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ABSTRACT

Ranking and selection (R&S) techniques are statistical methods developed to select the best system, or
a subset of systems from among a set of alternative system designs. R&S via simulation is particularly
appealing as it combines modeling flexibility of simulation with the efficiency of statistical techniques
for effective decision making. The overwhelming majority of the R&S research, however, focuses on
the expected performance of competing designs. Alternatively, quantiles, which provide additional
information about the distribution of the performance measure of interest, may serve as better risk
measures than the usual expected value. In stochastic systems, quantiles indicate the level of system
performance that can be delivered with a specified probability. In this paper, we address the problem
of ranking and selection based on quantiles. In particular, we formulate the problem and characterize
the optimal budget allocation scheme using the large deviations theory.

1 INTRODUCTION

Ranking and selection (R&S) techniques are statistical methods developed to select the best system,
or a subset of systems from among a set of alternative system designs. R&S via simulation is
particularly appealing as it combines the modeling flexibility of simulation with the efficiency of
statistical techniques for effective decision making. Furthermore, simulation experiments also allow
for multi-stage sampling as required by some R&S methods. Due to randomness in output data,
however, comparing a number of simulated systems requires care. If the precision requirement is high
and if the total number of designs in a decision problem is large, then the total simulation cost may
be prohibitively high, limiting the utility of simulation for R&S problems. The effective deployment
of the simulation budget in R&S is therefore crucial.

The overwhelming majority of the R&S research focuses on the expected performance of competing
designs. Alternatively, quantiles, which provide additional information about the distribution of the
performance measure of interest, may serve as better risk measures than the usual expected value. In
stochastic systems, quantiles indicate the level of system performance that can be delivered with a
specified probability. For example, in the financial services industry, Value at Risk (VaR), a quantile
of a portfolio’s profit or loss over a period of time, is a standard tool to assess the risk of that portfolio.
Similarly, in the service industry (e.g., health care or telecommunications), quantiles are used as an
indicator for the quality of service. In project management, stochastic activity networks are used
to represent complex projects. In such an environment, planners may wish to compute an upper
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bound on the completion time of the project that would hold with high probability. Similarly, in
a newsvendor setting, where a procurement or production quantity must be determined before the
market uncertainties are resolved, the optimal quantity, the one that maximizes expected profit, is
given by the quantile driven by the demand-supply mismatch costs. Finally, in simulation analysis (or,
more generally, in statistics), the critical values for test statistics, confidence intervals, and sequential
sampling procedures are expressed as quantiles.

The estimation of quantiles, however, differs considerably from that of expectations. A thor-
ough review of quantile estimation for independent and identically distributed (1ID) data is given
by Serfling (1980). To improve quantile estimation, authors such as Hsu and Nelson (1990) and
Hesterberg and Nelson (1998) apply control variates, while Glynn (1996) uses importance sampling,
and Avramidis and Wilson (1998) deploy correlation-induction strategies to obtain variance reduction
in simulation-based quantile estimation. Closer to our work, Jin, Fu, and Xiong (2003) provide proba-
bilistic error bounds for simulation quantile estimators using large deviations techniques. Hong (2009)
develops an estimator based on infinitesimal perturbation analysis while Liu and Hong (2007) de-
velop kernel estimators for assessing quantile sensitivities. Batur and Choobineh (2009) have recently
introduced approaches for quantile-based system selection.

In this paper, we address the problem of identifying the populations that correspond to the m
smallest quantiles by sampling independently from d populations. By using the large deviations
framework, we characterize the optimal sampling (or budget allocation) scheme that minimizes the
probability of incorrect selection given a fixed sampling budget. The remainder of the paper is
organized as follows: in the next section, we formally define the problem. We then characterize the
budget allocation scheme. As this characterization leads to a difficult, nested optimization problem,
we turn our focus to a special case, where we wish to identify those populations whose quantiles
exceed a threshold value. We conclude the paper with a number of simple illustrations.

2 PROBLEM DEFINITION

Suppose we have d populations from which we can independently sample. Let X; be arandom variable
sampled from population i with distribution function F(-). Let g; be the oj-quantile of population i;
that is

gi = inf{k : Fi(k) > a;}.

Throughout we assume that (F(-):i=1,...,d) and (gi : i =1,...,d) are unknown, and that
0 < aj < 1. The goal is to determine the populations that correspond to the m smallest quantiles,
where the m’th smallest quantile is different than the m+ 1’st smallest quantile. Hence, without loss
of generality, we suppose that

NP <On<Omr1 <--<(0g.

The simulation budget is n, p = (p1,...,Pq) is the vector of fractional allocations, and n; = [npj] is
the sample size of population i. Let (Xjx :k=1,...,n;j) be a collection of IID random samples drawn
from F;, and Xj 1:n, < --- < Xjpn;:n; the ordered samples of population i. The aj-quantile estimator is
Xi feani1:n;» Where [-] is the ceiling operator.

To simplify the notation define the sets .« = {1,...,m} and 4 = {m+1,...,d}. An incorrect
selection (IS) occurs when maXie o Xi fo;n;1:n; = MiNjes Xj [g4n;1n;- A lower bound for P(IS) is

ie??j)égp(xi,]—ainﬂ:ni > Xj,(ajnj]:nj) < P(IS)7
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and an upper bound for P(1S) is

P(IS) = P(Uie%,je,%xi,mmi]:ni > Xj,(ocjnj]:nj) < |°Q{| X “@‘ iG,Q,aj)G(,%P(Xijaini]:ni > Xj,[ocjnﬂ:nj)-

Hence, if

1
H Iogp(xi,(oqni]:ni 2 Xj,[ajnﬂ:nj) - 7Gi,j(pi7 p])

as n — o for some rate function G; j, we have that

1 .
~logP(1S) — ‘ieff“,'jl,%G"J(p" Pj)-

as n — 0. The rate functions Gi j(pi, pj) depend on the large deviations of X; 4n;:n;, Which are
treated next.
In preparation,

3 CONTINUOUS CASE

If Xi has density fi(-), then it can be shown (Serfling (1980), pp.85) that X; (4n1:n; has the density

ni—1 1 ey
fin (t) = n; ()]l =11 — /)= Teanid ).
in® = it RO ROP e
For —e < 6 < e and t in the support of X; define

gi(t) = 6t +ajlog (Fio(ét))ﬂL(l—ai)'Og(l_Fi(t)), 1)

i 1-a

and
Ai’ni (9) = IOg E exp(exi,ftxinﬂ :ni)-

When g;(-) is strictly concave and twice differentiable, it has a unique global maximizer 7;( ) satisfying
gi(t) = 0. Observe that if 0 < & < 1 then 0 < F(7(0)) < 1, for otherwise g(7i(6)) = —e and we
know that gi(q;) = 0q; is feasible and greater than —eo. Let

Ai(0) =gi(7i(0)). @)

Proposition 1. If population i has a density fj(t) with bounded first derivative and the function g;(-)
is twice differentiable with supg”(t) < 0, then

lim lAivni(nie) = Ai(6).

Nji—e N
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Proof.  From the definition of fj,, we have
Ain;(n6) )

— log (ni<[a?:15i 1)) +log / exp(niBt) [Fi(t)] M1 =1[1 — F(t)]™—Teanil £ (t) dt
~ log (ni (m’i‘;ﬁf 1)) +1og [ exp (i(gi(t) + asog(er) + (1. ax)log(1— ai)) Ri(t) i)t

where Rj(t) = [F(t)]lenil—eini—1[1 _ Ft)|mei—leinil | Since gi(t) is twice differentiable everywhere,
Taylor’s Theorem (see Serfling (1980)) for gi(t ) around its global minimum 7;(0) yields

- 2
i) = ai(a(0) + 0 gre) @

where & lies between 7;(6) and t. Plugging (4) in (3) and dividing through by n;, we have
rtA“”i(”‘e) _ :ilog <ni([a':‘ Ei >> +0i(7i(6)) + aslog(r) + (1 — o) log(L — o) +
= Iog Je (5 t-(6)7%"(@)) RitO) i1 dt. (5)

The binomial term on the right-hand side of (5) becomes

_ nj—1 _ n;!
n'([ainﬂ —1) = (= Tosni ) (Teani] — 1)1
and Stirling’s formula leads to

i | ni!
n,@oo n; o9 ((ni — [aini)!(Toini] —1)!

Changing variables yields

> =—(1—04)log(1— i) — ailog(ex). (6)

2
= Iog/exp (t—(6))%9"(£) ) R fi(t) de = n,31/2 Iog/exp (tzg"(g)> R(%(8) +tn 2)fi(5(6)+tn/2)d

Expanding R(-) and fj(-) about 7;(0) results in

R(5i(0) +tn~Y/2) = R(5i(0)) + \%R’(m) 7)
and
fi(5(0) +tn~Y/2) = fi(5(0)) + %f((nz»

for n; and 1, between 7(6) and 7;(0) +tn~1/2,

We saw earlier that 0 < F(7i(0)) < 1, which results in R(7i(0)) and R’(7i(6)) finite in (7). The

2765



Pasupathy, Szechtman and Yiicesan

two assumptions then lead to

n;zmq/em(idwa)Ruum+wn1ﬂﬁmuw>+m”ﬁm

1 : 2, t
= n?/Zlog/exp (29 (é)) (R(ri(e))fi(ri(e)HO (W)) dt

— 0, (8)

as Ny — oo,
We conclude from (5), (6), and (8) that Iimn_mni*lAi’ni(nie) = Ai(0). Ol

4 DISCRETE CASE

Towards stating an analogous result for the discrete case, let us use a narrower definition of a quantile.
Let g; be the oj-quantile of population i, meaning that

Fi(0i) = oi.

Suppose X; is supported on the countable set .. Then (ignoring issues due to non-integral njc;),
it is seen that X r4n;:n; has the probability mass function

N

P =) = g ) (RO (RO L RO, ez

where F(t™) = Pr{X; < t}.
Before we state the main result for the discrete context, we note the following simple proposition
without proof.

Proposition 2. Let {a;n},{azn},... be a finite number of positive-valued sequences with
lim 1Io ajn = aj
am - 109ajn = a;.
Then,
lim 1Io ajn | =Maxj{a;j
am - 1og ; in | =Maxj{aj}.
We are now ready to state the main result in the discrete context.

Proposition 3. Suppose X; has finite support ., and satisfies Pr{X; =t} > 0 for each t € .Z.
Furthermore, suppose that the function gi(-) has a unique maximum at 7;(6) and that gj(t) is strictly
increasing (decreasing) for t < 7;(0) (resp., t > 7i(6)). Then

lim EALni(nie) = Ai(0).

Nj—eo N
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Proof.  Denote pi(t) = Pr{X; ronim =t} tm =max{t :t € £}, and £’ = £\ {tn}. (Since
pi(tm) = 0, we see that gi(tm) = —e and hence 7;(0) # tn.) We have

lim 1A. ni(ni6) = lim —Iog ( Y pilt exp{nﬁt}). 9)
Mi—e= i Mi—es i tes!
We will show that
lim —_Iog(p.( yexp{nidt}) =gi(t) Vte.Z'. (10)

Nj—o N

The assertion of the theorem then follows from applying Proposition 2 to (9) and (10).
To show (10), we notice that

rfiIogﬂm(t)exp{niet})

= Ot+ 1 Iog pi(t)
(ni — [niai])

N

log(1—Fi(t))

ot+ — |Og([ i _I) flog( ()( 'aJ—Fi(t_)(n'aJ)—f—

ot + — Iog([ i 1) ~logFi(t )(nioﬂ_i_

Elog(Fi(t)(niaﬂ _ E(r)(niaﬂ " ni — [niog

. = O I log(a. - F(t). (1)

Now, through an application of Stirling’s formula we see that the second term appearing on the
right-hand side of (11) satisfies

nj n;!
nl.mo N; log ([niaﬂ) - nl.mo N; log ((ni — [ani])! [ocmﬂ!)
= —(1—o)log(l—o04)—o5log(ei) = —H (o). (12)

. Mmjoi] _E t—ymioil . . .
Next, we see that since 7Y ”,‘j(t);j;gw N s arbitrarily close to 1 for large enough nj, the fourth term
|

appearing on the right-hand side of (11) satisfies

1 F( )[ 106 F|(t ) njo | B
R =0 (13)

Finally, the third and fifth terms appearing on the right-hand side of (11) satisfy

).

tim ZogF() ™+ tim ™" tog(1— (1) = H(0x) + g ") + (1 o (T
| | | | (14)
Using (12), (13), and (14) in (11), we get
n'i“;'°9<pl<>exp{ni9t}> = GtfH<ai>+H<ai>+aalog<F‘(fz.t)> (1 as) log( _Fio(:)>

= gi(t),
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and thus (10) holds. O

5 QUANTILE SELECTION

Propositions 1 and 3 can be used to obtain an expression for the exponential decay rate of the incorrect
selection probability, in terms of the sampling budget allocation. Let Iy(x) = supy{6x — Ax(0)} be the
rate function corresponding to population k. In the continuous setting, for x such that 0 < F(x) < 1,
Proposition 1 leads to

X = A, (0)
= (0)+ 4(0) [0+ (R (0)) — s (a0
= (),
so that
le(x) = o log <Ff?§<)> +(1— o) log < 11__H(°E§()) . (15)

A similar argument for the discrete case shows that Eq. (15) is valid there as well.

Let Z, = (Ximnﬂ:ni,ij[ajnﬂ:nj). Then, as shown in Glynn and Juneja (2004), the rate function

of (Zn :n > 0) is given by pili(xi) + pjlj(xj), and applying the Gértner-Ellis Theorem results in
Gij(pi pj) = inf {pili(xi) +pjl;(xj)}-

If Fi(gm) < 1,Vie o/ and Fj(q1) > 0,Vj € & then the rate functions G; j(pi, pj) are finite for any
feasible allocation p;, pj. Furthermore, since I (x) isstrictly decreasing for x < gy and strictly increasing
for x > qx, we must have G; j(pi, pj) = infy{pili(x) + p;jl;(x)}.

An optimal allocation p maximizes minic . je % Gi,j(pi, pj), Which is the same as

max &

s.t.
C—Gi,j(piypj) <0, Vies andVje A

and

Ma

pi<1l, pi=>0.

i=1

The first-order conditions are necessary for optimality (same argument as in Glynn and Juneja (2004)).
They are

dGij(pi’, pj)

Aij=B Vied,
igf Ipj "

9Gi (i, D’
Z I,J(p{ p])li7j:B Vjée%),

je# Ipi
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2 li,j =1,

ied je#
and
2i,i(§ = Gij(pi,pj)) =0 Vied Vje #

where Ajj >0 forallic </, jc %, and B > 0.
It can be shown that

ET;?%Gi,j(pi*:p]'k) ={" Vied,
and that

minGij(pi,pj) =¢" Vi€ Z.
for some £* > 0.

5.1 Crossing a threshold

Getting insights about the optimal allocation appears very difficult because we have a nested opti-
mization problem. It is easier, however, to characterize the allocation that minimizes the probability of
crossing athreshold ¢ € [Om, Qm-1]. Let IS¢ be the event (Uic.o/ X oyn1:n; > €) U (UjezX] [gjnj]:n; < C)-
Then we have

P(IS) <P(1S¢) < ' P(Xirounim > €) + X, P(Xjirgn;1m; < ©)-
icd/ je#

Using an argument similar to the one presented in Szechtman and Yicesan (2008), we get

HIOQ 2 P i,[ogni]:ng > C + Z P injln; < C)) - *min{plh(c)a--wpdld(c)}
ies/ je#
as n — oo, Following Szechtman and Yiicesan (2008), the optimal allocations are
I *(c)
Tico 7 H(©) + Zjez i H(e)

Pk =

leading to

lim sup—logP 1) < —(X i e)+ X ey ™
ied/ je#

That s, the optimal threshold is the one that minimizes Sic ., | *(c) + Xje 1 (c) over ¢ € [dm, Gmy].
6 CONCLUDING REMARKS

In this paper, we addressed the problem of identifying the populations that correspond to the m smallest
quantiles by sampling independently from d populations. Using a large deviations framework, we
characterized the optimal sampling (or budget allocation) scheme that minimizes the probability of
incorrect selection given a sampling budget that grows to infinity. In particular, the optimal budget
allocation arises as the solution of a 3-layer nested optimization problem. The threshold crossing
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problem, where we wish to identify those populations whose quantiles exceed a threshold value, leads
to more tractable budget allocations.
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