
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2006

Dynamic allocation of fires and sensors

(DAFS): A low-resolution simulation for

rapid modeling

Buss, Arnold H.

Buss, A. H. and D. K. Ahner. 2006. "Dynamic allocation of fires and sensors (DAFS): A

low-resolution simulation for rapid modeling," Proceedings of the 2006 Winter Simulation

Conference, 1357-1364.

http://hdl.handle.net/10945/35340

Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

DYNAMIC ALLOCATION OF FIRES AND SENSORS (DAFS):
A LOW-RESOLUTION SIMULATION FOR RAPID MODELING

Arnold H. Buss

MOVES Institute
Naval Postgraduate School

Monterey, CA 93943, U.S.A.

 Darryl K. Ahner

U.S. Army TRADOC Analysis Center-Monterey
Naval Postgraduate School

Monterey, CA 93943, U.S.A.

ABSTRACT

High-resolution combat models have become so complex
that the time necessary to create and analyze a scenario has
become unacceptably long. A lower resolution approach to
entity-level simulation can complement such models. This
paper presents Dynamic Allocation of Fires and Sensors
(DAFS), a low-resolution, constructive entity-level simula-
tion framework, that can be rapidly configured and exe-
cuted. Through the use of a loosely-coupled component ar-
chitecture, DAFS is extremely flexible and configurable.
DAFS allows an analyst to very quickly create a simulation
model that captures the first-order effects of a scenario. Al-
though the modeling of entities is done at a low-resolution,
DAFS contains some sophisticated capabilities: within the
model, commander entities can formulate and solve opti-
mization problems dynamically. DAFS can be used to ex-
plore large areas of the parameter space and identify inter-
esting regions where high-resolution models can provide
more detailed information.

1 INTRODUCTION

High resolution entity level simulations are becoming in-
creasingly complex. The rate at which simulation complex-
ity grows often outpaces increases in computing power.
While this level of complexity is necessary for certain ap-
plications, a lower resolution approach to entity-level
simulation may also be necessary. A lower resolution ap-
proach can complement existing high resolution simula-
tions creating a more robust modeling, simulation and
analysis toolkit. Analysis for concept exploration and stud-
ies often involves examining a very large parameter space.
Time constraints frequently limit the number of high reso-
lution simulation runs that can be completed resulting in
only a limited number of parameters being investigated and
limiting the settings of the investigated parameters.

The use of low resolution models for military analysis
has been previously discussed by Ahner, Jackson, and Phil-
lips (2006). Low resolution screening tools can help iden-

13571-4244-0501-7/06/$20.00 ©2006 IEEE
tify parameters and parameter settings of interest. Havens
(2002) began the development on one such tool, DAFS, a
low-resolution, constructive entity-level simulation frame-
work designed for combat. Jackson and Phillips (2005) lay
out this compelling argument for a need for low resolution
simulation tools to fill these capability gaps in military
simulations.

The DAFS framework consists of a Discrete Event
Simulation Model with embedded optimization, Extensible
Mark-up Language (XML) input and output modules, and
an output analysis package. The simulation model receives
scenario inputs from XML files. DAFS uses a model pre-
dictive control approach for making decisions by calling an
optimization routine to allocate assets based upon current
conditions. Data is collected during simulation execution
and once the simulation is complete; the XML output is
available for processing by an analysis package.

The DAFS framework is designed to provide maxi-
mum flexibility. Through the use of an interchangeable
component-based architecture, the simulation provides the
user extensive ability to modify entities, configurations,
simulation parameters, and data output. DAFS is open
source and is made widely available for user customiza-
tion.

DAFS is a combat simulation that models BLUE
friendly forces against RED enemy forces. Because it uses
a low resolution approach, DAFS runs fast and is relatively
easy to set up. In addition, DAFS’ low resolution models
use data derived from high-resolution models enabling
analysts to trace DAFS inputs back to accepted models and
data.

In the remainder of this paper, we will describe the
major components of DAFS, the structure of DAFS input,
the embedded optimization in DAFS, DAFS unique low
resolution approach derived from a high resolution algo-
rithm to construct representative probability distributions,
and finally, describe a DAFS run through event graphs.

Buss and Ahner

2 HIGH RESOLUTION VS. LOW RESOLUTION

APPROACHES

For the purposes of this discussion, resolution will mean
the level of detail at which the various elements in a model
are modeled as well as the level of detail of algorithms
used to drive the model (movement, sensing, line-of-sight,
etc.). “High resolution” means that these elements are
modeled at a very fine level of detail, whereas “low resolu-
tion” means that there is considerably less detail. For ex-
ample, a high-resolution model that included tanks might
include attributes such as its weight and its three-
dimensional geometry, and might also explicitly represent
the individual members of the tank crew as well as very
detailed sensing algorithms to represent the tank’s various
sensor packages. A low-resolution model, on the other
hand, might represent the same tank as a point on a two-
dimensional map with attributes for its maximum speed,
loaded munitions, and a rough representation of its sensor
capabilities. Similarly, a high-resolution line-of-sight algo-
rithm might frequently compute the direct line-of-sight be-
tween all pairs of entities, whereas a low-resolution algo-
rithm might only consider the events that line-of-sight was
gained or lost, with the times between modeled probabilis-
tically.

Often it is asserted, explicitly or implicitly, that the
level of resolution a simulation model must have is an ab-
solute quantity. The “high-resolution” approach typically
attempts to model every element and entity with many at-
tributes and to model the dynamics and interactions to a
very fine degree. The consequences can have significant
impact on the ability to conduct analysis to produce mean-
ingful recommendations in a timely manner.

The high level of fidelity in representing entities im-
poses a significant data burden on the analyst. Not only do
data have to be produced to fill in each attribute, but the
resulting memory footprint when running the model can be
substantial. The high-resolution algorithms implemented
often are very time-consuming, thereby substantially in-
creasing the length of simulation runs, often to the point
where no more than a few “production” runs can feasibly
be performed for a study.

DAFS is an example of a low-resolution model, and
henceforth in this paper we will only consider the low-
resolution approach to modeling entities as it applies to
DAFS. Before discussion that approach, it is first necessary
to cover Event Graph Methodology, upon which the DAFS
entities and algorithms are based.

3 EVENT GRAPH METHODOLOGY

Events Graph Methodology was introduced by Schruben
(1983) as a simple, yet powerful, way of representing dis-
crete event simulation (DES) models. A DES model con-
sists of states, instantaneous state transitions (events), and
135
scheduling relationships between events, that is, defining
which events are scheduled when each given event occurs.
In a DES model, time advances from one scheduled event
to another, not in fixed predetermined increments.

Event Graphs are a way of representing the Future
Event List logic for a discrete-event model. An Event
Graph consists of nodes and directed arcs. Each node cor-
responds to an event, or state transition, and each arc corre-
sponds to the scheduling of other events. Each arc can op-
tionally have an associated boolean condition and/or a time
delay. Figure 1 shows the fundamental construct for Event
Graphs and is interpreted as follows: the occurrence of
Event A causes Event B to be scheduled after a time delay
of t, providing condition (i) is true (after the state transi-
tions for Event A have been performed). By convention,
the time delay t is indicated toward the tail of the schedul-
ing edge and the edge condition is shown just above the
wavy line through the middle of the edge. If there is no
time delay, then t is omitted. Similarly, if Event B is al-
ways scheduled following the occurrence of Event B, then
the edge condition is omitted, and the edge is called an un-
conditional edge. Thus, the basic Event Graph paradigm
contains only two elements: the event node and the sched-
uling edge with two options on the edges (time delay and
edge condition).

Figure 1: Basic Event Graph Construct

The simplicity of the Event Graph paradigm is evident

from the fact that we can represent any discrete event
model using only these constructs (Schruben 1983). An
advantage of the minimalist approach of Event Graphs is
that the modeler can spend more time on model formula-
tion and less on learning the constructs of the paradigm.

4 LOW RESOLUTION MODELING

We will now discuss three of the primary elements of a
low resolution, entity level combat model: movement,
sensing, and weapons effects.

Intuition may suggest that these must be implemented
in a time-step manner. Indeed, an entity in motion, for ex-
ample, cannot have its position be modeled as a DES state,
because its value is continuously changing. Since DES
state must have piecewise constant trajectories, location
therefore cannot be a DES state. However, it turns out
there is an alternate approach that not only is more compu-
tationally efficient than time-step, but more accurate in its
representation of the precise location of the moving entity.

A B
t

(i)

O
8

Buss and Ahner

This approach, using an equation of motion with dead
reckoning, is discussed in the following section.

4.1 Movement

The simplest possible movement is uniform, linear motion.
A moving entity starts its move at some initial position x at
time t0 and begins moving with velocity v. Thus, the loca-
tion of the entity at time t is x + (t − t0)v . Equivalently, the
location of the entity s time units after it began its move-
ment is svx + .

In a DES model the location of moving entities is
modeled using implicit state, rather than explicit state, as
mentioned above. Rather than storing the current location
of the entity at all times, enough information is stored so
that the current position can be computed easily whenever
desired using “dead reckoning.” For uniform linear motion,
it is enough to store: (1) the initial position x (i.e. the loca-
tion of the entity just prior to when it started moving); (2)
the velocity vector v; and (3) the time it started moving t0.
The equations of motion of the previous paragraph are then
applied whenever the position is needed within the model.
Note that since there is no explicit location state, state up-
dates are only required when the velocity vector changes.

The coordinates and velocities of the entities are all in
some common base coordinate system, so the motion rep-
resented above can be considered absolute motion in the
base coordinates. Often it is desirable to consider location
and motion relative to some particular entity’s coordinates.
In that case, the locations and velocities can be represented
relative to that entity’s coordinates. For most purposes the
entities’ coordinate systems may be considered to be sim-
ply a translation of the base coordinate system. Thus, an
entity at position y in base coordinates is at position y −x in
the coordinates of an entity located at position x in the base
coordinate system. Relative velocity is equally simple for
uniform linear motion. Suppose the equations of motion
for two entities are given by)2,1(, =+ itvx ii . Then in the
coordinate system of entity 1, the motion of entity 2 is
given by)()(1212 vvtxx −+− . Thus, relative to the first
entity, the motion of the second is uniform and linear with
starting position x2 − x1 and velocity v2 −v1.

Figure 2: Mover Event Graph

Although it may not be immediately evident, repre-

senting movement in a pure DES manner such as this actu-
ally can provide a superior model to the traditional time-
step approach for entities that move around in a simulation
model (Buss and Sanchez 2005). A discussion about the

Start
Move

End
Move

t
1359
relative merits of the two world views are beyond the
scope of this paper. We will therefore confine the claim to
the relatively modest one that the DES way of modeling
movement is a reasonable one for low-resolution modeling
described in this paper. It should also be evident that, bar-
ring pathological situations, the DES approach is generally
fasters than the time-step approach.

Finally, we note that the approach itself is not limited
to linear equations of motion. Indeed, any equation of mo-
tion in a closed-form can be used in place of the linear
equations described above. It has been our experience,
however, that linear motion is more than adequate for low-
resolution modeling.

4.2 Sensing

A pure Discrete Event Simulation approach to the model-
ing of sensing starts by changing the fundamental question
being asked of the sensor-target interaction. Rather than
focusing on the probability of detection as the primary
measure, DES sensing is concerned with when a sensor ac-
quires a target, and also when a given sensor loses contact
with a given target following acquisition.

It is easiest to start with the simplest situation in which
the sensor is motionless and the target initiates a maneuver
that will bring it within the sensor’s range. The target’s
motion is initiated by the StartMove event and concludes
with the EndMove event

The key events are summarized in Figure 3 (after Buss
and Sanchez 2005).

StartMove

EndMove

EnterRange

ExitRange

Detection

Sensor

Target

Undetection

Figure 3: Canonical Event Sequence

The target entity’s StartMove event is “heard” by a
Referee entity using the SimEventListener pattern (Buss
2002), whereupon the time of the EnterRange event is cal-
culated and the EnterRange event scheduled by the Refe-
ree. When the Referee’s EnterRange event occurs, the time
to Detection is calculated by a Mediator entity. Since dif-
ferent Mediators can exist even for the same Referee in-

Buss and Ahner

stance, there is considerable flexibility in implementing de-
tection algorithms. In principle the Undetection and
ExitRange events are distinct, but in practice there exists
little data or models on which to make that distinction. Re-
gardless, when the ExitRange event occurs, the sensor can-
not possibly detect the target. It is important to recognize
that the scheduling of these events does not rely on polling
or time-stepping. Rather, each scheduled event is based on
a single computation and a single scheduled event for that
sensor-target pair.

The simplest example of a Mediator is the CookieC-
uutterMediator, in which the delay between EnterRange
and Detection events is 0.0. Another simple Mediator is
based on an exponentially distributed time between Enter-
Range and Detection. This is roughly equivalent to a sen-
sor that detects the target at a constant rate, and can be
used in place of a time-step model in which the probability
of detection at each time step is a constant. Finally, a
methodology has been developed in which the delay time
can be statistically calibrated to the Acquire algorithm
(Buss and Sanchez 2005).

4.3 Weapons Effects

Representing weapons effects using a pure Discrete Event
approach is similar to representing sensing. The primary
focus is actually less on the weapon but rather on the muni-
tion, since a given weapon is generally capable of using
different types of munitions depending on the circum-
stances.

A munition is represented as a fast-moving Mover
whose EndMove event triggers an Impact event. Both
direct and indirect fire munitions are modeled using the
same approach. A MunitionTargetReferee first determines
the targets that are impacted by the munition. This is de-
termined by the shape of the impact and which entities are
within that shape. For each target within the blast area,
the actual effect is determined by a MunitionTargetAdjudi-
cator. Like the Referee for sensors, for each target the Mu-
nitionTargetReferee chooses the appropriate MunitionTar-
getAdjudicator, thus enabling differential effects of even
the same shot.

Currently, DAFS does not model damage to platforms;
rather, they are either dead or alive, so the MunitionTarge-
tAdjudicator’s job is simply to determine whether the shot
did or did not kill the target. As with sensor Mediators, dif-
ferent algorithms are possible with MunitionTargetAdjudi-
cators. Thus, the probability of killing the target can be a
function of the munition type, the target type, as well as the
distance of the weapon and the distance of the target from
the center of impact.
1360
4.4 Discussion

The pure DES way of modeling these elements enables
significant possibilities for improved computational effi-
ciency over traditional time-step approaches.

It should be apparent that the DES approach to model-
ing movement is much more efficient than the time-step
approach under most circumstances. A time-step approach
typically must poll each entity regardless of whether it is
moving or not. In the DEA approach, a stationary entity
requires no computational effort for the movement part of
its state, since there are no events on the Event List, as long
as the entity remains stationary. Indeed, even for an entity
in motion, there is a single EndMove event on the event
list. There is no need for polling the entity’s state, since it
remains fixed until the EndMove event occurs. Generally,
the rate at which moving entities change their movement
state is orders of magnitude less than a typical time step
duration. Only when entities are changing direction or
speed every time step will the corresponding DES model
be less efficient, and this is a highly unusual situation.
Moving entities tend to keep moving according to the same
equations of motion for extended periods of time relative
to typical time steps.

In modeling sensing there is even more potential im-
provements of DES to time-step. In a scenario with s sen-
sors and t potential targets, every time step there must be

ts × determinations of detection. In the DES approach,
only when a target or a sensor changes movement state
does there have to be any computation of EnterRange
events or Detections. Furthermore, consider as event for a
potential target that changes its movement state. In that
case, only the sensors need to be polled about the new de-
tection status; the other targets are irrelevant. Similarly, if a
sensor changes its movement state, then all the potential
targets must be polled, but the other sensors are not rele-
vant and can be ignored at that event. Thus, for movement
state changing events, which are relatively much more rare
than time steps, there is essentially an amount of computa-
tion that is linear in the number of sensors or number of
targets, rather than the product of the two.

We have labeled the way of modeling these three im-
portant elements of combat “low-resolution” because of
the fact that some elements are not captured in as much de-
tail as in traditional “high-resolution” combat models. If
indeed a fine-grained capturing of movement subtleties,
such as increased or decreased speed along undulating ter-
rain, is required for the performance measures of the
model, then a time-step approach may be the only way to
represent it. However, in many cases it turns out that the
measures are relatively insensitive to the precise fluctua-
tions in movement, and are relatively unaffected by the
somewhat grosser representation of a DES model.

Buss and Ahner

We now turn to some details of the implementation of
these concepts in the DAFS (Dynamic Allocation of Fires
and Sensors) model.

5 DAFS IMPLEMENTATION

Dynamic Allocation of Fires and Sensors (DAFS) had its
origins in a Masters thesis at the Naval Postgraduate
School under the sponsorship of the U.S. Army TRADOC
Command, TRAC-Monterey (Havens 2002). The initial
motivation was to model optimization-based decision rules
for allocation weapon platforms to targets and sensors to
sensor assignments and evaluate the rules in a combat sce-
nario. The primary focus was on the optimization rules,
and the simulation portion was used to adjudicate the out-
comes in using a simple combat scenario. In other words,
the efficacy of the optimization was determined not by its
objective function value but by traditional combat meas-
ures, such as probability of achieving objective and loss-
exchange rates. Some details of the optimization are pre-
sented in the following section.

DAFS is an Open Source model, copyright under the
GNU Lesser Public License (Free Software Foundation
2006). The philosophy of the DAFS development team has
been to make it freely available, including source codes,
with the objective of creating closer ties between develop-
ers and potential users. Furthermore, allowing any user ac-
cess to the source code enables the possibility of users
making modifications to suit the needs of a particular study
without having necessarily involve the developers. The
modular design of DAFS enables rapid modifications to be
made and additional features added according to the needs
of the study. This is in contrast to proprietary models for
which desired modifications require a lengthy and expen-
sive process of negotiations.

The simulation elements of DAFS are implemented in
Java using the Simkit DES engine (Buss 2001; Buss 2002).
Simkit is itself an Open Source simulation engine designed
to enable the ease of building DES models based on Event
Graph Methodology. Simkit adds support for the two lis-
tener patterns that enable construction of models based on
a loosely-coupled component architecture (Buss 2002,
Buss and Sanchez 2002). Support for Event Graph meth-
odology and for the Listener Patterns is crucial to imple-
menting the essential elements of moving, sensing, and
weapons effects described in the preceding sections.

We now discuss some of the salient classes in DAFS.

5.1 Movement in DAFS

Movement in DAFS is accomplished through the interac-
tion of three kinds of objects: a Mover object, responsible
for maintaining the movement state, an instance of a
MoverManager, which is responsible for elementary ma-
neuver types, and an instance of a PlatformCommander,
1361
that provides rudimentary decision logic. Together instant-
ces of these three classes comprise a basic platform that
can move and plan its motion based on simple rules of en-
gagement.

The Mover instance in DAFS models the constant ve-
locity movement described previously. In addition to the
StartMove and EndMove events there are methods to stop
and to pause the Mover instance. These commands are in-
voked by the MoverManager instance that is in control of
the Mover.

A MoverManager is an implementation of a particular
type of rule for maneuver. The overall movement is com-
prised of a sequence of elementary maneuvers, each exe-
cuted by the Mover. Each Mover has a single MoverMan-
ager that controls its movement at any time, but
MoverManager instances may be changed during a simula-
tion run depending on the situation. Each MoverManager
however is responsible for only a single Mover instance. A
MoverManager listens to its Mover for an EndMove event
and then chooses what action to take based on the type of
MoverManager it, its parameters, and possibly its own
state. DAFS uses three kinds of MoverManagers: Path-
MoverManager, InterceptMoverManager, and RandomLo-
cationMoverManager.

The PathMoverManager causes its Mover to move se-
quentially along a predetermined list of waypoints. When
each waypoint is reached by the Mover (signaled by its
EndMoveEvent), the PathMoverManager sends the Mover
to the next waypoint, if there is at least one remaining. If
the last waypoint has been reached, the Mover stops. This
is the default MoverManager for most DAFS platforms.

The InterceptMoverManager becomes the active
MoverManager when there is a desire for the platform to
intercept another platform. When active, the Inter-
ceptMoverManager computes the intercept point based on
the velocities of its Mover and of the target, as well as the
desired range of intercept. When the intercept point has
been calculated, the InterceptMoverManager instructs the
Mover to move to that point. When the intercept point is
reached, control is returned to the default MoverManager
for that Mover. One use of the InterceptMoverManager in
DAFS is when a weapons platform is instructed to engage
a target that is currently outside its range. The Inter-
ceptMoverManager computes the point for the platform to
engage the target and moves it there. Once the point of en-
gagement is reached, what happens next is determined by
other factors, depending on what type of platform the
Mover is on.

The RandomLocationMoverManager has the follow-
ing logic. A destination is randomly generated and the
Mover is sent to that destination. When the destination is
reached, another one is generated according to the same
distribution, and the process continues until the platform is
instructed to stop or another MoverManager becomes ac-
tive. A common use in DAFS for the RandomLocation-

Buss and Ahner

MoverManager is for UAV platforms responsible for pa-
trolling Named Areas of Interest (NAI).

5.2 Sensors

Several types of sensors are implemented in DAFS, and the
flexibility of the sensor framework allows new types of
sensors and sensing algorithms to be easily deployed in
DAFS. The three main ones used in DAFS are the
CookieCutter, the ConstantRate, and the LowResAcquire
sensors. All three utilize the same event-driven framework
described in Buss and Sanchez (2005).

The CookieCutter sensor is the simplest, for which the
delay between EnterRange and Detection is 0.0. The Con-
stantRate sensor has a delay between EnterRange and De-
tection that is exponentially distributed. The LowResAc-
quire sensor is based on a meta-modeling of the Acquire
algorithm and has two levels to its logic. First, the prob-
ability that there will be a detection at all in the interaction
is computed. A uniform random number is generated to de-
termine whether or not a detection would occur. If not,
then nothing further is done for that interaction. If a detec-
tion will occur, then the time to detection is generated as a
single random variable with a distribution that has been fit-
ted to the parameters of the sensor and the target. That time
is used to schedule the Detection event following the En-
terRange event. For all sensors the ExitRange and Unde-
tection events coincide.

DAFS uses the Referee/Mediator pattern to implement
sensing. The Referee listens for all changes in movement
for potential targets and sensors and then schedules (or
cancels) EnterRange and ExitRange events as necessary.
When EnterRange events occur, the Referee delegates
scheduling the Detection events to the appropriate Media-
tor, based on the type of sensor and type of target. Simi-
larly, ExitRange events are delegated to the appropriate
Mediator to schedule Undetection events.

5.3 Weapons

DAFS uses the Referee/Adjudicator approach discussed in
Section 4.3 previously. The WeaponsTargetAdjudicator
utilizes a LinearKillProbability instance whose parameters
are specified in the data input file. This object gives a
minimum range, a maximum range, and the probabilities of
a munition killing the target at each range. If a weapon’s
range is between the minimum and maximum ranges, the
actual probability of kill for that round is computed by
linearly interpolating between the two extreme ranges. If
the weapon is outside the range interval, the probability of
kill is 0.0. Each munition/target pair can have a different
KillProbability, thus giving great flexibility in how muni-
tions affect targets.

Each weapon has a set of potential munitions that can
be used. Which munition is chosen for a particular shot is
1362
determined by availability and by which is more effective
(i.e. has a better probability of kill) against that target.

When a round is fired, DAFS dynamically creates a
Munition object, which is actually an extremely fast-
moving Mover instance. The time to reach the target is
thus explicitly modeled. When the munition impacts, the
MunitionReferee determines which platforms are within
the effects radius, then delegates the actual outcomes to the
appropriate MuntionTargetAdjudicator. This in turn uses
the appropriate KillProbability for each munition/target
pair to determine the actual outcome of the round.

6 OPTIMIZATION IN DAFS

Periodically in DAFS the fires assignments are updated us-
ing a simple optimization. This optimization problem is
formulated and solved in an entity called the Constrained
Value Optimizer (CVO). When applied, the CVO solution
enables the forces in the simulation to revise their collec-
tive engagement tactics to increase the near term probabil-
ity of success.

In the current implementation ,the CVO solves a sim-
ple assignment problem:

 ∑

∈∈ JjIi
ijij XCMaximize

,

Subject to:

 ∑ ≤
∈Jj

ij MaxAssignX

 ∑ ≤
∈Ii

ij MaxCoverX

 ∑ ≥
∈Ii

ij MinCoverX

 }1,0{∈ijX

Where I is the set of available weapons platforms and

J is the set of available potential targets at the time the op-
timization is run, and ijX is 1 if weapon platform i is as-
signed to potential target j, and 0 otherwise.

The values of the objective function coefficients is de-
termined by another entity called the Value of Potential
Assignments (VPA). Different instances of a VPA can be
used to produce different objective values to be optimized.
The current default VPA computes coefficient ijC as the
net expected value of the outcome of the engagement:

ijijij VqVp − , where ijp is the probability the weapon will
kill the target, jiq is the probability the target will kill the
weapon platform, and iV and jV are the values of weapon
i and target j, respectively.

Currently the CVO re-optimizes periodically accord-
ing to an input parameter. After the optimization is run, the

Buss and Ahner

CVS gives each weapon platform its assigned targets,
which go on the platform’s list.

The CVO and VPA allow considerable flexibility in
implementing different optimization possibilities in DAFS.
The formulation itself can be changed by writing a differ-
ent CVO class, and the existing VPA can be left as-is. Al-
ternatively, a different scheme for determining the objec-
tive function coefficients can easily be implemented by
developing a new VPA, without having to necessarily
change the CVO formulation. Of course, new versions of
both classes could be created if there were a desire to im-
plement an entirely different optimization problem to allo-
cate the weapons platforms.

The optimization is solved in DAFS using the LpSolve
library (Lp_Solve 2006). LpSolve is Open Source software
that supports formulation and solution of linear and mixed
integer programming problems. Although LpSolve is writ-
ten in C, it comes with a wrapper that uses the Java Native
Interface (JNI) to connect with the LpSolve library.

7 INPUT AND OUTPUT

Input to DAFS is currently done using a single XML file.
The input file defines which entities are to be created as
well as specifying the various types of platforms, sensors,
and weapons. Data for detections and munition-target in-
teractions are all specified in the data. Since nearly all the
information that defines these attributes is in data, there is
considerable flexibility on the part of the user to define
new types of sensors, munitions, or platforms.

DAFS output currently consists of two reports. One
details all munition/target interactions, listing the time of
the engagement, which entities were involved, their respec-
tive locations, and the outcome (killed or missed). The
second table details all Detection and Undetection events
by sensors, listing what time, the platforms involved, and
whether the event was a Detection or an Undetection.

These reports can currently be saved to an Access da-
tabase by clicking on the Save icon in the toolbar. The user
is first prompted for a file to save the results in.

It is very straightforward to modify DAFS to produce
other reports, but currently it does require modification of
some of the DAFS code.

8 THE GRAPHICAL USER INTERFACE

DAFS can be run in command-line mode for multiple rep-
lications or using a Graphical User Interface (GUI) to visu-
ally observe a single run. Viewing a single run is extremely
useful for debugging scenarios and for briefing results.

DAFS uses an Open Source map display application
called OpenMap (2006). When DAFS is run in GUI mode,
an empty map is displayed, as shown in Figure 4.
1363

Figure 4: DAFS GUI

A scenario file can be loaded by clicking on the File

Open icon on the toolbar. The user can select the desired
input file. Then DAFS creates all the platforms specified in
that file and displays them in the GUI.

OpenMap has a rich set of mapping features, including
zooming and scrolling. Figure 5 shows a scenario in pro-
gress in which the map has been zoomed in to get a better
view of the battle. The opposing sides are shown in blue
and red colored icons, and units that have been killed are
shown as an ‘X.’

Figure 5: Small Scenario Executing in GUI

Buss and Ahner

9 CONCLUSIONS AND FUTURE WORK

Low resolution entity-level simulation models are a useful
addition to the military analyst’s toolkit. They address a
number of important problems facing the military analyst
today. Although not a panacea for all analytical needs,
there fill an important gap in the current suite of simulation
tools available.

DAFS is an example of such a low-resolution combat
model. It has many characteristics that are crucial to a
modern simulation tool: rapid construction of scenarios,
fast execution times, and flexibility of configuring scenar-
ios. DAFS also incorporates some unique capabilities, such
as being able to dynamically formulate and solve optimiza-
tion problems within the simulation.

Development of DAFS is ongoing. Some of the areas
currently being addressed include:

• Improved optimization formulation,
• More user-friendly input,
• Improved sensor allocation methodology,
• Modeling communications networks, and
• Better representation of command and control.

ACKNOWLEDGMENTS

Development of DAFS and of the first author has been
supported by the U.S. Army TRADOC. This support is
gratefully acknowledged.

REFERENCES

Ahner, D.., L. Jackson, and D. Phillips. 2005. DAFS: A
low resolution modeling approach: architecture and
implementation. Proceedings of The 10th Annual In-
ternational Conference on Industrial Engineering The-
ory, Applications & Practice, December 2005.

Buss, A.H. 2001. Discrete Event Programming with Sim-
kit. Simulation News Europe. 32/33: 15-24.

Buss, A. H. 2002. Component based simulation modeling
with Simkit. Proceedings of the 2002 Winter Simula-
tion Conference, E. Yücesan, C.-H. Chen, J. L. Snow-
don, and J. M. Charnes, eds.

Buss A.H. and P.J. Sanchez. 2002. Building Complex
Models With LEGOs (Listener Event Graph Objects).
Proceedings of the 2002 Winter Simulation Confer-
ence, E. Yücesan, C.-H. Chen, J. L. Snowdon, and J.
M. Charnes, eds. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Buss, A. H. and P.J. Sanchez. 2005. Simple movement and
sensing in discrete event simulation. Proceedings of
the 2005 Winter Simulation Conference, M. E. Kuhl,
N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.
1364
Free Software Foundation Web Site. <http://www.
fsf.org>. [Accessed June 2006.]

Havens, M.E. 2002. Dynamic allocation of fires and sen-
sors. Masters Thesis, Operations Research Depart-
ment, Naval Postgraduate School, Monterey, CA

Jackson, J. and Phillips, D. 2005. Using a low resolution
entity level modeling approach. The Bulletin of Mili-
tary Operations Research: Phalanx, 38-2: 15-26.

Lp_Solve Web Site.
<http://sourceforge.net/projects/lps
olve> [Accessed June 2006.]

OpenMap Web site <http://openmap.bbn.com/>
[Accessed June 2006].

Schruben, Lee 1983. Simulation modeling with event
graphs. Communications of the ACM. 26(11): 957-
963.

AUTHOR BIOGRAPHIES

ARNOLD BUSS is a Research Assistant Professor in the
MOVES Institute at the Naval Postgraduate School. His e-
mail address is <abuss@nps.edu>.

DARRYL AHNER is an analyst at TRAC-Monterey. A
Major in the United States Army, he received his Ph.D. in
Operations Research from Boston University. His e-mail
address is <dkahner@nps.edu>.

http://www.fsf.org/
http://www.fsf.org/
http://sourceforge.net/projects/lpsolve
http://sourceforge.net/projects/lpsolve
http://openmap.bbn.com/
mailto:abuss@nps.edu
mailto:dkahner@nps.edu

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

