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Abstract. In reliability engineering focused on the design and optimization of structures, the

typical measure of reliability is the probability of failure of the structure or its individual components

relative to specific limit states. However, the failure probability has troublesome properties that

raise several theoretical, practical, and computational issues. This paper explains the seriousness

of these issues in the context of design optimization and goes on to propose a new alternative

measure, the buffered failure probability, which offers significant advantages. The buffered failure

probability is handled with relative ease in design optimization problems, accounts for the degree

of violation of a performance threshold, and is more conservative than the failure probability.

Keywords: Failure probability; Structural Reliability; Reliability-based design optimization.

1 Introduction

Civil, mechanical, naval, and aeronautical structures such as bridges, building, offshore platforms,

vehicle frames, ship hulls, and aircraft wings are subject to uncertain loads, environmental condi-

tions, material properties, and geometry. It is widely recognized that these uncertainties must be

accounted for in the design, maintenance, and retrofit of such structures. The theory of structural

reliability, see, e.g., [5], provides an analytic framework for assessing the reliability of a structure as

measured by its failure probability to be defined precisely below. The failure probability is widely

promoted to designers and building code developers as a tool for assessing and comparing designs

∗Corresponding Author. Tel.: + 1 831 656 2578, fax: +1 831 656 2595.
Email addresses: rtr@math.washington.edu (R.T. Rockafellar), joroyset@nps.edu (J.O. Royset).



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
18 DEC 2009 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2009 to 00-00-2009  

4. TITLE AND SUBTITLE 
On Buffered Failure Probability in Design and Optimization of 
Structures 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School,Operations Research 
Department,Monterey,CA,93943 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
Reliability Engineering & System Safety, to appear 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

39 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



and has successfully been applied to many applications, see, e.g., [5]. While the failure probability

is of significant importance, it also possesses troublesome properties that raise several theoretical,

practical, and computational issues. In particular, these issues surface when the failure probability

is used in design optimization of structures and may lead to poor numerical performance of stan-

dard nonlinear optimization algorithms such as SNOPT [9], LANCELOT [4], and NLPQL [28]. In

this paper, we discuss these issues and propose an alternative measure of reliability that we call the

buffered failure probability. The buffered failure probability is handled with relative ease in design

optimization problems, accounts for the degree of violation of a performance threshold, and is more

conservative than the failure probability.

The failure probability and the buffered failure probability are defined in terms a limit-state

function g(x,v) that is a function of a vector x = (x1, x2, ..., xn)
′ of design variables (with prime

′ denoting the transpose of a vector), which may represent member sizes, material type and qual-

ity, amount of steel reinforcement, and geometric layout selected by the designer, and a vector

v = (v1, v2, ..., vm)′ of quantities, which may describe loads, environmental conditions, material

properties, and other factors the designer cannot directly control. The quantities v are usually

subject to uncertainty and their values are therefore not known a priori. The limit-state function

represents the performance of the structure with respect to a specific criterion referred to as a limit

state. As commonly done, we describe these quantities by random variables V = (V1, V2, ..., Vm)′

with a joint probability distribution which is regarded as known, although it might need to be esti-

mated empirically. To distinguish between the random variables and their realizations, we denote

the former by capital letters and the latter by lower case letters. For a given design x, g(x,V) is

a random variable describing the (random) performance of the structure. We refer to this random

variable as the state of the structure.

By convention, g(x,v) > 0 represents unsatisfactory performance of the structure with respect

to the limit-state function and, consequently, the event {g(x,V) > 0} is the set of realizations of

the random vector V corresponding to “failure.” We refer to this set as the failure domain. We

note that failure may not necessarily imply total collapse of the structure, but may simply mean

the violation of a prespecified threshold for crack width, deflection, vibration, etc.
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The current approach to structural reliability defines the failure probability of a structure with

limit-state function g(x,v) as the probability that the state of the structure takes on a positive

value. As the failure probability depends on the design x, we denote it by p(x). That is,

p(x) = P [g(x,V) > 0]

=

∫
...

∫
I(g(x,v) > 0)fV(v)dv1...dvm, (1)

where fV(v) is the joint probability density function for V and I(g(x,v) > 0) is the indicator

function defined to be one if g(x,v) > 0 and zero otherwise.

Our definitions of unsatisfactory performance and the failure domain deviate in two minor ways

from those of some other authors, see, e.g., [5]. First, we exclude the realizations v corresponding to

g(x,v) = 0 from the failure domain. Of course, if the probability of the event {g(x,V) = 0} is zero,

as is typically the case whenV are continuous random variables, then this exclusion does not change

the failure probability. Our convention, however, facilitates easy transfer of the results in [20] to

the framework of the present paper and therefore allows general forms of the limit-state function

and a wide range of probability distributions. Second, while we define g(x,v) > 0 as failure, some

authors adopt the opposite convention where g(x,v) < 0 represents failure. Obviously, it is trivial

to switch between the two conventions by multiplying the limit-state function with −1. In this

paper, we use the convention g(x,v) > 0 to indicate failure as our derivations appear simpler in

that case.

In Section 2, we discuss the properties of the failure probability in detail. Section 3 presents

the buffered failure probability and shows that it is more conservative than the failure probability,

accounts for unlikely but possible realizations of the state of the structure, and has significant

computational advantages. Section 4 generalizes the discussion to structural systems with multiple

limit-state functions. Section 5 illustrates the use of the buffered failure probability in design

optimization of a truss structure and a vehicle frame. We end the paper with concluding remarks

in Section 6.
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2 Properties of the Failure Probability

While the definition of the failure probability is appealing due to its relative simplicity, it exhibits

several undesirable properties resulting in significant theoretical and practical difficulties. We dis-

cuss these in turn next.

2.1 Simplistic Characterization of Structures as Failed or Safe

The current approach to structural reliability effectively characterizes a structure to be in only

one of two possible states: failed, i.e., g(x,v) > 0, or safe, i.e., g(x,v) ≤ 0. Consequently, the

“degree” of failure is not important. For example, the event {g(x,V) = 100} is no worse than

the event {g(x,V) = 0.01} as they both are subsets of the failure domain and contribute to the

failure probability. However, a designer would most likely prefer the event {g(x,V) = 0.01} as it

represents only a minor violation of a threshold, possibly somewhat arbitrarily set. On the other

hand, the event {g(x,V) = 100} may be catastrophic. The theory of structural reliability does not

account for the designer’s preference in this case. This preference may become important when a

designer compares two candidate designs as the following example illustrates.

Example 1. Consider the design of a structure that is characterized by the limit-state function

g(x,v) = 100− x1v1 − (1− x1)v2, (2)

where 100 is a deterministic load on the structure and x1 is a design variable to be chosen by the

designer. Only x1 = 0 and x1 = 1 are allowable choices. Moreover, let V1 be a normally distributed

random variable with mean 150 and standard deviation 15 representing the strength of the structure

when design x1 = 1. When design x1 = 0, the strength of the structure is V2 which is a random

variable with mean 150 and a triangular probability density function in the range [98.40, 175.8]

with values near 175.8 being the most likely outcomes. Figure 1 illustrates the probability density

functions of g(0,V) and g(1,V). For both designs, the probability of failure is 4.29 ·10−4. However,

as seen from Figure 2, which depicts the upper tails of the probability density functions in Figure

1, the probability of an “extreme event” is substantial in case of design x1 = 1, but nonexistent
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Figure 1: Example 1: Probability density functions (pdf) of g(1,V) and g(0,V).

for design x1 = 0. For example, the probability of the event {g(x,V) > 2} is 2.63 · 10−4 for design

x1 = 1 but for design x1 = 0 that probability is of course zero. While this is obviously an artificial

example, it illustrates that two designs with the same failure probability may have significantly

different characteristics. If the designer only computes the failure probability, this difference may

not be revealed.

2.2 Inaccurate or Computationally Costly Approximations

Since the uncertainty in a structure often needs to be characterized by many (hundreds of) random

variables, the computation of the failure probability for a given design x requires the evaluation

of a high-dimensional integral, see (1). As that evaluation is usually impossible to carry out

analytically and computationally expensive to carry out by numerical integration, approximations

based on Monte-Carlo simulation and geometric considerations are typically used.
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Figure 2: Example 1: Tails of probability density functions (pdf) of g(1,V) and g(0,V).

2.2.1 Monte-Carlo Simulation

For a given design x, Monte-Carlo simulation estimates the failure probability p(x) by generating

N independent realizations v1, v2, ..., vN of the random vector V and computing the fraction of

the realizations in the failure domain, i.e., the estimate of the failure probability

pN (x) =
1

N

N∑
j=1

I(g(x,vj) > 0). (3)

The corresponding estimator is unbiased and, from the central limit theorem, we know that the

standard deviation of the estimator decays proportional to 1/
√
N , as N → ∞. While this decay

rate cannot be improved upon, the standard deviation of the estimator can often be much improved

by the use of variance reduction techniques such as importance sampling, directional sampling, and

Markov-Chain Monte-Carlo sampling, see, e.g., [26]. Since the standard deviation decays only

proportional to 1/
√
N and the effort required to compute pN (x) grows linearly in N , Monte Carlo

simulation is usually computationally costly.
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2.2.2 Geometric Approximations

If the random vector V consists of independent standard normal random variables and the limit-

state function is affine in v, i.e., g(x,v) = a(x)′v + b(x) for some m-valued function a(x) and

real-valued function b(x), then the failure probability p(x) = Φ(−β(x)) whenever p(x) ≤ 0.5,

see, e.g., Chapters 4-6 in [5]. Here, Φ(·) is the cumulative distribution function of a standard

normal random variable and β(x) is the shortest distance from the origin in IRm (i.e., the space of

realizations of V) to the surface {v|g(x,v) = 0}, see Figure 3, where g1(x,v) is an example of an

affine limit-state function. We refer to β(x) as the reliability index of design x. It can be shown

that in this case

β(x) = −b(x)/∥a(x)∥. (4)

If g(x,v) is not affine, see, e.g., g2(x,v) in Figure 3, then Φ(−β(x)) is an approximation of the

failure probability. In this case, there is no explicit expression for β(x) and it must be computed

by solving the optimization problem

β(x) = min
v

∥v∥ (5)

s.t. g(x,v) ≥ 0.

There is empirical evidence that the approximation Φ(−β(x)) of the failure probability is quite ac-

curate on classes of applications arising in structural engineering; see for example [36] and references

therein. However, the approach may also lead to inaccuracy as discussed below.

When g(x,v) is not concave1 in v, this optimization problem may have points satisfying

the Karush-Kuhn-Tucker (KKT) first-order necessary conditions for a local minimum but that

are not global minima. For example, limit-state function g3(x,v) in Figure 3 results in a line

{v|g3(x,v) = 0} with many points that are locally, but not globally, the closest point to the origin.

Since standard nonlinear optimization algorithms such as SNOPT [9], LANCELOT [4], and NLPQL

[28] only guarantee convergence to such a KKT point, it may be difficult to compute the globally

optimal solution of (5) in this situation, let alone prove that an obtained point is globally optimal.

The same holds for algorithms specialized for solving (5) such as the iHLRF algorithm [13]. Hence,

1See, e.g., [2, 3] for definitions of concavity and convexity.
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Figure 3: Reliability indices β(x) for three limit-state functions and a given design x. The shaded
areas indicate failure domains.

β(x) could be significantly overestimated, thereby leaving serious design risks undetected. For

example, a standard nonlinear programming algorithm may return the same value for the three

limit-state functions in Figure 3 when applied to (5). The value would be correct for g1(x,v) and

g2(x,v), but severely overestimate the reliability index for g3(x,v). Even if the global minimum is

found in (5), we see from Figure 3 that Φ(−β(x)) may overestimate p(x), as in the case of g2(x,v),

or underestimate it as in the case of g3(x,v). In general, it is difficult to know how close Φ(−β(x))

is to p(x).

In practice, V is essentially never a vector of independent standard normal random variables.

Hence, to apply the above approximation one typically needs to carry out a probability transforma-

tion, see, e.g., Chapter 7 of [5]. Random vectors governed by distributions such as the multivariate

normal (possibly with correlation) and lognormal distributions can be transformed into a standard

normal vector using a smooth bijective mapping. Other transformations can also be carried out at

least approximately. A transformation can make the limit-state function highly nonlinear and non-
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concave as function of the independent standard normal random variables, which makes it difficult

to determine the global minimum of (5).

The method of estimating p(x) by Φ(−β(x)) is referred to as the first-order reliability method

as it effectively linearizes a transformed limit-state function. An extension of this method is the

second-order reliability method where the transformed limit-state function is approximated by a

quadratic function, see Chapter 6 of [5]. However, the second-order reliability method suffers from

the same difficulties as the first-order method, though its accuracy may be better. An alternative

method is to attempt, after a transformation to independent standard normal random variables,

to determine the largest ball in IRm, centered at the origin, with g(x,v) ≤ 0 for all v in the ball.

Using the chi-square distribution, this leads to an upper bound on the failure probability p(x).

However, the bound is usually overly conservative and of little practical use.

2.3 Poorly Behaving Sensitivities of Failure Probability and its Approximations

In sensitivity analysis and design optimization, we examine the effect on the failure probability

(or its approximation) of infinitesimal changes in the design. Hence, differentiability of the failure

probability and its approximations with respect to design x as well as computable formulae for the

corresponding gradient become important. Specifically, standard nonlinear optimization algorithms

require all functions in an optimization problem to be continuously differentiable. If this condition

is not satisfied, the algorithms may break down without returning an optimized design.

2.3.1 Gradient of the Failure Probability

The issue of differentiability of the failure probability is nontrivial as the integrand in (1) is not

differentiable. (The indicator function makes a jump from 1 to 0 as the condition g(x,v) > 0 goes

from being satisfied to not satisfied.) Hence, we cannot simply compute the derivative of an integral

by integrating the derivative of the integrand which is allowed under weak assumptions when the

integrand is differentiable.

Despite this situation, the failure probability is actually continuously differentiable with respect

to the design x under rather general conditions when the failure domain is bounded and the limit-

state function is continuously differentiable with respect to the design [33]. However, the gradient
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formula in [33] is difficult to use in estimation because it may involve surface integrals. In [14]

(see also [15]), an integral transformation is presented, which, when it exists, leads to a simple

formula for the gradient of the failure probability. However, it is not clear under what conditions

the transformation exists. As in [33], [32] assumes that the failure domain is bounded. With this

restriction as well as the assumption that the failure domain is “star-shaped,” a formula for the

gradient of the failure probability involving integration over a simplex is derived. In principle, this

integral can be evaluated by Monte Carlo simulation. However, to the authors’ knowledge, there is

no computational experience with estimation of failure probabilities for highly reliable mechanical

structures using this formula.

In Section 9.2 of [5], with generalizations and proofs in [24], we find convenient expressions for

the gradient of the failure probability under similar assumptions to those in [32]. The expressions

can be estimated using Monte Carlo simulation with good accuracy at moderate computational ex-

pense when the star-shaped assumption is satisfied and the number of random variables is moderate.

However, it becomes increasingly costly to estimate the expression using Monte Carlo simulation

when the number of random variables grows. Moreover, in practice, it is difficult to verify the

star-shape assumption. An alternative formula for the gradient of the failure probability is pre-

sented in [23, 22] that can also be estimated using Monte Carlo simulation. However, the formula

relies on the implicit function theorem applied to the equation g(x,v) = 0 that may not always be

applicable.

2.3.2 Gradient of the Reliability Index

As described in Subsection 2.2, the failure probability p(x) can rarely be computed exactly and the

approximation Φ(−β(x)) is often used, where the reliability index β(x) is defined in (5). Since the

cumulative distribution function Φ(·) is continuously differentiable, differentiability of this approx-

imation depends on the properties of β(x). We find expressions for the gradient of β(x) in Chapter

8 of [5], but those cannot hold for all x as the following simple example illustrates.

10
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Example 2. Consider the limit-state function

g(x,v) =
v21
x21

+ v22 − 1, (6)

let V1 and V2 be independent standard normal random variables, and let x1 > 0 be a design variable,

see Figure 4. As β(x) is defined as the distance to the closest point on the surface {v|g(x,v) = 0},

see (5), we find that β(x) = x1 if 0 < x1 < 1 and 1 otherwise. Hence, ∂β(x)/∂x1 = 1 if 0 < x1 < 1,

∂β(x)/∂x1 = 0 if x1 > 1, and the derivative is not defined when x1 = 1, see Figure 5. As we see

from this figure, β(x) is not continuously differentiable and the derivative at x1 = 1 is not defined.

As Example 2 illustrates, β(x) may not be continuously differentiable and, hence, standard

nonlinear optimization algorithms may stall at points that are not KKT points when applied to

design optimization models involving β(x).

In view of the above discussion, we see that the differentiability of the failure probability as

well as the existence of tractable formulae for its gradient rely on assumptions that may not hold
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and that are difficult to verify in practice. Moreover, the frequently used reliability index provides

an approximation of the failure probability Φ(−β(x)) that may not be continuously differentiable.

Hence, even if the limit-state function is a continuously differentiable function in the design vari-

ables, the failure probability and Φ(−β(x)) may not be.

2.4 Lack of Convexity of the Failure Probability

As stated above, standard nonlinear optimization algorithms typically only guarantee convergence

to a KKT point. However, if a design optimization problem has a convex objective function, which

we would like to minimize, and the constraints form a convex feasible region, then a KKT point

must be a global optimal design for the problem. Absent convexity, it may be difficult to compute

a globally optimal design, let alone prove that an obtained design is globally optimal. Therefore

we would like to formulate convex design optimization models if possible. We refer to [3] for an

introduction to convex optimization.

From this discussion we conclude that the convexity of the failure probability p(x) would be

valuable when solving a design optimization problem. Unfortunately, it is unknown whether p(x)

is convex even if g(x,v) is convex in x for all v. Hence, p(x) does not “preserve” convexity as a

convex limit-state function may result in a nonconvex failure probability. The same situation holds
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when the reliability index β(x) is used to approximate the failure probability. For this reason,

we expect that design optimization problems involving the failure probability or the reliability

index may have many local minima that are not globally optimal. Standard nonlinear optimization

algorithms are unlikely to find the globally optimal design and may return, at best, locally optimal

designs. Consequently, it may be necessary to apply computationally expensive global optimization

algorithms, see, e.g., [10].

3 Buffered Failure Probability

As reviewed in Section 2, the failure probability has several troublesome properties. In this section,

we discuss an alternative probability, which we call the buffered failure probability, that has several

advantages over the failure probability. The buffered failure probability relates to the conditional

value-at-risk [19, 20], which is now widely used in the area of financial engineering to assess invest-

ment portfolios. The tutorial paper [18] provides an overview including relation to safety margins

and potential replacements for failure probability constraints. However, buffered failure probability

is directly introduced and explained here for the first time.

3.1 Definition

We first recall that for any probability level α, the α-quantile of the distribution of a random

variable is the value of the inverse of the corresponding cumulative distribution function at α.

For simplicity in presentation, we assume here and throughout this paper that the cumulative

distribution function of g(x,V) is continuous and strictly increasing for all x. For definitions which

serves to fully generalize beyond this case, we refer to [20]. We consider especially the random

variable g(x,V) for a given design x and denote the α-quantile of g(x,V) by qα(x). As indicated

by the notation, qα(x) depends on the design x as the probability distribution of g(x,V) changes

with x. Figures 6 and 7 illustrate qα(x) for the case when g(x,V) is normally distributed with

mean −1 and standard deviation 1. Figure 6 shows the cumulative distribution function of g(x,V)

in this case and quantiles corresponding to probability levels α = 0.60 and α0 = 0.84. Figure

7 illustrates the same information using the probability density function of g(x,V) and, hence,

13
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probabilities correspond to areas under that function. In view of Figures 6 and 7 and (1), we

find that the failure probability is equal to one minus the probability level that results in the

quantile being zero. For example, in Figure 6 we find that α0 = 0.84 gives qα0(x) = 0. Hence,

p(x) = 1− α0 = 1− 0.84 = 0.16.

Before we define the buffered failure probability, we introduce a quantity that is closely related

to the quantile. For any probability level α, we define the α-superquantile as

q̄α(x) = E[g(x,V)|g(x,V) ≥ qα(x)], (7)

where the vertical bar indicates a conditional expectation. That is, the α-superquantile is the

average value of g(x,V), conditional on the event that g(x,V) is no less than the α-quantile. This

quantity is called Conditional Value-at-Risk in financial engineering, but we here propose and adopt

the application-independent name superquantile. Figures 6 and 7 illustrate the superquantiles of

g(x,V) for probability levels α = 0.60 and α0 = 0.84. Since g(x,V) is normally distributed, it is

trivial to compute the superquantiles using the well-known conditional expectation formula (see,

e.g., [35]),

q̄α(x) = µ+
σϕ(qα)

1− α
, (8)

for a normally distributed g(x,V) with mean µ, standard deviation σ, and truncation level qα,

where ϕ(·) is the standard normal probability density function and qα is the α-quantile of the

standard normal distribution. When g(x,V) is not normally distributed, the calculation of the

superquantile appears much more difficult. As seen in the next subsection, however, it can be

computed in a remarkably efficient manner.

Figure 7 highlights the definition of a superquantile as a conditional expectation. As seen for

probability level α = 0.60, the corresponding quantile is −0.75. The corresponding superquantile

is, roughly speaking, the value that splits the interval [−0.75,∞) into two “balancing” parts. The

area under the probability density function between −0.75 and the value (the lightly shaded area in

Figure 7) “balances” the area under the function above the value (the heavily shaded area). In this

case, that value is −0.03 as computed by (8). Similarly, for probability level 0.84, the corresponding

quantile is 0 and the corresponding superquantile is 0.53. That is, the area under the probability
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density function between 0 and 0.53 “balances” the area under the function above 0.53.

We note that in general qα(x) ≤ q̄α(x) for any probability level α and design x. In [18] we also

find the following equivalent formula for the superquantile:

q̄α(x) =
1

1− α

∫ 1

α
qα′(x)dα′. (9)

We do not repeat the derivation of this expression here, but note that the expression essentially

averages the quantiles for probability levels larger than α.

We now define the buffered failure probability p̄(x) to be equal to 1 − α where α is selected

such that the superquantile

q̄α(x) = 0. (10)

That is,

p̄(x) = P [g(x,V) ≥ qα(x)], (11)

where α is selected such that (10) holds. Hence, q̄1−p̄(x)(x) = 0. We see from Figures 6 and 7

that the probability levels α = 0.60, which led to q̄α(x) = −0.03, and α0 = 0.84, which led to

q̄α0(x) = 0.53, are slightly too small and much to large, respectively, to result in a corresponding

superquantile of zero. However, it is easy to find by trial-and-error and (8) that a probability level

α = 0.62 results in a quantile of −0.70 and a superquantile of approximately zero as illustrated

in Figures 8 and 9. (We present a much easier way than trial-and-error below for computing the

superquantile.) By definition, see (11), the buffer probability is then 1−α = 1−0.62 = 0.38, which

is somewhat larger than the failure probability of 0.16.

In general, we find that

p(x) ≤ p̄(x) (12)

for any x, see [19, 20, 18]. Hence, the buffered failure probability is a conservative estimate of the

failure probability for any design x. As we see below, the degree of overestimation is usually modest.

We stress, however, that the buffered failure probability carries more information about the design

than the failure probability as it includes information about the upper tail of g(x,V). Hence,

for designs where the probability of g(x,V) taking on values substantially above zero is relatively
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Figure 8: Cumulative distribution function (cdf) of g(x,V), as in Figure 6, with α selected such
that the α-superquantile q̄α(x) = 0. Illustration of the buffered failure probability p̄(x) and the
failure probability p(x).

large, the buffered failure probability tends to be somewhat larger than the failure probability.

In contrast, if the probability of g(x,V) taking on large values is small, then the buffered failure

probability is typically close to the failure probability.

As we discuss below, the buffered failure probability is surprisingly easy to compute, possesses

several convenient properties, and avoids many of the difficulties associated with the failure prob-

ability. Hence, we believe there are substantial advantages to replacing the failure probability by

the buffered failure probability in engineering design.

Example 3. Consider the limit-state function given in Example 1 and recall that p(0) = p(1) =

4.29 · 10−4. We now compute the buffered failure probability for the designs x1 = 0 and x1 = 1.

Since g(0,V) is given by a triangular probability density function, we determine an α such that

q̄α(0) = 0 by integration and find that p̄(0) = 1 − α = 9.65 · 10−4. For design x1 = 1, q̄α(x)

is the expectation of a truncated normal distribution, which is easily calculated by (8). We use
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probability p(x).
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trial-and-error to determine an α such that q̄α(1) = 0 and find that p̄(1) = 1 − α = 1.13 · 10−3.

We first observe that both designs satisfy (12) as expected. We also see that design x1 = 0 has a

smaller buffered failure probability than design x1 = 1 and is therefore “safer” in the sense of the

buffered failure probability. This corresponds to our intuition discussed in Example 1, where we

concluded that design x1 = 0 was preferable due to the smaller probability of extreme violation of

the threshold.

Example 3 illustrates the fact that the buffered failure probability takes into account the tail

behavior of the distribution of g(x,V) and hence offers an alternative measure of reliability of a

structure that may better reflect designers’ concerns.

As seen from (11) and (1), the buffered failure probability shifts the threshold level from zero

downwards to qα(x) (a negative number) and therefore adds a “buffer zone” to the failure domain.

We observe that the threshold shift and the buffer zone depend on the probability distribution of

g(x,V) and, hence, on x as illustrated in Figure 10 for the limit-state function in Examples 1 and 3.

That figure shows two solid and two dotted lines. The vertical solid line represents {v | g(1,v) = 0},

i.e., the limit between the failure domain (to the left) and its complement the safe domain (to the

right) for design x1 = 1. The dotted vertical line represents {v | g(1,v) = qα(1)}. This line

shifts to the right as compared to the solid line resulting in a buffer zone (shaded dark). Similarly,

the horizontal solid line represents {v | g(0,v) = 0}, i.e., the limit between the failure domain

(below) and the safe domain (above) for design x1 = 0. The dotted horizontal line represents

{v | g(0,v) = qα(0)}. This line shifts up as compared to the solid line resulting in a narrow buffer

zone. We observe that the threshold shift and buffer zone are substantially smaller for x1 = 0 than

for x1 = 1. In general, the line, surface, or hypersurface {v | g(x,v) = qα(x)} may not be parallel

to {v | g(x,v) = 0} for a given x. In Figure 10, however, those lines are parallel due to the fact

that the limit-state function in Examples 1 and 3 is affine in v.

From the above definition of the superquantile, it may appear difficult to compute the buffered

failure probability in general. However, this is not the case as the next subsection describes.
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Figure 10: Contours of limit-state function in Examples 1 and 3 for x1 = 0 and 1.

3.2 Buffered Failure Probability in Design Optimization

Suppose we would like find a design with failure probability no larger than a threshold 1−α0. That

is, we would like to determine a design x that satisfies the constraint

p(x) ≤ 1− α0. (13)

In view of Section 2, we observe that standard optimization algorithms may have substantial

difficulties on problems with constraints of the form (13). We now show that the alternative

constraint

p̄(x) ≤ 1− α0 (14)

in terms of the buffered failure probability is much easier to handle. We start by noting that a

design x that satisfies (14) also satisfies (13). Hence, (14) is a conservative requirement.

The ease with which (14) can be handled in optimization algorithms clearly hinges on our

ability to evaluate p̄(x) or equivalent expressions. While p̄(x) cannot be expressed explicitly, there

is a convenient, equivalent expression for (14) that we derive next.
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In view of Figure 8, we see that (14) holds if and only if

q̄α0(x) ≤ 0. (15)

It is shown in [19] that

q̄α(x) = min
z0

ηα(z0,x), (16)

where z0 is an auxiliary design variable and

ηα(z0,x) = z0 +
1

1− α
E[max{0, g(x,V)− z0}]. (17)

We do not include a derivation of this expression as it is somewhat involved and refer the interested

reader to [19]. Hence, the task of finding a design x that satisfies p̄(x) ≤ 1 − α0 is equivalent of

finding a design x and an auxiliary variable z0 such that

ηα0(z0,x) ≤ 0. (18)

Suppose that the goal is to determine a design x that minimizes some continuously differ-

entiable objective function f(x) (e.g., cost) subject to the reliability constraint p(x) ≤ 1 − α0

and a finite number of continuously differentiable equality and inequality constraints abstractly

represented by the set X. That is, we would like to solve the design optimization problem

P : min
x
f(x)

s.t. p(x) ≤ 1− α0

x ∈ X.

In view of the discussion above, the alternative formulation in terms of the buffered failure proba-

bility takes the form

BP : min
x,z0

f(x)

s.t. z0 +
1

1− α0
E[max{0, g(x,V)− z0}] ≤ 0

x ∈ X,

where we observe that the optimization is over both x and z0.
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We usually cannot compute E[max{0, g(x,V)− z0}] explicitly. However, the expectation can

be estimated by its sample average. Let v1, ...,vN be realizations of V. Then, the optimization

problem

BP′
N : min

x,z0
f(x)

s.t. z0 +
1

N(1− α0)

N∑
j=1

max{0, g(x,vj)− z0} ≤ 0 (19)

x ∈ X,

is an approximation of the problem BP. Even if the limit-state function g(x,v) is continuously

differentiable for all v, BP′
N is not directly tractable by standard nonlinear optimization algorithms

due to the nonsmoothness of the max-function in (19). BP′
N is solvable by a specialized algorithm

found in [16], but we do not describe that algorithm here. Instead we present an equivalent

transcription of BP′
N that facilitates the use of standard nonlinear optimization algorithms.

We let z1, ..., zN be auxiliary design variables and denote z̄ = (z0, z1, ..., zN )′. Then, BP′
N is

equivalent to the following intermediate problem

min
x,z̄

f(x)

s.t. z0 +
1

N(1− α0)

N∑
j=1

zj ≤ 0

max{0, g(x,vj)− z0} = zj , j = 1, 2, ..., N (20)

x ∈ X,

where we simply force the auxiliary design variables to take on the “right” values. We can relax

the equality constraints to less-than-or-equal constraints as there is no benefit to let the variables

take on values such as max{0, g(x,vj) − z0} < zj for any j = 1, 2, ..., N . Moreover, a constraint

of the form max{0, g(x,vj) − z0} ≤ zj is equivalent to the two constraints g(x,vj) − z0 ≤ zj and

0 ≤ zj . This leads to the following equivalent problem of BP′
N :

BPN : min
x,z̄

f(x)

s.t. z0 +
1

N(1− α0)

N∑
j=1

zj ≤ 0
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g(x,vj)− z0 ≤ zj , j = 1, 2, ..., N (21)

zj ≥ 0, j = 1, 2, ..., N

x ∈ X.

We propose that engineers consider BPN instead of P when designing structures for reasons sum-

marized next.

3.3 Comparison of Probabilities

There are four main advantages to consider BPN instead of P. First, as discussed above, the failure

probability p(x) and its gradient cannot generally be computed exactly and must be approximated

in ways which, in some cases, might turn a blind eye to serious risks. The first-order approxima-

tion Φ(−β(x)) has unknown accuracy and may not be continuously differentiable. Monte Carlo

estimates of p(x) have error bounds, but the estimates have gradients only under assumptions

that are difficult to verify in practice. Hence, it is highly problematic to apply standard nonlinear

optimization algorithms to optimization problems involving p(x). In contrast, BPN is solvable by

standard nonlinear optimization algorithms as long as the limit-state function g(x,v) is continu-

ously differentiable with respect to x. This is a substantially less stringent condition than those

required for P. The optimal value of BPN is close to the optimal value of BP when N is large

(see Chapter 4 of [29] for specific results on the “proximity” of BPN to BP). Moreover, BP is a

restricted problem compared to P because the buffered failure probability overestimates the failure

probability, see (12). Hence, a feasible design in BP is also feasible in P.

Second, the buffered failure probability provides an alternative measure of structural reliability

which accounts for the tail behavior of the distribution of g(x,V). Hence, designs obtained from

BPN may be more desirable than those from P.

Third, even if g(x,v) is convex in x, p(x) and Φ(−β(x)) may not be and, hence, it may be

difficult to obtain a globally optimal design of P. In contrast, the region defined by the constraints

(21) is convex when g(x,vj), j = 1, 2, ..., N , are convex functions in x. Hence, every KKT point of

BPN is a globally optimal design when f(x) and g(x,vj), j = 1, 2, ..., N , are convex functions and

the region X is a convex set. Hence, BPN “preserves” convexity. Even if not all of these conditions
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are satisfied, we expect it to often be easier to determine a design with a low objective function

value in BPN than in P because BPN deals with g(x,v) directly instead of the more complex

expression p(x).

We expect g(x,v) to be convex in x in several practical situations. For example, suppose that

x = x1 represents the size of a part of the structure and the strength R(x,v) of the structure

grows as x1 grows for all possible realizations v. Moreover, suppose that this growth in strength

is constant or tapers off as x1 grows. Then, R(x,v) is concave for all v and, hence, the limit-state

function g(x,v) = S(v)−R(x,v) is convex, where S(v) describes the load on the structure. Since

the convexity of g(x,v) with respect to x was of little importance in the context of p(x), few re-

searchers have focused on developing convex limit-state functions or approximations thereof. As the

importance of convexity is now clear, we hope that this paper will spur research into the develop-

ment of convex limit-state functions. While physics dictate to a large extent the form of limit-state

functions, engineers may still have opportunities for skillful modeling, including the development

of useful approximations. In the same manner as a simple limit-state function g(x,v) = v2 − x1v1,

which is linear in x, is equivalent to the limit-state function ĝ(x,v) = v2/(x1v1)− 1, which is non-

linear in x, we expect the development of (approximately) equivalent convex limit-state functions

to existing nonconvex limit-state functions.

Fourth, BPN facilitates the development of approximation schemes for limit-state functions

that are expensive to evaluate. For example, if the evaluation of the limit-state function involves

the output of a finite element model, it may not be possible to evaluate the limit-state function

more than a few hundred or a few thousand times. In such situations, the failure probability in P

is often replaced by response surface and surrogate models, see, e.g., [7, 31, 34]. This allows quick

optimization, but the quality of the resulting design depends on the fidelity of the response surface

or surrogate model used. As p(x) may be a highly nonlinear, nonconvex function, we conjecture

that it may be more difficult and computationally expensive to develop a good surrogate model of

p(x) than of g(x,v), about which we may have problem-specific insight. With a surrogate model

of g(x,v), the optimization of BPN using that surrogate model in place of g(x,v) can often be

accomplished relatively quickly; see Section 5.2. For example, suppose that xk, k = 1, 2, ...,K, is a

24



selection of designs. Then, for any v and k,

g(x,v) ≈ g(xk,v) +∇xg(x
k,v)′(x− xk) (22)

when x is close to xk and g(x,v) is continuously differentiable with respect to x. Obviously, the

selection of xk, k = 1, 2, ...,K, e.g., by means of an experimental design, influences the accuracy of

this approximation and is an important topic in its own right. In this paper, however, we do not

discuss this topic further. Interested readers are referred to [34] and references therein. Using this

linear approximation of the limit-state function, we obtain the following approximation of BPN ,

which is intended for the case when g(x,vj) is convex in x for all j = 1, 2, ..., N :

LBPN : min
x,z̄

f(x)

s.t. z0 +
1

N(1− α0)

N∑
j=1

zj ≤ 0

g(xk,vj) +∇xg(x
k,vj)′(x− xk)− z0 ≤ zj , j = 1, 2, ..., N, k = 1, 2, ...,K

zj ≥ 0, j = 1, 2, ..., N

x ∈ X.

Under that convexity assumption, LBPN can be made to approximate BPN arbitrarily well by

selecting more designs appropriately, i.e., increasing K. We note, however, that LBPN is a noncon-

servative approximation of BPN . The construction of conservative approximations of BPN would

also be possible under suitable assumptions, but that topic is beyond the scope of the current paper.

Solving LBPN only requires the evaluation of the limit-state function and its gradient KN

times to generate the problem data in LBPN . During optimization no evaluation of the limit-

state function or its gradient is needed and, hence, can be carried out quickly. If the objective

function f(x) and the constraints defining X are linear, then LBPN is a linear program that can

be solved quickly by standard linear programming solvers or decomposition algorithms. In this

case, the introduction of integrality restrictions on x may also be tractable as this makes LBPN a

mixed-integer linear optimization problem that often can be solved in moderate computing times.

In comparison, it is difficulty to solve P in the case of integrality constraints as it then becomes a

mixed-integer, nonlinear, nonconvex, optimization problem.
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3.4 Variance Reduction

While a large sample size N provides a good approximation of BPN to BP, the number of con-

straints and decision variables in BPN grows linearly in N . The accuracy of BPN for a moderate N

is often substantially improved through variance reduction techniques such as importance sampling,

see, e.g., [26]. If all realizations v1, ...,vN result in satisfactory structural performance for relevant

designs, i.e., g(x,vj) ≤ 0 for all j = 1, 2, ..., N , then globally optimal solutions for z0, z1, ..., zN are

all zero. This implies that the optimal design in BPN is simply the x that minimizes the objective

function f(x) over X. Consequently, the possibility of failure of the structure is not accounted for

in BPN in the case of such realizations. Hence, it is important that some of the realizations result

in g(x,vj) > 0 for relevant designs. We can typically accomplish this by increasing N or, more

efficiently, by importance sampling, which we describe next.

Let W be a random vector with m random variables with joint probability density function

fW(w) with fW(w) > 0 for all w satisfying fV(w) > 0. Let w1, ...,wN be realizations of W.

Then, we redefine

BPN : min
x,z̄

f(x) (23)

s.t. z0 +
1

N(1− α0)

N∑
j=1

zj ≤ 0

(g(x,wj)− z0)
fV(wj)

fW(wj)
≤ zj , j = 1, 2, ..., N

zj ≥ 0, j = 1, 2, ..., N

x ∈ X.

By generating realizations from an appropriately selected probability density fW(w), we can ensure

that a substantial number of realizations wj satisfies g(x,wj) > 0 for relevant designs. In practice,

fW(w) can typically be selected by increasing (decreasing) mean values of random variables de-

scribing loads (material strength). For more sophisticated approaches to selecting fW(w) we refer

to [26].
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4 System Reliability

4.1 Problem Formulation

The performance of a structure is often given by multiple limit-state functions representing quan-

tities such as stresses and deformations at different locations. Let gk(x,v), k = 1, 2, ...,K, be a

collection of limit-state functions describing the relevant limit states for a structure. We define

a cut-set to be a (sub)set of these limit-state functions with the characteristics that if all the

limit-state functions in the cut-set are unsatisfactory for a given design x and realization v, i.e.,

gk(x,v) > 0, then the structure experiences system failure. A cut-set is minimal if no limit-state

function can be removed from the cut-set without rendering the resulting set not a cut-set. We

refer to an individual limit-state function being unsatisfactory as component failure. Suppose there

are ic minimal cut-sets. We denote the set of limit-state functions belonging to minimal cut-set i

by Ci, i ∈ I = {1, 2, ..., ic}. As system failure occurs in the event of component failure with respect

to all limit-state functions in any minimal cut-set, the system failure probability is defined as

ps(x) = P

∪
i∈I

∩
k∈Ci

{gk(x,V) > 0}

 . (24)

If the cardinality of Ci, denoted |Ci|, is one for all i ∈ I, then the structure is a series structural

system as the failure of any component results in system failure. On the other hand, if ic = 1, then

the structure is a parallel system as system failure only occurs if all components fail.

It follows directly from (24) that

ps(x) = P [{g(x,V) > 0}], (25)

where

g(x,v) = max
i∈I

min
k∈Ci

gk(x,v) (26)

is a system limit-state function. Hence, the design optimization problem with system failure con-

straints generalizes P and takes the form

Ps : min
x
f(x)

s.t. ps(x) ≤ 1− α0

x ∈ X.
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As Ps is at least as intractable as P, we consider a formulation involving the buffered system failure

probability.

4.2 Using the Buffered Failure Probability

Following the approach of Section 3, we define analogously to BPN the problem

BPs
N : min

x,z̄
f(x)

s.t. z0 +
1

N(1− α0)

N∑
j=1

zj ≤ 0

min
k∈Ci

gk(x,v
j)− z0 ≤ zj , i ∈ I, j = 1, 2, ..., N (27)

zj ≥ 0, j = 1, 2, ..., N

x ∈ X,

where we use in (27) the fact that

max
i∈I

min
k∈Ci

gk(x,v
j)− z0 ≤ zj , j = 1, 2, ..., N (28)

is equivalent to (27). The relationship between Ps and BPs
N is identical to those between P and

BPN . Hence, we recommend designers to consider BPs
N instead of Ps.

In the case of series structural systems, i.e., each minimal cut-set includes only one limit-state

function, BPs
N is identical to BPN , except it includes more constraints of the same form. Hence,

BPs
N is tractable by standard nonlinear optimization algorithms when gk(x,v), k = 1, 2, ...,K, are

continuously differentiable. Moreover, convexity is preserved as in the case of BPN .

Cases with general or parallel structural systems are more complicated. The minimum over

limit-state functions in (27) causes BPs
N to become a nonsmooth optimization problem even if

gk(x,v), k = 1, 2, ...,K, are continuously differentiable. Hence, standard nonlinear optimization

algorithms are not applicable. We propose three alternative approaches to overcome this difficulty.

The first alternative transcribes the problem into a finite, but potentially large number of

optimization subproblems. Specifically, BPs
N is equivalent to

min
kij∈Ci,i∈I,j=1,2,...,N

min
x,z̄

f(x)
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s.t. z0 +
1

N(1− α0)

N∑
j=1

zj ≤ 0

gkij (x,v
j)− z0 ≤ zj , i ∈ I, j = 1, 2, ..., N (29)

zj ≥ 0, j = 1, 2, ..., N

x ∈ X.

This problem amounts to minimizing
∏

i∈I |Ci|N subproblems essentially of the form BPN and

retaining the design with the best objective function value. A main advantage of this transcription

is that it preserves convexity. That is, if gk(x,v), k = 1, 2, ...,K, are convex functions with respect

to x, f(x) is a convex function, and X is a convex set, then each of the
∏

i∈I |Ci|N subproblems

are convex.

A design found in one of the subproblems can be used to warm start the calculations of the next

subproblem. However, the main challenge with this approach is the large number of subproblems

to solve. If it is not practical to (approximately) solve all subproblems, then it is always possible to

solve only a subset of the subproblems. This provides a conservative design as (29) is a restriction

of (27) and further improvement might be possible after solving other subproblems.

The second alternative avoids the large number of subproblems by using exponential smoothing

[1, 17]. This alternative replaces the nonsmooth function

ψ(x,v) = min
k∈Ci

gk(x,v). (30)

in (27) by a continuously differentiable approximation. For any approximation parameter ϵ > 0,

let

g̃i(x,v; ϵ) = −ϵ ln

 ∑
k∈Ci

e−gk(x,v)/ϵ

 (31)

be this approximation. We know that

0 ≤ ψ(x,v)− g̃i(x,v; ϵ) ≤ ϵ ln |Ci| (32)

for all x, v, and ϵ > 0. Hence, the smooth approximation g̃i(x,v
j ; ϵ) underestimates ψ(x,vj) and

the error in the approximation vanishes as ϵ→ 0.

29



We now simply replace mink∈Ci
gk(x,v

j) in (27) by its smooth approximation for all i and j.

This results in the following problem

BPs
N (ϵ) : min

x,z̄
f(x)

s.t. z0 +
1

N(1− α0)

N∑
j=1

zj ≤ 0

g̃i(x,v
j ; ϵ) + ϵ ln |Ci| − z0 ≤ zj , i ∈ I, j = 1, 2, ..., N (33)

zj ≥ 0, j = 1, 2, ..., N

x ∈ X.

Since we included the error term ϵ ln |Ci| in (33), a design that is feasible in BPs
N (ϵ) is also feasible

in BPs
N . If the limit-state functions gk(x,v), k = 1, 2, ...,K, are continuously differentiable, then

standard nonlinear optimization algorithms are applicable to BPs
N (ϵ).

We observe, however, that even if gk(x,v), k = 1, 2, ...,K, are convex, BPs
N (ϵ) is not a convex

optimization problem. In essence, minimal cut-sets with cardinality larger than one introduce

nonconvexity in the design optimization problem. We also note that exponential smoothing can be

used in BPN to replace the N constraints (21) by one single constraints.

The third alternative for solving BPs
N adapts the approach in [12]. In that paper it is shown

that BPs
N is equivalent to the following problem:

EBPs
N : min

x,z̄,µk
ij ,i∈I,j=1,...,N,k∈Ci

f(x)

s.t. z0 +
1

N(1− α0)

N∑
j=1

zj ≤ 0

∑
k∈Ci

µkijgk(x,v
j)− z0 ≤ zj , i ∈ I, j = 1, 2, ..., N (34)

zj ≥ 0, j = 1, 2, ..., N

x ∈ X∑
k∈Ci

µkij = 1, i ∈ I, j = 1, ..., N

µkij ≥ 0, i ∈ I, j = 1, ..., N, k ∈ Ci,

where µkij , i ∈ I, j = 1, ..., N , k ∈ Ci, is a set of auxiliary design variables that effectively “select”

which limit-state functions in (27) are active. The equivalence between EBPs
N and BPs

N is in
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the sense that a globally (locally) optimal solution from one problem can be used to construct a

globally (locally) optimal solution of the other problem. If gk(x,v), k = 1, 2, ...,K, are continuously

differentiable, then standard nonlinear optimization algorithms are applicable for solving EBPs
N .

However, even if gk(x,v), k = 1, 2, ...,K, are convex, EBPs
N may not be a convex problem because

(34) involves a product of design variables.

5 Computational Studies

We illustrate the use of the buffered failure probability with the design of a truss structure and a

motor vehicle.

5.1 Optimal Truss Design

Consider the simply supported truss in Figure 11. Let Vk be the yield stress of member k, k =

1, 2, ..., 7. Members 1 and 2 have lognormally distributed yield stresses with mean 100 N/mm2 and

standard deviation 20 N/mm2. The other members have lognormally distributed yield stresses with

mean 200 N/mm2 and standard deviation 40 N/mm2. The yield stresses of members 1 and 2 are

correlated with correlation coefficients 0.8. However, their correlation coefficients with the other

yield stresses are 0.5. Similarly, the yield stresses of members 3-7 are correlated with correlation

coefficients 0.8. The truss is subject to a random load V8 in its mid-span. V8 is lognormally

distributed with mean 1000 kN and standard deviation 400 kN. The load V8 is independent of the

yield stresses. We use a joint lognormal distribution (see [5], Section 7.2) and the above correlation

coefficients to approximate the joint distribution of V = (V1, V2, ..., V8).

The design vector x = (x1, x2, ..., x7), where xk is the cross-section area (in 1000 mm2) of

member k. The truss fails if any of the members exceed their yield stress. (We ignore the possibility

of buckling.) This gives rise to seven limit state functions:

gk(x,v) = v8/ζk − vkxk, k = 1, 2, ..., 7, (35)

where ζk is a factor given by the geometry and loading of the truss. From Figure 11, we determine

that ζk = 1/(2
√
3) for k = 1, 2, and ζk = 1/

√
3 for k = 3, 4, ..., 7.
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Figure 11: Design of Truss

We impose the constraint that the series system failure probability with the seven limit-state

functions should be no larger than 0.00135, i.e.,

ps(x) = P

[
7∪

k=1

{gk(x,V) > 0}
]
≤ 0.00135. (36)

We also impose the 14 deterministic constraints 0.5 ≤ xk ≤ 2, k = 1, 2, ..., 7, that limit the allowable

area of each member to be between 500 mm2 and 2000 mm2. We seek a design of the truss that

minimizes the cost of the truss. Since all members are equally long, the cost is f(x) =
∑7

k=1 xk.

This problem is of the form Ps and, hence, we solve BPs
N with (27) replaced by

gk(x,v
j)− z0 ≤ zj , k = 1, 2, ..., 7, j = 1, 2, ..., N (37)

as our example is a series structural system. Since the limit-state functions, objective functions,

and constraints are linear in x, BPs
N is a linear program that can be solved quickly by standard

optimization solvers. We use sample size N = 10000 and the variance reduction technique of

Subsection 3.4 where we select the sampling distribution to be identical to the original distribution

except that the mean value of the load is increased with three standard deviations.
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We implement the resulting linear instance of BPs
N in the General Algebraic Modeling System

(GAMS) Distribution 22.9 [6] on a laptop computer with 1 GB of RAM and 2.16 GHz processor

running Windows XP. The globally optimal design of BPs
N is found by the solver CPLEX 11.2 [11]

with default options in 19.4 seconds. The optimized design is shown in row 3 of Table 1 with the

resulting buffered failure probability in the last column of the table. In this case, the buffered failure

probability is about three times larger than the failure probability. Here, the failure probability is

estimated by importance sampling with a 5% coefficient of variation using an independent sample.

For a rigorous solution validation procedure we refer to [21]. For comparison, we also report in

row 4 of Table 1 the design found for the same truss in [25] by approximately solving Ps using

sample average approximations. Since Ps requires the failure probability to be no larger than a

threshold and BPs
N , effectively, imposes the same threshold on the buffered failure probability, the

design of row 4 is naturally cheaper than the one in row 3. However, the former design is less safe

with an estimated failure probability of 0.00153 (5% coefficient of variation of estimate), which

slightly exceeds the threshold of 0.00135. While the algorithm in [25] is guaranteed to converge

to a feasible design satisfying the KKT conditions under suitable assumptions, termination of the

algorithm after a finite amount of calculation time may result in such infeasibilities. In contrast,

the design obtained by using the buffered failure probability has an estimated failure probability

below the required threshold of 0.00135. Moreover, the calculation time of the algorithm in [25] is

substantially longer than that of solving BPs
N , with a time exceeding one hour to obtain the design

in row 4 of Table 1. While an improved implementation of the algorithm in [25] will reduce this

time, the advantage of the buffered failure probability appears substantial.

To better compare the design obtained using the buffered failure probability with that using the

failure probability, we also solve BPs
N with probability threshold 0.00410. This threshold equals

the buffered failure probability of the design in row 4 of Table 1. Row 5 of the table gives the

resulting design obtained after 20.5 seconds using CPLEX. We see that the designs in rows 4 and 5

are essentially identical, which indicate that optimization with the buffered failure probability gives

a similar design to that obtained using the failure probability when the threshold is appropriately

adjusted. We note again that the computing time is dramatically reduces when using the buffered
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Method 1− α0 Design of member (in mm2) Cost Failure Buffered
1 2 3 4 5 6 7 (mm2) Prob. Prob.

BPs
N 0.00135 1320 1332 1272 1278 1271 1278 1271 9022 0.00047 0.00135

[25] 0.00135 1138 1156 1118 1107 1119 1113 1108 7859 0.00153 0.00410
BPs

N 0.00410 1153 1179 1100 1105 1106 1109 1101 7852 0.00154 0.00410

Table 1: Design of truss

failure probability.

5.2 Motor Vehicle Design

We consider an example given in [27] (see also [8]) where the goal is to minimize the weight of a

part of a motor vehicle subject to reliability constraints related to side impact. We formulate this

problem in the form Ps with a series system failure probability with respect to ten limit-states

functions and a reliability level 1 − α0 of 0.0013. The limit-state functions are surrogate models

of the real structural performance; see [27]. The example has seven design variables relating to

the thickness of material. (The paper [27] includes four additional variables, which we simply fix

to the values reported in [27], i.e., 0.345, 0.345, 0, and 0.) All thicknesses must be in the interval

[0.5 1.5]. The thicknesses cannot be manufactured exactly and, hence, the limit-state functions

include normally distributed manufacturing errors with zero mean and standard deviation 0.03 for

each thickness. The errors are statistically independent. We refer to [27] for details of this example.

We implement BPs
N for this example with sample size N = 7500 using the same hardware

as above, but now solve the problem using SNOPT [9] as implemented in TOMLAB [30]. Table

2 gives the optimized design in row 3, which was obtained after 166 seconds, and the resulting

buffered failure probability; see the last column. The corresponding failure probability is estimated

by Monte Carlo sampling with a 5% coefficient of variation using an independent sample; see the

second to last column of row 3. For comparison, we also report the design given in [27] with

estimated failure and buffered failure probabilities (5% coefficient of variation); see row 4 of Table

2. Again, we see that our methodology results in a reasonable design in short computing time.
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Method Optimized Design Cost Failure Buffered
x1 x2 x3 x4 x5 x6 x7 Prob. Prob.

BPs
N 0.5000 1.3524 0.5000 1.2989 0.6103 1.5000 0.5000 24.60 0.00067 0.00130

[27] 0.5000 1.3251 0.5000 1.2919 0.5964 1.5000 0.5000 24.37 0.00347 0.01769

Table 2: Design of Motor Vehicle

6 Conclusions

We discuss several theoretical, practical, and computational issues associated with the failure prob-

ability with particular emphasis on difficulties arising in design optimization. We propose an al-

ternative measure, the buffered failure probability, that offers significant advantages. The buffered

failure probability accounts for the degree of violation of a performance threshold, is more conserva-

tive than the failure probability, and is handled with relative ease in design optimization problems.

The paper formulates several design optimization problems in terms of the buffered failure probabil-

ity and discusses their relation to design optimization problems in terms of the failure probability.

We find the buffered failure probability to be superior to the failure probability and recommends

its use in design and optimization of structures.

While the buffered failure probability appears promising for use in design optimization with

reliability constraints, its applicability in other optimization models such as those with a von

Neumann-Morgenstern maximum expected utility criterion is unclear. Moreover, the buffered fail-

ure probability requires the estimation of an expectation, which may be computationally costly, and

may result in large-scale optimization models. These challenges should be the subject of further

study.
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