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Abstract

Heterogeneous computing �HC� environments are
well suited to meet the computational demands of large�
diverse groups of tasks �i�e�� a meta�task�� The prob�
lem of mapping �de�ned as matching and scheduling�
these tasks onto the machines of an HC environment
has been shown� in general� to be NP�complete� requir�
ing the development of heuristic techniques� Selecting
the best heuristic to use in a given environment� how�
ever� remains a di�cult problem� because comparisons
are often clouded by di�erent underlying assumptions
in the original studies of each heuristic� Therefore� a
collection of eleven heuristics from the literature has
been selected� implemented� and analyzed under one set
of common assumptions� The eleven heuristics exam�
ined are Opportunistic Load Balancing� User�Directed
Assignment� Fast Greedy� Min�min� Max�min� Greedy�
Genetic Algorithm� Simulated Annealing� Genetic Sim�
ulated Annealing� Tabu� and A�� This study provides
one even basis for comparison and insights into circum�
stances where one technique will outperform another�
The evaluation procedure is speci�ed� the heuristics are
de�ned� and then selected results are compared�

This research was supported in part by the DARPA�ITO Quo�
rum Program under NPS subcontract numbers N���������M�
���� and N���������M��		�
 Some of the equipment used was
donated by Intel


�� Introduction

Mixed�machine heterogeneous computing �HC� en�
vironments utilize a distributed suite of di�erent high�
performance machines� interconnected with high�speed
links to execute di�erent computationally intensive
applications that have diverse computational require�
ments ���� ��� 	
�� The general problem of mapping
�i�e�� matching and scheduling� tasks to machines has
been shown to be NP�complete ��� ��� Heuristics de�
veloped to perform this mapping function are often
di�cult to compare because of di�erent underlying as�
sumptions in the original studies of each heuristic ����
Therefore� a collection of eleven heuristics from the lit�
erature has been selected� implemented� and compared
by simulation studies under one set of common assump�
tions�

To facilitate these comparisons� certain simplifying
assumptions were made� Let a meta�task be de�ned
as a collection of independent tasks with no data de�
pendencies �a given task� however� may have subtasks
and dependencies among the subtasks�� For this case
study� it is assumed that static �i�e�� o��line or predic�
tive� mapping of meta�tasks is being performed� �In
some systems� all tasks and subtasks in a meta�task�
as de�ned above� are referred to as just tasks��

It is also assumed that each machine executes a sin�
gle task at a time� in the order in which the tasks ar�



rived� Because there are no dependencies among the
tasks� scheduling is simpli�ed� and thus the resulting
solutions of the mapping heuristics focus more on �nd�
ing an e�cient matching of tasks to machines� It is
also assumed that the size of the meta�task �number
of tasks to execute�� t� and the number of machines in
the HC environment� m� are static and known a priori�

Section 	 de�nes the computational environment pa�
rameters that were varied in the simulations� Descrip�
tions of the eleven mapping heuristics are found in Sec�
tion �� Section 
 examines selected results from the
simulation study� A list of implementation parameters
and procedures that could be varied for each heuristic
is presented in Section �

This research was supported in part by the
DARPA�ITO Quorum Program project called MSHN
�Management System for Heterogeneous Networks�
����� MSHN is a collaborative research e�ort among the
Naval Postgraduate School� NOEMIX� Purdue Univer�
sity� and the University of Southern California� The
technical objective of the MSHN project is to design�
prototype� and re�ne a distributed resource manage�
ment system that leverages the heterogeneity of re�
sources and tasks to deliver requested qualities of ser�
vice� The heuristics developed in this paper or their
derivatives may be included in the Scheduling Advisor
component of the MSHN prototype�

�� Simulation Model

The eleven static mapping heuristics were evaluated
using simulated execution times for an HC environ�
ment� Because these are static heuristics� it is assumed
that an accurate estimate of the expected execution
time for each task on each machine is known prior to ex�
ecution and contained within an ETC �expected time
to compute� matrix� One row of the ETC matrix con�
tains the estimated execution times for a given task
on each machine� Similarly� one column of the ETC
matrix consists of the estimated execution times of a
given machine for each task in the meta�task� Thus�
ETC�i� j� is the estimated execution time for task i on
machine j� �These times are assumed to include the
time to move the executables and data associated with
each task to the particular machine when necessary��
The assumption that these estimated expected execu�
tion times are known is commonlymade when studying
mapping heuristics for HC systems �e�g�� ���� ��� 	���
�Approaches for doing this estimation based on task
pro�ling and analytical benchmarking are discussed in
��
� 	
���

For the simulation studies� characteristics of the
ETC matrices were varied in an attempt to represent

a variety of possible HC environments� The ETC ma�
trices used were generated using the following method�
Initially� a t � � baseline column vector� B� of �oating
point values is created� Let �b be the upper�bound of
the range of possible values within the baseline vector�
The baseline column vector is generated by repeatedly
selecting a uniform random number� xib � ��� �b�� and

letting B�i� � xib for � � i � t� Next� the rows of the
ETC matrix are constructed� Each element ETC�i� j�
in row i of the ETC matrix is created by taking the
baseline value� B�i�� and multiplying it by a uniform
random number� xi�jr � which has an upper�bound of

�r� This new random number� xi�jr � ��� �r�� is called
a row multiplier� One row requires m di�erent row
multipliers� � � j � m� Each row i of the ETC ma�
trix can be then described as ETC�i� j� � B�i� � xi�jr �
for � � j � m� �The baseline column itself does not
appear in the �nal ETC matrix�� This process is re�
peated for each row until the m � t ETC matrix is
full� Therefore� any given value in the ETC matrix is
within the range ��� �b � �r��

To evaluate the heuristics for di�erent mapping sce�
narios� the characteristics of the ETC matrix were var�
ied based on several di�erent methods from �	�� The
amount of variance among the execution times of tasks
in the meta�task for a given machine is de�ned as task
heterogeneity� Task heterogeneity was varied by chang�
ing the upper�bound of the random numbers within the
baseline column vector� High task heterogeneity was
represented by �b � ���� and low task heterogeneity
used �b � ���� Machine heterogeneity represents the
variation that is possible among the execution times for
a given task across all the machines� Machine hetero�
geneity was varied by changing the upper�bound of the
random numbers used to multiply the baseline values�
High machine heterogeneity values were generated us�
ing �r � ���� � while low machine heterogeneity values
used �r � ��� These heterogeneous ranges are based
on one type of expected environment for MSHN�

To further vary the ETC matrix in an attempt to
capture more aspects of realistic mapping situations�
di�erent ETC matrix consistences were used� An ETC
matrix is said to be consistent if whenever a machine
j executes any task i faster than machine k� then ma�
chine j executes all tasks faster than machine k �	��
Consistent matrices were generated by sorting each
row of the ETC matrix independently� In contrast�
inconsistent matrices characterize the situation where
machine j is faster than machine k for some tasks� and
slower for others� These matrices are left in the un�
ordered� random state in which they were generated� In
between these two extremes� semi�consistent matrices
represent a partial ordering among the machine�task



execution times� For the semi�consistent matrices used
here� the row elements in column positions f�� 	� 
� � � �g
of row i are extracted� sorted� and replaced in order�
while the row elements in column positions f�� �� � � � �g
remain unordered� �That is� the even columns are con�
sistent and the odd columns are inconsistent��

Sample ETC matrices for the four inconsistent het�
erogeneous permutations of the characteristics listed
above are shown in Tables � through 
� �Other proba�
bility distributions for ETC values� including an expo�
nential distribution and a truncated Gaussian ��� dis�
tribution� were also investigated� but not included in
the results discussed here�� All results in this study
used ETC matrices that were of size t � �	 tasks by
m � �� machines� While it was necessary to select
some speci�c parameter values to allow implementa�
tion of a simulation� the characteristics and techniques
presented here are completely general� Therefore� if
these parameter values do not apply to a speci�c sit�
uation of interest� researchers may substitute in their
own ranges� distributions� matrix sizes� etc�� and the
evaluation software of this study will still apply�

�� Heuristic Descriptions

The de�nitions of the eleven static meta�task map�
ping heuristics are provided below� First� some pre�
liminary terms must be de�ned� Machine availability
time� mat�j�� is the earliest time a machine j can com�
plete the execution of all the tasks that have previously
been assigned to it� Completion time� ct�i� j�� is the
machine availability time plus the execution time of
task i on machine j� i�e�� ct�i� j� � mat�j��ETC�i� j��
The performance criterion used to compare the results
of the heuristics is the maximum value of ct�i� j�� for
� � i � t and � � j � m� for each mapping� also known
as the makespan ����� Each heuristic is attempting to
minimize the makespan �i�e�� �nish execution of the
meta�task as soon as possible��

The descriptions below implicitly assume that the
machine availability times are updated after each task
is mapped� For cases when tasks can be considered in
an arbitrary order� the order in which the tasks ap�
peared in the ETC matrix was used� Some of the
heuristics listed below had to be modi�ed from their
original implementation to better handle the scenarios
under consideration�

For many of the heuristics� there are control param�
eter values and�or control function speci�cations that
can be selected for a given implementation� For the
studies here� such values and speci�cations were se�
lected based on experimentation and�or information
in the literature� These parameters and functions are

mentioned in Section �

OLB� Opportunistic Load Balancing �OLB� as�
signs each task� in arbitrary order� to the next available
machine� regardless of the task�s expected execution
time on that machine ��� �� ����
UDA� In contrast to OLB� User�Directed

Assignment �UDA� assigns each task� in arbi�
trary order� to the machine with the best expected
execution time for that task� regardless of that ma�
chine�s availability ���� UDA is sometimes referred to
as Limited Best Assignment �LBA�� as in ��� ���
Fast Greedy� Fast Greedy assigns each task� in

arbitrary order� to the machine with the minimum
completion time for that task ����
Min�min� The Min�min heuristic begins with the

set U of all unmapped tasks� Then� the set of
minimum completion times� M � fmi � mi �
min��j�m�ct�i� j��� for each i � Ug� is found� Next�
the task with the overall minimum completion time
from M is selected and assigned to the corresponding
machine �hence the name Min�min�� Lastly� the newly
mapped task is removed from U � and the process re�
peats until all tasks are mapped �i�e�� U � �� ��� �� ���

Intuitively� Min�min attempts to map as many tasks
as possible to their �rst choice of machine �on the basis
of completion time�� under the assumption that this
will result in a shorter makespan� Because tasks with
shorter execution times are being mapped �rst� it was
expected that the percentage of tasks that receive their
�rst choice of machine would generally be higher for
Min�min than for Max�min �de�ned next�� and this
was veri�ed by data recorded during the simulations�
Max�min� The Max�min heuristic is very simi�

lar to Min�min� The Max�min heuristic also begins
with the set U of all unmapped tasks� Then� the
set of minimum completion times� M � fmi � mi �
min��j�m�ct�i� j��� for each i � Ug� is found� Next�
the task with the overall maximum completion time
from M is selected and assigned to the corresponding
machine �hence the name Max�min�� Lastly� the newly
mapped task is removed from U � and the process re�
peats until all tasks are mapped �i�e�� U � �� ��� �� ���

The motivation behind Max�min is to attempt
to minimize the penalties incurred by delaying the
scheduling of long�running tasks� Assume that the
meta�task being mapped has several tasks with short
execution times� and a small quantity of tasks with
very long execution times� Mapping the tasks with the
longer execution times to their best machines �rst al�
lows these tasks to be executed concurrently with the
remaining tasks �with shorter execution times�� This
concurrent execution of long and short tasks can be
more bene�cial than a Min�min mapping where all of



the shorter tasks would execute �rst� and then a few
longer running tasks execute while several machines
sit idle� The assumption here is that with Max�min
the tasks with shorter execution times can be mixed
with longer tasks and evenly distributed among the
machines� resulting in better machine utilization and a
better meta�task makespan�
Greedy� The Greedy heuristic is literally a com�

bination of the Min�min and Max�min heuristics� The
Greedy heuristic performs both of the Min�min and
Max�min heuristics� and uses the better solution ��� ���
GA� Genetic Algorithms �GAs� are a popular tech�

nique used for searching large solution spaces �e�g��
�	� 	���� The version of the heuristic used for this
study was adapted from �	�� for this particular solution
space� Figure � shows the steps in a general Genetic
Algorithm�

The Genetic Algorithm implemented here operates
on a population of 	�� chromosomes �possible map�
pings� for a given meta�task� Each chromosome is a
t � � vector� where position i �� � i � t� represents
task i� and the entry in position i is the machine to
which the task has been mapped� The initial popula�
tion is generated using two methods� �a� 	�� randomly
generated chromosomes from a uniform distribution� or
�b� one chromosome that is the Min�min solution and
��� random solutions �mappings�� The latter method
is called seeding the population with a Min�min chro�
mosome� The GA actually executes eight times �four
times with initial populations from each method�� and
the best of the eight mappings is used as the �nal so�
lution�

After the generation of the initial population� all of
the chromosomes in the population are evaluated �i�e��
ranked� based on their �tness value �i�e�� makespan��
with a smaller �tness value being a better mapping�
Then� the main loop in Figure � is entered and a rank�
based roulette wheel scheme �	�� is used for selection�
This scheme probabilistically generates new popula�
tions� where better mappings have a higher probability
of surviving to the next generation� Elitism� the prop�
erty of guaranteeing the best solution remains in the
population �	��� was also implemented�

Next� the crossover operation selects a pair of chro�
mosomes and chooses a random point in the �rst chro�
mosome� For the sections of both chromosomes from
that point to the end of each chromosome� crossover ex�
changes machine assignments between corresponding
tasks� Every chromosome is considered for crossover
with a probability of ����

After crossover� the mutation operation is per�
formed� Mutation randomly selects a task within the
chromosome� and randomly reassigns it to a new ma�

chine� Both of these random operations select values
from a uniform distribution� Every chromosome is con�
sidered for mutation with a probability of 
���

Finally� the chromosomes from this modi�ed popu�
lation are evaluated again� This completes one itera�
tion of the GA� The GA stops when any one of three
conditions are met� �a� ���� total iterations� �b� no
change in the elite chromosome for �� iterations� or
�c� all chromosomes converge� If no stopping criteria is
met� the loop repeats� beginning with the selection of
a new population� The stopping criteria that usually
occurred in testing was no change in the elite chromo�
some in �� iterations�
SA� Simulated Annealing �SA� is an iterative tech�

nique that considers only one possible solution �map�
ping� for each meta�task at a time� This solution uses
the same representation for a solution as the chromo�
some for the GA�

SA uses a procedure that probabilistically allows
poorer solutions to be accepted to attempt to obtain
a better search of the solution space �e�g�� ��� ��� 	����
This probability is based on a system temperature that
decreases for each iteration� As the system tempera�
ture �cools�� it is more di�cult for currently poorer
solutions to be accepted� The initial system tempera�
ture is the makespan of the initial mapping�

The speci�c SA procedure implemented here is as
follows� The initial mapping is generated from a uni�
form random distribution� The mapping is mutated in
the same manner as the GA� and the new makespan
is evaluated� The decision algorithm for accepting or
rejecting the new mapping is based on ���� If the new
makespan is better� the new mapping replaces the old
one� If the new makespan is worse �larger�� a uniform
random number z � ��� �� is selected� Then� z is com�
pared with y� where

y �
�

� � e

�
old makespan�new makespan

temperature

� � ���

If z � y the new �poorer� mapping is accepted� other�
wise it is rejected� and the old mapping is kept�

Notice that for solutions with similar makespans �or
if the system temperature is very large�� y � ��� and
poorer solutions are more easily accepted� In contrast�
for solutions with very di�erent makespans �or if the
system temperature is very small�� y � �� and poorer
solutions will usually be rejected�

After each mutation� the system temperature is de�
creased by ���� This de�nes one iteration of SA� The
heuristic stops when there is no change in the makespan
for �� iterations or the system temperature reaches
zero� Most tests ended with no change in the makespan



for �� iterations�
GSA� The Genetic Simulated Annealing �GSA�

heuristic is a combination of the GA and SA techniques
�
� 	��� In general� GSA follows procedures similar to
the GA outlined above� GSA operates on a popula�
tion of 	�� chromosomes� uses a Min�min seed in four
out of eight initial populations� and performs similar
mutation and crossover operations� However� for the
selection process� GSA uses the SA cooling schedule
and system temperature� and a simpli�ed SA decision
process for accepting or rejecting a new chromosomes�
GSA also used elitism to guarantee that the best solu�
tion always remained in the population�

The initial system temperature for the GSA selec�
tion process was set to the average makespan of the
initial population� and decreased ��� for each itera�
tion� When a new �post�mutation� post�crossover� or
both� chromosome is compared with the corresponding
original chromosome� if the new makespan is less than
the old makespan plus the system temperature� then
the new chromosome is accepted� That is� if

new makespan � �old makespan� temperature� �	�

is true� the new chromosome becomes part of the pop�
ulation� Otherwise� the original chromosome survives
to the next iteration� Therefore� as the system tem�
perature decreases� it is again more di�cult for poorer
solutions �i�e�� longer makespans� to be accepted� The
two stopping criteria used were either �a� no change in
the elite chromosome in �� iterations or �b� ���� total
iterations� Again� the most common stopping criteria
was no change in the elite chromosome in �� itera�
tions�
Tabu� Tabu search is a solution space search that

keeps track of the regions of the solution space which
have already been searched so as not to repeat a search
near these areas ��� �	�� A solution �mapping� uses
the same representation as a chromosome in the GA
approach�

The implementation of Tabu search used here be�
gins with a random mapping� generated from a uni�
form distribution� Starting with the �rst task in the
mapping� task i � �� each possible pair of tasks is
formed� �i� j� for � � i � t � � and i � j � t� As
each pair of tasks is formed� they exchange machine
assignments� This constitutes a short hop� The in�
tuitive purpose of a short hop is to �nd the nearest
local minimum solution within the solution space� Af�
ter each exchange� the new makespan is evaluated� If
the new makespan is an improvement� the new map�
ping is accepted �a successful short hop�� and the pair
generation�and�exchange sequence starts over from the
beginning �i � �� of the new mapping� Otherwise� the

pair generation�and�exchange sequence continues from
its previous state� �i� j�� New short hops are generated
until �	�� successful short hops have been made or all
combinations of task pairs have been exhausted with
no further improvement�

At this point� the �nal mapping from the local so�
lution space search is added to the tabu list� The tabu
list is a method of keeping track of the regions of the
solution space that have already been searched� Next�
a new random mapping is generated� and it must di�er
from each mapping in the tabu list by at least half of
the machine assignments �a successful long hop�� The
intuitive purpose of a long hop is to move to a new
region of the solution space that has not already been
searched� The �nal stopping criterion for the heuristic
is a total of �	�� successful hops �short and long com�
bined�� Then� the best mapping from the tabu list is
the �nal answer�
A�� The �nal heuristic in the comparison study is

known as the A� heuristic� A� has been applied to
many other task allocation problems �e�g�� �� ��� 	��
		��� The technique used here is similar to ���

A� is a tree search beginning at a root node that is
usually a null solution� As the tree grows� intermediate
nodes represent partial solutions �a subset of tasks are
assigned to machines�� and leaf nodes represent �nal
solutions �all tasks are assigned to machines�� The par�
tial solution of a child node has one more task mapped
than the parent node� Call this additional task a� Each
parent node generates m children� one for each possi�
ble mapping of a� After a parent node has done this�
the parent node is removed and replaced in the tree by
the m children� Based on experimentation and a desire
to keep execution time of the heuristic tractable� the
maximumnumber of nodes in the tree at any one time
is limited in this study to nmax � ��	
�

Each node� n� has a cost function� f�n�� associated
with it� The cost function is an estimated lower�bound
on the makespan of the best solution that includes the
partial solution represented by node n� Let g�n� repre�
sent the makespan of the task�machine assignments in
the partial solution of node n� i�e�� g�n� is the maximum
of the machine availability times �mat�j�� based on the
set of tasks that have been mapped to machines in node
n�s partial solution� Let h�n� be a lower�bound esti�
mate on the di�erence between the makespan of node
n�s partial solution and the makespan for the best com�
plete solution that includes node n�s partial solution�
Then� the cost function for node n is computed as

f�n� � g�n� � h�n�� ���

Therefore� f�n� represents the makespan of the partial
solution of node n plus a lower�bound estimate of the



time to execute the rest of the �unmapped� tasks in the
meta�task�

The function h�n� is de�ned in terms of two func�
tions� h��n� and h��n�� which are two di�erent ap�
proaches to deriving a lower�bound estimate� Recall
that M � fmi � mi � min��j�m�ct�i� j��� for each i �
Ug� For node n let mmct�n� be the overall maximum
element of M over all i � U �i�e�� �the maximum min�
imum completion time��� Intuitively� mmct�n� repre�
sents the best possible meta�task makespan by making
the typically unrealistic assumption that each task in U
can be assigned to the machine indicated inM without
con�ict� Thus� based on ��� h��n� is de�ned as

h��n� � max��� �mmct�n� � g�n���� �
�

Next� let sdma�n� be the sum of the di�erences be�
tween g�n� and each machine availability time over all
machines after executing all of the tasks in the partial
solution represented by node n�

sdma�n� �
m��X
j��

�g�n� �mat�j��� ��

Intuitively� sdma�n� represents the amount of machine
availability time remaining that can be scheduled with�
out increasing the �nal makespan� Let smet�n� be de�
�ned as the sum of the minimum expected execution
times �i�e�� ETC values� for all tasks in U �

smet�n� �
X
i�U

� min
��j�m

�ETC�i� j�� ���

This gives an estimate of the amount of remaining work
to do� which could increase the �nal makespan� The
function h� is then de�ned as

h��n� � max��� �smet�n� � sdma�n���m�� ���

where �smet�n� � sdma�n���m represents an estimate
of the minimum increase in the meta�task makespan
if the tasks in U could be �ideally� �but� in general�
unrealistically� distributed among the machines� Using
these de�nitions�

h�n� � max�h��n�� h��n��� ���

representing a lower�bound estimate on the time to ex�
ecute the tasks in U �

Thus� beginning with the root� the node with the
minimumf�n� is replaced by itsm children� until nmax

nodes are created� From that point on� any time a node
is added� the tree is pruned by deleting the node with
the largest f�n�� This process continues until a leaf
node �representing a complete mapping� is reached�

Note that if the tree is not pruned� this method is
equivalent to an exhaustive search�

These eleven heuristics were all implemented under
the common simulation model described in Section 	�
The results from experiments using these implemen�
tations are described in the next section� Suggestions
for alternative heuristic implementations are given in
Section �

�� Experimental Results

An interactive software application has been devel�
oped that allows simulation� testing� and demonstra�
tion of the heuristics examined in Section � applied to
the meta�tasks de�ned by the ETC matrices described
in Section 	� The software allows a user to specify
t and m� to select which ETC matrices to use� and
to choose which heuristics to execute� It then gener�
ates the speci�ed ETC matrices� executes the desired
heuristics� and displays the results� similar to Figures 	
through ��� The results discussed in this section were
generated using portions of this software�

When comparing mapping heuristics� the execu�
tion time of the heuristics themselves is an impor�
tant consideration� For the heuristics listed� the ex�
ecution times varied greatly� The experimental results
discussed below were obtained on a Pentium II 
��
MHz processor with �GB of RAM� Each of the sim�
pler heuristics �OLB� UDA� Fast Greedy� and Greedy�
executed in a few seconds for one ETC matrix with
t � �	 and m � ��� For the same sized ETC ma�
trix� SA and Tabu� both of which manipulate a single
solution during an iteration� averaged less than �� sec�
onds� GA and GSA required approximately �� seconds
per matrix because they manipulate entire populations�
and A� required about 	� minutes per matrix�

The resulting meta�task execution times
�makespans� from the simulations for every case
of consistency� task heterogeneity� and machine het�
erogeneity are shown in Figures 	 through ��� All
experimental results represent the execution time of
a meta�task �de�ned by a particular ETC matrix�
based on the mapping found by the heuristic speci�ed�
averaged over ��� di�erent ETC matrices of the same
type �i�e�� ��� mappings�� For each heuristic� the range
bars show the minimum and maximum meta�task
execution times over the ��� mappings ���� ETC
matrices� used to compute the average meta�task
execution time� Tables � through 
 show sample
subsections from the four types of inconsistent ETC
matrices considered� Semi�consistent and consistent
matrices of the same types could be generated from
these matrices as described in Section 	� For the



results described here� however� entirely new matrices
were generated for each case�

For the four consistent cases� Figures 	 through �
the UDA algorithm had the worst execution times by
an order of magnitude� This is easy to explain� For the
consistent cases� all tasks will have the lowest execu�
tion time on one machine� and all tasks will be mapped
to this particular machine� This corresponds to results
found in ���� Because of this poor performance� the
UDA results were not included in Figures 	 through
� OLB� Max�min� and SA had the next poorest re�
sults� GA performed the best for the consistent cases�
This was due in part to the good performance of the
Min�min heuristic� The best GA solution always came
from one of the populations that had been seeded with
the Min�min solution� As is apparent in the �gures�
Min�min performed very well on its own� giving the
second best results� The mutation� crossover� and se�
lection operations of the GA were always able to im�
prove on this solution� however� GSA� which also used
a Min�min seed� did not always improve upon the Min�
min solution� Because of the probabilistic procedure
used during selection� GSA would sometimes accept
poorer intermediate solutions� These poorer interme�
diate solutions never led to better �nal solutions� thus
GSA gave the third best results� The performance of
A� was hindered because the estimates made by h��n�
and h��n� are not as accurate for consistent cases as
they are for inconsistent and semi�consistent cases� For
consistent cases� h��n� underestimates the competition
for machines and h��n� underestimates the �workload�
distributed to each machine�

These results suggest that if the best overall solu�
tion is desired� the GA should be employed� However�
the improvement of the GA solution over the Min�min
solution was never more than ���� Therefore� the Min�
min hueristic may be more appropriate in certain sit�
uations� given the di�erence in execution times of the
two heuristics�

For the four inconsistent test cases in Figures �
through �� UDA performs much better and the perfor�
mance of OLB degrades� Because there is no pattern
to the consistency� OLB will assign more tasks to poor
or even worst�case machines� resulting in poorer sched�
ules� In contrast� UDA improves because the �best�
machines are distributed across the set of machines�
thus task assignments will be more evenly distributed
among the set of machines avoiding load imbalance�
Similarly� Fast Greedy and Min�min performed very
well� and slightly outperformed UDA� because the ma�
chines providing the best task completion times are
more evenly distributed among the set of machines�
Min�min was also better than Max�min for all of the

inconsistent cases� The advantages Min�min gains by
mapping �best case� tasks �rst outweighs the savings
in penalties Max�min has by mapping �worst case�
tasks �rst�

Tabu gave the second poorest results for the in�
consistent cases� at least ��� poorer than the other
heuristics� Inconsistent matrices generated more suc�
cessful short hops than the associated consistent matri�
ces� Therefore� fewer long hops were generated and less
of the solution space was searched� resulting in poorer
solutions� The increased number of successful short
hops for inconsistent matrices can be explained as fol�
lows� The pairwise comparison procedure used by the
short hop procedure will assign machines with better
performance �rst� early in the search procedure� For
the consistent cases� these machines will always be from
the same set of machines� For inconsistent cases� these
machines could be any machine� Thus� for consistent
cases� the search becomes somewhat ordered� and the
successful short hops get exhausted faster� For incon�
sistent cases� the lack of order means there are more
successful short hops� resulting in fewer long hops�

GA and A� had the best average makespans� and
were usually within a small constant factor of each
other� The random approach employed by these meth�
ods was useful and helped overcome the di�culty of
locating good mappings within inconsistent matrices�
GA again bene�ted from having the Min�min ini�
tial mapping� A� did well because if the tasks get
more evenly distributed among the machines� this more
closely matches the lower�bound estimates of h��n� and
h��n��

Finally� consider the semi�consistent cases in Figures
�� through ��� For semi�consistent cases with high ma�
chine heterogeneity� the UDA heuristic again gave the
worst results� Intuitively� UDA is su�ering from the
same problem as in the consistent cases� half of all
tasks are getting assigned to the same machine� OLB
does poorly for high machine heterogeneity cases be�
cause worst case matchings will have higher execution
times for high machine heterogeneity� For low ma�
chine heterogeneity� the worst case matchings have a
much lower penalty� The best heuristics for the semi�
consistent cases were Min�min and GA� This is not sur�
prising because these were two of the best heuristics
from the consistent and inconsistent tests� and semi�
consistent matrices are a combination of consistent and
inconsistent matrices� Min�min was able to do well be�
cause it searched the entire row for each task and as�
signed a high percentage of tasks to their �rst choice�
GA was robust enough to handle the consistent compo�
nents of the matrices� and did well for the same reasons
mentioned for inconsistent matrices�



�� Alternative Implementations

The experimental results in Section 
 show the per�
formance of each heuristic under the assumptions pre�
sented� For several heuristics� speci�c control param�
eter values and control functions had to be selected�
In most cases� control parameter values and control
functions were based on the references cited or experi�
ments conducted� However� for these heuristics� di�er�
ent� valid implementations are possible using di�erent
control parameters and control functions�

GA� SA� GSA� Several parameter values could
be varied among these techniques� including �where ap�
propriate� population size� crossover probability� mu�
tation probability� stopping criteria� number of runs
with di�erent initial populations per result� and the
system temperature� The speci�c procedures used for
the following actions could also be modi�ed �where ap�
propriate� including initial population �seed� genera�
tion� mutation� crossover� selection� elitism� and the
accept�reject new mapping procedure�
Tabu� The short hop method implemented was a

��rst descent� �take the �rst improvement possible�
method� �Steepest descent� methods �where several
short hops are considered simultaneously� and the one
with the most improvement is selected� are also used
in practice ���� Other techniques that could be var�
ied are the long hop method� the order of the short
hop pair generation�and�exchange sequence� and the
stopping condition� Two possible alternative stopping
criteria are when the tabu list reaches a speci�ed num�
ber of entries� or when there is no change in the best
solution in a speci�ed number of hops�
A�� Several variations of the A� method that was

employed here could be implemented� Di�erent func�
tions could be used to estimate the lower�bound h�n��
The maximum size of the search tree could be varied�
and several other techniques exist for tree pruning �e�g��
�	����

In summary� for the GA� SA� GSA� Tabu� and A�
heuristics there are a great number of possible valid
implementations� An attempt was made to use a rea�
sonable implementation of each heuristic for this study�
Future work could examine other implementations�

�� Conclusions

The goal of this study was to provide a basis for
comparison and insights into circumstances where one
technique will out perform another for eleven di�erent
heuristics� The characteristics of the ETC matrices
used as input for the heuristics and the methods used to

generate them were speci�ed� The implementation of
a collection of eleven heuristics from the literature was
described� The results of the mapping heuristics were
discussed� revealing the best heuristics to use in certain
scenarios� For the situations� implementations� and pa�
rameter values used here� GA was the best heuristic for
most cases� followed closely by Min�min� with A� also
doing well for inconsistent matrices�

A software tool was developed that allows others
to compare these heuristics for many di�erent types
of ETC matrices� These heuristics could also be the
basis of a mapping toolkit� If this toolkit were given an
ETC matrix representing an actual meta�task and an
actual HC environment� the toolkit could analyze the
ETC matrix� and utilize the best mapping heuristic
for that scenario� Depending on the overall situation�
the execution time of the mapping heuristic itself may
impact this decision� For example� if the best mapping
available in less than one minute was desired and if
the characteristics of a given ETC matrix most closely
matched a consistent matrix� Min�min would be used�
if more time was available for �nding the best mapping�
GA and A� should be considered�

The comparisons of the eleven heuristics and twelve
situations provided in this study can be used by re�
searchers as a starting point when choosing heuristics
to apply in di�erent scenarios� They can also be used
by researchers for selecting heuristics to compare new�
developing techniques against�
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Figure 1. General procedure for a Genetic Al-
gorithm, based on [26].
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Figure 2. Consistent, high task, high machine
heterogeneity.
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Figure 3. Consistent, high task, low machine
heterogeneity.
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Figure 4. Consistent, low task, high machine
heterogeneity.
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Figure 5. Consistent, low task, low machine
heterogeneity.
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Figure 6. Inconsistent, high task, high ma-
chine heterogeneity.
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Figure 7. Inconsistent, high task, lowmachine
heterogeneity.
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Figure 8. Inconsistent, low task, highmachine
heterogeneity.
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Figure 9. Inconsistent, low task, low machine
heterogeneity.
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Figure 10. Semi-consistent, high task, high
machine heterogeneity.
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Figure 11. Semi-consistent, high task, low
machine heterogeneity.
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Figure 12. Semi-consistent, low task, high
machine heterogeneity.
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Figure 13. Semi-consistent, low task, low ma-
chine heterogeneity.
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Table 1. Sample �� � excerpt from ETC with inconsistent, high task, high machine heterogeneity.
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Table 2. Sample �� � excerpt from ETC with inconsistent, high task, low machine heterogeneity.
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Table 3. Sample �� � excerpt from ETC with inconsistent, low task, high machine heterogeneity.
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Table 4. Sample �� � excerpt from ETC with inconsistent, low task, low machine heterogeneity.
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