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CONVERGENCE OF PARTICLE FILTERING METHOD FOR
NONLINEAR ESTIMATION OF VORTEX DYNAMICS

SIVAGURU S. SRITHARAN* AND MENG XU

Abstract. In this paper we formulate a numerical approximation method
for the nonlinear filtering of vortex dynamics subject to noise using particle
filter method. We prove the convergence of this scheme allowing the obser-
vation vector to be unbounded.

1. Introduction

Nonlinear estimation of turbulence and vortical structures has many applica-
tions in engineering and in geophysical sciences. In [24], [49], [50] and [51], math-
ematical foundation of nonlinear filtering methods was developed for viscous flow
and for reacting and diffusing systems. The current work is in part an effort to
contribute towards concrete computational methods to solve the nonlinear filter-
ing equations derived in the above papers. We will however focus our attention on
much simpler fluid dynamic models in terms of point vortices, which nevertheless
contain significant physical attributes of fluid mechanics.

The particle filter method is a generalization of the traditional Monte-Carlo
method and is often called the sequential Monte-Carlo method. The difference
with Monte-Carlo method is the presence of an additional correction procedure
applied at regular time intervals to the system of particles. At the correction
time, each particle is replaced by a random number of particles. This amounts
to particles branching into a random number of offsprings. The general principle
is that particles with small weights have no offspring, and particles with large
weights are replaced by several offsprings.

As a numerical method for nonlinear filtering problem, particle filter can be used
to approximate general stochastic differential equations. In recent years, different
variations of it have been studied, such as particle filter with occasional sampling
[12], particle filter with variance reduction [13], branching particle filter [14], [15]
and regularized particle filter [16], [34], most of which are applicable in discrete
time setting and have been implemented computationally. In this paper, we will
work in the continuous time setting and study the continuous time particle filter.
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Key words and phrases. nonlinear filtering, vortex method, stochastic vortex model, Zakai

equation, particle filter .
* This research is supported by the Army Research Probability and Statistics Program

through the grant DODARMY41712.

1



2 SIVAGURU S. SRITHARAN AND MENG XU

Our focus will be on the convergence of particle filter method applied to non-
linear filtering problem for stochastic diffusion. A. Bain and D. Crisan [4] proved
convergence of this method for uniformly bounded observation process h. We ex-
tend their result by allowing h to have linear growth and h as a function of the
signal to have an upper bound f(t) as a L2 function.

To understand how particle filter method can be formulated in our problem, we
first introduce some background on nonlinear filtering.

We begin with a complete probability space (Ω,F , P ) on which our stochastic
process will be defined. Consider the stochastic differential equation for the signal
process Xt

dXt = f(Xt)dt + σ(Xt)dWt, (1.1)

where f : Rn → Rn and σ : Rn → Rn×n, called the drift coefficient and diffusion
coefficient respectively. W = (Wj)n

j=1 is the n-dimensional Brownian motion. Xt

which solves equation (1.1) is the n-dimensional signal process.

Denoting the filtration generated by {Xs, s ≤ t} as Ft, we can define the fil-
tered probability space (Ω,Ft,F , P ).

The observation process Y satisfies

dYt = h(Xt)dt + dBt, (1.2)

where Y = (Yi)m
i=1 and h = (hi)m

i=1 : Rn → Rm with m < n. B is a standard
m-dimensional Brownian motion independent of W.

The nonlinear filtering problem is to calculate the following conditional expec-
tation

πt(ϕ) = E[ϕ(Xt)|Yt], (1.3)

where Yt is the σ-algebra generated by the back measurements Ys, 0 ≤ s ≤ t. In
fact one can prove that (1.3) is the least square estimate for ϕ(Xt) given Yt. πt(ϕ)
satisfies a nonlinear stochastic differential equation, called the Fujisaki-Kallianpur-
Kunita [FKK] equation [19]. The idea then is to use Girsanov theorem to ana-
lyze ρt(ϕ), the unnormalized conditional density, which is related to πt(ϕ) by
Kallianpur-Striebel formula and satisfies a linear stochastic differential equation.

Theorem 1.1 (Girsanov Theorem[38]). Assume that ψ(·) is a Rm-valued Ft-
predictable process such that

E

(∫ T

0

|ψ(s)|2ds

)
< ∞, (1.4)

and

E

(
exp

(∫ T

0

ψ(s)T dW (s)− 1
2

∫ T

0

|ψ(s)|2ds

))
= 1. (1.5)
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Then the process

W̃ (t) = W (t)−
∫ t

0

ψ(s)ds, t ∈ [0, T ] (1.6)

is a m-dimensional Brownian motion with respect to {Ft}t≥0 on the probability
space (Ω,F , P̃ ) where

dP̃ (ω) = exp
(∫ T

0

ψ(s)T dW (s)− 1
2

∫ T

0

|ψ(s)|2ds

)
dP (ω). (1.7)

Here | · | denotes the standard Euclidean norm.

Let us also recall a result on moment estimate for Xt from I.I. Gihman and A.V.
Skorohod [20].

Lemma 1.2. Assume Lipschitz and growth conditions for the coefficients f and
σ. Let the initial data satisfy E|X0|2d < ∞. Then for any 0 < t < T , the solution
Xt of (1) will possess finite moments up to and including 2n-order, i.e.

E[|Xt|2d] < ∞, for any d = 1, 2, · · · , n. (1.8)

Assume h is globally Lipschitz, non-negative and satisfies linear growth condi-
tion:

|h(x)|2 ≤ C(1 + |x|2), ∀x ∈ Rn, C > 0. (1.9)
Lemma 1.2 and growth rate (1.9) imply:

E

∫ t

0

|h(X(s))|2ds ≤ CE

∫ t

0

|X(s)|2ds + Ct < ∞, for 0 < t < ∞. (1.10)

Define

Zt = exp
(∫ t

0

h(Xs)T dWs − 1
2

∫ t

0

|h(Xs)|2ds

)
. (1.11)

Girsanov theorem holds if one can also show that E[Zt] = 1 for all t > 0 and a
well-known sufficient condition is the Novikov condition:

E[exp(
1
2

∫ t

0

|h(Xs)|2ds)] < ∞. (1.12)

However, the Novikov condition is usually difficult to check unless function h is
bounded.
For unbounded h of the type in (1.9), we use a truncation function approach by
B. Ferrairo [18] to obtain E[Zt] = 1.
In that paper the truncation function χN was introduced as follows:

χN
t (v) =

{
1 if

∫ t

0
|h(v(s))|2ds ≤ N

0 otherwise.
(1.13)

Novikov condition

E[exp(
1
2

∫ t

0

|χN
s (Xs)h(Xs)|2ds)] < ∞ (1.14)

is obviously satisfied. Hence, for any N = 1, 2, · · · ,
E[ZN

t ] = 1, (1.15)
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where

ZN
t = exp

(∫ t

0

χN
s (Xs)h(Xs)T dWs − 1

2

∫ t

0

χN
s (Xs)|h(Xs)|2ds

)
. (1.16)

To prove E[Zt] = 1, we consider

E[ZN
t ] = E[χN

t (Xt)ZN
t ] + E[(1− χN

t (Xt))ZN
t ]

= E[χN
t (Xt)Zt] + P{χN

t (Xt) = 0}.
(1.17)

Hence by monotone convergence theorem,

lim
N→∞

E[χN
t (Xt)Zt] = E[Zt]. (1.18)

On the other hand,

lim
N→∞

P{χN
t (Xt) = 0} = lim

N→∞
P{

∫ t

0

|h(Xs)|2ds > N} = 0, (1.19)

by (1.10) and Chebyshev inequality. Thus E[Zt] = 1 and Zt is an exponential
martingale. By Girsanov theorem, there exists a new probability P̃ such that

dP̃

dP
= Zt. (1.20)

It can be shown that under P̃ , Y is a Brownian motion independent of X.
Denote by Ẽ the expectation under the new probability measure P̃ and define
Define

Z̃t = exp
(∫ t

0

h(Xs)T dYs − 1
2

∫ t

0

|h(Xs)|2ds

)
. (1.21)

The Kallianpur-Striebel formula [27] gives

πt(ϕ) =
ρt(ϕ)
ρt(1)

, (1.22)

where ρt(ϕ) = Ẽ[ϕ(Xt)Z̃t|Yt] is called the unnormalized conditional distribution
of X. One can prove that ρt satisfies the following evolution equation, called the
Zakai equation:

ρt(ϕ) = π0(ϕ) +
∫ t

0

ρs(Aϕ)ds +
∫ t

0

ρs(hT ϕ)dYs P̃ − a.s. (1.23)

Here ϕ ∈ D(A) and hT denotes the transpose of h.

The structure of this paper is as follows: In section 2 we introduce the vortex
model in terms of certain regularized kernels. In section 3 we consider the associ-
ated nonlinear filtering problem and prove uniqueness of measure valued solution
to the Zakai equation. In section 4, an exposition of particle filtering is given. We
prove the main convergence result in section 5, allowing for unboundedness in the
observation process h.
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2. Vortex method and stochastic vortex model

The equation of motion for interacting point vortices was first introduced by
H. Helmholtz in a seminal paper published in 1858, in which he elucidated many
properties. The standard vortex method in two dimensions was developed by L.
Rosenhead [45], who approximated the motion of a two-dimensional vortex sheet
by evolving in time the positions of point vortices(see for example: R. Krasny [30]
and [31]). In this section, we will introduce the point vortex method and formulate
the stochastic vortex model.

The Euler equations for vorticity-velocity field in two dimensions are as follows:




∂ω

∂t
+ u · ∇ω = 0, in R2 × R+,

ω(x, 0) = ω0(x), x ∈ R2,

∇ · u(x, t) = 0, in R2 × R+,

∇× u(x, t) = ω(x, t), in R2 × R+,

|u(x, t)| → u∞(t) as |x| → ∞, t ∈ R+.

(2.1)

Let us formulate the point vortex approximation.

The velocity u is coupled through relations ∇·u = 0 and ∇ × u = ω, which
imply

4u = −∇× ω. (2.2)
Let G be the Green’s function for the Laplacian operator in two dimensions and
by K the rotational counterpart ∇×G, so that

G(x) = − 1
2π

log(|x|), K(x) = (2π|x|2)−1(−x2, x1). (2.3)

The Boit-Savart law can be written as

u = u∞ + K ∗ ω. (2.4)

An approximation of Biot-Savart law obtained by removing the singularity of K,
which makes the equation (2.3) to have very large value when two point vortices
approach each other. In R. Krasny’s calculation, a small positive constant is added
to prevent the denominator in K from vanishing. Another approach is to replace
K by a mollification Kε in the following way.

Introduce a smooth cutoff function ζ such that
∫

ζ(x)dx = 1. Define

ζε(x) = ε−2ζ(
x

ε
), for ε > 0. (2.5)

Set Kε = K ∗ ζε, then
dxi

dt
= u(xi, t), (2.6)

u = Kε ∗ ω. (2.7)
Above equations of motion for point vortices are given by A.J. Chorin [9].
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First, We will talk about regularization of the singular kernel using cutoff functions.

Denote x = (x1, x2), r = |x| =
√

x2
1 + x2

2 and consider a cutoff

ζ(x) = ζ̄(|x|). (2.8)

The kernel Gε(x) = Ḡε(|x|) satisfies

−1
r

∂

∂r
(r

∂Ḡε

∂r
) = ζ̄ε, (2.9)

from which we can derive
∂Ḡε

∂r
=

1
r
(x2,−x1)

∂Ḡε

∂r
= − 1

r2
(x2,−x1)

∫ r

0

sζ̄ε(s)ds. (2.10)

In the case of a Gaussian function

ζ̄(r) =
1
π

exp(−r2), (2.11)

one obtains

Kε(x) =
1

2πr2
(−x2, x1)[1− exp(−r2/ε2)]. (2.12)

A.J. Chorin [8] introduced an unbounded cutoff function with continuous kernel:

ζ(x) =

{
1

2πr if r ≤ 1
0 if r > 1,

(2.13)

and

Kε =

{
(−x2,x1)

2πε if r ≤ ε
(−x2,x1)

2πr2 if r > ε.
(2.14)

which is derived from (2.5) and Kε = K ∗ ζε.
Let us consider this cutoff function and analyze the boundedness and differentia-
bility of the mollified kernel.

For each fixed ε > 0

|Kε(x)|2 = (|Kε(x)|2)r≤ε + (|Kε(x)|2)r>ε

= (
1

2πε
)2r2

∣∣
r≤ε

+ (
1

2πr2
)2r2

∣∣
r>ε

≤ 1
4π2

+
1

4π2r2

∣∣
r>ε

≤ 1
4π2

(1 +
1
ε2

) < +∞.

(2.15)

In the following, we check the differentiability of Kε by studying its gradient norm
|∇Kε|2.

∇Kε =





(
0 1

2πε

− 1
2πε 0

)
if r ≤ ε

(
x1x2
πr4

x2
2−x2

1
2πr4

x2
2−x2

1
2πr4

−x1x2
πr4

)
if r > ε.

(2.16)
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|∇Kε|2 = (|∇Kε|2)r≤ε + (|∇Kε|2)r>ε

= 2(
1

2πε
)2 + (

1
2π

)2[2(
2x1x2

r4
)2 + 2(

x2
2 − x2

1

r4
)2]

∣∣
r>ε

≤ 1
2π2ε2

+
1

2π2ε4

=
1

2π2ε2
(1 +

1
ε2

) < ∞.

(2.17)

Hence Kε has bounded first derivative. It can be shown by mean value theorem
that Kε is globally Lipschitz.

We introduce a stochstic counterpart of the deterministic vortex model (2.6) given
by A.J. Chorin [9] in the following way. Denote Xi(t) as the position for the i-th
point vortice with initial data ξi, then

Xi(t) = ξi +
∫ t

0

uε,s(Xi(s))ds +
∫ t

0

σ(Xi(s))dWs, for i = 1, · · · , N (2.18)

with

uε,t(x) =
N∑

j=1

αjKε(x− xj(t)), ∀x ∈ R2. (2.19)

Equation (2.18) defines the signal process of the nonlinear filtering problem we
will study in next section.

3. Nonlinear filtering problem for vortex model

Recall the nonlinear filtering problem defined in first section

signal : dXt = f(Xt)dt + σ(Xt)dWt (3.1)
observation : dYt = h(Xt)dt + dBt (3.2)

Xt = (X1(t), X2(t), · · · , XN (t)), N is the number of point vortices. Xi(t) ∈ R2

represents the position for i-th point vortice at time t. Yt is the m-dimensional
observation process. Note that in this paper we focus on the uncorrelated noises
from signal and observation processes. For unique solvability for correlated case
see B.L. Rozovskii [48] and S.S. Sritharan [49], [51].

For the stochastic vortex equations (2.18) and (2.19), we have:

f(xt) = (f(x1), · · · , f(xN )), f(xi) =
∑N

k=1 akKε(xi − xk), i = 1, · · · , N .

ai is the associated vorticity intensity for i-th point vortice.

Kε is the regularized Biot-Savart kernel (2.14).

σ(·) : R2N → R2N × R2N is bounded and globally Lipschitz, i.e.

‖σ(x)− σ(y)‖ ≤ C1|x− y| with ‖σ(x)‖ :=

√√√√
2N∑

i=1

2N∑

j=1

σij(x), (3.3)
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for some constant C1.

a(x) := 1
2σ(x)σT (x) is locally Lipschitz and position definite.

W is 2N -dimensional Brownian motion.

h(·) : R2N → Rm is globally Lipschitz and satisfies the linear growth condition
(1.9).

B is an m-dimensional Brownian motion independent of W .

Since Kε is globally Lipschitz, using triangle inequality and Jensen’s inequality,
we have

|f(x)− f(y)|2 = |f(x1)− f(y1)|2 + · · · |f(xN )− f(yN )|2

= |
N∑

k=1

akKε(x1 − xk)−
N∑

k=1

akKε(y1 − yk)|2+

· · ·+ |
N∑

k=1

akKε(xN − xk)−
N∑

k=1

akKε(yN − yk)|2

= |
N∑

k=1

ak(Kε(x1 − xk)−Kε(y1 − yk))|2+

· · ·+ |
N∑

k=1

ak(Kε(xN − xk)−Kε(yN − yk))|2

≤ |
N∑

k=1

akCk,1(|x1 − y1|+ |xk − yk|)|2+

· · ·+ |
N∑

k=1

akCk,N (|xN − yN |+ |xk − yk|)|2

≤ 2N

N∑

k=1

a2
kC2

k,1(|x1 − y1|2 + |xk − yk|2)+

· · ·+ 2N

N∑

k=1

a2
kC2

k,N (|xN − yN |2 + |xk − yk|2)

≤ max
i,j
{C2

i,j}2N

N∑

k=1

a2
k(|x1 − y1|2 + · · ·+ |xN − yN |2)+

max
i,j
{C2

i,j}2N2
N∑

k=1

a2
k|xk − yk|2

≤ 4N2 max
i,j
{C2

i,j}max
k
{a2

k}|x− y|2.

(3.4)
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Here Ci,j are the C1-coefficients when applying mean-value theorem for Kε.

Now we have the global Lipschitz condition for both f and σ.
Suppose ||σ(x(0))|| < ∞ and |f(x(0))| < ∞, then we can prove, there exist C3

and C4, such that
‖σ(x)‖2 ≤ C3(1 + |x|)2, (3.5)

and
|f(x)| ≤ C4(1 + |x|). (3.6)

Also, there exists C5, such that

‖a(x)‖ ≤ C5(1 + |x|2). (3.7)

Under these conditions, equation (3.1) has a unique strong solution by I.I. Gihman
and A.V. Skorokhod [20].

Let ϕ : R2N → R1 be a function in C2
b , which is twice differentiable with all its

derivatives and the function itself be bounded. Denote by πt(ϕ) := E[ϕ(X(t))|Yt],
it satisfies the well-known Fujisaki-Kallianpur-Kunita(FKK) equation [19]:

dπt(ϕ) = πt(Lϕ)dt +
(

πt(Mϕ)− πt(ϕ)πt(h)
)(

dYt − πt(h)dt

)
, (3.8)

where

Lϕ =
2N∑

i,j=1

aij(t, x)
∂2

∂xi∂xj
ϕ(x) +

2N∑

i=1

f i(t, x)
∂

∂xi
ϕ(x), (3.9)

Mϕ = h(t, x)ϕ(x), (3.10)

a(x) :=
1
2
σ(t, x)σT (t, x). (3.11)

One can further show that the smooth density πt(x) satisfies

dπt(x) = L∗πt(x)dt +
(

M∗πt(x)

− πt(x)
∫

R2N

h(t, x)πt(x)dx

)(
dYt −

∫

R2N

h(t, x)πt(x)dxdt

)
.

(3.12)

Here
dYt −

∫

R2N

h(t, x)πt(x)dxdt (3.13)

is called the innovation process, L∗ and M∗ denote the adjoint operators of L and
M respectively.
The above equation is referred to as the Kushner equation [33] and is difficult
to analyze because of its nonlinear structure. Using Girsanov theorem, Zakai [52]
showed that if the transition probability is absolutely continuous, the density πt(x)
can be represented as

πt(x) = ρt(x)/
∫

R2N

ρt(x)dx (3.14)

with ρt(x) satisfying a linear stochastic partial differential equation

dρt(x) = L∗ρt(x)dt + M∗ρt(x)dYt. (3.15)
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The function ρ is usually referred to as the unnormalized filtering density and
equation (3.15) is called the Zakai equation.
In the following we will study the uniqueness of the measure valued solution to
the Zakai equation, with the help of unique solvability theorem of backward Kol-
mogorov equation. This method is called the PDE approach.
The uniqueness of measure valued solution to the Zakai equation is given by B.L.
Rozovskii [48], we extend his result here by allowing h to be an unbounded func-
tion in the sense described in (1.9).
Denote M(R2N ) the set of totally finite, countably additive signed measure with
the topology of weak convergence. If µ ∈M(R2N ), we denote

〈µ, f〉 :=
∫

R2N

f(x)µ(dx). (3.16)

Definition 3.1. An Yt-adapted stochastic process µt taking value in M(R2N ) is
said to be a measure valued solution to the Zakai equation corresponding to the
initial condition µ0(dx) = P (x0 ∈ dx|Y0), if 〈|µ·|, 1〉 ∈ L2([0, T ] × Ω; dt × dP ),
for every t ≤ T and T < ∞, 〈|µt|, 1〉 ∈ L2(Ω, dP ) and for any ψ ∈ C2

b(R2N ) the
following equality holds P-almost surely.

〈µt, ψ〉 = 〈µ0, ψ〉+
∫ t

0

〈µs, Lψ〉ds

+
∫ t

0

〈µs, Mψ〉dYs, ∀t ∈ [0, T ].
(3.17)

Let b ∈ C([0, T ], R2N ) and be non-negative, define

Lbψ(x) := Lψ(x) + b(t)Mψ(x). (3.18)

Consider the backward Cauchy problem

−∂ηb(t, x)
∂t

= Lbη
b(t, x), t < T0 x ∈ Rm, (3.19)

ηb(T0, x) = β(x). (3.20)

The coefficients of the operators L and M are continuous in t and we can show
that they are locally Lipschitz. Problem (3.19) and (3.20) have a solution in
C1,2

b ([0, T0]× R2N ) for every T0 ≤ T by S.D. Eidel’man [17].

Theorem 3.2. Assume a(x), f(x) and h(x) are locally Lipschitz in x, h satisfies

E

(∫ t

0

|h(X(s))|2ds

)
< ∞, t ∈ [0, T ], (3.21)

where X is solution to the signal process (3.1), then the measure valued solution
to the Zakai equation (3.17) is unique.
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Proof. Assume µt is a measure valued solution to the Zakai equation, such that
for each η ∈ C1,2

b ([0, T ]× R2N ),

〈µt, η(t)〉 = 〈µ0, η(0)〉+
∫ t

0

〈µs,
∂

∂s
η(s)+

Lη(s)〉ds +
∫ t

0

〈µs, Mη(s)〉dYs.

(3.22)

Now fix b ∈ C([0, T ],Rm). Let η(t) = ηb(t) be a solution to the Cauchy problem
(3.19),(3.20) for this b. Define

qt := exp
(∫ t

0

b(s)dYs − 1
2

∫ t

0

|b(s)|2ds

)
, (3.23)

p−1
t := exp

(
−

∫ t

0

h(X(s))T dYs +
1
2

∫ t

0

|h(X(s))|2ds

)
, (3.24)

γt := qtp
−1
t . (3.25)

Applying Ito formula for qt, p−1
t and γt respectively,

dqt = qtb(t)h(X(t))dt + qtb(t)dBt, (3.26)

dp−1
t = −h(X(t))p−1

t dBt, (3.27)
dγt = γtb(t)dBt − γth(X(t))dBt. (3.28)

Thus,

〈µt, η
b(t)〉γt = 〈µ0, η

b(0)〉+
∫ t

0

〈µs,
∂

∂s
ηb(s) + Lbη

b(s)〉γsds+
∫ t

0

〈µs, η
b(s)〉b(s)γsdBs.

(3.29)

The second term on the right hand side is zero because η(s) is a solution to
the Cauchy problem (3.19),(3.20). The third term on the right hand side is a
martingale, which can be shown by the truncation function technique.
Now take expectation on both sides, we get

E(〈µT0 , β〉γT0) = Eη(0, X0). (3.30)

By Feymann-Kac formula,

Eη(0, X) = E[β(X(T0))exp
∫ T0

0

h(X(s))b(s)ds], (3.31)

where X is the solution to the signal process

X(t) = x0 +
∫ t

0

f(X(s))ds +
∫ t

0

σ(X(s))dWs. (3.32)

By Girsanov’s theorem

E[β(X(T0))exp[
∫ T0

0

h(X(s))b(s)ds]] = E[β(X(T0))qT0 ]

= Ẽ[β(X(T0))pT0qT0 ]

= Ẽ[Ẽ[β(X(T0))pT0 |YT0 ]qT0 ].

(3.33)
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Here we used the fact that pt is an exponential martingale satisfying E[pt] = 1 as
we showed in the introduction. The first equality holds because

E[β(X(T0))qT0 ]

= E[β(X(T0))exp
(∫ T0

0

b(s)dYs − 1
2

∫ T0

0

|b(s)|2ds

)
]

= E[β(X(T0))exp
(∫ T0

0

h(X(s))b(s)ds

)
exp

(∫ T0

0

b(s)dBs − 1
2

∫ T0

0

|b(s)|2ds

)
]

= E[β(X(T0))exp
(∫ T0

0

h(X(s))b(s)ds

)
]E[exp

(∫ T0

0

b(s)dBs − 1
2

∫ T0

0

|b(s)|2ds

)
]

= E[β(X(T0))exp
(∫ T0

0

h(X(s))b(s)ds

)
],

(3.34)

since Xt and Yt are independent and exp
(∫ T0

0
b(s)dBs − 1

2

∫ T0

0
|b(s)|2ds

)
is an

exponential martingale. On the other hand,

E(〈µT0 , β〉γT0) = Ẽ(〈µT , β〉qT0), (3.35)

hence
Ẽ[Ẽ[β(x(T0))pT0 |YT0 ]qT0 ] = Ẽ(〈µT0 , β〉qT0). (3.36)

Note that Y (t) is a Wiener martingale on (Ω,F , P̃ ). Furthermore, N. Wiener
pointed out that {qT0 := qT0(b), b ∈ C([0, T ], Rd)} is total in L2(Ω, YT0 , P̃ ),
which means that if β ∈ L2(Ω, YT0 , P ) and Ẽ[βqT0(b)] = 0 for all b ∈ C([0, T ]; Rm),
then β = 0 P-a.s.[38]. Therefore

〈µT0 , β〉 = Ẽ[β(x(T0))pT0 |YT0 ] P − a.s. (3.37)

The proof is complete. ¤

Remark: The idea of this proof is to show that all the measure valued solution
to the Zakai equation can be represented as the the conditional expectation in the
proof above. Since it is proved that the conditional expectation given observation
Yt satisfies (3.22), it guarantees existence and uniqueness of the measure valued
solution to the Zakai equation. Our proof improves the result of B. Rozovskii’s
[48] in the sense that here we consider h as an unbounded function satisfying
(3.22). By B. Ferrairo’s truncation function approach, we are able to show pt is
an exponential martingale and used Girsanov’s theorem in the proof.

4. Particle filter method

In this section, we describe the basic idea of particle filter method and some of
its properties. We will focus on the approximate solution πn

t to the FKK equation.
Some details of algorithm are explained here and interested readers can refer to [4].

At the initial time, n particles have equal weights 1
n and positions ξn

j for j =
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1, · · · , n. ξn
j are independent, identically distributed random variables with com-

mon distribution π0. The approximating measure at t = 0 is

πn
0 =

1
n

n∑

j=1

δξn
j
. (4.1)

Now partition the time interval [0,∞) to be sub-intervals with same length ε. For
t ∈ [iε, (i + 1)ε), i = 0, 1, · · · ,

Xn
j (t) = Xn

j (iε) +
∫ t

iε

f(Xn
j (s))ds +

∫ t

iε

σ(Xn
j (s))dW(j)

s , j = 1, · · · , n, (4.2)

meaning the particles all move with the same law as the signal Xt. The weight for
particle j at time t is

ān
j (t) :=

an
j (t)∑n

k=1 an
k (t)

, (4.3)

where

an
j (t) = 1 +

m∑

k=1

∫ t

iε

an
j (s)hk(Xn

j (s))dY k
s . (4.4)

Hence also:

an
j (t) = exp(

∫ t

iε

h(Xn
j (s))T dYs − 1

2

∫ t

iε

|h(Xn
j (s))|2ds). (4.5)

Define

πn
t :=

n∑

j=1

ān
j (t)δXn

j (t), t ≥ 0, (4.6)

and

ρn
t :=

1
n

n∑

j=1

an
j (t)δXj(t), t ≥ 0. (4.7)

Here πn
t approximates solution of the FKK equation and ρn

t approximates solution
of the Zakai equation.

At the end of the interval, each particle branches into a random number of par-
ticles. Each offspring particle initially inherits the spatial position of its parent.
After branching all the particles are reindexed (from 1 to n) and all the unnor-
malized weights are reinitialized back to 1. Denote

• j′ = 1, 2, · · · , n as the particle index prior to the branching event.
• j = 1, 2, · · · , n as the particle index after the branching event.

Define
F(i+1)ε = σ{Fs, s ≤ (i + 1)ε}. (4.8)

Let λ
n,(i+1)ε
j′ be the number of offsprings produced by the j′th particle at time

(i + 1)ε, then λ
n,(i+1)ε
j′ is F(i+1)ε-adapted.

Define

λ
n,(i+1)ε
j′ =

{
[nā

n,(i+1)ε
j′ ] with probability 1− {nā

n,(i+1)ε
j′ }

[nā
n,(i+1)ε
j′ ] + 1 with probability {nā

n,(i+1)ε
j′ }, (4.9)
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where [x] is the largest integer smaller than x and {x} is the fractional part of x;
which is, {x} = x− [x]. ā

n,(i+1)ε
j′ is the value of the particle’s weight immediately

prior to the branching. That is ā
n,(i+1)ε
j′ = limt↑(i+1)ε ān

j′(t).
Define

F(i+1)ε− = σ{Fs, s < (i + 1)ε}. (4.10)
By the definition,

E[λn,(i+1)ε
j′ |F(i+1)ε−] = nā

n,(i+1)ε
j′ . (4.11)

The conditional variance is

E[(λn,(i+1)ε
j′ )2|F(i+1)ε−]− (E[λn,(i+1)ε

j′ |F(i+1)ε−])2

= ([nā
n,(i+1)ε
j′ ])2(1− {nā

n,(i+1)ε
j′ }) + ([nā

n,(i+1)ε
j′ ] + 1)2({nā

n,(i+1)ε
j′ })− (nā

n,(i+1)ε
j′ )2

= {nā
n,(i+1)ε
j′ }(1− {nā

n,(i+1)ε
j′ }).

(4.12)

It can be shown that λ
n,(i+1)ε
j has conditional minimal variance in the set of all

integer valued random variables ξ such that E[ξ|F(i+1)ε−] = nā
n,(i+1)ε
j′ , j =

1, · · · , n. See [4].
We wish to control the branching process so that the number of particles in the
system remains constant n:

n∑

j′=1

λ
n,(i+1)ε
j′ = n. (4.13)

Thus λ
n,(i+1)ε
j′ , j′ = 1, · · · , n are correlated.

Proposition 9.3 in A. Bain and D. Crisan [4] shows that λn
j , j = 1, · · · , n have

the following properties:
• ∑n

j=1 λn
j = n.

• For any j = 1, · · · , n, we have E[λn
j ] = nān

j .
• For any j = 1, · · · , n, λn

j has minimal variance, specifically

E[(λn
j − nān

j )2] = {nān
j }(1− {nān

j }). (4.14)

• For any k = 1, · · · , n − 1, the random variables λn
1:k =

∑k
j=1 λn

j and
λn

k+1:n =
∑n

j=k+1 λn
j have variance

E[(λn
1:k − nān

1:k)2] = {nān
1:k}(1− {nān

1:k}),
E[(λn

k+1:n − nān
k+1:n)2] = {nān

k+1:n}(1− {nān
k+1:n}).

(4.15)

where ān
1:k =

∑k
j=1 ān

j and ān
k+1:n =

∑n
j=k+1 ān

j .
• For 1 ≤ i < j ≤ n, λn

i and λn
j are non-positively correlated, that is

E[(λn
i − nān

i )(λn
j − nān

j )] ≤ 0. (4.16)

Remark As boundedness of function h is not used in the proof of above proper-
ties, they hold for both bounded and unbounded h.
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If the system does not undergo any corrections, that is ε = ∞, then the above
method is simply the Monte-Carlo method. The convergence of the Monte-Carlo
approximation for nonlinear filtering problem has been studied by G.N. Milstein
and M.V. Tretyakov in [37]. It has the drawback that particles wander away from
the signal’s trajectory, which force the un-normalized weights to become infinites-
imally small. In particle filter, the branching correction procedure is introduced
to remove the unlikely particles and multiply those situated in the right areas.

However, the branching procedure introduces randomness into the system as it
replaces each weight with a random number of offsprings. The distribution of the
number of offsprings has to be chosen with great care to minimize the variance.
That is, as the mean number of offsprings is pre-determined, we should choose
the λn

j′ ’s to have the smallest possible variance amongst all integer valued random
variables with the given mean nān

j′ . The way we defined λn
j′ above has the minimal

variance.[4]

5. Convergence result of numerical methods

In this section, we will prove the convergence for the approximation of the
solution to Zakai equation using Monte Carlo method and particle filter method.
The latter has convergence rate 1

n .

Definition 5.1. An adapted, càdlàg process X is a local martingale if there exists
a sequence of increasing stopping time {Tn}, with limn→∞ Tn = ∞ a.s. such that
Xt∧Tn is a uniformly integrable martingale for each n.

Definition 5.2. A stopping time T reduces a process X if Xt∧T is a uniformly
integrable martingale.

We need the following lemma [43] and theorem [38].

Lemma 5.3. Let X be a càdlàg process and let TN be a sequence of stopping times
increasing to ∞ a.s. such that Xt∧TN is a local martingale for each N , then X is
a local martingale.

Theorem 5.4 (Doob’s Martingale Convergence Theorem). A process Xt is uni-
formly integrable if and only if there exists an integrable random variable X̄ such
that

Xt → X̄ as t →∞, P − a.s and L1. (5.1)

Doob’s Martingale convergence theorem tells us that if X is a uniformly inte-
grable martingale, then Xt converges to X∞ = Y in L1 as well as almost surely.

The following property is important in proving convergence for Monte Carlo method
and is an improvement of the estimate from A. Bain and D. Crisan [4] by allowing
h to be unbounded.
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Lemma 5.5. For any t ≥ 0 and p ≥ 2, if |h(X(s, ω)))| ≤ f(s) for all (s, ω) ∈
Ω× [0,∞) with

∫ t

0

|f(s)|2ds < ∞, for each t > 0. (5.2)

Then there exists a constant Cp(t) such that

Ẽ[(Z̃t)p] ≤ Cp(t). (5.3)

Proof. Recall that

Z̃t = exp
(∫ t

0

h(Xs)T dYs − 1
2

∫ t

0

|h(Xs)|2ds

)
, (5.4)

which can be written as

Z̃t = 1 +
∫ t

0

Z̃sh(Xs)T dYs. (5.5)

By Ito formula,

(Z̃t)p = 1+p

∫ t

0

(Z̃s)p−1Z̃sh(Xs)T dYs

+
p(p− 1)

2

∫ t

0

(Z̃s)p−2(Z̃s)2hT (Xs)h(Xs)ds.

(5.6)

Applying Lemma 5.3 to equations (5.5) and (5.6), one can show that

(Z̃t)p − p(p− 1)
2

∫ t

0

(Z̃s)phT (Xs)h(Xs)ds (5.7)

and Z̃t are local martingales. Let {T 1
N} be a sequence of stopping times reducing

the local martingale

(Z̃t)p − p(p− 1)
2

∫ t

0

(Z̃s)phT (Xs)h(Xs)ds. (5.8)

let {T 2
N} be a sequence of stopping times reducing the local martingale Z̃t. Then

{TN := T 1
N ∧ T 2

N} defines a sequence of stopping times that reduces both Z̃t and

(Z̃t)p − p(p− 1)
2

∫ t

0

(Z̃s)phT (Xs)h(Xs)ds, (5.9)

which means Z̃t∧TN
and

(Z̃t∧TN
)p − p(p− 1)

2

∫ t∧TN

0

(Z̃s)phT (Xs)h(Xs)ds (5.10)

are uniformly integrable martingales.
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Now take expectation on both sides of (5.6):

Ẽ[(Z̃t∧TN
)p] = 1 +

p(p− 1)
2

Ẽ

∫ t∧TN

0

(Z̃s)p|h(Xs)|2ds

≤ 1 +
p(p− 1)

2

∫ t∧TN

0

|f(s)|2Ẽ[(Z̃s)p]ds

≤ 1 +
p(p− 1)

2

∫ t

0

|f(s)|2Ẽ[(Z̃s∧TN
)p]ds.

(5.11)

By Gronwall’s inequality we have

Ẽ[(Z̃t∧TN
)p] ≤ exp

(
p(p− 1)

2

∫ t

0

|f(s)|2ds

)
. (5.12)

Denote bound on the right hand side of the inequality by Cp(t), we have:

Ẽ[(Z̃t∧TN
)p] ≤ Cp(t) < ∞. (5.13)

Applying Doob’s Lp maximal inequality to the process (Z̃t∧TN
)p yields

Ẽ[ sup
0≤s≤t∧TN

(Z̃s)p] ≤ 4Ẽ[(Z̃t∧TN )p] ≤ 4Cp(t). (5.14)

It follows from (5.14) that {(Z̃s∧TN )p : s ∈ [0, T ]} is uniformly integrable. Hence,
by Doob’s martingale convergence theorem, (Z̃t∧TN )p converges both a.s. and in
L1 to (Z̃t)p as N →∞. Hence by (5.13) and Fatou’s lemma

Ẽ[(Z̃t)p] ≤ Cp(t). (5.15)

The conclusion is proved. ¤

We also need the following lemma to prove the main result. Define ‖φ‖∞ =∑
supx∈R2n |φ(x)|.

Lemma 5.6. Let us assume the conditions in Lemma 5.5 and that φ ∈ Cb(R2n).
Define Yt-adapted random variable Cφ(t) as

Cφ(t) = Ẽ

[
(φ(Xt)Z̃t − ρt(φ))2|Yt

]
, (5.16)

then
Ẽ[Cφ(t)] < 4‖φ‖2∞C2(t). (5.17)

Proof. We have by Jensen’s inequality

Ẽ[Cφ(t)] = Ẽ

[
Ẽ

(
φ(Xt)Z̃t − ρt(φ)

)2

|Yt

]

= Ẽ

[(
φ(Xt)Z̃t − ρt(φ)

)2]

≤ 2Ẽ

[(
φ(Xt)Z̃t

)2

+
(

ρt(φ)
)2]

≤ 2||φ||2∞
(

Ẽ[Z̃2
t ] + Ẽ[(ρt(1))2]

)
.

(5.18)
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Here we used the fact that φ is uniformly bounded. For second term Ẽ[(ρt(1))2],
we use Jensen’s inequality for conditional expectation and Lemma 5.5:

Ẽ[(ρt(1))2] = Ẽ

[
(Ẽ[Z̃t|Yt])2

]

≤ Ẽ

[
Ẽ[Z̃2

t |Yt]
]

= Ẽ[Z̃2
t ] < ∞.

(5.19)

Therefore
Ẽ[Cφ(t)] < 4‖φ‖2∞Ẽ[(Z̃t)2] ≤ 4‖φ‖2∞C2(t) (5.20)

by choosing p = 2 in Lemma 5.5. ¤

Now, we state the convergence result for Monte Carlo method about ρn
t (φ) to

ρt(φ) for any φ ∈ Cb(R2n). This would imply that ρn
t converges to ρt as measure-

valued random variables.

Theorem 5.7. Let the coefficients σ and f be globally Lipschitz, with finite initial
data σ(X0) and f(X0). h satisfies the condition in Lemma 5.5, then for any T > 0
and φ ∈ Cb(R2n),

Ẽ[(ρn
t (φ)− ρt(φ))2] ≤ 4‖φ‖2∞C2(t)

n
, t ∈ [0, T ]. (5.21)

In particular, ρn
t converges in expectation to ρt.

Proof. Let aj , j = 1, · · · , n be the following exponential martingale

aj(t) = 1 +
∫ t

0

aj(s)h(Xj(s))T dYs, t ≥ 0, (5.22)

also given as

aj(t) = exp
(∫ t

0

h(Xj(s))T dYs − 1
2

∫ t

0

|h(Xj(s))|2ds

)
, t ≥ 0. (5.23)

Here Xj , j = 1, · · · , n are n mutually independent stochastic processes and inde-
pendent of Y , each Xj is a solution to the SDE satisfying the signal process (3.1).
Hence, the triples (Xj , aj , Y ), j = 1, · · · , n are identically distributed and have the
same distribution as the triple (X, Z̃, Y ) under probability measure P̃ . Exercise
8.1.2 in [4] shows that the pairs (Xj(t), aj(t)), j = 1, · · · , n are mutually indepen-
dent conditional upon the observation σ-algebra Yt, we have for j = 1, · · · , n,

Ẽ[φ(Xj(t))aj(t)|Yt] = Ẽ[φ(Xt)Z̃t|Yt] = ρt(φ). (5.24)

Recall the approximation of the Zakai equation ρn
t

ρn
t =

1
n

n∑

j=1

aj(t)δXj(t), t ≥ 0. (5.25)

Thus
Ẽ[ρn

t (φ)|Yt] = ρt(φ) (5.26)
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Define random variables θφ
j , j = 1, · · · , n as

θφ
j := φ(Xj(t))aj(t)− ρt(φ), j = 1, · · · , n, t < T (5.27)

with zero mean and the same distribution as φ(Xt)Z̃t − ρt(φ). Since

E[φ(Xj(t))aj(t)− ρt(φ)] = E[φ(Xt)Z̃t − ρt(φ)]

= E

[
E[φ(Xt)Z̃t − ρt(φ)]

∣∣Yt

]

= E

[
E[φ(Xt)Z̃t|Yt]− ρt(φ)

]

= 0.

(5.28)

It then follows that
1
n

n∑

j=1

θφ
j = ρn

t (φ)− ρt(φ). (5.29)

Since the pairs (Xi(t), ai(t)) and (Xj(t), aj(t)) for i 6= j, conditional upon Yt are
independent, it follows that the random variables θφ

j , j = 1, · · · , n are mutually
independent conditional upon Yt. Thus

Ẽ

[
(ρn

t (φ)− ρt(φ))2|Yt

]
=

1
n2

Ẽ

[( n∑

j=1

θφ
j

)2∣∣∣∣Yt

]

=
1
n2

n∑

j=1

Ẽ[(θφ
j )2|Yt]

=
1
n2

n∑

j=1

Ẽ[(φ(Xj(t))aj(t)− ρt(φ))2|Yt]

=
Cφ(t)

n
.

(5.30)

Taking expectation Ẽ on both sides, by Lemma 5.6,

Ẽ[(ρn
t (φ)− ρt(φ))2] =

Ẽ[Cφ(t)]
n

≤ 4‖φ‖2∞C2(t)
n

, t ∈ [0, T ]. (5.31)

Theorem 5.7 is proved. ¤

Now we state the convergence result for particle filter method. As we men-
tioned in the remarks, the difference between particle filter method and trandi-
tional Monte Carlo method is that correction step is introduced after each time
interval. Before we prove the theorem, we first define the solution to the dual
Zakai equation and give one useful lemma similar to Lemma 5.5.

Recall the Zakai equation (3.15)

dρ(t, x) = L∗ρ(t, x)dt + hT ρ(t, x)dYt (5.32)

with initial density
ρ(0, x) = P0. (5.33)
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To define its dual, we follow E. Pardoux [41] to first introduce the backward Ito
integral.
Let Ys

t = σ{Yr − Yt, s ≤ r ≤ t}. Ỹs := Ys − Yt is a ’Ys
t backward Wiener process’:

i.e. 0 ≤ r ≤ s, Ỹr − Ỹs is a Gaussian distributed operator of covariance (s − r)I,
independent of Ys

t . If {ςs, s ∈ [0, t]} is a process with values in Rm, Ys
t -adapted

continuous path and bounded, we can define the backward Ito integral:
∫ t

s

ςr ◦ dYr := P − lim
εn↓0

n∑

i=1

ςti+1 · (Yti+1 − Yti
), (5.34)

where s = t0 < t1 < · · · < tn = t, and εn = supk≤n(tk − tk−1).
If ςs is measurable and Ys

t -adapted, with

E

(∫ t

0

|ςs|2ds

)
< ∞, (5.35)

then

{
∫ t

s

ςr ◦ dYr, 0 ≤ s ≤ t} (5.36)

is a backward martingale, it is also a backward Ito integral.
Consider a Ys

t -adapted random variable v(t, x), which satisfies the backward sto-
chastic PDE

dv(t, x) + Lv(t, x)dt + hv(t, x) ◦ dYt = 0, 0 ≤ t ≤ T (5.37)

with final time condition
v(T, x) = φ(x). (5.38)

It turns out that (5.37) is the adjoint equation to the Zakai equation. In addition,
E. Pardoux [41] proved the following interesting result.

Lemma 5.8. The process {(v(s, ·), ρ(s, ·)), 0 ≤ s ≤ t} is a constant a.s. Here (·, ·)
denotes the scalar product in L2(R2n).

We say v(s, x) is the dual solution to Zakai equation in the sense of Lemma 5.8.
Under assumptions we made at the beginning of section 3, E. Pardoux [41] showed
that there exists a unique solution v(t, x) to (5.37).

v ∈ L2(Ω× (0, t); H1(R2n)) ∩ L2(Ω; C([0, t]; L2(R2n))) (5.39)

Using Feynman-Kac formula the solution of (5.37) can be expressed for s ∈
[0, t], φ ∈ Cb(R2n) as

v(t, Xs) = Ẽ[φ(Xt)at
s(X)|Fs ∨ Yt]. (5.40)

Here

at
s(X) = exp

(∫ t

s

h(Xr)dYr − 1
2

∫ t

s

|h(Xr)|2dr

)
. (5.41)

Define the Ft-adapted random variable ψn = {ψn
t , t ≥ 0} by

ψn
t := (

[t/ε]∏

i=1

1
n

n∑

j=1

an,iε
j )(

1
n

n∑

j=1

an
j (t)). (5.42)
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The following property is important in proving of convergence later and is a im-
provement of the estimate given by Bain and Crisan [?] by allowing h to have
nonuniform upper bound.

Lemma 5.9. For any t ≥ 0 and p ≥ 2, if |h(Xn
j (t))| ≤ g(t) with

∫ t

0

|g(s)|2ds < ∞ for each t > 0. (5.43)

Then there exist two constants ct,p
1 and ct,p

2 such that

Ẽ[(an
j (t))p] ≤ ct,p

1 , j = 1, · · · , n, (5.44)

and

Ẽ[(ψn
t )p] ≤ ct,p

2 . (5.45)

Proof. Inequality (5.44) can be proved the same as Lemma 5.5, thus we only prove
inequality (5.45) and it is obvious from (5.44) that

Ẽ[(an
j (t))p|Fkε] ≤ ct,p

1 , k = 1, · · · , n. (5.46)

Hence also

Ẽ[(
1
n

n∑

j=1

an
j (t))p|Fkε] ≤ ct,p

1 . (5.47)

Therefore

E[(ψn
t )p|F[t/ε]ε] = (ψn

[t/ε]ε)
pE[(

1
n

n∑

j=1

an
j (t))p|F[t/ε]ε]

≤ (ψn
[t/ε]ε)

pct,p
1 ,

(5.48)

since (ψn
[t/ε]ε)

p in an integrable random variable by (5.42) and (5.44).

Also, we have

E[(ψn
kε)

p|F(k−1)ε] ≤ (ψn
(k−1)ε)

pct,p
1 . (5.49)

Similarly,

E[(ψn
(k−1)ε)

p|F(k−2)ε] ≤ (ψn
(k−2)ε)

pct,p
1 , (5.50)

...

E[(ψn
ε )p|F0] ≤ (ψn

0 )pct,p
1 . (5.51)

Hence,

E[(ψn
kε)

p] ≤ (ct,p
1 )k = ct,p

2 . (5.52)

We proved the conclusion (5.45). ¤
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Let ρn = {ρn
t , t ≥ 0} be the measure-valued process defined by

ρn
t := ψn

t πn
t =

([t/ε]∏

i=1

1
n

n∑

j=1

an,iε
j

)(
1
n

n∑

j=1

an
j (t)

)( n∑

j=1

ān
j (t)δXn

j (t)

)

=
([t/ε]∏

i=1

1
n

n∑

j=1

an,iε
j

)(
1
n

n∑

j=1

an
j (t)

)( n∑

j=1

an
j (t)∑n

k=1 an
k (t)

δXn
j (t)

)

=
([t/ε]∏

i=1

1
n

n∑

j=1

an,iε
j

)(
1
n

n∑

j=1

an
j (t)δXn

j (t)

)

=
ψn

[t/ε]ε

n

n∑

j=1

an
j (t)δXn

j (t).

(5.53)

Here we used definition (4.6) and (5.42). ρn
t approximates the solution to the

Zakai equation ρt and formula (5.53) is the approximation of Kallianpur-Striebel
formula in [27]. Before we give the main convergence result, let us mention another
property of ρn given by A. Bain and D. Crisan [4].

Proposition 5.10. ρn = {ρn
t , t ≥ 0} is a measure-valued process which satisfies

the following evolution equation

ρn
t (φ) = πn

0 (φ) +
∫ t

0

ρn
s (Aφ)ds + S̄

n,φ
t + M̄

n,φ
[t/δ] +

m∑

k=1

∫ t

0

ρn
s (hkφ)dY k

s (5.54)

for any φ ∈ C2
b(R2N ). S̄

n,φ = {S̄n,φ
t , t ≥ 0} is an Ft-adapted martingale

S̄
n,φ
t =

1
n

∞∑

i=0

n∑

j=1

∫ (i+1)ε∧t

iε∧t

ψn
iεa

n
j (s)((∇φ)T σ)(Xn

j (s))dWj
s, (5.55)

and M̄
n,φ = {M̄n,φ

k , k > 0} is the stochastic process

M̄
n,φ
k =

1
n

k∑

i=1

ψn
iε

n∑

j′=1

(λn
j′(iε)− nān,iε

j′ )φ(Xn
j′(iε)), k > 0. (5.56)

Now, we state the main result about ρn
t (φ) which converges to ρt(φ) for any

φ ∈ Cb(R2n), which implies that ρn
t converges to ρt as measure-valued random

variables. Our proof extends A. Bain and D. Crisan’s result [4] to unbounded
observation vector h with the help of Lemma 5.9.

Theorem 5.11. If the coefficients σ and f are globally Lipschitz and have finite
initial data. h satisfies the condition in Lemma 5.5. Then for any T ≥ 0, there
exists a constant cT

3 independent of n such that for any positive φ ∈ Cb(R2n), we
have

Ẽ[(ρn
t (φ)− ρt(φ))2] ≤ cT

3

n
‖φ‖2∞, t ∈ [0, T ]. (5.57)

In particular, for all t ≥ 0, ρn
t converges in expectation to ρt.
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Proof. For any φ ∈ Cb(R2n), by Proposition 5.10, we have πn
0 (v(t,X0)) = ρn

0 (v(t,X0)),
use the fact that (Xn

j (s), an
j (s)) have the same law as (X, Z̃) we can show

ρt(φ) = Ẽ[φ(Xt)Z̃t|Yt]

= Ẽ[φ(Xn
j (t))an

j (t)|Yt]

= Ẽ[Ẽ[φ(Xn
j (t))an

j (t)|Fs ∨ Yt]|Yt]

= Ẽ[v(t,Xs)an
j (s)|Yt]

= Ẽ[Z̃sv(t,Xs)|Yt]

= Ẽ[Z̃sv(t,Xs)|Ys]

= ρs(v(t, Xs)).

(5.58)

for any s ∈ [0, t], so that π0(v(t,X0)) = ρ0(v(t, X0)) = ρt(φ).
Thus ρn

t (φ)− ρt(φ) can be split as

ρn
t (φ)− ρt(φ) = (ρn

t (φ)− ρn
[t/ε]ε(v(t,X[t/ε]ε))) +

[t/ε]∑

k=1

(ρn
kε(v(t,Xkε))− ρn

kε−(v(t,Xkε−)))

+
[t/ε]∑

k=1

(ρn
kε−(v(t,Xkε−))− ρn

(k−1)ε(v(t, X(k−1)ε)))

+ (πn
0 (v(t, X0))− π0(v(t, X0))).

(5.59)

Here Xkε− is the position of particles right before the branching time kε.
We must bound each term on the right hand side individually. We first derive the
following relation from (5.40),

ρn
[t/ε]ε(v(t,X[t/ε]ε))

=
ψn

[t/ε]ε

n

n∑

j=1

an
j ([t/ε]ε)v(t, Xn

j ([t/ε]ε))

=
ψn

[t/ε]ε

n

n∑

j=1

an
j ([t/ε]ε)Ẽ[φ(Xn

j (t))at
[t/ε]ε(X)|F[t/ε]ε ∧ Yt]

=
ψn

[t/ε]ε

n

n∑

j=1

Ẽ[φ(Xn
j (t))an

j (t)|F[t/ε]ε ∨ Yt]

= Ẽ[ρn
t (φ)|F[t/ε]ε ∨ Yt].

(5.60)

For the first term, using the fact that random variables Xn
j (t) for j = 1, 2, · · · , n

are mutually independent conditional upon F[t/ε]ε ∨ Yt, because the generating
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Brownian motions W(j), for j = 1, 2, · · · , n are mutually independent. We have

Ẽ[(ρn
t (φ)− ρn

[t/ε]ε(v(t,X[t/ε]ε)))2|F[t/ε]ε ∨ Yt]

= Ẽ[(ρn
t (φ)− Ẽ[ρn

t (φ)|F[t/ε]ε ∨ Yt])2|F[t/ε]ε ∨ Yt]

=
(ψn

[t/ε]ε)
2

n2
Ẽ[(

n∑

j=1

φ(Xn
j (t))an

j (t))2|F[t/ε]ε ∨ Yt]

−
(ψn

[t/ε]ε)
2

n2
(

n∑

j=1

Ẽ[φ(Xn
j (t))an

j (t)|F[t/ε]ε ∨ Yt])2

≤
(ψn

[t/ε]ε)
2

n2
‖φ‖2∞

n∑

j=1

Ẽ[an
j (t)2|F[t/ε]ε ∨ Yt].

(5.61)

Taking expectation on both sides of (5.61), then using Cauchy-Schwartz inequality
and Lemma 5.9 for p = 4, we obtain

Ẽ[(ρn
t (φ)− ρn

[t/ε]ε(v(t,X[t/ε]ε)))2] ≤
‖φ‖2∞

n2

n∑

j=1

(
Ẽ[(ψn

[t/ε]ε)
4]

)1/2(
Ẽ[an

j (t)4]
)1/2

≤

√
ct,4
1 ct,4

2

n
‖φ‖2∞.

(5.62)

Similarly,

Ẽ[(ρn
kε−(v(t,Xkε−))−ρn

(k−1)ε(v(t,X(k−1)ε)))2]

≤ 1
n2

n∑

j′=1

Ẽ[(ψn
(k−1)εa

n,kε
j′ )2v(t, Xn

j′(kε))2].
(5.63)

From (5.40) we deduce that

v(t,Xn
j′(kε)) = Ẽ[φ(Xn

j (t))at
kε(X

n
j )|Fkε ∨ Yt]. (5.64)

Hence by Jensen’s inequality,

Ẽ[(v(t,Xn
j′(kε)))p] ≤ Ẽ[Ẽ[φ(Xn

j (t))at
kε(X

n
j )|Fkε ∨ Yt]p]

= Ẽ[(φ(Xn
j (t))at

kε(X
n
j ))p].

(5.65)

Using p = 4, 8 in lemma 5.9 and Cauchy-Schwarz inequality twice, (5.63) becomes,

Ẽ[(ρn
kε−(v(t,Xkε−))−ρn

(k−1)ε(v(t,X(k−1)ε)))2]

≤ (ct,4
1 )1/2(ct,8

1 )1/4(ct,8
2 )1/4 ‖φ‖2∞

n
.

(5.66)

For the second term on the right hand side of (5.59), observe that

Ẽ[(ρn
kε(v(t,Xkε))− ρn

kε−(v(t, Xkε−)))2|Fkε− ∨ Yt]

=
ψ2

kε

n2

n∑

j′,l′=1

Ẽ[(λn,kε
j′ − nān,kε

j′ )(λn,kε
l′ − nān,kε

l′ )|Fkε− ∨ Yt]

× v(t, Xn
j′(kε))v(t,Xn

l′ (kε)).

(5.67)
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Recall one of the properties of random variables {λn,kε
j′ , j′ = 1, · · · , n} saying

that they are non-positively correlated, it follows that

Ẽ[(ρn
kε(v(t,Xkε))− ρn

kε−(v(t, Xkε−)))2|Fkε− ∨ Yt]

≤ ψ2
kε

n2

n∑

j′=1

Ẽ[(λn,kε
j′ − nān,kε

j′ )2|Fkε− ∨ Yt](v(t,Xn
j′(kε)))2

≤ ψ2
kε

n2

n∑

j′=1

{nān,kε
j′ }(1− {nān,kε

j′ })(v(t,Xn
j′(kε)))2.

(5.68)

Finally using Young’s inequality q(1− q) ≤ 1
4 for q = {nān,kε

j′ }, (5.64) and Lemma
5.9 with p = 4, it follows that

Ẽ[(ρn
kε(v(t,Xkε))− ρn

kε−(v(t,Xkε−)))2] ≤ 1
4n

√
ct,4
1 ct,4

2 ‖φ‖2∞. (5.69)

For the last term of (5.59), note that v(t,X0) is Yt-measurable, therefore using
the mutual independence of the initial points Xn

j (0), and the fact that

Ẽ[v(t,Xn
j (0))|Yt] = π0(v(t,X0)), (5.70)

we obtain

Ẽ[(πn
0 (v(t, X0))− π0(v(t,X0)))2|Yt] =

1
n2

n∑

j=1

Ẽ[(v(t,Xn
j (0)))2|Yt]− (π0(v(t,X0)))2

≤ 1
n2

n∑

j=1

Ẽ[(v(t,Xn
j (0)))2|Yt].

(5.71)

Hence using (5.64) and Lemma 5.9 with p = 4,

Ẽ[(πn
0 (v(t,X0))− π0(v(t,X0)))2] ≤ 1

n2

n∑

j=1

Ẽ[v(t,Xn
j (0))2]

≤ 1
n

√
ct,4
1 ct,4

2 ‖φ‖2∞.

(5.72)

We get the conclusion by substituting all above individual estimates back to (5.59).
¤
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