
Calhoun: The NPS Institutional Archive

Center for Information Systems Security Studies and Research (CISR)Faculty and Researcher Publications

1996

SmartNet: A Scheduling Framework for

Heterogeneous Computing

Richard Freund

http://hdl.handle.net/10945/35380

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36727968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

SmartNet: A Scheduling Framework for Heterogeneous Computing

Richard Freund
Taylor Kidd NCCOSC RDTE Division Lantz Moore

Debbie Hensgen San Diego, CA, USA University of Cincinnati
Naval Postgraduate School Cincinnati, OH, USA

Monterey, CA, USA

Mike Gherrity
Mike Halderman

NCCOSC RDTE Division
San Diego, CA, USA

Mark Campbell
SAIC

San Diego, CA, USA

ABSTRACT

SmartNet is a scheduling framework for heteroge-
neous systems. Preliminary conservative simulation results
for one of the optimization criteria, show a 1.21 improve-
ment over Load Balancing and a 25.9 improvement over
Limited Best Assignment, the two policies that evolved
from homogeneous environments. SmartNet achieves these
improvements through the implementation of several inno-
vations. It recognizes and capitalizes on the inherent heter-
ogeneity of computers in today’s distributed environments;
it recognizes and accounts for the underlying non-deter-
minism of the distributed environment; it implements an
original partitioning approach, making runtime prediction
more accurate and useful; it effectively schedules based on
all shared resource usage, including network characteris-
tics; and it uses statistical and filtering techniques, making
a greater amount of prediction information available to the
scheduling engine. In this paper, the issues associated with
automatically managing a heterogeneous environment are
reviewed, SmartNet’s architecture and implementation are
described, and performance data is summarized.

1 Introduction

1.1 Background

Shared, heterogeneous computing environments
abound. The USA’s National Science Foundation super-
computing centers, NASA's EOSDIS centers [An94], and
the workstation clusters of engineering firms are examples
of such. At any one time in these environments, many dis-
tinct programs—most with predictable behaviors—are
contending for resources. In this paper, we focus on the
shared heterogeneous environments that are used for exe-

cuting I/O-intensive and/or compute-intensive applica-
tions.

In the above environments, users assign their jobs to
the various computers in a multitude of ways. In general,
these assignment methods can be divided into 3 classes:

Manual—Users log directly into the computers
where their job will execute;

Resource Management Systems (RMSs)—Us-
ers submit jobs to an RMS client running on
their local machine. The jobs are then as-
signed automatically to lightly loaded ma-
chines [Br91] [Mh96] [Da1]; and

Distributed Operating Systems (DistOSs)—
The user views the shared environment as a
single computing resource [Br89] [Ac86]
[Ta81] [Ro88].

When manually submitting their jobs, users often con-
sider the following two elements:

(1) The loads on the various machines; and

(2) their understanding of their program's performance
on the different platforms.

Theoretical papers have argued for years that schedul-
ers operating in heterogeneous environments must account
for both elements. However, policies used in most of to-
day's RMSs and DistOSs use the first element exclusively
in assigning jobs to machines. An exception, HeNCE, uses
only the second element.

2

A good scheduling framework for a heterogeneous en-
vironment must account for both of the above elements. In
addition, it must have the flexibility to incorporate different
measures of schedule “goodness.” For example, in some
environments, the most important criteria is to maximize
throughput, whereas, in others, it is to minimize the aver-
age penalty ratio.

We present a simple example to motivate why a good
scheduler must account for both elements 1 and 2 listed
above. In this example, we compare the time at which the
last job finishes—meaning the time when all jobs have
completed—for three schedulers using different schedul-
ing policies. We call these the OLB Scheduler, the LBA
Scheduler, and the Smart Scheduler. The OLB Scheduler,
like those found in RMSs and DistOSs, uses Opportunistic
Load Balancing (OLB) and assigns the next queued job to
the next available machine. The LBA Scheduler uses only
element 2, assigning each job to the machine where it is
predicted, assuming that all machines are unused, to exe-
cute the fastest (a policy referred to as Limited Best As-
signment or LBA). The Smart Scheduler assigns jobs to
machines based both upon their expected performance on
the various platforms as well as the loads on those ma-
chines. For simplicity in this example, we assume that ev-
ery job executes for exactly the predicted amount of time.
In addition, we assume that the jobs all arrive simulta-
neously and are queued in the order given in Table 1.

Figure 1 compares the different schedulers. The OLB
Scheduler assigns Jobs 1 and 4 to Machine A, Job 2 to Ma-
chine B, and Job 3 to Machine D, resulting in the last job
completing at time 15. The LBA Scheduler assigns Jobs 1,
2 and 3 to Machine A and Job 4 to Machine B, resulting in
the last job completing at time 13. The Smart Scheduler,
accounting for both machine load and the affinity of certain
jobs for particular machines, assigns Jobs 1 and 3 to Ma-
chine A, Job 4 to Machine B and Job 2 to Machine D, re-
sulting in the last job completing at time 8.

 Schedulers based upon OLB techniques only ensure
that each machine stays busy rather than the quality of ser-
vice provided to users. Similarly, policies such as that used
by the LBA Scheduler [Be94] assume that a job has sole
use of its environment. Unfortunately, excellent single user

performance does not translate to similar performance in
most economically feasible, that is shared, environments.
In contrast, schedulers that take both elements 1 and 2 into
account deliver superior performance in the shared envi-
ronment. The Smart Scheduler, in the small example
above, cut the total runtime by approximately a factor of 2
over that obtained when only one element was considered.

In this paper, we introduce a scheduling framework for
heterogeneous computing. We then use this framework to
demonstrate the performance of a scheduler that takes into
account both affinities and loads, meaning elements 1 and
2 above. This framework is called SmartNet [Co94] [Ki95]
[Fr94] [He95] and has been developed by the Heteroge-
neous Computing Team at the US Navy’s facility at the
NCCOSC RDTE Division in San Diego.

SmartNet is designed (1) to act as a stand-alone system
for managing jobs and resources in a heterogeneous envi-
ronment; (2) to act as a coordinator of RMSs by providing
a means by which they can exchange jobs and exploit the
advantages of the SmartNet scheduling framework; and (3)
assist individual RMSs to better manage their own hetero-
geneous environment. SmartNet has many useful features
including its ability to account for both machine loads and
job/machine affinity; to learn/estimate the runtime distri-
butions of jobs and provide facilities for users to enter ini-
tial predictions; and to be utilized in a non-intrusive way. It
has been integrated with CONDOR [He95] and we have
worked with both IBM and Cray Research to integrate Loa-
dLeveler and NQE with SmartNet. SmartNet is modular,
permitting the easy incorporation of new optimization cri-
teria. SmartNet is in use at many computing centers across
the USA.

Table 1: Job execution lengths.

JOBS MACHINES

A B C

1 4 17 7

2 5 11 6

3 4 16 8

4 11 4 9

Figure 1. Schedule comparison.

Machine A

Machine B

Machine C

job1 job4

job2

job3

Machine A

Machine B

Machine C

job1

job4

job2 job3

Machine A

Machine B

Machine C

job1

job4

job2

job3

(15)

(11)

(9)

(13)(9)(4)

(4)

(4) (8)

(4)

(6)

(4)

OLB schedule

LBA schedule

SmartNet schedule

3

Figure 2: Architecture of SmartNet.

Machines/
Resources:

Execution
Interface

Administrative
Interface

Scheduler (crite-
ria and search
engine.)

dB:

Learning /
Accounting

Controller:

user reqs.

RMSs

Other copies
of SmartNet

System Wide
VHM R

esources
U
se
r

1.2 Organization of Paper

The purpose of this paper is to illustrate how a sched-
uling framework, such as SmartNet, can effectively man-
age a heterogeneous computing environment. We first
describe our heterogeneous scheduling framework, Smart-
Net, presenting its architecture in Section 2. In Section 3
we review the current state of its present implementation
and provide initial performance results. Finally, in Section
4, we summarize our experiences with SmartNet.

2 Architecture
SmartNet is designed as an inclusive system for man-

aging jobs in a heterogeneous environment. Since hetero-
geneous system management is a relatively new research
area, SmartNet’s architectural design leads its implementa-
tion. In this section, we present SmartNet’s architecture;
the state of its implementation will be discussed in the next
section.

2.1 SmartNet

Overview

SmartNet is a scheduling framework for managing
jobs and resources in a heterogeneous computational envi-
ronment. As such, it not only implements scheduling algo-
rithms, it also provides the information necessary for these
algorithms to make wise decisions. SmartNet is designed to

measure both machine affinity and loads, and provide this
information to its scheduling algorithms. SmartNet im-
proves the performance of the algorithms by using en-
hanced predictions of job runtimes and resource use, by
providing flexible and efficient methods for determining
the best schedule satisfying job requirements, and by pro-
viding a means whereby the schedule can be implemented.
It accomplishes this by furnishing the functionality needed
to perform the above actions, as well as that functionality
needed to interface SmartNet with its administrator, its us-
ers, and with the heterogeneous environment SmartNet is
designed to manage.

SmartNet’s basic functional architecture is shown in
Figure 2. SmartNet contains a controller and a set of inter-
faces that manage its different components. The hardware
and RMSs managed by SmartNet are connected to it via
these interfaces. In addition, SmartNet has interfaces for
communicating with users and the administrator. The users
wish to utilize SmartNet to execute their jobs more quickly.
The administrator uses his interface to ensure that Smart-
Net is satisfying the needs and requirements of the facility.

What is a scheduling framework?

Being a scheduling framework, SmartNet is neither an
RMS nor “simply” a scheduler. A scheduler only deter-
mines where to run each job, leaving the gathering of the
information it needs and the implementation of its schedule

4

up to some other mechanism. In a practical sense, RMSs
accept requests to execute a job or a sequence of jobs, as-
sign the jobs to particular machines, and monitor their exe-
cution. RMSs therefore contain a scheduler. Almost
without exception, RMSs use OLB to decide where to exe-
cute each job.

Though SmartNet incorporates an RMS, it is more
than an RMS. SmartNet is designed literally to serve as a
framework, not only for executing applications in produc-
tion environments but as an extensible and flexible re-
search tool. Besides scheduling, it also provides a means
whereby the state of the virtual heterogeneous machine
(VHM) and the jobs being executed can be monitored. It
also provides sophisticated means for learning, intelligent
decision making, and accounts for the uncertainty rampant
in distributed environments. Perhaps most importantly, it is
designed to be very modular, permitting it to adapt readily
to different environments, as well as to incorporate and
make available many different scheduling criteria and
search strategies for managing its operating environment’s
resources and jobs.

2.2 Innovations

There have been many different attempts at distributed
computing over the years. SmartNet differs from these oth-
er attempts in six distinct ways, most of them unique to
SmartNet. These are (1) how SmartNet recognizes and ex-
ploits heterogeneity, (2) its development of what we call
Compute Characteristics, (3) SmartNet’s ability to handle
uncertainty, (4) how it accounts for the sharing of resources
in a distributed environment, (5) its view of optimization
criteria(s), and (6) the methods employed by it to search the
scheduling space.

Heterogeneity

Various researchers have recognized the heterogeneity
inherent in different computer architectures. For example,
some architectures are particularly suited for data parallel-
ism, whereas others, for control parallelism. Indeed, a com-
puter’s architecture can be classified even further by
looking at the characteristics that affect the computer’s per-
formance when the class of jobs is varied. We call this “re-
source heterogeneity”. Examples of such heterogeneity are
to be found in cache size, disk speed, disk size, memory
size, memory speed, internal data architecture, organiza-
tion and interconnection of processors, and network access
bandwidth. The execution rate of some jobs may be direct-
ly proportional only to processor speed, while others also
depend upon network access latency.

Typically, specific computers perform very well for
certain applications but not as well for others. Figure 5
gives an illustrative example. The performance of three
machines across a wide range of jobs is presented. (We re-
alize that it isn’t mathematically possible to usefully and
uniquely organize programs with regards to “types” that
can be represented along the real line. Even so, the illustra-

tive nature of Figure 5 still holds.) Machine A performs
well for scalar jobs, as well as for certain types of data par-
allel programs. Machine B performs well for data parallel
programs but not for those that are control parallel. Ma-
chine C performs very well for control parallel programs
but not elsewhere.

Freund, the leader of the SmartNet design team, was
aware of such performance differences and hypothesized
that a distributed collection of machines with diverse archi-
tectures would, as in the example above, be able to provide
a collective performance equal to that of the best machine.
For example, if a program is largely data parallel, it would
be executed on a machine similar to Machine B. If, instead,
the program was largely control parallel, it would be placed
instead on a machine of architecture similar to that of Ma-
chine C. Thus the heavy grey line of Figure 5 represents the
collective performance of a “distributed machine.” The
peak capability of this machine corresponds to the aggre-
gate of the performance peaks of the machines it is com-
posed of. SmartNet is designed with this philosophy in
mind. (Though there is overlap, note that the problem
SmartNet addresses is very different from research that is
looking at the scheduling of a single heterogeneous appli-
cation in a distributed environment.)

Compute Characteristics

The SmartNet design team very quickly recognized
that something had to be done with regards to making the
runtime of a job more predictable. With certain exceptions,
the runtimes of most computer jobs are not very predictable
and so, not very useful. The runtime distributions of such
jobs typically have a very wide variance and are multi-
modal in nature. See Figure 4. Though it is easy to obtain
statistical averages, and even the distribution, associated
with a job’s runtime, their usefulness in scheduling is de-
batable because of this wide variance and multi-modality.

Some means had to be found for partitioning a job’s
runtime into quantities useful for its scheduling. The
SmartNet team decided on a partitioning scheme that is still

Figure 3. SmartNet as an RMS/resource
coordinator.

RMS2RMS1 RMS3

SmartNet
(data/jobs/requests)

m
ac

hi
ne

s

{

5

Figure 5: Computer heterogeneity.

program type

performance

(data parallel)(control parallel)(scalar)

machine A

machine B

machine C

distributed machine

the basis of SmartNet’s success. They divide up the runt-
ime distribution into pieces delineated by Compute Char-
acteristics. Compute Characteristics are most easily
defined in terms of deterministic jobs executing in a quies-
cent system with no wait states (we relax this deterministic
restriction in the next section, Uncertainty). Also, to obtain
a clear understanding of Compute Characteristics, we ex-
pand the typical definition of parameter to include all data
input by a job. For example, if a job requires the name of a
file from which data is read, the parameters of the job in-
clude the data in that input file. The Compute Characteris-
tics of the job then are all of those parameters that influence
the runtime of that job. A specific set of values for those
parameters represents a Compute Characteristic Operating
Point, or CCOP. SmartNet’s scheduling algorithms obtain
a runtime distribution from a database by supplying the
CCOP in the query. The database manager obtains the dis-
tribution using a combination of actual experiential data as
well as functions of Compute Characteristics that have
been (optionally) supplied by the programmer. When the
programmer does not specify the functions, numerical
analysis techniques are applied to the experiential data to

find closely fitting curves. Figure 6 shows a job with a sin-

gle Compute Characteristic and three different CCOPs.

For many jobs, it is easy for the programmer to specify
the Compute Characteristics [Ki96]. For commercial soft-
ware, where Compute Characteristics are not known a pri-
ori, multi-modal distribution analysis is applied.

Uncertainty

The distributed environment is inherently non-deter-
ministic. Machines are operating asynchronously, sharing
resources—such as file servers and networks—and execut-
ing a host of different jobs simultaneously. In fact, even a
single machine is non-deterministic in a practical sense as
interrupts (some from external sources), system mainte-
nance routines and handlers are all executing at a level of
complexity that mimics a non-deterministic system.

The developers of SmartNet have not just recognized
this non-determinism but have succeeding in tracking and
accounting for it. By accounting for uncertainty, SmartNet
further improves its performance over systems that would
assume a purely deterministic environment.

Figure 4: Typical job runtime distribution.

1 hr 5 hr

Runtime distribution

Figure 6: Partitioned runtime distribution.

1 hr 5 hr

I=1

I=2

I=3

Partitioned runtime
distribution of Job A

6

Shared Resource Usage

Much work has been done in the multi-tasking unipro-
cessor realm on the problem of allocating shared resources
such as memory, the CPU, and disk space. Similarly, a sub-
stantial body of CPU-based scheduling work exists for the
multiprocessor realm (theoretical and applied) as well as in
the distributed realm (theoretical). SmartNet, however, has
pioneered the allocation of other shared resources, in par-
ticular the network, in the distributed processing arena.
Hensgen, Kidd, and Campbell of the SmartNet team initi-
ated the generalization of this work to include other shared
resources such as file servers and memory. [Ki94]

When considering the simultaneous allocation of mul-
tiple shared resources, several issues must be resolved hav-
ing to do with the different possible ways of sharing
resources. These different methods include serially reusing
(e.g., processors), concurrently using (e.g., memory), mu-
tually exclusive (e.g., non-multiplexed networks), and pre-
emptably (e.g., disk space). Also, before allocating these
resources in an intelligent way, the system needs an esti-
mate or measure of use for each of the particular resources.
This estimate can range from fine-grained to large-grained.
The problem with fine-grained usage measurements in a
shared heterogeneous environment is that they are not de-
terministic. Once an estimate of use for each of the resourc-
es is available, then scheduling algorithms that assign jobs
to machines must account for the sharing of all of these re-
sources.

Optimization Engine and Criteria

The SmartNet Scheduler is modular and designed to
implement any optimization criteria that satisfies the fol-
lowing requirements: (1) it fulfills the Scheduler’s interfac-
ing requirements, and (2) it uses information that can be
obtained from SmartNet’s database. These requirements
are very liberal as the information in the database is large,
containing not only instantaneous values but statistical mo-
ments and state estimates as well.

Search Engine and Algorithms

In general, for any group of machines and set of jobs
with dependencies and constraints, a large number of
scheduling options exist. (A schedule is considered a solu-
tion if it satisfies the dependency and constraint require-
ments of the jobs being run.) The optimization criteria
defines the metric of performance and makes it possible to
select a “good” schedule. Usually, finding an optimal
schedule corresponds to solving a general Integer Program-
ming Problem. Unfortunately, solving such a problem is
NP-complete [Ga79]. To this end, SmartNet has included
in its Scheduler both optimization and search engines; the
search engine explores the solution space for a good sched-
ule as defined by the criteria in the optimization engine. As
with the optimization engine, the search engine is modular
and designed to implement any search algorithm that meets
its relatively simple interfacing requirements. Some exam-

ples of different search algorithms already implemented in
SmartNet include greedy, fast greedy, and evolutionary
programming based algorithms.

Prior to SmartNet’s development, a fair amount of the-
oretical work had been done in the search algorithm area
for processor scheduling, particularly in finding worst case
bounds on the goodness of schedules obtained from partic-
ular algorithms. Unfortunately, before SmartNet, this work
had little application because its underlying operating as-
sumptions could not be practically satisfied [Ib77]. By us-
ing Compute Characteristics, measures of heterogeneity,
uncertainty, and additional information concerning shared
resources, SmartNet has been able to capitalize on and im-
prove upon this earlier theoretical work.

2.3 System Description

The SmartNet framework is illustrated in Figure 2.
SmartNet’s core processes consist of the Scheduler, the
SmartNet Database, the Learning/Accounting process, and
the Controller. Three types of information-flows are
shown: Requests, Control information, and Data paths. Re-
quests differ from Control and Data in that they require re-
sponses. Requests are represented as dashed lines; Control
information is denoted by thin solid lines; and Data paths
appear as thick solid lines.

On the User side, SmartNet has two types of interfac-
es, one to the user—the person who is submitting their ap-
plication—and the other to the SmartNet administrator—
the person whose job it is to make sure everything is run-
ning correctly. These interfaces are termed, respectively,
the Execution Interface and the Administrative Interface.

On the Resource side, SmartNet interfaces with the
various compute facilities that it controls either partially or
completely. It does this via the SmartNet Controller. These
compute facilities can include machines, resources, other
executing copies of SmartNet, and RMSs. SmartNet is de-
signed (1) to allow redundancy in critical environments; (2)
to operate in environments where it has either partial or
complete control over processor, network and other re-
sources; (3) to be integrated with an RMS that will use
SmartNet as a scheduling advisor; and (4) to serve as a co-
ordinator for multiple RMS environments.

3 Implementation and Performance
There are two current implementations of SmartNet:

the released version, which is being used by computational
researchers outside of the SmartNet team, and the experi-
mental version, which is a research and development ver-
sion. The released version is at SCI level 2. After features
have been completely evaluated and tested in the experi-
mental version, they are migrated into the released version.
In this section we document the experimental version; doc-
umentation on the released version can be found in the
SmartNet User’s Manual.

7

Prototypes of each of the modules shown in Figure 2
have been implemented and we are continuing to expand
on their functionality.

On the User side, both Execution and Administrative
Interfaces have been implemented. Graphical as well as
command-line versions exist for both. The graphical ver-
sion is implemented using TCL/TK. Via the execution in-
terface, the user can specify that, at a maximum, only a
subset of the available machines should be used for his job.
Instead of a single job, the user can also request that a set
of jobs with sequential constraints be executed where the
jobs can, potentially, have different user-specified priori-
ties. The administrator specifies, via the Administrative In-
terface, the mix of optimization criteria and search
algorithms to be used. The administrator can also override
job priorities.

There are two currently implemented optimization cri-
teria: (1) maximizing throughput by minimizing the time at
which the last job is expected to finish, and (2) minimizing
the average expected runtime for each job. Many search en-
gines have been implemented. To date these include an
O(n) greedy algorithm, three O(n2) greedy algorithms
[Ib77], an evolutionary algorithm [Fo94], and a hybrid be-
tween genetic programming and simulated annealing
[Sh96]. Initial algorithms are being used to account for pri-
orities, sequencing constraints, shared data, and other
shared resources besides computers and networks (such as
individual processors and memory). However, we are cur-
rently implementing more sophisticated algorithms which
promise substantial improvements.

All of the search engines above make use of expected
runtimes statistics that are stored in the database. The data-
base contains expected usage times for each of the resourc-
es, including computers and networks, and for each job and
its CCOPs. The database contains both theoretical and ex-
periential estimates. The administrator and programmers
can enter formulas, that is, functions of Compute Charac-
teristics, that correspond to expected resource usage.

Currently the learning algorithms are very rudimenta-
ry. We are in the process of expanding the usage of Com-
pute Characteristic and searching for and recording what
we term “hidden” Compute Characteristics. There is a
“rogue job” handling facility. When jobs execute much
longer than they were originally expected to, several differ-
ent actions are possible. The particular action chosen de-
pends upon what was specified by the user and/or
administrator. Either the job can complete, iteratively be-
ing given additional increments of time and possibly caus-
ing re-scheduling of other jobs; an electronic mail can be
sent to both the user and administrator; or the job can be
checkpointed and an electronic mail sent to the user de-
scribing how to re-submit the checkpointed job.

The controller reacts to events such as job completion,
jobs executing well beyond the expected time, new job re-
quests, and machines or networks going down or being
added. These events cause new schedules to be computed
and jobs to be re-started, sometimes from the beginning
and sometimes from a checkpointed state. The controller is
also responsible for relaying information between the re-
sources and the Execution and Administrative Interfaces.

We have integrated several commercial runtime man-
agement systems with SmartNet, including CRAY’s NQE,
University of Wisconsin’s Condor, and IBM’s LoadLevel-
er [He95]. We have also built a library that can be used by
other commercial vendors to interface SmartNet with their
RMSs. We have not yet attempted to run multiple, commu-
nicating copies of SmartNet, but intend to do so soon using
the ISIS toolkit [Bi87].

3.1 Preliminary Performance Results

We have initiated a set of simulations designed to ex-
pose the effectiveness of the SmartNet scheduling frame-
work. We constructed several scheduling problems that
vary in both the number of jobs and machines, and the
amount of heterogeneity. For each problem, the number of
jobs and machines vary between 2 and 1000 and 2 and 500,
respectively. Two modes of minor heterogeneity were em-
ployed, perfectly scalable architectures, and mixed archi-

Table 2. Several scheduling algorithms, numbers
normalized to super-optimal.

Scalable
arch.

Arch. Mix Arch. Mix

job/
machines

500/100 5001/100 1000/500

LBA 100 86.2 422.6

OLB 5.47 4.01 7.33

MinMin
(SmartNet)

3.78 3.14 4.01

Table 3. Several scheduling algorithms, numbers
normalized to super-optimal.

Scalable
arch.

Arch. Mix Arch. Mix

job/
machines

500/100 500/100 1000/500

LBA 26.5 27.5 105.5

OLB 1.45 1.28 1.83

MinMin
(SmartNet)

1.13 1.06 1.29

8

tecture. Two machines, A and B, have perfectly scalable
architectures—that one job runs faster on Machine A than
on Machine B implies that all jobs run faster on Machine
A. If two machines A and B have mixed architectures,
some jobs may run faster on A, while other jobs run faster
on B.

We judged the algorithms on how well they minimized
the time at which the last job completes. We ran 100 differ-
ent runs for each number of job/machine pairs. Since ob-
taining an optimal schedule is an NP-complete problem,
we normalized our data using a value obtained from a low-
er bound algorithm. The lower bound algorithm does not
produce valid schedules, but obtains a lower bound on the
time at which the last job can complete. Table 3 shows that
with 500 jobs scheduled on 100 mixed architecture ma-
chines, SmartNet’s schedules (MinMin) complete the last
job in 6% more time than the lower bound, OLB completes
the last job in 28% more time than the lower bound and
LBA requires 26,500% more time. The averages of the
time of completion for the last job is shown in Table 2.

4 Summary
In summary, SmartNet achieves improvements in per-

formance over other existing RMSs and promises more in
realistic environments. It accomplishes this (1) by more
fully utilizing the strengths, meaning the heterogeneity, of
the computers and jobs in its environment, (2) by partition-
ing the runtime space of its jobs to maximize their predict-
ability, (3) through the innovative use of the inherent
uncertainty underlying the distributed environment, (4) by
compensating for the use of many shared resources when
scheduling a job to a processor, and (5) by collecting and
having available a greater array of useful data for the
scheduling engine.

SmartNet has been under development for about 8
years. In its present implementation, it is used in a variety
of application areas including biological research, NASA
distributed computing, and weather modeling. It has been
successfully integrated with RMSs including CONDOR,
IBM’s LoadLeveler, and CRAY’s NQE. It is supported by
strong research, development and configuration manage-
ment teams.

Though we anticipate increasing use of SmartNet by
production and research communities, SmartNet is still an
evolving product. Some of the directions to be undertaken
by SmartNet’s research and development teams will be to
further improve its ability to schedule resources and to be-
come a coordinator of RMSs. It will achieve this by con-
tinuing to pursue R&D with an eye toward developing
better search algorithms for optimizing performance crite-
ria; improving SmartNet’s ability to measure, predict and
account for changes in the system state; establishing stan-
dards for RMS communication and control; continuing re-
search into the use of various granularity and types of

shared resources; and by broadening SmartNet’s applica-
tion domain.

5 Acknowledgements
The current version of SmartNet is the result of a tre-

mendous effort on the part of many team members. In par-
ticular, in addition to the authors, the principal designers
included Matt Kussow and John Lima. Assisting them in
design and implementation are Dave Schwarze, Brad Rust,
Elaine Keith, Wanda Lam, Bob Wellington, Stephen Am-
brosius, Dick Goodbody, Dan Watson, Jeff Arnold,
Francesca Mirabile, Roberta Hilton, Rod Roberts, Marc
Weissman, Stephen Scott, Bill Asdit, Terry Koyama, and
Jon Ives. Handling configuration management and "error
reports" are Mitch Gregory, Kathy Nolan, and Joan Ham-
mond. Finally, we would also like to thank the various
managers who allowed the designers and implementors the
time to work by keeping paperwork to a minimum (mostly
because they did it themselves): Debbie Duncan, Thomas
Bayless, and Sue Patterson.

6 Bibliography
[Ac86] Accetta, Baron, Bolosky, Golub, Rashid, Tevanian, and
Young, “Mach: A New Kernel Foundation for UNIX Develop-
ment,” Proceedings of the Usenix Summer Conference, USENIX
Association, 1986.
[An94] Anders, Tony, “Planning and Scheduling FOS prototype
Results Report for the ECS project, part C,” NASA Contract
NAS5-60000, EOSDIS Core System Project, August 1994.
[Be94] Beguelin, A., et. al., “HeNCE: A Users’ Guide, Version
2.0,” Oak Ridge National Lab, June 15, 1994.
[Bi87] Birman, K., T. Joseph, “Reliable Communication in the
Presence of Failures,” ACM TOCS, Vol. 5, pp. 47-76, Feb. 1987.
[Br89] Briswistle, et. al., “The Distributed V Kernel and its Per-
formance for Diskless Workstations,” Proceedings of the Ninth
ACM Symposium on Operating System Principles.
[Bri91] Bricker, A., M. Litzkow, M. Livny, “CONDOR Techni-
cal Summary,” CS Department Technical Report, University of
Wisconsin-Madison, 10/9/91.
[Co94] Conwell, C., R. Freund, L. Peterson, “Object Oriented
Simulation with SmartNet,” Proc. of Object-Oriented Simulation
Conference (OOS’94), Tempe, AZ, pp. 119-122, 24-27 January
1994.
[Da1] Daugherty, E., et. al., “Cray Research Network Queueing
Environment for UNICOS Environment,” Technical Report,
Cray Research, Inc., Eagan, MN 55121.
[Fo94] Fogel, D. B., “Applying Evolutionary Programming to Se-
lected Control Problems,” Computers Math. Applic., vol. 27, pp.
89-103, 1994.
[Fr94] R. Freund, “SmartNet Scheduling for Heterogeneous
Computing,” Proc. of the Third Heterogeneous Processing Work-
shop (HCW’94) of the International Parallel Processing Sympo-
sium (IPPS’94), April 1994.
[Ga79] Garey and Johnson, “Computers and Intractability: A
Guide to the Theory of NP-Completeness,” Freeman, 1979
[He95] Hensgen, D., et. al., “Adding Rescheduling to and Inte-
grating Condor with SmartNet,” HCW’95 of IPPS’95, April
1995, pp. 4-12.
[Ib77] Ibarra, O., Kim, “Heuristic Algorithms for Scheduling In-
dependent Tasks on Nonidentical Processors”, Journal of the
ACM, Vol. 24, No. 2, pp. 280-289.
[Ki94] Kidd, Taylor, Mark Campbell, Matt Kussow, “Compute
Characteristic Learning Enhancements,” SmartNet Technical Re-
port, NRaD, 27 September 1994.

9

[Ki96] Kidd, T., et. al., “Studies in the Useful Predictability of
Programs in a Distributed and Homogeneous Environment,” Uni-
versity of Cincinnati Tech. Report, Summer 1995.
[Mh96] “LoadLeveler Introduction”, http://www.mhpcc.edu/
training/workshop/html/loadleveler/LoadLeveler.html, Maui
High Performance Computer Center, 13 Feb 1996.
[Ro88] Rozier, M., V. Abrossimov, F. Armand, M. Gien, M.
Guillemont, F. Hermann, C. Kaiser, P. Leonard, S. Langlois, and
W. Newhauser, “Overview of the Chorus Distributed Operating
System,” Chorus Systemes Technical Report, #CS/%$-88-7, June
1988.
[Sh96] P. Shroff, D. W. Watson, N. S. Flann, and R. F. Freund,
“Genetic simulated annealing for scheduling data-dependent
tasks in heterogeneous environments,” Heterogeneous Comput-
ing Workshop (HCW'96) of IPPS’96, April 1996.
[Ta81] Tanenbaum, Mullender, “An Overview of the Amoeba
Distributed Operating System,” ACM Operating Systems Re-
view, Vol 15, N. 3, pp. 51-64, July 1981.

