
Calhoun: The NPS Institutional Archive

Center for Information Systems Security Studies and Research (CISR)Faculty and Researcher Publications

1998-06-02

A Comparison of C++ Sockets and

Corba in a Distributed Matrix Multiply Application

Schnaidt, Matt

http://hdl.handle.net/10945/35378

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36727966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NPS-CS-99-001

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Approved for public release; distribution is
unlimited.

Prepared for: Naval Postgraduate School

A Comparison of C++ Sockets and Corba in a
Distributed Matrix Multiply Application

by

M. Schnaidt
A. Duman

T. Lewis

June 2, 1998

REPORT DOCUMENTATION PAGE
Form approved

OMB No 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
Gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

 2 JUNE 98
3. REPORT TYPE AND DATES COVERED
 TECHNICAL REPORT

4. TITLE AND SUBTITLE
 A COMPARISON OF C++ SOCKETS AND CORBA IN A DISTRIBUTED MATRIX
MULTIPLY APPLICATION

5. FUNDING

6. AUTHOR(S)
 MATT SCHNAIDT, ALPAY DUMAN, and TED LEWIS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943

8. PERFORMING ORGANIZATION
 REPORT NUMBER
 NPS-CS-99-001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

 Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words.)

This project has two primary purposes. The first, is to implement a distributed matrix multiply algorithm using C++ sockets, and Corba objects with the
objective of discovering what additional overhead, if any, exists in a Corba implementation. Secondly, attempt to improve the speedup through the use of
stateful servers in the C++ implementation.

14. SUBJECT TERMS

 Buffer Deadlock, Buffer Size Limitations, Client-Server Architecture, C++ Sockets, CORBA, Unix Name Service,
Speedup, Efficiency, Superscalar Efficiency.

15. NUMBER OF
PAGES 24

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT
 Unclassifed

18. SECURITY CLASSIFICATION
 OF THIS PAGE
 Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT
 Unclassified

20. LIMITATION OF
 ABSTRACT

NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

3

Enclosure (6)

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

4

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM Robert C. Chaplin R. Elster
Superintendent Provost

This report was prepared for Naval Postgraduate School.

This report was prepared by:
Matt Schnaidt and Alpay Duman.

________________________ __________________________
Matt Schnaidt Alpay Duman
Captain US Army Lieutenant Jr. Grade Turkish Navy

Ted Lewis
Professor of Computer Science

Reviewed by: Released by:

________________________ ______________________________
Dean D. Boger, Chair D. W. Netzer
Department of Computer Science Associate Provost and
 Dean of Research

A Comparison of C++ Sockets and Corba in a
Distributed Matrix Multiply Application

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

5

2 June 1998

CPT Matt Schnaidt, USA, mcschnai@cs.nps.navy.mil

LTJG Alpay Duman, TN, aduman@cs.nps.navy.mil

ABSTRACT: This project has two primary purposes. The first, is to implement a distributed
matrix multiply algorithm using C++ sockets, and Corba objects with the objective of
discovering what additional overhead, if any, exists in a Corba implementation. Secondly,
attempt to improve the speedup through the use of stateful servers in the C++ implementation.

CONCEPTS:

Buffer Deadlock
Buffer Size Limitations
Client-Server Architecture
C++ Sockets
CORBA
Unix Name Service
CORBA Name Service
Speedup
Efficiency
Superscalar Efficiency

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

6

SUMMARY

Matt Schnaidt did the C++ Socket implementation of the matrix multiply. This included
writing all of the C++ code (a 2d Array Class, the client and server code for the matrix multiply,
and a name server), testing, debugging, and making record runs. I did this in three phases. In
phase 1, I implemented a simple matrix multiply using UDP sockets; I used this to debug the
multiply algorithm, and the interaction with the name server (which I called memberServer).

In phase 2, I converted the client and server to using TCP sockets so that they could
reliably transmit messages which exceeded the maximum packet size without concern for
ordering, lost or duplicate packets. I finished phase 2 by measuring the time it took to do matrix
multiplies with a varied number of servers and varied size matrices.

In phase 3, I changed the server so that it remembers it state to cut down on message
traffic time. I finished phase 3 by measuring the time it took to matrix multiplies, again with a
varied number of servers and varied size matrices.

Alpay and I divided the report writing, and slide development for the presentation
equally.

Alpay Duman did the CORBA implementation of the matrix multiply. This included
writing the IDL, the client code and the interface object implementation defined in the IDL file,
testing, debugging and making record runs. I did this in three phases.

In phase one, I implemented the IDL file and the object implementation for this
definition. For passing the array I used type sequence in Interface Definition Language, which is
a linear dynamic container.

In phase two, I implemented the client invoking the object implementation by using
deferred synchronous method, which is a non-blocking dynamic remote procedure call method.

In phase three, I used a special function for CORBA send_multiple_requests_deferred(),
which initiates a number of requests in parallel. It does not wait for the requests to finish before
returning to the caller.

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

7

Table of Contents

1. Problem Statement

2. Approach
A. Distributed Matrix Multiply Algorithm
B. C++ Sockets Implementation
C. Corba Implementation

3. Results
A. Corba versus C++ Sockets
B. C++ Sockets with Stateful Servers
C. Bugs and Lessons Learned

4. Source Code
A. C++ Sockets Program Listing
B. Corba Program Listing

5. Bibliography

6. Appendix
A. C++ Sockets with Stateless Servers and Corba Results Table
B. C++ Sockets with Stateful Servers Results Table
C. Speedup and Efficiency of Stateful Servers
D. Machines Used in the Experiments
E. Big “O” Analysis of Stateful vs Stateless Server Messages

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

8

1. Problem Statement. Develop a distributed matrix multiply algorithm, using C++ sockets
and Corba. Compare the performance of the two algorithms in order to discover the
overhead associated with the use of Corba.

Given 2 matrices, A and B, multiply them together to produce a result matrix C. The
dimensions of the matrices are A(i X j), B(j X k), C(i X k). Note that the number of columns
in A must equal the number of rows in C.

The general algorithm for solving this problem is:

for(int ix = 0; ix < rowInA; ix++){
 for(int jx = 0; jx < j; j++){

 C[i, j] = 0;
 for(int kx = 0; kx < k; k++){
 C[i, j] += A[i, k] * B[k,j];
 }//end for
 }//end for
}//end for

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

9

2. Approach.

A. Distributed Matrix Multiply Algorithm. We agreed, prior to any implementation, on a
generic algorithm that we would each implement. One of our primary concerns was that both
implementations time the same, or equivalent, events so that we could do a meaningful
comparison. Below are listed the steps of our generic algorithm.

• Get the dimensions of the A and B matrices.
• Dynamically allocate space for the A and B matrices.
• Get the filename for the A matrix. Open the file, load the matrix into memory, and

close the file.
• Get the filename for the B matrix. Open the file, load the matrix into memory, and

close the file.
• Get the number of servers to use.
• START THE TIMER (using gettimeofday() system call).
• Access the name server (must do this explicitly in C++).
• Do the matrix multiply. Send one row from A, and the entire B matrix to every

server, until every row has been distributed.
• Receive the result row of C from each server. Assemble the result matrix.
• STOP THE TIMER.
• Display or write to disk the result matrix.
• Calculate and display the elapsed time.

B. C++ Sockets Implementation.

In the C++ implementation, there is one memberServer that listens at a fixed port and
host (declared as MEMBER_SERVER_PORT and MEMBER_SERVER_HOST in file
memberServer.h).

Each matrixClient and matrixServer uses three sockets. One is a udp socket to
communicate with the memberServer. The other two are tcp sockets; one is a “server” socket
at which it listens to receive messages, and the other is a “client” socket that it uses to send
messages (see Figure 1, Figure 2, and example at the end of this section).

There can be many matrixServers, but only one per machine as each listens at a fixed port
(declared as MATRIX_SERVER_PORT in memberServer.h).

There can be many matrixClients when using the stateless matrixServers, but only one at
a time when using the stateful matrixServer (this will be further explained in section 3b).
Each matrixClient listens at a fixed port number (declared as CLIENT_RCV_PORT in
memberServer.h).

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

10

 When a matrixServer starts up, it registers with the memberServer. The memberServer
keeps a list of the ip address of every matrixServer that has registered with it. The
matrixClient then contacts the matrixServer to get the ip addresses of every matrixServer.

The matrixClient uses these ip addresses together with MATRIX_SERVER_PORT to
send the following workRequest to the matrixServer:
Index of result into C matrix, number of columns in A, number of columns in B, a row from
matrix A, B matrix.

Figure 1: Interaction with memberServer

(1. MatrixServer S registers with memberServer. memberServer records ip of server. 2.
matrixClient queries member Server for all matrixServers. 3. memberServer sends ip
address of matrixServer S.)

To demonstrate how the distributed algorithm works, consider this example scenario(refer to
figure 1 for steps 1 – 6, figure2 for steps 7 – 9):

1) memberServer starts up, listens at udp socket.
2) matrixServer S starts up, registers with memberServer, and listens at its server

tcp socket.
3) memberServer adds matrixServer S’s ip address to memberList. Steps 2 and 3

are repeated for matrixServer T and U.

memberServer

matrixClient C matrixServer S

memberList:
 ip of S

2 1

3

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

11

4) matrixClient starts up, prompts user for matrix sizes and filenames, loads
matrices.

5) matrixClient asks user number of servers to use.
6) matrixClient contacts memberServer. memberServer responds with all ip

addresses of matrixServers; memberServer puts this information into a list.
7) matrixClient forks off a child process which will cycle through the list, up to

the max number of servers (input by user), connecting from matrixClient’s
client tcp socket and sending work request (format given in preceding
paragraph) to each matrixServer. Meanwhile, main process closes the client
tcp socket, and listens at matrixClient’s server tcp socket for replies.

8) matrixServers receive work requests from matrixClient on client tcp sockets.
Each uses number of columns in A and B to allocate space for the A matrix
row and the B matrix, calculates result row C, and connects with matrixClient
from matrixServer’s client port and sends result rows and indexes of result
row to matrixClient.

9) matrixClient receives all result rows, and fills the C matrix. matrixClient’s
child process exits when all requests sent; parent process stops timer once C
matrix is fully constructed.

Figure 2: Distributed Matrix Multiply

(1. matrixClient forks child process. 2. Child sends all requests for work
to servers. 3. matrixServers reply to the main process.

Note that this implementation of the matrixServer is stateless; that is, every time the
matrixClient sends a request for work to the matrixServer, it must send the complete B matrix.

matrixServer U

matrixClient C
2

1

3

matrixServer T

Child process
 of matrixClient C

matrixServer S

Tcp client socket

Tcp server socket

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

12

The advantage of this implementation is that requests for work to a single matrixServer may be
interleaved from several matrixClients. Since the matrixServer has no state, it does not care
from which client it received the current request; previous results have no impact on current
calculations.

However, message sizes can be very large for every request to a server since we include both
the row from the A matrix as well as the entire B matrix – even if we are sending a subsequent
row computation to the same server. In order to speed up the calculations, we implemented a
stateful matrixServer. On the first request sent to each matrixServer, the matrixClient sends the
full message: index, # cols in A, # cols in B, A row, B matrix. On subsequent sends to the
servers, the matrixClient sets cols in B equal to zero and sends no B matrix. On the matrixServer
side, if cols in B is nonzero, the server deletes the old B matrix, allocates space for and receives
the B matrix. But if cols in B is zero, the server uses the B matrix it currently has in memory.
We found that this drastically improved speedup. Again, the drawback is that a stateful
matrixServer cannot gracefully handle interleaved requests.

A work around for the interleaved work request problem, that we did not implement, is to
send some identification to the matrixServer along with the work requests (eg the ip of the client
concatenated with the process id of the current process). Once a matrix server begins to serve a
client, it will only accept requests for service from that client until the client sends a termination,
or end of job, flag. It would send a request denied message to any other processes requesting
service until its current client released it with the end of job flag. This would prevent errors from
occurring due to interleaved calculations of unrelated matrix multiplies, but may not be the best
use of resources as each server would be dedicated to one client until the client released it. Also,
if the end of job flag was not received by the matrix server (if the client crashes, or the message
is lost), the server could wait forever and be unavailable to all other processes.

C. Corba Implementation

In CORBA implementation we already had the Naming Service available for us. We used
OrbixNames as Naming Service, which had a Load Balancing feature with round robin
scheduling. The Naming Service was responding to the clients with an object reference of an
available server at the head of the queue.

Each host machine, where client, Naming Service and servers were residing, had an Orbix
Daemon running. The communication between client and servers were handled by the daemons,
as well-known contact points.

When an object implementations server starts up, it registers its object implementation to the
naming server and reports that it is ready to receive calls, where it is added to the list of available
servers for a specific group.(i.e. MULTgrp the available object implementations for matrix
multiplication.)

When the client contacts the Naming Service, it uses the name MULTgrp to get the object
reference for the first available server in the queue for the group, because round robin algorithm

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

13

is used for scheduling. In this case this causes a Load Balancing throughout the object
implementations just like a SPMD machine.

Figure 3: Distributed Matrix Multiply

To demonstrate how the distributed algorithm works, consider this example scenario(refer to
Figure 3)

1. Object implementations server starts up, and registers the object implementation to
the naming server.(through local daemon)

2. The Naming service adds the ref to the end of the queue of that group.(MULTgrp)
3. Client starts up, prompts user for matrix sizes and filenames, loads matrices. Client

tries to resolve the name MULTgrp through Naming Service. Naming Service looks
up for that group and returns the object reference at the head of the queue.

4. Client gets a reference to Naming Service and resolves name MULTgrp to get a
reference for the first available object implementation.

5. Client creates the request objects and populates them with a row and the second
matrix. Finally it invokes send_multiple_requests_deferred() on the orbixd and sends
all the requests parallel. Starts waiting for the results. It poll() the request objects to
collect the results.

6. Servers receive work requests from client through daemons. They compute the result
for each row and return them.

7. Client collects the results available in the request objects and constructs the result
matrix.

Server

Client

orbixd

 Namig
Service

orbixd

orbixd
1

2

1

3

3

3

5

5

6

6

7

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

14

3. Results.

A. Corba versus C++ Sockets.

The comparison experiment consisted of 5 trials each of 10 X 10, 100 X 100 and 200 X 200
matrix multiplies on: 1) no servers (establishes a base), 2) 1 server on same machine, 3) 1 server
on different machine, 4) 5 servers on different machines, and 5) 10 servers on different machines
from client. The machines were 300 MHz Sun Ultra 10’s connected via 10Mbit ethernet in
Spanagel 506; the tests were done at times when there were no other users using the machines.
The machines used are listed in Appendix 6.d.

Upon receipt of the results, we found that the time measurements of the 10 X 10 matrix
multiply were too variable to provide useful insight, so we focused on the 100 X 100 and 200 X
200 matrices. By referring to Table 1, we see that if we exclude the 1st result row, the use of
CORBA adds between 23 and 41% to the completion time that you would expect using C++
sockets. If we restrict our review to the larger, and less variable, 200 X 200 matrix multiply we
see that the range of added overhead is further restricted to between 26 and 29%.

The exception to our general observation occurs when using a server on the same machine as
the client. In this situation, Corba takes almost as long as it would take to use a server on another
machine. Contrast this to the C++ socket implementation that takes slightly longer than the
baseline test of the non-distributed algorithm. This is because, even though the client and server
reside on the same host, the ORB must repeatedly open and close a socket to itself for each
request for service.

 Comparison Between C++ Sockets and CORBA Matrix Multiply
 C++ Sockets CORBA Socket/CORBA

server
configuration

100X100 200X200 100X100 200X200 100X100 200X200

no servers 0.2141 1.7874 0.0000 0.0000 N/A N/A
1 server, same
host

0.5571 3.2124 3.2891 29.6662 0.1694 0.1083

1 server, different
host

3.6977 29.0047 4.5242 36.4906 0.8173 0.7949

5 servers, different
host

3.7413 28.4360 4.5755 36.3644 0.8177 0.7820

10 servers,
different host

3.7202 28.5166 5.2512 36.6698 0.7085 0.7777

Table 1: C++ Socket vs. Corba Matrix Multiply Performance

The detailed tables of results are in appendix 6A. Figure 4 below further depicts the
overhead of Corba vs C++ sockets.

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

15

 Figure 4: Socket vs Corba Matrix Multiply Performance

(Note: On the X axis, the first 1 represents client and server on same host, the
second 1 represents client and server on different hosts).

We were going to end our analysis of Sockets vs Corba here, but then we realized that
there were several other areas that were relevant to the analysis. These are training, development
time, and code size.

The training required to learn C++ sockets, for someone who is trained in C++ and basic
Unix, is approximately 1 week. Contrast this to the requirements for Corba proficiency that may
be as great as 3 months.

 The advantage of Corba becomes apparent in development time. While it took Matt
about 1 week to write and fully debug his implementation, Alpay finished the Corba
implementation in 1 day. This is significant when you consider the cost of a developer, the cost
of equipment and facilities, and the cost of getting a product fielded or to market earlier than the
competition.

Another advantage of Corba is the size of the code generated. Alpay’s Corba
implementation took 197 lines of code, while Matt’s socket implementation took 859 lines. This
is significant not only because of the costs of development, but from a maintenance standpoint.
As lines of code increase, the potential for bugs also increases, as does the cost to repair those
bugs. Additionally, shorter code is easier to understand and maintain.

So, when deciding whether to use Corba versus a lower level implementation, at least the
factors addressed above must be considered.

B. C++ Sockets with Stateful Servers.

Runtime of C++ Socket and CORBA Implementations
of 200X200 Distributed Matrix Multiply

0
5

10
15
20
25
30
35
40

0 1 1 5 10

Number of Servers

T
im

e
(s

ec
on

ds
)

C++ Sockets
CORBA

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

16

We were somewhat surprised to find no speedup in our initial implementation of the
distributed algorithm. We realized that communication time greatly exceeded computation time
because we were using loosely coupled servers implemented over TCP-IP. To try to observe
speedup, we increased the problem size: we tried both 500 X 500 and 1000 X 1000 matrices,
with no observed speedup. In fact, the distributed algorithm ran several times longer than the
non-distributed algorithm.

We then did a quick and dirty big “O” analysis (appendix 6.E), and found that, not only did
computation time increase with the cube of the problem size, but so did our message traffic and
the corresponding messaging times. Because, as problem size increased, both computation and
messaging complexity increased with O(N3), we realized that our current implementation of the
matrix multiply algorithm would never show speed up.

Our solution was to implement stateful servers, as described at the end of section 2B. By
using stateful servers, we only had to send the B matrix to each server once, then on every other
transmission, we only sent each server the A row, index and dimensions. This reduced
communication complexity from O(N3) to O(N2) (See Big O analysis, appendix 6.E). We found
that if the problem size was large enough to overcome connection and message costs, we were
able to see significant speed up results.

We found that the problem size had to be greater than 100 X 100 to see any speed up; at that
problem size or lower, adding servers actually dropped speedup to less than 1 due to the cost of
establishing connections and sending messages. This drop in speedup due to distributing too
small of a problem is illustrated in Figure 5.

Note that all of our speedup calculations use the non-distributed (eg no server) results as the
base for calculation.

The best speedup for a 500 X 500 matrix multiply occurred with 6 servers and was 2.94; this
speedup was achieved at an efficiency of 0.490. The most efficient speedup was 0.9795 at an
efficiency of 0.9795 using 1 server on a different host than the client. These results are
illustrated in Figure 6 and Figure 7 below.

The best speedup for a 1000 X 1000 matrix multiply occurred with 9 servers and was 4.874;
this speedup was achieved at an efficiency of 0.542. The most efficient speedup was 1.032 at
an efficiency of 1.032. This was achieved using 1 server on the same host as the client. This
result shows superscalar speedup – the parallel version runs faster than the sequential version.
We believe that, although we attempted to keep both the sequential and parallel algorithms as
close as possible, the distributed algorithm introduced some more efficient methods than the
sequential, causing this superscalar speedup. These results are illustrated in Figure and Figure 7
below.

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

17

Figure 5: Speedup Curves -- Small Problem Size

(Note: On the X axis, the first 1 represents client and server on same host, the
second 1 represents client and server on different hosts).

Figure 6: Stateful Server Speedup Curves
(Note: On the X axis, the first 1 represents client and server on same host, the

second 1 represents client and server on different hosts).

Matrix Multiply Speedup vs. Number of Stateful Servers

0

1

2

3

4

5

6

0 1 1 2 3 4 5 6 7 8 9 10
Number of Servers

S
pe

ed
up

500 X 500 1000 X 1000

Matrix Multiply Speedup vs. Number of Stateful Servers -- Small
Problem Size

0

0.2

0.4

0.6

0.8

1

1.2

0 1 1 2 3 4 5 6 7 8 9 10
Number of Servers

S
pe

ed
up

10X10 100X100

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

18

Figure 7: Stateful Server Efficiency
(Note: On the X axis, the first 1 represents client and server on same host, the

second 1 represents client and server on different hosts).

Efficiency of Matrix Multiply with Stateful Servers

0

0.2

0.4

0.6

0.8

1

1.2

0 1 1 2 3 4 5 6 7 8 9 10
Number of Servers

E
ff

ic
ie

nc
y

500 X 500 1000 X 1000

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

19

C. Bugs and Lessons Learned

1) Achieving Speedup. Getting a sequential algorithm, even a simple one, to run faster
on a distributed system is not as simple as we first thought. A lot of care in must be taken in
how messages are passed to prevent creating a sequential algorithm with speedup less than 1.

 2) Buffer Deadlock. We ran into a buffer deadlock problem in the stateless C++
implementation which took a while to find. The problem resulted from the sequential nature of
the client program; the client would send all rows and matrices to all servers before ever
receiving any messages. The servers replied immediately after calculating the result row,
sending the reply back to the client. These replies piled up into the received buffer on the client
side. At some point, the buffer became full and a server “hung” waiting to be able to send a
message to the client. Meanwhile, the client is still writing messages across the socket. When it
tries to send the message to the “hung” server, it is able to connect but not send the message, so it
buffers this message. This continues until the client’s buffer is full, and it hangs. The server is
waiting for the client to read its messages, and the client is waiting for the server to read its
messages, resulting in deadlock. We solved this by forking off the send portion of the client as a
child process, so that the client can both send and receive at the same time.

3) Dynamically Allocating 2d Arrays in C++. You cannot dynamically allocate a 2d
array directly in C++ (eg this declaration and definition is not valid:

int* myAry = new int[numRows][numCols]; where numRows and numCols are not known at
compile time). To get around this, Matt implemented a 2D Array Class and Alpay allocated
space using a “for” loop.

4) Corba Buffer Size. The Corba implementation had a limited buffer size; we could not
pass more than a 200 X 200 matrix from client to servers (160,00 bytes). Using C++ sockets, we
just had to statically allocate sufficient buffer space prior to run time.

 5) TCP vs UDP. Since UDP does not guarantee delivery, or order of delivered packets,
large messages (large arrays) could not reliably be reassembled, and TCP had to be used for the
C++ sockets implementation.

6) Corba Server and Client on Same Machine. As discussed in paragraph XXX, when
the Corba Server and Client ran on the same machine, it ran considerably slower than the C++
Socket client and server equivalent.

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

20

4. Source Code
A. C++ Sockets Program Listing
B. Corba Program Listing

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

21

5. Bibliography

1. Sean Baker, CORBA Distributed Objects Using Orbix, Addison-Wesley, 1997
2. John A. Zinky, David E. Bakken, and Richard D. Schantz, Architectural Support for

Quality of Service for CORBA Objects, John Wiley & Sons, inc, 1997.
3. Robert Orfali, Dan Harkey and Jeri Edwards,Instant Corba, John Wiley & Sons, inc,

1997.
4. Robert Orfali, Dan Harkey and Jeri Edward The Essential Distributed Objects

Survival Guide
 John Wiley & Sons, inc March 1996.
5. Robert Orfali and Dan Harkey Client/Server Programming with Java and CORBA

John Wiley & Sons, inc, 1997
6. IONA Technologies, Orbix Programmer’s Guide, Iona Technologies, 1997
7. Hesham El-Rewini, Ted G. Lewis, Distributed and Parallel Computing, Manning,

1998.
8. John Shapely Gray, Interprocess Communications in Unix, the Nooks and Crannies,,

Prentice Hall, 1997.

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

22

6. Appendix
A. C++ Sockets with Stateless Servers and Corba Results Table

Results of Distributed Matrix Multiply Using C/Unix Sockets, Stateless
 Matrix Size

Server
Configuration

Iteration 10X10 100X100 200X200

no servers, only
client

1 0.03422 0.213527 1.72539

2 0.001418 0.21494 1.76686
3 0.001334 0.210902 1.80662
4 0.001368 0.216048 1.83943
5 0.00136 0.214953 1.7988

average 0.00794 0.214074 1.78742
1 server, same
machine

1 0.02962 0.565334 3.19687

 As client 2 0.060903 0.611573 3.20937
3 0.026343 0.536085 3.227
4 0.0328 0.53701 3.21336
5 0.027317 0.535676 3.21543

average 0.035397 0.5571356 3.212406
1 server, different 1 0.024698 3.69694 28.9662
 machine from
client

2 0.023073 3.70562 29.0327

3 0.023013 3.68424 28.9536
4 0.022988 3.69203 29.0587
5 0.02301 3.70943 29.0125

average 0.023356 3.697652 29.00474
5 servers, none on 1 0.032801 3.71558 28.4544
 client machine 2 0.028046 3.724 28.4172

3 0.02794 3.72808 28.4549
4 0.039553 3.76833 28.4211
5 0.030445 3.77034 28.4322

average 0.031757 3.741266 28.43596
10 servers, none on 1 0.029442 3.72934 28.558
 client machine 2 0.027547 3.71921 28.473

3 0.041277 3.71126 28.549
4 0.02741 3.7319 28.458
5 0.028253 3.70922 28.545

average 0.030786 3.720186 28.5166

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

23

Results of Distributed Matrix Multiply Using Corba
 Matrix Size

Server Configuration Iteration 10X10 100X100 200X200
no servers, only client 1 N/A N/A N/A

2 N/A N/A N/A
3 N/A N/A N/A
4 N/A N/A N/A
5 N/A N/A N/A

average
1 server, same machine 1 0.100563 3.30899 30.9037
 as client 2 0.105458 3.31681 28.8873

3 0.111166 3.29292 29.3455
4 0.118575 3.2985 30.1138
5 0.095567 3.22849 29.0806

average 0.106266 3.289142 29.66618
1 server, different 1 0.142726 4.52266 36.616
 machine from client 2 0.10984 4.5406 36.0907

3 0.119963 4.5302 36.564
4 0.10807 4.53395 36.5332
5 0.117222 4.49347 36.649

average 0.119564 4.524176 36.49058
5 servers, none on 1 0.162902 4.58567 36.396
 client machine 2 0.14028 4.57764 36.371

3 0.156322 4.58606 36.2936
4 0.168699 4.5618 36.4416
5 0.171204 4.56622 36.32

average 0.159881 4.575478 36.36444
10 servers, none on 1 0.293782 5.18686 36.8186
 client machine 2 0.299528 5.26731 36.679

3 0.24345 5.21294 36.6034
4 0.271893 5.30495 36.5714
5 0.251008 5.28372 36.6766

average 0.271932 5.251156 36.6698

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

24

B. C++ Sockets with Stateful Servers Results Table

Results of Distributed Matrix Multiply Using C/Unix Sockets, Stateful
 Matrix Size

Server Configuration Iteration 10X10 100X100 500 X 500 1000 X 1000
no servers, only client 1 0.03422 0.213527 33.287 338.103

2 0.001418 0.21494 33.2161 340.052
3 0.001334 0.210902 33.2668 337.83
4 0.001368 0.216048 33.4291 338.653
5 0.00136 0.214953 33.5073 337.354

average 0.00794 0.214074 33.34126 338.3984
1 server, same machine 1 0.04 0.490709 34.7345 323.934
 as client 2 0.023908 0.481969 34.7659 324.178

3 0.024263 0.4661969 34.821
4 0.023914 0.468853 34.6721
5 0.023867 0.463636 34.6987

average 0.02719 0.4742728 34.73844 324.056
1 server, different 1 0.023526 0.415318 35.5373 326.585
 machine from client 2 0.022547 0.421148 35.466 328.432

3 0.020974 0.412318 35.389
4 0.021013 0.411463 35.4647
5 0.021036 0.414522 35.3565

average 0.021819 0.4149538 35.4427 327.5085
2 servers, none on 1 0.029879 0.318277 18.9809 167.951
 client machine 2 0.026932 0.309274 19.0294 167.979

3 0.02794 0.31011 19.1709
4 0.0281 0.31355 18.9653
5 0.02854 0.316789 19.0358

average 0.028278 0.3136 19.03646 167.965
3 servers, none on 1 0.029879 0.41226 14.287 118.607
 client machine 2 0.029014 0.344178 14.2014 118.563

3 0.027264 0.346746 14.4001
4 0.028554 0.34821 14.4802
5 0.029012 0.347826 14.4111

average 0.028745 0.359844 14.35596 118.585
4 servers, none on 1 0.026567 0.406102 12.4153 95.012
 client machine 2 0.030197 0.486873 12.4224 95.1485

3 0.037655 0.450747 12.4341
4 0.027786 0.405199 12.3933
5 0.02765 0.421101 12.401

average 0.029971 0.4340044 12.41322 95.08025

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

25

Results of Distributed Matrix Multiply Using C/Unix Sockets, Stateful
 Matrix Size

Server Configuration Iteration 10X10 100X100 500 X 500 1000 X 1000
5 servers, none on 1 0.025989 0.442548 11.433 83.8903
 client machine 2 0.028055 0.464511 11.3503 83.8453

3 0.026616 0.449753 11.4211
4 0.025807 0.460504 11.3711
5 0.0264 0.491189 11.436

average 0.026573 0.461701 11.4023 83.8678
6 servers, none on 1 0.026368 0.490709 11.3172 76.807
 client machine 2 0.029012 0.481969 11.3876 76.742

3 0.032566 0.4661969 11.1808
4 0.028125 0.468853 11.4787
5 0.029952 0.463636 11.333

average 0.029205 0.4742728 11.33946 76.7745
7 server, different 1 0.029589 0.606383 11.53 72.5306
 machine from client 2 0.037985 0.593823 11.2737 72.3187

3 0.028464 0.59655 11.3548
4 0.029125 0.605671 11.291
5 0.031254 0.599932 11.3025

average 0.031283 0.6004718 11.3504 72.42465
8 servers, none on 1 0.034046 0.644748 11.5879 69.8434
 client machine 2 0.02762 0.635974 11.5782 69.8044

3 0.033888 0.648489 11.59012
4 0.029773 0.599443 11.5855
5 0.03102 0.60215 11.5955

average 0.031269 0.6261608 11.58744 69.8239
9 servers, none on 1 0.0473 0.633137 12.031 68.5766
 client machine 2 0.03555 0.626462 12.1045 68.8724

3 0.0245 0.62955 12.059
4 0.02789 0.631859 12.078
5 0.02985 0.5981 12.068

average 0.033018 0.6238216 12.0681 68.7245
10 servers, none on 1 0.050847 0.733338 12.5087 70.1243
 client machine 2 0.046994 0.702655 12.4678 68.4136

3 0.042469 0.720646 12.5932 71.4136
4 0.037012 0.719209 13.258
5 0.032846 0.693501 12.6363

average 0.042034 0.7138698 12.6928 69.26895

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

26

C. Speedup and Efficiency of Stateful Servers

 Speedup, Stateful Servers
 Matrix Size

#Servers 10X10 100X100 500 X 500 1000 X 1000
0 1 1 1 1
1 0.292015 0.4513732 0.95978 1.04425902
1 0.45203 0.6219946 0.979477 1.03325074
2 0.280782 0.6826339 1.751442 2.01469592
3 0.276226 0.5949078 2.322468 2.85363579
4 0.264923 0.4932531 2.685948 3.55908193
5 0.298795 0.4636637 2.924082 4.03490255
6 0.271875 0.4513732 2.940286 4.40769266
7 0.253809 0.3565097 2.937452 4.67242023
8 0.253922 0.3418834 2.877361 4.84645515
9 0.240475 0.3431654 2.76276 4.9239849
10 0.188897 0.2998782 2.626785 4.88528266

 Efficiency, Stateful Servers
 Matrix Size

#Servers 10X10 100X100 500 X 500 1000 X 1000
0 1 1 1 1
1 0.292015 0.4513732 0.95978 1.04425902
1 0.45203 0.6219946 0.979477 1.03325074
2 0.140391 0.341317 0.875721 1.00734796
3 0.092075 0.1983026 0.774156 0.95121193
4 0.066231 0.1233133 0.671487 0.88977048
5 0.059759 0.0927327 0.584816 0.80698051
6 0.045312 0.0752289 0.490048 0.73461544
7 0.036258 0.05093 0.419636 0.6674886
8 0.03174 0.0427354 0.35967 0.60580689
9 0.026719 0.0381295 0.306973 0.54710943
10 0.01889 0.0299878 0.262679 0.48852827

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

27

C. Machines Used in the Experiments

The machines used were Sun Ultra 10’s, 300 Mhz, in Spanagel #506.

Hosts used in experiment
Host Name Role
indus Nameserver and

client
lynx server #1
mars server #2
mensa server #3
crater server #4
ariel server #5
apus server #6
janus server #7
gemini server #8
grus server #9
libra server #10

Technical Report # NPSCS-98-001 Alpay Duman and Matt Schnaidt

28

E. Big “O” Analysis of Stateful vs Stateless Server Messages.

Assume Square, N X N matrices

Let N = # of rows and columns in both A and B matrices
 S = # of servers to distribute to
 C = constant value of index, and dimensions in work request (size of 3 longs)

Stateless Server Messages.

N messages are sent.

Each message contains an N-sized row, N2 –sized matrix, and C-sized constants.

So, message complexity is O(N)*O(N2 + N + C), drop the constant term and multiplying yields
O(N3).

Stateful Server Messages.

N messages sent.

The first message each server receives contains an N-sized row, N2 –sized matrix, and C-sized
constants. S of these messages are sent.

The subsequent messages each server receives contain an N-sized row, and C-sized constants.
N – S of these messages are sent.

So, message complexity is O(S)* O(N2 + N + C) + O(N – S)*O(N + C). Recognize that S and C
are constants and drop out of the equation yields O(N2 + N) + O(N2), which simplifies to O(N2).

