
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2000-07

Secure Introduction of One-way Functions

Volpano, Dennis

Proc. 13th IEEE Computer Security Foundations Workshop, pp. 246-254, Cambridge UK, July 2000.

http://hdl.handle.net/10945/35274

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36727867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Secure Introduction of One-way Functions

Dennis Volpano
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943, USA

Email: volpano@cs.nps.navy.mil

Abstract

Conditions are given under which a one-way function
can be used safely in a programming language. The secu-
rity proof involves showing that secrets cannot be leaked
easily by any program meeting the conditions unless break-
ing the one-way function is easy. The result is applied to a
password system where passwords are stored in a public file
as images under a one-way function.1

1. Introduction

One-way functions play an important role in security.
Roughly speaking, a function is one-way if for all ,
it is easy to compute but hard to find a , given

, such that . One-way functions come
in different flavors. Some are permutations, while others
are hash functions. They operate upon an arbitrary-length
pre-image message, producing what is called a message di-
gest. A message digest may have fixed length. Examples
of hash functions include, MD5, which produces a 128-bit
digest, and SHA1, which yields a 160-bit digest [3]. The
hardness property coupled with fixed-length digests make
certain one-way hash functions appealing for storing pass-
words on systems and creating pre-images of digital signa-
tures. The main result of this paper is independent of the
flavors of one-way functions.
A related property is claw-freeness [2]. A hash function
is said to be claw-free if it is hard to find a pair ,

where , such that . For a small message
space, a hash function may be one-way but fail to be claw-
free due to a birthday attack. The basic idea is that one can
significantly reduce the size of a message space and still ex-
pect to find, with reasonable probability, two messages that
collide. Whether this is an issue depends on the application.

1To appear at the 13th IEEE Computer Security Foundations Work-
shop, Cambridge, England, 3-5 July, 2000.

This paper is not concerned with the claw-free property.
In this paper, we are interested in identifying conditions

under which a one-way function can be used in a program-
ming language safely and with more flexibility than what
an information-flow property like Noninterference [7] al-
lows. For instance, a cryptographic API for a programming
language might include MD5. In this case, the conditions
should make leaking a secret using MD5 in any program as
hard as inverting MD5. This is a security property under
which we justify downgrading MD5 message digests.
We start with the definition of one-way functions from

[4]. A function is one-way if

1. for all (is length preserving),

2. is computable in polynomial time, and

3. for every probabilistic polynomial time Turing ma-
chine , every , and sufficiently large , if we pick
a random of length and run on input ,

Pr where

The first and second conditions are irrelevant as far as our
main result is concerned. The probability in the third con-
dition is taken over the random choices made by and the
random choice of . The third condition effectively merges
two properties that we need to distinguish for the purpose of
constructing a security proof. One is simply the likelihood
that avoids collisions with respect to a given input dis-
tribution. This property we term collision resistance. The
other is purely a property about inversion where the third
condition becomes Pr . This is the
one-wayness property of .
If string is considered private (high) then we might ar-

gue that could be considered public (low) based on the
one-wayness of . However, it is actually unsound to do so
unless care is taken in what we allow as arguments to . For
instance, suppose is a one-way function, variable stores
a -bit password, andmask is a low variable. Then consider

1

mask
while mask do
if mask then

mask
mask mask

Figure 1. An efficient leak of h

the code in Figure 1. It copies (leaks) to low variable
in time linear in . (It might fail to copy every bit of be-
cause of collisions but this may be unlikely depending on
the collision resistance of .)
However, there are practical examples of where we need

to treat a message digest as low. Consider a challenge-
response protocol. A participant may respond publicly with
a message digest computed over a shared secret and a pub-
lic challenge it receives. We want the digest to be treated
as low. Another example is password checking. If stores
a password then a simple password checker is given by the
assignment

where is a low output variable and is the input to the
checker. We would expect and to be high variables.
After all, may match , and indeed usually will. However,
the result of comparing the message digests must be low.
So we want a set of conditions for a programming lan-

guage that prohibits abuses of one-way functions, as in Fig-
ure 1, yet recognizes legitimate downgrading by them in
other situations. This paper describes such a set of condi-
tions via a type system. Further, we need a sense in which
these conditions are sound. They are certainly not sound
with respect to Noninterference [7] due to downgrading.
However, they are sound in the following sense. It can be
proved that leaking the secret contents of a variable using
any program that meets the conditions is as hard as learn-
ing with a programwhere access to is prohibited, but the
program can access , call on inputs of its choice and
flip a coin. And deducing in this context clearly amounts
to inverting using a probabilistic Turing machine. By
the one-wayness of then, we expect to succeed with
very low probability in polynomial time, for sufficiently-
long and uniformly-distributed values of .
Informally, we reduce the problem of inverting a one-

way function to that of leaking a secret via a well-typed
program. We begin with a well-typed program that can ac-
cess directly and show that its low computation can be
simulated by a program with no references to high vari-
ables except in calls of the form and in comparisons
of the form , for a high read-only variable .
The latter comparisons are then eliminated by an indepen-

dent random variable whose distribution is governed by the
collision resistance of with respect to the well-typed pro-
gram’s input distribution. (It is irrelevant that we may not
know the distribution because the reduction only relies upon
its existence.) The result is a program that uses , , and
an independent random variable to simulate the well-typed
program’s low computation with at least the same proba-
bility of success and with at most a constant increase in
time complexity. Therefore, any bound on the probability
of finding from within polynomial time can apply to
the probability of leaking with a well-typed polynomial-
time command. This is a security property that applies, for
instance, to the simple password checker above.

2. The language and semantics

A program is expressed in an imperative language:

(expr)

(cmds) skip
if then else while do

Metavariable ranges over identifiers that are mapped by
memories to integers, ranges over integer literals, is a
function mapping integers to integers, and and are read-
only variables. There are three bitwise operators (, ,).
Integers are the only values; we use 0 for false and nonzero
for true.
A standard transition semantics for the language is given

in Figure 2. It is completely deterministic and defines a
transition function on configurations. A memory is
a mapping from variables to integers. A configuration is
either a pair or simply a memory . In the first case,
is the command yet to be executed; in the second case,

the command has terminated, yielding final memory . As
usual, we define , for any configuration , and

, for , if there is a configuration such
that and .
Expressions are evaluated atomically and we extend the

application of to expressions, writing to denote the
value of expression in memory . We say that

, , and so on. The other
expressions are handled similarly. Note that is defined
for all , as long as every identifier in is in dom .

2.1. Probabilistic execution

In our reduction of Section 4, we talk about the prob-
abilistic simulation of a command with respect to a joint
distribution for its free variables (is finite for a given
command if memories are mappings to -bit integers for a

2

(NO-OP) skip

(UPDATE) dom

(SEQUENCE)

(BRANCH)
if then else

if then else

(LOOP)
while do

while do while do

Figure 2. Transition semantics

3

fixed). A simulationmay need to flip a coin but this occurs
only once, at the start of an execution, and therefore we can
achieve the effect by introducing an independent random
variable as input to the simulation. Although this keeps the
simulation deterministic, it still calls for attention in the se-
mantics because the input variable must be initialized from
a probability space prior to execution, apart from other free
variables [1].
The free and random variables of a command can be

treated uniformly as just free variables if a command is rep-
resented as a discrete Markov chain, the states of which are
configurations [5]. The idea is to execute a command simul-
taneously in all memories that map exactly its free variables.
For each such memory , it begins execution in with
probability . An execution then becomes a sequence
of probability measures on configurations. The stochastic
matrix of the Markov chain in this case is trivial; each
row of the matrix is a point mass. That means there is no
splitting of mass after execution begins, only accumulation
of it (cf. pg. 337 of [1]). Each measure in a sequence is
determined by taking the linear transformation of the im-
mediately preceding measure with respect to . See [5] for
details.
For example, execution of is given in Figure 3

relative to a particular joint distribution for the four possi-
ble memories. We say that terminates in memory

in one step with unconditional probability
and in in one step with probability .
As another example, consider the loop

while do

whose execution is given in Figure 4 for a particular distri-
bution. Mass accumulates at (or
in the notation of [5]) in the final step. We say the com-
mand terminates in in three steps with uncondi-
tional probability .
In general, suppose is a memory, has free vari-

ables and are memories with do-
main from which terminates in in at most
steps. If is a joint distribution for , then we

say terminates in in steps with unconditional proba-
bility .

3. The type system

Following previous work, the types are as follows:

(data types)
(phrase types) var cmd

The data types are just the security levels low and high. The
rules of the type system are given in Figure 5. Here is a
typing that maps variables (perhaps read only) to types of

the form var or . If then we say that is a
read-only variable in . We distinguish and as special
read-only variables in that , for all .
The typing rules for the other binary operators are simi-

lar to that for EQ. Notice that where downgrading is taking
place, specifically in rules QUERY and IMAGE, it is done
with respect to read-only variables, namely and . This is
key to getting a reduction. It is these two rules that break
traditional Noninterference. Rule IMAGE comes in handy
when typing the code of a challenge-response protocol, in
particular, the C code that makes up the GNU implementa-
tion of CHAP. It allows a low digest to be computed over
a challenge and a secret, the concatenation of which is the
value of . Rule QUERY is useful in password-checking
contexts. More is said about these applications in Section 5.
Notice that the code in Figure 1 is not well typed. Ex-

pression mask can only be typed using rule HASH,
forcing it to have type since for all . But
then the guard of the conditional has type while its body
has type cmd which cannot be reconciled.

4. The reduction

The basic idea is to show that every well-typed com-
mand’s low computation can be simulated, with at most a
constant increase in time complexity, by a command whose
only references to high variables are in calls to . How-
ever, we are not finished. The simulation still has calls of
the form and . Instances of can remain be-
cause they form the input to a command (the adversary) for
computing , but all calls must be eliminated.
We begin with some definitions:

Definition 4.1 Memories and are equivalent with re-
spect to a typing , written , if and

for all where var or .

Definition 4.2 We say that is a low command with respect
to if the only occurrences of high variables in with re-
spect to are references to in .

Definition 4.3 Given a joint distribution on dom , we
say that command is a low probabilistic simulation of a
command c, relative to and , if is a low command
with respect to , and if terminates in in steps with
unconditional probability , relative to , then there is a
memory such that terminates in in at most steps
with probability , and .

We will need the following lemma:

Lemma 4.1 Suppose is a well-typed command with re-
spect to and that it has no occurrence of .
Then there is a low command with respect to such that

4

Figure 3. Execution of as a sequence of measures

while do
while do

while do

while do

Figure 4. Execution of while do as a sequence of measures

5

(INT)

(IMAGE)

(QUERY)

(CONST)

(R-VAL) var

(EQ)

(HASH)

(SKIP) skip cmd

(ASSIGN) var
cmd

(COMPOSE) cmd cmd
cmd

(IF) cmd cmd
if then else cmd

(WHILE) cmd
while do cmd

(BASE)

(REFLEX)

(CMD)
cmd cmd

(SUBTYPE)

Figure 5. Typing rules

6

for all where dom dom , whenever
, there is a and such that ,
and .

A proof of this lemma can be obtained by modifying the
proof of Theorem 5.1 in [6] in order to treat the slightly-
different notion of memory equivalence used here and to
handle calls in expressions.
Finally, the reduction is given by the following theorem:

Theorem 4.2 If c is a well-typed command with respect to
and is a joint distribution on dom , then has a low

probabilistic simulation relative to and .

Proof. There are two cases, one where has no instances of
and the other where it does. First suppose that

has no occurrence of . Then let be the low
command given by Lemma 4.1 for . We can show that
is a low probabilistic simulation of as follows.
Let be a joint distribution on dom and let

dom dom

Suppose terminates in a memory in steps with uncon-
ditional probability relative to . Let be all
memories in for which for some where

. Then

By Lemma 4.1, there is a and for each such that
, and . Let be such

that dom contains exactly and all low variables of .
Since is low, there is a such that ,

, and dom dom , for . By
transitivity of ,

Therefore, . So let . And
terminates in in at most max steps with

unconditional probability at least if for any memory ,
whose domain contains exactly and all low variables of ,
begins execution in with probability

Also, max .
Now suppose has an occurrence of . With-

out loss of generality, assume has the form

if then else

where and have no instances of . There is
no loss of generality here because is constant

in any memory, given that and are read-only variables
in every typing, and is well typed under . So let and
be the low commands given by Lemma 4.1 for and

respectively. We can show that the command given by

if then else

where is an independent boolean random variable not in
dom , is a low probabilistic simulation of .
Suppose, relative to , that terminates in in fewer

than steps with probability given that .
Since there is no free occurrence of in , it also termi-
nates in in fewer than steps with probability given
that . Therefore, is an unconditional prob-
ability that terminates in in fewer than steps. Like-
wise, suppose terminates in in fewer than steps with
probability given that . Since there is no
free occurrence of in , it also terminates in in fewer
than steps with probability given that . So
is an unconditional probability that terminates in in

fewer than steps. Therefore, terminates in in steps
with probability

where is defined by

From above, there are memories and , each equiva-
lent to , such that terminates in in fewer than steps
with probability , terminates in in fewer than steps
with probability , and . By the transitivity
of , which implies since neither has
in its domain a high variable of besides .
Now if , for some and , then

because does not
occur free in . Likewise for . And if terminates, it
does so in a memory that maps to . Therefore, take

, and we have that since
and .

Finally, the unconditional probability that terminates
in in at most steps is the probability that

if then else

terminates in in at most steps. And because is inde-
pendent of dom , this latter probability is given by

if for any memory , whose domain contains exactly and
all low variables of , begins execution in
with probability

7

Finally, .

Suppose is a typing with a low variable in its domain,
is a distribution on dom and is a command for copy-

ing to that is well-typed relative to . Now suppose we
run simultaneously in all memories whose domains are
equal to dom for steps according to the input distri-
bution , where is a polynomial and is the length of the
binary encoding of a memory. And suppose that after
steps, terminates in a memory where with
probability . By Theorem 4.2, there is a low command
that terminates in no more than steps in a memory
where with probability at least . Furthermore,

since . And because is low, it has
therefore managed to find without any high variables as
input, just occurrences of is all. This brings us to the
following Corollary:

Corollary 4.3 Any bound on the probability of finding
from within polynomial time, for a particular integer
size and distribution on , also applies to the probability
of leaking with a well-typed command in polynomial time
with respect to that size and distribution.

Notice that probability in the preceding proof takes into
account the probability that as well as the collision re-
sistance of . Indeed, we would expect our simple password
checker to be run with fairly high probability in a memory
where if stores a password and is the checker’s
input. The reduction says that any well-typed program that
attempts to exploit this fact has no advantage over a pro-
gram that cannot reference or , but instead can access

, call on inputs of its choice and flip a coin. The one-
wayness of is treated by allowing instances of in a
low probabilistic simulation, which is a program squarely
within the realm of a probabilistic model of computation
used to define a one-way function [4].

5. Application to password systems

Consider again our simple password checker

where variable stores a password, is an output variable
and is the input to the checker. Now we want to argue
that the checker is secure. We begin by asserting what we
know about the free variables. Well, since the output of the
checker is public, we expect to be low. On the other hand,
stores a password so it should be high. Under normal

use of the checker, will likely store the contents of , and
since is high, we assert that is high as well. Furthermore,
the checker doesn’t attempt to update or and therefore
is well typed under the assumption that these variables are

read only. So the checker is secure in the sense that it be-
longs to a class of programs for which the complexity of
leaking rests upon the intractability of inverting for
sufficiently-long and uniformly-distributed values of , by
the above Corollary. The checker’s low probabilistic simu-
lation is given by

if then else

where is the randomvariable in the proof of Theorem 4.2.
Now suppose passwords are stored in a read-protected

file in the clear as in, for example, a secrets file for CHAP
(CryptographicHandshake Authentication Protocol) widely
used by PPP. In this case, the checker becomes just

We can argue that this checker too is secure using the re-
duction in Theorem 4.2 where we assume is the identity
function. But this assumption requires that rule IMAGE be
eliminated, for clearly it is no longer sound. This means
the adversary can no longer access the “resource” . In-
stead, we replace this form of access to with a new form,
namely match , which is true in if . It
has the following typing rule:

match

Again, there is downgrading taking place, as in rule IMAGE.
Whether match has any utility from the standpoint of writ-
ing useful programs is not important. What is important is
that we provide the adversary with the resources we would
realistically expect it to have. In the case of one-way func-
tions, the adversary expects , but with treated as the
identity function, it now becomes the ability to match inputs
of the adversary’s choice against which is precisely what
match provides.
If access to is limited to match queries and the val-

ues of are uniformly distributed -bit integers, then the
probability of successfully leaking with any deterministic
polynomial-time command containing an independent ran-
dom variable goes to zero as increases [6]. If rule QUERY
is replaced by the rule

then the second checker is well typed in the modified sys-
tem, and is therefore secure in the sense that it belongs to
a class of programs for which the complexity of leaking
rests upon this asymptotic hardness result, by Theorem 4.2.
Finally, to say something about the password system as

a whole, we need to treat password updates as well. A pass-
word updater for is given in Figure 6. The updater expects
the old password, so free variable old is asserted to be a high

8

if old then
check strength of new password

new
else skip

Figure 6. A password update program for

variable, as is newwhich stores the new password. This pro-
gram is well typed in a different type system, namely that of
[7], assuming the strength-checking portion is well typed.
Therefore, it satisfies a Noninterference property which is
appropriate for this program, as there is no downgrading
taking place.
The results here can also be applied to the GNU im-

plementation of CHAP. The C code that hashes randomly-
generated server challenges with a shared CHAP secret, us-
ing RSA’s MD5, is well typed. That tells us the code be-
longs to a class of programs for which leaking shared se-
crets is as hard as inverting 16-byte MD5 message digests
computed over random challenges and sufficiently-long and
uniformly-distributed CHAP secrets. It is really only in this
sense that one can argue the code “protects” the confiden-
tiality of shared CHAP secrets.
One final word is needed about modeling adversaries.

We can identify two kinds of adversaries: inside and out-
side. Inside adversaries write programs that we want to trust
and have direct access to secrets like and . Outside ad-
versaries write programs we never trust, and therefore are
denied direct access to secrets through some sort of access
control. Each adversary has a typing rule where downgrad-
ing occurs. For the outside adversary, it is rule IMAGE (or
the rule for match if is the identity) and for the inside ad-
versary, it is rule QUERY. Both forms of adversary should
be represented in a computational model. One could argue
that the work in [6] does not treat inside adversaries com-
pletely because it does not consider a rule like QUERY.

6. Conclusion

This paper presents syntactic conditions, via a type sys-
tem, for introducing one-way functions into a programming
language with more flexibility than what Noninterference
allows. These conditions are sound in a computational
sense and allow one to argue for the security of some sys-
tems where downgrading must occur.
Notice that functions are not part of the language we

considered. That means commands in the language cannot
call other commands. Functions pose a problem since -
bound variables, although constant in a function body, can
be bound in different ways through different function ap-
plications. This capability breaks the reduction. A useful

line of work would be to identify conditions under which
functions could be introduced securely.

7. Acknowledgments

I would like to thank Geoffrey Smith for his comments
on the paper. This material is based upon activities sup-
ported by the National Science Foundation under Agree-
ment No. CCR-9900909.

References

[1] D. Kozen. Semantics of probabilistic programs. Journal of
Computer and System Sciences, 22:328–350, 1981.

[2] R. Rivest. Cryptography, volume A of Handbook of Theoret-
ical Computer Science, chapter 13. The MIT Press/Elsevier,
1990.

[3] B. Schneier. Applied Cryptography. John Wiley & Sons,
1996. Second Edition.

[4] M. Sipser. Introduction to the Theory of Computation. PWS
Publishing Company, 1997.

[5] D. Volpano and G. Smith. Probabilistic noninterference
in a concurrent language. Journal of Computer Security,
7(2,3):231–253, 1999.

[6] D. Volpano and G. Smith. Verifying secrets and relative
secrecy. In Proceedings 27th Symposium on Principles of
Programming Languages, pages 268–276, Boston, MA, Jan.
2000.

[7] D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysis. Journal of Computer Security,
4(2,3):167–187, 1996.

9

