View metadata, citation and similar papers at core.ac.uk

“Lalhoun

Institutional Archive of the Naval Pastgraduate School

<
brought to you by .{ CORE

Calhoun: The NPS Institutional Archive

Center for Information Systems Security Studies and Research (CISRfaculty and Researcher Publications

2001

A Comparison Study of Static Mapping
Heuristics for a Class of Meta-tasks on
Heterogeneous Computing Systems

Tracy D. Braun

‘: D U DLEY Calhoun is a project of the Dudley Knox Library at MPS, furthering the precepts and
uﬁm goals of open government and government transparency. All information contained

K H DK herein has been approved for release by the NPS Public Affairs Officer.
LIBRARY

Dudley Knox Library / MNaval Postgraduate School
411 Dyer Road / 1 University Circle

hittps/fwwwinps.edu/library Monterey, California USA 93943

https://core.ac.uk/display/36727829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Comparison Study of Static Mapping Heuristics for a Class of
Meta-tasks on Heterogeneous Computing Systems

Tracy D. Braun', Howard Jay Siegel, Noah Beck!, Ladislau L. Boloni¥,
Muthucumaru Maheswaran®, Albert 1. Reuther!, James P. Robertson*, Mitchell D. Theys",
Bin Yao!, Debra Hensgen®, and Richard F. Freund?

TSchool of Electrical and Computer Engineering
tDepartment of Computer Sciences

Purdue University

West Lafayette, IN 47907 USA

SDepartment of Computer Science
University of Manitoba
Winnipeg, MB R3T 2N2 Canada

maheswar@cs.umanitoba.ca

{tdbraun, hj, noah, reuther, theys, yaob}

@ecn.purdue.edu,

*Motorola
6300 Bridgepoint Parkway
Bldg. #3, MD: OET71
Austin, TX 78730 USA

robertso@ibmoto.com

Abstract

Heterogeneous computing (HC) environments are
well suited to meet the computational demands of large,
diverse groups of tasks (i.e., a meta-task). The prob-
lem of mapping (defined as matching and scheduling)
these tasks onto the machines of an HC environment
has been shown, in general, to be NP-complete, requir-
wing the development of heuristic techniques. Selecting
the best heuristic to use in a given environment, how-
ever, remains a difficult problem, because comparisons
are often clouded by different underlying assumptions
mn the original studies of each heuristic. Therefore, a
collection of eleven heuristics from the literature has
been selected, implemented, and analyzed under one set
of common assumptions. The eleven heuristics exam-
wned are Opportunistic Load Balancing, User-Directed
Assignment, Fast Greedy, Min-min, Maz-min, Greedy,
Genetic Algorithm, Simulated Annealing, Genetic Sim-
ulated Annealing, Tabu, and A*. This study provides
one even basts for comparison and insights into circum-
stances where one technique will outperform another.
The evaluation procedure is specified, the heuristics are
defined, and then selected results are compared.

This research was supported in part by the DARPA/ITO Quo-
rum Program under NPS subcontract numbers N62271-98-M-
0217 and N62271-98-M-0448. Some of the equipment used was
donated by Intel.

°Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118 USA

hensgen@cs.nps.navy.mil

boloni@cs.purdue.edu

INOEMIX
1425 Russ Blvd., Ste. T-110
San Diego, CA 92101 USA

rffreund@noemix.com

1. Introduction

Mixed-machine heterogeneous computing (HC) en-
vironments utilize a distributed suite of different high-
performance machines, interconnected with high-speed
links to execute different computationally intensive
applications that have diverse computational require-
ments [10, 18, 24]. The general problem of mapping
(i.e., matching and scheduling) tasks to machines has
been shown to be NP-complete [8, 15]. Heuristics de-
veloped to perform this mapping function are often
difficult to compare because of different underlying as-
sumptions in the original studies of each heuristic [3].
Therefore, a collection of eleven heuristics from the lit-
erature has been selected, implemented, and compared
by simulation studies under one set of common assump-
tions.

To facilitate these comparisons, certain simplifying
assumptions were made. Let a meta-task be defined
as a collection of independent tasks with no data de-
pendencies (a given task, however, may have subtasks
and dependencies among the subtasks). For this case
study, it is assumed that static (i.e., off-line or predic-
tive) mapping of meta-tasks is being performed. (In
some systems, all tasks and subtasks in a meta-task,
as defined above, are referred to as just tasks.)

It 1s also assumed that each machine executes a sin-
gle task at a time, in the order in which the tasks ar-

rived. Because there are no dependencies among the
tasks, scheduling is simplified, and thus the resulting
solutions of the mapping heuristics focus more on find-
ing an efficient matching of tasks to machines. It is
also assumed that the size of the meta-task (number
of tasks to execute), ¢, and the number of machines in
the HC environment, m, are static and known a priori.

Section 2 defines the computational environment pa-
rameters that were varied in the simulations. Descrip-
tions of the eleven mapping heuristics are found in Sec-
tion 3. Section 4 examines selected results from the
simulation study. A list of implementation parameters
and procedures that could be varied for each heuristic
is presented in Section 5.

This research was supported in part by the
DARPA/ITO Quorum Program project called MSHN
(Management System for Heterogeneous Networks)
[13]. MSHN is a collaborative research effort among the
Naval Postgraduate School, NOEMIX, Purdue Univer-
sity, and the University of Southern California. The
technical objective of the MSHN project is to design,
prototype, and refine a distributed resource manage-
ment system that leverages the heterogeneity of re-
sources and tasks to deliver requested qualities of ser-
vice. The heuristics developed in this paper or their
derivatives may be included in the Scheduling Advisor
component of the MSHN prototype.

2. Simulation Model

The eleven static mapping heuristics were evaluated
using simulated execution times for an HC environ-
ment. Because these are static heuristics, it is assumed
that an accurate estimate of the expected execution
time for each task on each machine is known prior to ex-
ecution and contained within an ETC (expected time
to compute) matrix. One row of the ETC matrix con-
tains the estimated execution times for a given task
on each machine. Similarly, one column of the ETC
matrix consists of the estimated execution times of a
given machine for each task in the meta-task. Thus,
ETC(i,j) is the estimated execution time for task ¢ on
machine j. (These times are assumed to include the
time to move the executables and data associated with
each task to the particular machine when necessary.)
The assumption that these estimated expected execu-
tion times are known is commonly made when studying
mapping heuristics for HC systems (e.g., [11, 16, 25]).
(Approaches for doing this estimation based on task
profiling and analytical benchmarking are discussed in
[14, 24].)

For the simulation studies, characteristics of the
ETC matrices were varied in an attempt to represent

a variety of possible HC environments. The ETC ma-
trices used were generated using the following method.
Initially, a ¢ x 1 baseline column vector, B, of floating
point values is created. Let ¢ be the upper-bound of
the range of possible values within the baseline vector.
The baseline column vector is generated by repeatedly
selecting a uniform random number, i € [1, ¢3), and

letting B(i) = z{ for 0 < i < t. Next, the rows of the
ETC matrix are constructed. Each element ETC(4, j)
in row ¢ of the ETC' matrix is created by taking the
baseline value, B(#), and multiplying it by a uniform

random number, .7, which has an upper-bound of

¢,. This new random number, z%7 € [1, ¢,), is called
a row multiplier. One row requires m different row
multipliers, 0 < j < m. Each row ¢ of the ETC ma-
trix can be then described as ETC(i,j) = B(i) x i,
for 0 < j < m. (The baseline column itself does not
appear in the final ETC matrix.) This process is re-
peated for each row until the m x ¢ ETC matrix is
full. Therefore, any given value in the ET'C' matrix is
within the range [1, ¢» X ¢,).

To evaluate the heuristics for different mapping sce-
narios, the characteristics of the ET'C' matrix were var-
ied based on several different methods from [2]. The
amount of variance among the execution times of tasks
in the meta-task for a given machine is defined as task
heterogeneity. Task heterogeneity was varied by chang-
ing the upper-bound of the random numbers within the
baseline column vector. High task heterogeneity was
represented by ¢, = 3000 and low task heterogeneity
used ¢ = 100. Machine heterogeneity represents the
variation that is possible among the execution times for
a given task across all the machines. Machine hetero-
geneity was varied by changing the upper-bound of the
random numbers used to multiply the baseline values.
High machine heterogeneity values were generated us-
ing ¢, = 1000 , while low machine heterogeneity values
used ¢, = 10. These heterogeneous ranges are based
on one type of expected environment for MSHN.

To further vary the ETC' matrix in an attempt to
capture more aspects of realistic mapping situations,
different E'T'C' matrix consistences were used. An ETC
matrix is said to be consistent if whenever a machine
j executes any task 7 faster than machine &, then ma-
chine j executes all tasks faster than machine &k [2].
Consistent matrices were generated by sorting each
row of the ET(C matrix independently. In contrast,
inconsistent matrices characterize the situation where
machine j is faster than machine k for some tasks, and
slower for others. These matrices are left in the un-
ordered, random state in which they were generated. In
between these two extremes, semi-consistent matrices
represent a partial ordering among the machine/task

execution times. For the semi-consistent matrices used
here, the row elements in column positions {0,2,4, ...}
of row 7 are extracted, sorted, and replaced in order,
while the row elements in column positions {1,3,5,.. .}
remain unordered. (That is, the even columns are con-
sistent and the odd columns are inconsistent.)

Sample ETC matrices for the four inconsistent het-
erogeneous permutations of the characteristics listed
above are shown in Tables 1 through 4. (Other proba-
bility distributions for ET'C' values, including an expo-
nential distribution and a truncated Gaussian [1] dis-
tribution, were also investigated, but not included in
the results discussed here.) All results in this study
used ET'C' matrices that were of size ¢ = 512 tasks by
m = 16 machines. While it was necessary to select
some specific parameter values to allow implementa-
tion of a simulation, the characteristics and techniques
presented here are completely general. Therefore, if
these parameter values do not apply to a specific sit-
uation of interest, researchers may substitute in their
own ranges, distributions, matrix sizes, etc., and the
evaluation software of this study will still apply.

3. Heuristic Descriptions

The definitions of the eleven static meta-task map-
ping heuristics are provided below. First, some pre-
liminary terms must be defined. Machine availability
time, mat(j), is the earliest time a machine j can com-
plete the execution of all the tasks that have previously
been assigned to it. Completion time, ¢t(4,j), is the
machine availability time plus the execution time of
task ¢ on machine j, i.e., ct(i, j) = mat(j) + ETC(i, §).
The performance criterion used to compare the results
of the heuristics is the maximum value of ¢t(¢, j), for
0 << tand0 < j < m, for each mapping, also known
as the makespan [19]. Each heuristic is attempting to
minimize the makespan (i.e., finish execution of the
meta-task as soon as possible).

The descriptions below implicitly assume that the
machine availability times are updated after each task
is mapped. For cases when tasks can be considered in
an arbitrary order, the order in which the tasks ap-
peared in the ETC' matrix was used. Some of the
heuristics listed below had to be modified from their
original implementation to better handle the scenarios
under consideration.

For many of the heuristics, there are control param-
eter values and/or control function specifications that
can be selected for a given implementation. For the
studies here, such values and specifications were se-
lected based on experimentation and/or information
in the literature. These parameters and functions are

mentioned in Section 5.

OLB: Opportunistic Load Balancing (OLB) as-
signs each task, in arbitrary order, to the next available
machine, regardless of the task’s expected execution
time on that machine [1, 9, 10].

UDA: In contrast to OLB, User-Directed
Assignment (UDA) assigns each task, in arbi-
trary order, to the machine with the best expected
execution time for that task, regardless of that ma-
chine’s availability [1]. UDA is sometimes referred to
as Limited Best Assignment (LBA), as in [1, 9].

Fast Greedy: Fast Greedy assigns each task, in
arbitrary order, to the machine with the minimum
completion time for that task [1].

Min-min: The Min-min heuristic begins with the
set U of all unmapped tasks. Then, the set of
minimum completion times, M = {m; : m; =
ming<jem(ct(i, j)), for each i € U}, is found. Next,
the task with the overall minimum completion time
from M is selected and assigned to the corresponding
machine (hence the name Min-min). Lastly, the newly
mapped task is removed from U, and the process re-
peats until all tasks are mapped (i.e., U = §) [1, 9, 15].

Intuitively, Min-min attempts to map as many tasks
as possible to their first choice of machine (on the basis
of completion time), under the assumption that this
will result in a shorter makespan. Because tasks with
shorter execution times are being mapped first, it was
expected that the percentage of tasks that receive their
first choice of machine would generally be higher for
Min-min than for Max-min (defined next), and this
was verified by data recorded during the simulations.

Max-min: The Max-min heuristic is very simi-
lar to Min-min. The Max-min heuristic also begins
with the set U of all unmapped tasks. Then, the
set of minimum completion times, M = {m; :
ming<jem(ct(i, j)), for each i € U}, is found. Next,
the task with the overall maximum completion time
from M is selected and assigned to the corresponding
machine (hence the name Max-min). Lastly, the newly
mapped task is removed from U, and the process re-
peats until all tasks are mapped (i.e., U = §) [1, 9, 15].

The motivation behind Max-min is to attempt
to minimize the penalties incurred by delaying the
scheduling of long-running tasks. Assume that the
meta-task being mapped has several tasks with short
execution times, and a small quantity of tasks with
very long execution times. Mapping the tasks with the
longer execution times to their best machines first al-
lows these tasks to be executed concurrently with the
remaining tasks (with shorter execution times). This
concurrent execution of long and short tasks can be
more beneficial than a Min-min mapping where all of

m; =

the shorter tasks would execute first, and then a few
longer running tasks execute while several machines
sit 1dle. The assumption here is that with Max-min
the tasks with shorter execution times can be mixed
with longer tasks and evenly distributed among the
machines, resulting in better machine utilization and a
better meta-task makespan.

Greedy: The Greedy heuristic is literally a com-
bination of the Min-min and Max-min heuristics. The
Greedy heuristic performs both of the Min-min and
Max-min heuristics, and uses the better solution [1, 9].

GA: Genetic Algorithms (GAs) are a popular tech-
nique used for searching large solution spaces (e.g.,
[25, 27]). The version of the heuristic used for this
study was adapted from [27] for this particular solution
space. Figure 1 shows the steps in a general Genetic
Algorithm.

The Genetic Algorithm implemented here operates
on a population of 200 chromosomes (possible map-
pings) for a given meta-task. Each chromosome is a
t x 1 vector, where position i (0 < i < t) represents
task ¢, and the entry in position ¢ is the machine to
which the task has been mapped. The initial popula-
tion is generated using two methods: (a) 200 randomly
generated chromosomes from a uniform distribution, or
(b) one chromosome that is the Min-min solution and
199 random solutions (mappings). The latter method
is called seeding the population with a Min-min chro-
mosome. The GA actually executes eight times (four
times with initial populations from each method), and
the best of the eight mappings is used as the final so-
lution.

After the generation of the initial population, all of
the chromosomes in the population are evaluated (i.e.,
ranked) based on their fitness value (i.e., makespan),
with a smaller fitness value being a better mapping.
Then, the main loop in Figure 1 is entered and a rank-
based roulette wheel scheme [26] is used for selection.
This scheme probabilistically generates new popula-
tions, where better mappings have a higher probability
of surviving to the next generation. Elitism, the prop-
erty of guaranteeing the best solution remains in the
population [20], was also implemented.

Next, the crossover operation selects a pair of chro-
mosomes and chooses a random point in the first chro-
mosome. For the sections of both chromosomes from
that point to the end of each chromosome, crossover ex-
changes machine assignments between corresponding
tasks. Every chromosome is considered for crossover
with a probability of 60%.

After crossover, the mutation operation is per-
formed. Mutation randomly selects a task within the
chromosome, and randomly reassigns it to a new ma-

chine. Both of these random operations select values
from a uniform distribution. Every chromosome is con-
sidered for mutation with a probability of 40%.

Finally, the chromosomes from this modified popu-
lation are evaluated again. This completes one itera-
tion of the GA. The GA stops when any one of three
conditions are met: (a) 1000 total iterations, (b) no
change in the elite chromosome for 150 iterations, or
(c) all chromosomes converge. If no stopping criteria is
met, the loop repeats, beginning with the selection of
a new population. The stopping criteria that usually
occurred 1in testing was no change in the elite chromo-
some in 150 iterations.

SA: Simulated Annealing (SA) is an iterative tech-
nique that considers only one possible solution (map-
ping) for each meta-task at a time. This solution uses
the same representation for a solution as the chromo-
some for the GA.

SA uses a procedure that probabilistically allows
poorer solutions to be accepted to attempt to obtain
a better search of the solution space (e.g., [6, 17, 21]).
This probability is based on a system temperature that
decreases for each iteration. As the system tempera-
ture “cools,” it is more difficult for currently poorer
solutions to be accepted. The initial system tempera-
ture is the makespan of the initial mapping.

The specific SA procedure implemented here is as
follows. The initial mapping is generated from a uni-
form random distribution. The mapping is mutated in
the same manner as the GA, and the new makespan
is evaluated. The decision algorithm for accepting or
rejecting the new mapping is based on [6]. If the new
makespan is better, the new mapping replaces the old
one. If the new makespan is worse (larger), a uniform
random number z € [0, 1) is selected. Then, z is com-
pared with y, where

1

old makespan-new makespan °
temperature

(1)

y:

1—1—6(

If z > y the new (poorer) mapping is accepted, other-
wise it is rejected, and the old mapping is kept.

Notice that for solutions with similar makespans (or
if the system temperature is very large), y — 0.5, and
poorer solutions are more easily accepted. In contrast,
for solutions with very different makespans (or if the
system temperature is very small), y — 1, and poorer
solutions will usually be rejected.

After each mutation, the system temperature is de-
creased by 10%. This defines one iteration of SA. The
heuristic stops when there is no change in the makespan
for 150 iterations or the system temperature reaches
zero. Most tests ended with no change in the makespan

for 150 iterations.

GSA: The Genetic Simulated Annealing (GSA)
heuristic is a combination of the GA and SA techniques
[4, 23]. In general, GSA follows procedures similar to
the GA outlined above. GSA operates on a popula-
tion of 200 chromosomes, uses a Min-min seed in four
out of eight initial populations, and performs similar
mutation and crossover operations. However, for the
selection process, GSA uses the SA cooling schedule
and system temperature, and a simplified SA decision
process for accepting or rejecting a new chromosomes.
GSA also used elitism to guarantee that the best solu-
tion always remained in the population.

The initial system temperature for the GSA selec-
tion process was set to the average makespan of the
initial population, and decreased 10% for each itera-
tion. When a new (post-mutation, post-crossover, or
both) chromosome is compared with the corresponding
original chromosome, if the new makespan is less than
the old makespan plus the system temperature, then
the new chromosome is accepted. That is, if

new makespan < (old makespan + temperature) (2)

is true, the new chromosome becomes part of the pop-
ulation. Otherwise, the original chromosome survives
to the next iteration. Therefore, as the system tem-
perature decreases, it is again more difficult for poorer
solutions (i.e., longer makespans) to be accepted. The
two stopping criteria used were either (a) no change in
the elite chromosome in 150 iterations or (b) 1000 total
iterations. Again, the most common stopping criteria
was no change in the elite chromosome in 150 itera-
tions.

Tabu: Tabu search is a solution space search that
keeps track of the regions of the solution space which
have already been searched so as not to repeat a search
near these areas [7, 12]. A solution (mapping) uses
the same representation as a chromosome in the GA
approach.

The implementation of Tabu search used here be-
gins with a random mapping, generated from a uni-
form distribution. Starting with the first task in the
mapping, task ¢ = 0, each possible pair of tasks is
formed, (7, j) for 0 < i <t—1andi < j <t As
each pair of tasks i1s formed, they exchange machine
assignments. This constitutes a short hop. The in-
tuitive purpose of a short hop is to find the nearest
local minimum solution within the solution space. Af-
ter each exchange, the new makespan is evaluated. If
the new makespan is an improvement, the new map-
ping is accepted (a successful short hop), and the pair
generation-and-exchange sequence starts over from the
beginning (¢ = 0) of the new mapping. Otherwise, the

pair generation-and-exchange sequence continues from
its previous state, (¢, j). New short hops are generated
until 1200 successful short hops have been made or all
combinations of task pairs have been exhausted with
no further improvement.

At this point, the final mapping from the local so-
lution space search is added to the tabu list. The tabu
list 1s a method of keeping track of the regions of the
solution space that have already been searched. Next,
a new random mapping is generated, and 1t must differ
from each mapping in the tabu list by at least half of
the machine assignments (a successful long hop). The
intuitive purpose of a long hop is to move to a new
region of the solution space that has not already been
searched. The final stopping criterion for the heuristic
is a total of 1200 successful hops (short and long com-
bined). Then, the best mapping from the tabu list is
the final answer.

A*: The final heuristic in the comparison study is
known as the A* heuristic. A* has been applied to
many other task allocation problems (e.g., [, 16, 21,
22]). The technique used here is similar to [5].

A* is a tree search beginning at a root node that is
usually a null solution. As the tree grows, intermediate
nodes represent partial solutions (a subset of tasks are
assigned to machines), and leaf nodes represent final
solutions (all tasks are assigned to machines). The par-
tial solution of a child node has one more task mapped
than the parent node. Call this additional task a. Each
parent node generates m children, one for each possi-
ble mapping of a. After a parent node has done this,
the parent node is removed and replaced in the tree by
the m children. Based on experimentation and a desire
to keep execution time of the heuristic tractable, the
maximum number of nodes in the tree at any one time
is limited in this study to npy.. = 1024.

Each node, n, has a cost function, f(n), associated
with it. The cost function is an estimated lower-bound
on the makespan of the best solution that includes the
partial solution represented by node n. Let g(n) repre-
sent the makespan of the task/machine assignments in
the partial solution of node n, i.e., g(n) is the maximum
of the machine availability times (mat(j)) based on the
set of tasks that have been mapped to machines in node
n’s partial solution. Let h(n) be a lower-bound esti-
mate on the difference between the makespan of node
n’s partial solution and the makespan for the best com-
plete solution that includes node n’s partial solution.
Then, the cost function for node n is computed as

f(n) = g(n) + h(n). (3)

Therefore, f(n) represents the makespan of the partial
solution of node n plus a lower-bound estimate of the

time to execute the rest of the (unmapped) tasks in the
meta-task.

The function h(n) is defined in terms of two func-
tions, hi(n) and ha(n), which are two different ap-
proaches to deriving a lower-bound estimate. Recall
that M = {m; : m; = ming<jcm(ct(i,j)), for each i €
U}. For node n let mmet(n) be the overall maximum
element of M over all i € U (i.e., “the maximum min-
imum completion time”). Intuitively, mmct(n) repre-
sents the best possible meta-task makespan by making
the typically unrealistic assumption that each task in U
can be assigned to the machine indicated in M without

conflict. Thus, based on [5], hi(n) is defined as
hi(n) = max(0, (mmct(n) — g(n))). (4)

Next, let sdma(n) be the sum of the differences be-
tween g(n) and each machine availability time over all
machines after executing all of the tasks in the partial
solution represented by node n:

m—1

sdma(n) = Y (g(n) — mat(j)). (5)

7=0

Intuitively, sdma(n) represents the amount of machine
availability time remaining that can be scheduled with-
out increasing the final makespan. Let smet(n) be de-
fined as the sum of the minimum expected execution
times (i.e., ETC values) for all tasks in U:

smet(n) =3 (min (FTCGL5) (0)

el —
This gives an estimate of the amount of remaining work
to do, which could increase the final makespan. The

function hs 1s then defined as
ha(n) = max(0, (smet(n) — sdma(n))/m), (7)

where (smet(n) — sdma(n))/m represents an estimate
of the minimum increase in the meta-task makespan
if the tasks in U could be “ideally” (but, in general,
unrealistically) distributed among the machines. Using
these definitions,

h(n) = max(hi(n), ha(n)), (8)

representing a lower-bound estimate on the time to ex-
ecute the tasks in U.

Thus, beginning with the root, the node with the
minimum f(n) is replaced by its m children, until ny,qz
nodes are created. From that point on, any time a node
is added, the tree 1s pruned by deleting the node with
the largest f(n). This process continues until a leaf
node (representing a complete mapping) is reached.

Note that if the tree is not pruned, this method is
equivalent to an exhaustive search.

These eleven heuristics were all implemented under
the common simulation model described in Section 2.
The results from experiments using these implemen-
tations are described in the next section. Suggestions
for alternative heuristic implementations are given in
Section 5.

4. Experimental Results

An interactive software application has been devel-
oped that allows simulation, testing, and demonstra-
tion of the heuristics examined in Section 3 applied to
the meta-tasks defined by the E7T'C' matrices described
in Section 2. The software allows a user to specify
t and m, to select which ETC matrices to use, and
to choose which heuristics to execute. It then gener-
ates the specified ETC matrices, executes the desired
heuristics, and displays the results, similar to Figures 2
through 13. The results discussed in this section were
generated using portions of this software.

When comparing mapping heuristics, the execu-
tion time of the heuristics themselves is an impor-
tant consideration. For the heuristics listed, the ex-
ecution times varied greatly. The experimental results
discussed below were obtained on a Pentium IT 400
MHz processor with 1GB of RAM. Each of the sim-
pler heuristics (OLB, UDA, Fast Greedy, and Greedy)
executed in a few seconds for one ET'C' matrix with
t = 512 and m = 16. For the same sized ETC ma-
trix, SA and Tabu, both of which manipulate a single
solution during an iteration, averaged less than 30 sec-
onds. GA and GSA required approximately 60 seconds
per matrix because they manipulate entire populations,
and A* required about 20 minutes per matrix.

The resulting meta-task execution
(makespans) from the simulations for every case
of consistency, task heterogeneity, and machine het-
erogeneity are shown in Figures 2 through 13. All
experimental results represent the execution time of
a meta-task (defined by a particular ETC matrix)
based on the mapping found by the heuristic specified,
averaged over 100 different ETC matrices of the same
type (i.e., 100 mappings). For each heuristic, the range
bars show the minimum and maximum meta-task
execution times over the 100 mappings (100 ETC
matrices) used to compute the average meta-task
execution time. Tables 1 through 4 show sample
subsections from the four types of inconsistent ETC
matrices considered. Semi-consistent and consistent
matrices of the same types could be generated from
these matrices as described in Section 2. For the

times

results described here, however, entirely new matrices
were generated for each case.

For the four consistent cases, Figures 2 through 5,
the UDA algorithm had the worst execution times by
an order of magnitude. This is easy to explain. For the
consistent cases, all tasks will have the lowest execu-
tion time on one machine, and all tasks will be mapped
to this particular machine. This corresponds to results
found in [1]. Because of this poor performance, the
UDA results were not included in Figures 2 through
5. OLB, Max-min, and SA had the next poorest re-
sults. GA performed the best for the consistent cases.
This was due in part to the good performance of the
Min-min heuristic. The best GA solution always came
from one of the populations that had been seeded with
the Min-min solution. As i1s apparent in the figures,
Min-min performed very well on its own, giving the
second best results. The mutation, crossover, and se-
lection operations of the GA were always able to im-
prove on this solution, however. GSA, which also used
a Min-min seed, did not always improve upon the Min-
min solution. Because of the probabilistic procedure
used during selection, GSA would sometimes accept
poorer intermediate solutions. These poorer interme-
diate solutions never led to better final solutions, thus
GSA gave the third best results. The performance of
A* was hindered because the estimates made by hq(n)
and hs(n) are not as accurate for consistent cases as
they are for inconsistent and semi-consistent cases. For
consistent cases, hi(n) underestimates the competition
for machines and hs(n) underestimates the “workload”
distributed to each machine.

These results suggest that if the best overall solu-
tion is desired, the GA should be employed. However,
the improvement of the GA solution over the Min-min
solution was never more than 10%. Therefore, the Min-
min hueristic may be more appropriate in certain sit-
uations, given the difference in execution times of the
two heuristics.

For the four inconsistent test cases in Figures 6
through 9, UDA performs much better and the perfor-
mance of OLB degrades. Because there is no pattern
to the consistency, OLB will assign more tasks to poor
or even worst-case machines, resulting in poorer sched-
ules. In contrast, UDA improves because the “best”
machines are distributed across the set of machines,
thus task assignments will be more evenly distributed
among the set of machines avoiding load imbalance.
Similarly, Fast Greedy and Min-min performed very
well, and slightly outperformed UDA, because the ma-
chines providing the best task completion times are
more evenly distributed among the set of machines.
Min-min was also better than Max-min for all of the

inconsistent cases. The advantages Min-min gains by
mapping “best case” tasks first outweighs the savings
in penalties Max-min has by mapping “worst case”
tasks first.

Tabu gave the second poorest results for the in-
consistent cases, at least 16% poorer than the other
heuristics. Inconsistent matrices generated more suc-
cessful short hops than the associated consistent matri-
ces. Therefore, fewer long hops were generated and less
of the solution space was searched, resulting in poorer
solutions. The increased number of successful short
hops for inconsistent matrices can be explained as fol-
lows. The pairwise comparison procedure used by the
short hop procedure will assign machines with better
performance first, early in the search procedure. For
the consistent cases, these machines will always be from
the same set of machines. For inconsistent cases, these
machines could be any machine. Thus, for consistent
cases, the search becomes somewhat ordered, and the
successful short hops get exhausted faster. For incon-
sistent cases, the lack of order means there are more
successful short hops, resulting in fewer long hops.

GA and A* had the best average makespans, and
were usually within a small constant factor of each
other. The random approach employed by these meth-
ods was useful and helped overcome the difficulty of
locating good mappings within inconsistent matrices.
GA again benefited from having the Min-min ini-
tial mapping. A* did well because if the tasks get
more evenly distributed among the machines, this more
closely matches the lower-bound estimates of h;(n) and
hz(n)

Finally, consider the semi-consistent cases in Figures
10 through 13. For semi-consistent cases with high ma-
chine heterogeneity, the UDA heuristic again gave the
worst results. Intuitively, UDA is suffering from the
same problem as in the consistent cases: half of all
tasks are getting assigned to the same machine. OLB
does poorly for high machine heterogeneity cases be-
cause worst case matchings will have higher execution
times for high machine heterogeneity. For low ma-
chine heterogeneity, the worst case matchings have a
much lower penalty. The best heuristics for the semi-
consistent cases were Min-min and GA. This is not sur-
prising because these were two of the best heuristics
from the consistent and inconsistent tests, and semi-
consistent matrices are a combination of consistent and
inconsistent matrices. Min-min was able to do well be-
cause it searched the entire row for each task and as-
signed a high percentage of tasks to their first choice.
G A was robust enough to handle the consistent compo-
nents of the matrices, and did well for the same reasons
mentioned for inconsistent matrices.

5. Alternative Implementations

The experimental results in Section 4 show the per-
formance of each heuristic under the assumptions pre-
sented. For several heuristics, specific control param-
eter values and control functions had to be selected.
In most cases, control parameter values and control
functions were based on the references cited or experi-
ments conducted. However, for these heuristics, differ-
ent, valid implementations are possible using different
control parameters and control functions.

GA, SA, GSA: Several parameter values could
be varied among these techniques, including (where ap-
propriate) population size, crossover probability, mu-
tation probability, stopping criteria, number of runs
with different initial populations per result, and the
system temperature. The specific procedures used for
the following actions could also be modified (where ap-
propriate) including initial population “seed” genera-
tion, mutation, crossover, selection, elitism, and the
accept /reject new mapping procedure.

Tabu: The short hop method implemented was a
“first descent” (take the first improvement possible)
method. “Steepest descent” methods (where several
short hops are considered simultaneously, and the one
with the most improvement is selected) are also used
in practice [7]. Other techniques that could be var-
ied are the long hop method, the order of the short
hop pair generation-and-exchange sequence, and the
stopping condition. Two possible alternative stopping
criteria are when the tabu list reaches a specified num-
ber of entries, or when there is no change in the best
solution in a specified number of hops.

A*: Several variations of the A* method that was
employed here could be implemented. Different func-
tions could be used to estimate the lower-bound h(n).
The maximum size of the search tree could be varied,
and several other techniques exist for tree pruning (e.g.,
21)).

In summary, for the GA, SA, GSA, Tabu, and A*
heuristics there are a great number of possible valid
implementations. An attempt was made to use a rea-
sonable implementation of each heuristic for this study.
Future work could examine other implementations.

6. Conclusions

The goal of this study was to provide a basis for
comparison and insights into circumstances where one
technique will out perform another for eleven different
heuristics. The characteristics of the ET'C' matrices
used as input for the heuristics and the methods used to

generate them were specified. The implementation of
a collection of eleven heuristics from the literature was
described. The results of the mapping heuristics were
discussed, revealing the best heuristics to use in certain
scenarios. For the situations, implementations, and pa-
rameter values used here, GA was the best heuristic for
most cases, followed closely by Min-min, with A* also
doing well for inconsistent matrices.

A software tool was developed that allows others
to compare these heuristics for many different types
of ET'C matrices. These heuristics could also be the
basis of a mapping toolkit. If this toolkit were given an
ETC matrix representing an actual meta-task and an
actual HC environment, the toolkit could analyze the
ETC matrix, and utilize the best mapping heuristic
for that scenario. Depending on the overall situation,
the execution time of the mapping heuristic itself may
impact this decision. For example, if the best mapping
available in less than one minute was desired and if
the characteristics of a given ET'C' matrix most closely
matched a consistent matrix, Min-min would be used;
if more time was available for finding the best mapping,
GA and A* should be considered.

The comparisons of the eleven heuristics and twelve
situations provided in this study can be used by re-
searchers as a starting point when choosing heuristics
to apply in different scenarios. They can also be used
by researchers for selecting heuristics to compare new,
developing techniques against.

Acknowledgments — The authors thank Shoukat Ali
and Taylor Kidd for their comments.

References

[1] R. Armstrong, D. Hensgen, and T. Kidd, “The rel-
ative performance of various mapping algorithms
is independent of sizable variances in run-time
predictions,” 7th IEEE Heterogeneous Computing
Workshop (HCW "98), Mar. 1998, pp. 79-87.

[2] R. Armstrong, Investigation of Effect of Differ-
ent Run-Time Distributions on SmartNet Perfor-
mance, Thesis, Department of Computer Science,
Naval Postgraduate School, Monterey, CA, Sept.
1997 (D. Hensgen, advisor.)

[3] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni,
M. Maheswaran, A. I. Reuther, J. P. Robert-
son, M. D. Theys, and B. Yao, “A taxonomy
for describing matching and scheduling heuristics
for mixed-machine heterogeneous computing sys-
tems,” IEEE Workshop on Advances in Parallel
and Distributed Systems, Oct. 1998, pp. 330-335

(included in the Proceedings of the 7th IEEE Sym-
posium on Reliable Distributed Systems, 1998).

H. Chen, N. S. Flann, and D. W. Watson, “Paral-
lel genetic simulated annealing: A massively par-
allel SIMD approach,” IEEE Transactions on Par-
allel and Distributed Computing, Vol. 9, No. 2,
Feb. 1998, pp. 126-136.

K. Chow and B. Liu, “On mapping signal process-
ing algorithms to a heterogeneous multiprocessor
system,” 1991 International Conference on Acous-
tics, Speech, and Signal Processing - ICASSP 91,
Vol. 3, May 1991, pp. 1585-1588.

M. Coli and P. Palazzari, “Real time pipelined sys-
tem design through simulated annealing,” Journal
of Systems Architecture, Vol. 42, No. 6-7, Dec.
1996, pp. 465-475.

I. De Falco, R. Del Balio, E. Tarantino, and R.
Vaccaro, “Improving search by incorporating evo-
1994

IEEE Conference on Evolutionary Computation,

Vol. 2, 1994, pp. 823-828.

D. Fernandez-Baca, “Allocating modules to pro-
cessors 1n a distributed system,” IEEE Transac-
tions on Software Engineering, Vol. SE-15, No. 11,
Nov. 1989, pp. 1427-1436.

R. F. Freund, M. Gherrity, S. Ambrosius, M.
Campbell, M. Halderman, D. Hensgen, E. Keith,
T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L.
Moore, B. Rust, and H. J. Siegel, “Scheduling re-
sources in multi-user, heterogeneous, computing
environments with SmartNet,” 7th IEEE Hetero-
geneous Computing Workshop (HCW ’98), Mar.
1998, pp. 184-199.

R. F. Freund and H. J. Siegel, “Heterogeneous pro-
cessing,” IEEE Computer, Vol. 26, No. 6, June
1993, pp. 13-17.

A. Ghafoor and J. Yang, “Distributed hetero-
geneous supercomputing management system,”
IEEE Computer, Vol. 26, No. 6, June 1993, pp.
78-86.

F. Glover and M. Laguna, Tabu Search, Kluwer
Academic Publishers, Boston, MA, June 1997.

D. A. Hensgen, T. Kidd, M. C. Schnaidt, D. St.
John, H. J. Siegel, T. D. Braun, M. Maheswaran,
S. Ali, J-K. Kim, C. Irvine, T. Levin, R. Wright,
R. F. Freund, M. Godfrey, A. Duman, P. Carff,
S. Kidd, V. Prasanna, P. Bhat, and A. Alhu-
saini, “An overview of MSHN: A Management
System for Heterogeneous Networks,” 8th IEEE
Workshop on Heterogeneous Computing Systems
(HCW °99), Apr. 1999, to appear.

lution principles in parallel tabu search,”

[14]

[21]

[25]

A. A. Khokhar, V. K. Prasanna, M. E. Shaa-
ban, and C. L. Wang, “Heterogeneous computing:
Challenges and opportunities,” IEEE Computer,
Vol. 26, No. 6, June 1993, pp. 18-27.

O. H. Ibarra and C. E. Kim, “Heuristic algorithms
for scheduling independent tasks on nonidentical
processors,” Journal of the ACM, Vol. 24, No. 2,
Apr. 1977, pp. 280-289.

M. Kafil and I. Ahmad, “Optimal task assignment
in heterogeneous distributed computing systems,”
IEEE Concurrency, Vol. 6, No. 3, July—Sept. 1998,
pp- 42-51.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi,
“Optimization by simulated annealing,” Science,

Vol. 220, No. 4598, May 1983, pp. 671-680.

M. Maheswaran, T. D. Braun, and H. J. Siegel,
“Heterogeneous distributed computing,” Encyclo-
pedia of Electrical and Electronics Engineering, J.
Webster, ed., John Wiley & Sons, New York, NY,
to appear 1999.

M. Pinedo, Scheduling: Theory, Algorithms, and
Systems, Prentice Hall, Englewood Cliffs, NJ,
1995.

G. Rudolph, “Convergence analysis of canonical
genetic algorithms,” IEEE Transactions on Neural

Networks, Vol. 5, No. 1, Jan. 1994, pp. 96-101.

S. J. Russell and P. Norvig, Artificial Intelligence:
A Modern Approach, Prentice Hall, Englewood
Cliffs, NJ, 1995.

C.-C. Shen and W.-H. Tsai, “A graph match-
ing approach to optimal task assignment in dis-
tributed computing system using a minimax cri-
terion,” IEEE Transactions on Computers, Vol.

(C-34, No. 3, Mar. 1985, pp. 197-203.

P. Shroff, D. Watson, N. Flann, and R. Freund,
“Genetic simulated annealing for scheduling data-
dependent tasks in heterogeneous environments,”
bth IEEE Heterogeneous Computing Workshop
(HCW °96), April 1996, pp. 98-104.

H. J. Siegel, H. G. Dietz, and J. K. Antonio,
“Software support for heterogeneous computing,”
in The Computer Science and Engineering Hand-
book, A. B. Tucker, Jr., ed., CRC Press, Boca
Raton, FL, 1997, pp. 1886—-1909.

H. Singh and A. Youssef, “Mapping and schedul-
ing heterogeneous task graphs using genetic al-
gorithms,” 5th IEEE Heterogeneous Computing
Workshop (HCW ’96), Apr. 1996, pp. 86-97.

M. Srinivas and L. M. Patnaik, “Genetic algo-
rithms: A survey,” IEEE Computer, Vol. 27, No.
6, June 1994, pp. 17-26.

[27] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A.
A. Maciejewski, “Task matching and scheduling
in heterogeneous computing environments using
a genetic-algorithm-based approach,” Journal of
Parallel and Distributed Computing, Vol. 47, No.
1, Nov. 1997, pp. 1-15.

Biographies

Tracy D. Braun is a PhD student and Research
Assistant in the School of Electrical and Computer En-
gineering at Purdue University. He received a Bachelor
of Science in Electrical Engineering with Honors and
High Distinction from the University of Iowa in 1995.
In 1997, he received an MSEE from the School of Elec-
trical and Computer Engineering at Purdue University.
He received a Benjamin Meisner Fellowship from Pur-
due University for the 1995-1996 academic year. He is
a member of IEEE, TEEE Computer Society, and Eta
Kappa Nu honorary society. He is an active member
of the Beta Chapter of Eta Kappa Nu at Purdue Uni-
versity, and has held several offices during his studies
at Purdue, including chapter President. He has also
been employed at Norand Data Systems and Silicon
Graphics Inc./Cray Research. His research interests
include parallel algorithms, heterogeneous computing,
computer security, and software design.

H. J. Siegelis a Professor in the School of Electrical
and Computer Engineering at Purdue University. He
is a Fellow of the IEEE and a Fellow of the ACM. He
received BS degrees in both Electrical Engineering and
Management from MIT, and the MA, MSE, and PhD
degrees from the Department of Electrical Engineering
and Computer Science at Princeton University. Prof.
Siegel has coauthored over 250 technical papers, has
coedited seven volumes, and wrote the book Intercon-
nection Networks for Large-Scale Parallel Processing.
He was a Coeditor-in-Chief of the Journal of Parallel
and Distributed Computing, and was on the Editorial
Boards of the IEEE Transactions on Parallel and Dis-
tributed Systems and the IEEE Transactions on Com-
puters. He was Program Chair/Co-Chair of three con-
ferences, General Chair/Co-Chair of four conferences,
and Chair/Co-Chair of four workshops. He is an inter-
national keynote speaker and tutorial lecturer, and a
consultant for government and industry.

Noah Beck is a Research Assistant and MSEE stu-
dent at Purdue University in the School of Electrical
and Computer Engineering. He received a Bachelor
of Science in Computer Engineering from Purdue Uni-
versity in 1997, and is an active member of the Beta
chapter of the Eta Kappa Nu honorary society. He
has also been employed at Intel Corporation, and his
research interests include microprocessor architecture,

parallel computing, and heterogeneous computing.

Ladislau L. Boloni is a PhD student and Re-
search Assistant in the Computer Sciences Department
at Purdue University. He received a Diploma Engineer
degree in Computer Engineering with Honors from the
Technical University of Cluj-Napoca, Romaniain 1993.
He received a fellowship from the Hungarian Academy
of Sciences for the 1994-95 academic year. He is a mem-
ber of ACM and the Upsilon Pi Epsilon honorary so-
ciety. His research interests include distributed object
systems, autonomous agents and parallel computing.

Muthucumaru Maheswaran is an Assistant Pro-
fessor in the Department of Computer Science at the
University of Manitoba, Canada. In 1990, he received
a BSc degree in Electrical and Electronic Engineering
from the University of Peradeniya, Sri Lanka. He re-
ceived an MSEE degree in 1994 and a PhD degree in
1998, both from the School of Electrical and Computer
Engineering at Purdue University. He held a Fulbright
scholarship during his tenure as an MSEE student at
Purdue University. His research interests include com-
puter architecture, distributed computing, heteroge-
neous computing, Internet and World Wide Web sys-
tems, metacomputing, mobile programs, network com-
puting, parallel computing, resource management sys-
tems for metacomputing, and scientific computing. He
has authored or coauthored 15 technical papers in these
and related areas. He is a member of the Eta Kappa
Nu honorary society.

Albert I. Reuther is a PhD student and Research
Assistant in the School of Electrical and Computer En-
gineering at Purdue University. He received his Bache-
lor of Science in Computer and Electrical Engineering
with Highest Distinction in 1994 and received a Mas-
ters of Science in Electrical Engineering in 1996, both
at Purdue. He was a Purdue Andrews Fellowship recip-
ient in the 1994-95 and 1995-96 academic years. He is a
member of IEEE, IEEE Computer Society, ACM, and
Eta Kappa Nu honorary society and has been employed
by General Motors and Hewlett-Packard. His research
interests include multimedia systems, heterogeneous
computing, parallel processing, and educational mul-
timedia.

James P. Robertson currently works for Mo-
torola’s PowerPC System Performance and Modeling
group. He received a Bachelor of Science in Computer
Engineering with Honors from the school of Electri-
cal and Computer Engineering at Purdue University
in 1996. As an undergraduate student he received an
NSF undergraduate research scholarship. In 1998 he
received an MSEE from Purdue University. He is a
member of TEEE, IEEE Computer Society, and Eta
Kappa Nu honorary society. While attending Purdue

University he was an active member of the Beta Chap-
ter of Eta Kappa Nu, having held several offices includ-
ing chapter Treasurer.

Mitchell D. Theys is a PhD student and Research
Assistant in the School of Electrical and Computer En-
gineering at Purdue University. He received a Bachelor
of Science in Computer and Electrical Engineering in
1993 with Highest Distinction, and a Master of Science
in Electrical Engineering in 1996, both from Purdue.
He received support from a Benjamin Meisner Fellow-
ship from Purdue University, an Intel Graduate Fel-
lowship, and an AFCEA Graduate Fellowship. He 1s a
member of the Eta Kappa Nu honorary society, IEEE,
and IEEE Computer Society. He was elected President
of the Beta Chapter of Eta Kappa Nu at Purdue Uni-
versity and has held several various offices during his
stay at Purdue. He has held positions with Compaq
Computer Corporation, S&C Electic Company, and
Lawrence Livermore National Laboratory. His research
interests include design of single chip parallel machines,
heterogeneous computing, parallel processing, and soft-
ware/hardware design.

Bin Yao is a PhD student and Research Assistant in
the School of Electrical and Computer Engineering at
Purdue University. He received Bachelor of Science in
Electrical Engineering from Beijing University in 1996.
He received Andrews Fellowship from Purdue Univer-
sity for the academic years 1996-1998. He is a student
member of the IEEE. His research interests include dis-
tributed algorithms, fault tolerant computing, and het-
erogeneous computing.

Debra Hensgen is an Associate Professor in the
Computer Science Department at The Naval Postgrad-
uate School. She received her PhD in the area of
Distributed Operating Systems from the University of
Kentucky. She is currently a Principal Investigator of
the DARPA-sponsored Management System for Het-
erogeneous Networks QUORUM project (MSHN) and
a co-investigator of the DARPA-sponsored Server and
Active Agent Management (SAAM) Next Generation
Internet project. Her areas of interest include active
modeling in resource management systems, network
re-routing to preserve quality of service guarantees, vi-
sualization tools for performance debugging of paral-
lel and distributed systems, and methods for aggre-
gating sensor information. She has published numer-
ous papers concerning her contributions to the Con-
curra toolkit for automatically generating safe, efficient
concurrent code, the Graze parallel processing perfor-
mance debugger, the SAAM path information base,
and the SmartNet and MSHN Resource Management
Systems.

Richard F. Freund is a founder and CEO of

NOEMIX, a San Diego based startup to commercial-
ize distributed computing technology. Dr. Freund is
also one of the early pioneers in the field of distributed
computing, in which he has written or co-authored a
number of papers. In addition he is a founder of the
Heterogeneous Computing Workshop, held each year
in conjunction with TPPS/SPDP. Freund won a Meri-
torious Civilian Service Award during his former career
as a government scientist.

initial population generation;
evaluation;
while (stopping criteria not met) {
selection;
crossover;
mutation;
evaluation;

Figure 1. General procedure for a Genetic Al-
gorithm, based on [26].

consistent, high task, high machine heterogeneity

1.8E407
1.6E+07 -
1.4E+07 - l

1.2E407 - 1 ‘l’ I
1.0E+07 -
8.0E+06 -
6.0E+06 -

4.0E+06 -
2.0E+06 -

eta-task execution time (sec.)

m
o
o
m
+

o
S

& ¥

%
%
/0

S N F F K

2 & 5 2
q}e\O W Q@ &)

A

100 trials, 512 tasks, 16 machines

Figure 2. Consistent, high task, high machine
heterogeneity.

consistent, high task, low machine heterogeneity

> 2.5E+05

2.0E+05 -

1.5E+05 -

1.0E+05

5.0E+04 -

meta-task execution time (sec.)

0.0E+00 -
© N & & N F F F O ¥
& & & ,5;:6\\ S ¢ T FF ¥
6\0 » X [}
Q‘b

100 trials, 512 tasks, 16 machines

Figure 3. Consistent, high task, low machine
heterogeneity.

consistent, low task, high machine heterogeneity

7.0E+05
6.0E+05 -
5.0E+05 -
4.0E+05 -
3.0E+05 -
2.0E+05 -
1.0E+05
0.0E+00 -
O\;0 0‘?'& . & & e?’& F & Orov

& @‘Q @‘5" &

S
)
Q‘b

sec.)

meta-task execution time (

&

100 trials, 512 tasks, 16 machines

Figure 4. Consistent, low task, high machine
heterogeneity.

consistent, low task, low machine heterogeneity

9.0E+03
8.0E+03 -
7.0E+03 +
6.0E+03 -
5.0E+03
4.0E+03 -
3.0E+03
2.0E+03 +
1.0E+03

meta-task execution time (sec.)

0.0E+00 -
© N & & N F F oF O ¥
& & & ,5;:6\\ S ¢ T FF ¥
6\0 A [}
Q‘b

100 trials, 512 tasks, 16 machines

Figure 5. Consistent, low task, low machine
heterogeneity.

inconsistent, high task, high machine heterogeneity

w
o
m
+
o
~

2.5E+07 -
2.0E+07
1.5E+07
1.0E+07 -
5.0E+06 -

meta-task execution time (sec.)

.
L v

S F PSSP FFF s

0’ S &
d@/ @A\Q @(ﬂ. G\Q
100 trials, 512 tasks, 16 machines

Figure 6. Inconsistent, high task, high ma-
chine heterogeneity.

inconsistent, high task, low machine heterogeneity

3.5E+05
3.0E+05 -
2.5E+05 -
2.0E+05 -
1.5E+05
1.0E+05 +
5.0E+04 -
0.0E+00 -

sec.)

meta-task execution time (

.
L v

F PSSP F T F s

N S o2
r,,e‘o ® @ o
;4

100 trials, 512 tasks, 16 machines

Figure 7. Inconsistent, high task, low machine
heterogeneity.

inconsistent, low task, high machine heterogeneity

1.0E+06
9.0E+05
8.0E+05 |
7.0E+405 |
6.0E+05 - I
5.0E405 |
4.0E+05 |
3.0E+05 |
2.0E+405 |
1.0E+05 -
0.0E+00 -

meta-task execution time (sec.)

.
L v

2 N 6'\\(\ 5

S S N ¥ o oo
R o o) o'
o o ,ﬁ:& Q}e?’ &
& AR\,
Q’b

100 trials, 512 tasks, 16 machines

Figure 8. Inconsistent, low task, high machine
heterogeneity.

inconsistent, low task, low machine heterogeneity

- 1.2E+04
1.0E+04
8.0E+03 -
6.0E+03 -

4.0E+03 -

= IINIMILr

meta-task execution time (sec.

F & S 4‘\\° 6* F FF S ¥
&
2

(<’b
100 trials, 512 tasks, 16 machines

Figure 9. Inconsistent, low task, low machine
heterogeneity.

semi-consistent, high task, high machine heterogeneity

- 3.5E+07
3.0E+07 4
2.5E+07 4
2.0E+07 4
1.5E+07

meta-task execution time (sec.

1.0E+07 1

5.0E+06 - ﬁ ﬁ m m

0.0E+00 :

F & S @ & eb* X ¥ 0%‘? & ¥
C’}‘ ® @’5*" [
9

(<’b
100 trials, 512 tasks, 16 machines

Figure 10. Semi-consistent, high task, high
machine heterogeneity.

semi-consistent, high task, low machine heterogeneity

~ 8.0E+05
7.0E+05
6.0E+05 -
5.0E+05 -
4.0E+05 -
3.0E+05 -

meta-task execution time (sec.

2.0E+05
Zllnalnnlile
0.0E+00 T I—'—I I—'—I I—'—I

o\g’ 00\? @z& < 6‘\0 6‘\ &
é\Q @ @’0 (&)

(<’b

& 6* F F &K

100 trials, 512 tasks, 16 machines

Figure 11. Semi-consistent, high task, low
machine heterogeneity.

semi-consistent, low task, high machine heterogeneity

- 1.0E+06
9.0E+05 T
8.0E+05 -
7.0E+05 -
6.0E+05
5.0E+05 -
4.0E+05 -
3.0E+05
2.0E+05 -
1.0E+05 ~
0.0E+00 T T

FFH S ESP T T F T

& & @’5*" &
S

(<’b

meta-task execution time (sec.

100 trials, 512 tasks, 16 machines

Figure 12. Semi-consistent, low task, high
machine heterogeneity.

semi-consistent, low task, low machine heterogeneity

S 2.5E+04
[0
o
g 2.0E+04 -
& 1.5E+04 1
5
(%]
£ 1.0E+04 -
()
X
[Z]
: Omim W
[9)
£ 0.0E+00 : m
X & &S @\“ 4’\\“ b* o“ %‘? 0@‘? ,\,ga“

g NE
{b&}(') \y\ @ (&)

<
100 trials, 512 tasks, 16 machines

Figure 13. Semi-consistent, low task, low ma-
chine heterogeneity.

machines

7R/ O

136,735.9
950,470.7
453,126.6

1,289,078.2
646,129.6

1,061,682.3
10,783.8
1,940,704.5

815,300.1 891,469.0 1,722,197.6 1,340,988.1 740,028.0 1,749,673.7
933,830.1 2,156,144.2 2,202,018.0 2,286,210.0 2,779,669.0 220,536.3
479,091.9 150,324.5 386,338.1 401,682.9 218,826.0 242,699.6

1,400,308.1 2,378,363.0 2,458,087.0 351,387.4 925,070.1 2,097,914.2
576,144.9 1,475,908.2 424,448.8 576,238.7 223.453.8 256,804.5
43,439.8 1,355,855.5 1,736,937.1 1,624,942.6 2,070,705.1 1,977,650.2

7,453.0 34544 23,7208 29,817.3 1,143.7 44,2492
1,682,338.5 1,978,545.6 788,342.1 1,192,052.5 1,022,914.1 701,336.3

251,140.1
1,769,184.5
11,392.2
1,206,158.2
88,737.9
1,066,470.8
5,039.5
1,052,728.3

Table 1. Sample 8 x 8 excerpt from E7C with inconsistent, high task, high machine heterogeneity.

machines

7R/ O

21,612.6
578.4
122.8
1,785.7
510.8
22,916.7
5,985.3

16,192.4

13,909.7
681.1
236.9

1,528.1
472.0
18,510.0
2,006.5
3,088.9

6,904.1
647.9
61.3
6,998.8
358.5
11,932.7
1,546.4
16,532.5

36215 3,280.5
4771 811.9
143.6 56.0
49653 3,174.6
461.4 1,898.7
6,088.3 9,239.7
6,444.6 2,640.0

13,160.6 10,574.2

8,752.0
619.5
313.4

3,438.0
1,535.4
15,036.4
7,389.3
7,136.3

5,053.7
490.9
283.5
7,168.4
1,810.2
18,107.7
5,924.9

15,353.4

14,515.3
828.7
241.9

2,059.3
906.6
12,262.6
1,867.2
2,150.6

Table 2. Sample 8 x 8 excerpt from E7T'C with inconsistent, high task, low machine heterogeneity.

machines

7R 7 B O

16,603.2
738.3
1,513.8
2,219.9
12,654.7
4,226.0
20,668.5
52,953.2

71,369.1
2,375.0
45.1
5,989.2
10,483.7
48,152.2
28,875.9
14,608.1

39,849.0
5,606.2
1,027.3
2,747.0

10,601.5

11,279.3

29,610.1

58,137.2

44,566.1 55,1243
804.9 1,535.8
2,962.1 2,748.2
88.2 2,055.1
6,804.6 134.3
35471.1 30,7234
7,363.3 24,488.0
16,685.5 36,571.3

9,077.3
4,772.3
2,406.3

665.0

10,532.8

24,234.0

31,077.3

35,888.8

87,5945
994.2
19.4
356.3
12,341.5
6,366.9
8,705.0
38,147.0

31,5305
1,833.9
969.9
2,404.9
5,046.3
92,926.9
11,849.4
15,167.5

Table 3. Sample 8 x 8 excerpt from E7'C with inconsistent, low task, high machine heterogeneity.

machines

512.9 268.0 924.9 4944 611.2 606.9 921.6 209.6

8.5 16.8 23.4 19.2 27.9 22.7 19.6 8.3
228.8 2385 107.2 180.0 334.6 88.2 192.8 125.7
345.1 6424 136.8 206.2 5595 3495 640.2 664.2
117.3 235.9 149.9 71.5 136.6 363.6 182.8 359.5
240.7 412.0 259.1 319.8 2375 338.3 1785 5H37.7
462.8 93.3 5749 449.4 421.8 559.6 487.7 298.7
119.5 36.7 2242 1942 176.5 156.8 182.7 192.0

n o N o o

Table 4. Sample 8 x 8 excerpt from E7T'C with inconsistent, low task, low machine heterogeneity.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

