. Ali, J.-K. Kim, C. Irvine, T. Levin, R. F. Freund, M. Kussow, M. Godfrey, A. Duman, P. Carff,

S. Kidd, V. Prasanna, P. Bhat, and A. Alhusaini, An overview of MSHN: The Management System

for Heterogeneous Networks, in “8th IEEE Heterogeneous Computing Workshop (HCW ’99),” pp.

184–198, 1999.

[12] O. H. Ibarra and C. E. Kim, Heuristic algorithms for scheduling independent tasks on nonidentical

processors, Journal of the ACM, 24, No. 2 (Apr. 1977), 280–289.

[13] M. A. Iverson and F. Ozguner, Dynamic, competitive scheduling of multiple DAGs in a distributed

heterogeneous environment, in “7th IEEE Heterogeneous Computing Workshop (HCW ’98),” pp. 70–

78, 1998.

[14] R. Jain, “The Art of Computer Systems Performance Analysis,” John Wiley & Sons, Inc., New York,

NY, 1991.

2

[15] M. Kafil and I. Ahmad, Optimal task assignment in heterogeneous distributed computing systems,

IEEE Concurrency, 6, No. 3 (July-Sep. 1998), 42–51.

[16] C. Leangsuksun, J. Potter, and S. Scott, Dynamic task mapping algorithms for a distributed heteroge-

neous computing environment, in “4th IEEE Heterogeneous Computing Workshop (HCW ’95),” pp.

30–34, 1995.

[17] M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and R. F. Freund, “A Comparison of Dynamic

Strategies for Mapping a Class of Independent Tasks onto Heterogeneous Computing Systems,”, Tech-

nical Report, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN,

1999, in preparation.

[18] M.Maheswaran, T. D. Braun, and H. J. Siegel, Heterogeneous distributed computing, in “Encyclopedia

of Electrical and Electronics Engineering” (J. G. Webster, Ed.), Vol. 8, pp. 679–690, John Wiley, New

York, NY, 1999.

[19] R. Mirchandaney, D. Towsley, and J. A. Stankovic, Adaptive load sharing in heterogeneous distributed

systems, Journal of Parallel and Distributed Computing, 9, No. 4 (Aug. 1990), 331–346.

[20] A. Papoulis, “Probability, RandomVariables, and Stochastic Processes,” McGraw-Hill, New York, NY,

1984.

[21] M. Pinedo, “Scheduling: Theory, Algorithms, and Systems,” Prentice Hall, Englewood Cliffs, NJ,

1995.

[22] U. W. Pooch and J. A. Wall, “Discrete Event Simulation: A Practical Approach,” CRC Press, Boca

Raton, FL, 1993.

3

[23] H. G. Rotithor, Taxonomy of dynamic task scheduling schemes in distributed computing systems, IEE

Proceedings on Computer and Digital Techniques, 141, No. 1 (Jan. 1994), 1–10.

[24] H. Singh and A. Youssef, Mapping and scheduling heterogeneous task graphs using genetic algorithms,

in “5th IEEE Heterogeneous Computing Workshop (HCW ’96),” pp. 86–97, 1996.

[25] V. Suresh and D. Chaudhuri, Dynamic rescheduling–A survey of research, International Journal of

Production Economics, 32, No. 1 (Aug. 1993), 53–63.

[26] P. Tang, P. C. Yew, and C. Zhu, Impact of self-scheduling on performance of multiprocessor systems,

in “3rd International Conference on Supercomputing,” pp. 593–603, 1988.

[27] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, Task matching and scheduling in

heterogeneous computing environments using a genetic-algorithm-based approach, Journal of Parallel

and Distributed Computing, 47, No. 1 (Nov. 1997), 8–22.

4

Biographies

Muthucumaru Maheswaran is an Assistant Professor in the Department of Computer Science at the

University of Manitoba, Canada. In 1990, he received a BSc degree in electrical and electronic engineering

from the University of Peradeniya, Sri Lanka. He received an MSEE degree in 1994 and a PhD degree

in 1998, both from the School of Electrical and Computer Engineering at Purdue University. He held a

Fulbright scholarship during his tenure as an MSEE student at Purdue University. His research interests in-

clude computer architecture, distributed computing, heterogeneous computing, Internet and world wide web

systems, metacomputing, mobile programs, network computing, parallel computing, resource management

systems for metacomputing, and scientific computing. He has authored or coauthored 15 technical papers

in these and related areas. He is a member of the Eta Kappa Nu honorary society.

Shoukat Ali is pursuing an MSEE degree from the School of Electrical and Computer Engineering at

Purdue University, where he is currently a Research Assistant. His main research topic is dynamic mapping

of meta-tasks in heterogeneous computing systems. He has held teaching positions at Aitchison College

and Keynesian Institute of Management and Sciences, both in Lahore, Pakistan. He was also a Teaching

Assistant at Purdue. Shoukat received his BS degree in electrical and electronic engineering from the Uni-

versity of Engineering and Technology, Lahore, Pakistan, in 1996. His research interests include computer

architecture, parallel computing, and heterogeneous computing.

Howard Jay Siegel is a Professor in the School of Electrical and Computer Engineering at Purdue

University. He is a Fellow of the IEEE and a Fellow of the ACM. He received BS degrees in both electrical

engineering and management from MIT, and the MA, MSE, and PhD degrees from the Department of

Electrical Engineering and Computer Science at Princeton University. Prof. Siegel has coauthored over 250

technical papers, has coedited seven volumes, and wrote the book Interconnection Networks for Large-Scale

1

Parallel Processing. He was a Coeditor-in-Chief of the Journal of Parallel and Distributed Computing, and

was on the Editorial Boards of the IEEE Transactions on Parallel and Distributed Systems and the IEEE

Transactions on Computers. He was Program Chair/Co-Chair of three conferences, General Chair/Co-Chair

of four conferences, and Chair/Co-Chair of four workshops. He is an international keynote speaker and

tutorial lecturer, and a consultant for government and industry.

Debra Hensgen is an Associate Professor in the Computer Science Department at The Naval Postgrad-

uate School. She received her PhD in the area of Distributed Operating Systems from the University of

Kentucky. She is currently a Principal Investigator of the DARPA-sponsored Management System for Het-

erogeneous Networks QUORUM project (MSHN) and a co-investigator of the DARPA-sponsored Server

and Active Agent Management (SAAM) Next Generation Internet project. Her areas of interest include ac-

tive modeling in resource management systems, network re-routing to preserve quality of service guarantees,

visualization tools for performance debugging of parallel and distributed systems, and methods for aggregat-

ing sensor information. She has published numerous papers concerning her contributions to the Concurra

toolkit for automatically generating safe, efficient concurrent code, the Graze parallel processing perfor-

mance debugger, the SAAM path information base, and the SmartNet and MSHN Resource Management

Systems.

Richard F. Freund is a founder and CEO of NOEMIX, a San Diego based startup to commercialize dis-

tributed computing technology. Freund is also one of the early pioneers in the field of distributed computing,

in which he has written or co-authored a number of papers. In addition he is a founder of the Heterogeneous

ComputingWorkshop, held each year in conjunction with the International Parallel and Distributed Process-

ing Symposium. Freund won aMeritorious Civilian Service Award during his former career as a government

scientist.

2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

