
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1995-09

Supporting the object-oriented database on the

Kernel Database System

Kellett, Daniel A.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/35152

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

SUPPORTING THE OBJECT-ORIENTED DATABASE ON
THE KERNEL DATABASE SYSTEM

by

Thesis Advisor:
Thesis Co-Advisor:

Daniel A. Kellett
Kwon, Tae Wook

September 1995
David K. Hsiao
C. Thomas Wu

Approved for public release; distribution is unlimited.

mcqüm^msPEomBi

19960402 152

DISCLAIM NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
September 1995

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Supporting the Object-Oriented Database on the Kernel Database
System.

6. AUTHOR(S)

Daniel A. Kellett and Tae-Wook Kwon

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES .
The views expressed in this thesis are those of the authors and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
If a single operating system can support multitudes of different programming languages and data structures, a database

system can support a variety of data models and data languages. In this thesis, a Kernel Database System (KDS) supporting
classical data models and data languages (i.e., hierarchical, network, relational, and functional) is used to support a demonstration
object-oriented data model and data language.

This thesis extends previous research by accommodating an object-oriented-data- model-and-language interface in the KDS.
Consequently, the research shows that it is feasible to use the KDS to support modern data models and languages as well as
classical ones. This thesis details the KDS design, Insert operation, and Display function. This thesis also details how to implement
modifications to the Test-Interface so that the KDS can support the object-oriented database.

This thesis proves complex data structures in an object-oriented data model can be realized using an attribute-based data
model which is the kernel data model of the KDS. Second, it details how the KDS is designed showing why no changes needed
to be made to the KDS to implement the object-oriented toy database. Third, it argues the advantages of using a KDS in the
database-system design. The KDS design produces savings in costs from compatability, reduced training, expandability, and
software reuse.

14. SUBJECT TERMS
Kernel Database System
Mutimodel and Multilingual Database System
Object-Oriented Data Model and Language (OODM&L)

15. NUMBER OF PAGES

155
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Authors:

Approved for public release; distribution is unlimited

SUPPORTING THE OBJECT-ORIENTED DATABASE
ON

THE KERNEL DATABASE SYSTEM

Daniel A. Kellett
Lieutenant Commander, United States Navy

BS, Virginia Polytechnic Institute and State University, 1979
MS, Naval Postgraduate School, 1989

and
Kwon, Tae-Wook

Captain, Korean Army
BS, Korean Military Academy, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1995

Daniel A. Kellett

Approved by:

Kwon, Tae-Wook

David K. Hsiao, Thesis Advisor

C. Thomas Wu, Co-Advisor

Ted Lewis, Chairman,
Department of Computer Science

Ul

IV

ABSTRACT

If a single operating system can support multitudes of different programming

languages and data structures, a database system can support a variety of data models and

data languages. In this thesis, a Kernel Database System (KDS) supporting classical data

models and data languages (i.e., hierarchical, network, relational, and functional) is used

to support a demonstration object-oriented data model and data language.

This thesis extends previous research by accommodating an object-oriented-data-

model-and-language interface in the KDS. Consequently, the research shows that it is

feasible to use the KDS to support modern data models and languages as well as classical

ones. This thesis details the KDS design, Insert operation, and Display function. This thesis

also details how to implement modifications to the Test-Interface so that the KDS can

support the object-oriented database.

This thesis proves complex data structures in an object-oriented data model can be

realized using an attribute-based data model which is the kernel data model of the KDS.

Second, it details how the KDS is designed showing why no changes needed to be made to

the KDS to implement the object-oriented toy database. Third, it argues the advantages of

using a KDS in the database-system design. The KDS design produces savings in costs

from compatability, reduced training, expandability, and software reuse.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. TOWARDS A KERNEL DATABASE SYSTEM DESIGN 1

B. EXTENDING AN EXISTING KERNEL DATABASE SYSTEM 1

C. THE OBJECTIVES OF THE THESIS 2

D. THESIS ORGANIZATION 2

II. SUPPORTING THE OBJECT-ORIENTED DATABASE 5

A. CLASSICAL AND OBJECT-ORIENTED DATABASE MODELS 5

B. TESTING THE OBJECT ORIENTED DATABASE 6

m. THE MULTI-MODEL MULTI-LINGUAL DATABASE SYSTEM 7

A. THE MULTIBACKEND DATABASE SUPERCOMPUTER 7

B. THE MULTIMODEL/MULTILINGUAL DATABASE SYSTEM 8

C. THE ATTRIBUTE-BASED DATA MODEL 12

D. THE ATTRIBUTE-BASED DATA LANGUAGE 13

E. THE KERNEL DATABASE STRUCTURE 14

F. IN SUMMARY 15

IV. THE KERNEL DATABASE SYSTEM 17

A. OPERATING SYSTEM SUPPORT FOR KDS 17

B. C LIBRARY HEADER FILES INCLUDED 19

C. CONTROLLER AND BACKEND PROCESSES 20

D. PROCESS FUNCTIONS 20

E. TI LINKS BETWEEN KERNEL AND NON-KERNEL CODE 23

F. IN SUMMARY 24

V. THE INSERT OPERATION 25

A INSERT DESIGN CONSIDERATIONS 25

B. THE INSERT OPERATION 27

C. THE MASSJLOAD FUNCTION 34

Vll

D. SUMMARY 35

VI. THE KERNEL FORMATTING SYSTEM 37

A. MODIFICATIONS TO THE KFS 37

B. THE CASE FOR C++ 39

VII. CONCLUSION 41

A. SUGGESTIONS FOR FUTURE RESEARCH 42

1. Develop A More Sophisticated Insert Operation 42

2. Compile The System In C++ 42

3. Its Time To Work On The User Interface 43

B. SUMMARY 43

APPENDIX A-THE USER MANUAL 45

A. LOGGING ON '•■••■ 45

1. Remote Log On 45

2. Direct Log On from Terminal DB11 47

B. AFTER LOGGING ON 47

1. Copy the schema and request files 47

2. Kill any MDBS processes still running on the system 47

3. Perform META-DISK Maintenance 49

4. Set Up The User Screen 50

5. Check to see if all processes are running 51

C. RUNNING M2DBMS 51

1. Database Constructs 52

2. Generating A Database Operation 53

3. Generating A Template File 55

4. Generate a Descriptor File 58

5. Generate/Modify the Set Values 61

6. Generate A Records File 64

D. LOAD THE DATABASE 71

vm

1. Loading the Database 72

2. An Example of a Database Loaded on the Backend 73

E. MANIPULATING THE DATABASE 74

1. Using the ABDM Interface (REQUEST-INTERFACE) 74

2. Creating Requests 76

3. Running and Testing the Requests 88

APPENDIX B--CONTROLLER FILE CATALOG 91

A. COMMUNICATIONS COMMON 91

B. INSERT INFORMATION GENERATOR 93

C. POSTPROCESSING 95

D. REQUEST PROCESSING 97

E. TEST INTERFACE 100

F. COMMON FILES TO BOTH FRONT AND BACKENDS 102

APPENDIX C-MASS_LOAD() FUNCTION SOURCE CODE 123

APPENDIX D--KFS SOURCE CODE 131

LIST OF REFERENCES 137

INITIAL DISTRIBUTION LIST 139

IX

LIST OF FIGURES

Figure 1. The Multibackend Database Supercomputer 8

Figure 2. The Kernel Concept 9

Figure 3. The Multi-Model/Multi-Lingual Database System 10

Figure 4. Six Controller (CNTRL) and Six Back_End (BE) Processes 20

Figure 5. MDBS Communication Channels 22

Figure 6. INSERT Process Communications 26

Figure 7. Test Interface Process Detail During INSERT Operations 28

Figure 8. Request Preparation Process Detail During INSERT Operations 30

Figure 9. Concurrency Control Process Detail During INSERT Operations 31

Figure 10. Directory Management Process Detail During INSERT Operations 32

Figure 11. Record Processing Process Detail During INSERT Operations 33

Figure 12. User Generated Data File using Mass_Load () 34

Figure 13. The Real-Time Monitor and Kernel Formatting System 38

Figure 14. Query Results: Pre and Post KFS Display 40

XI

XU

ACKNOWLEDGMENTS

We would like to take this opportunity to express our sincerest thanks to Dr. David

K. Hsiao and Dr. C. Thomas Wu for their insight, guidance, and wisdom. We would also

like to especially thank our fellow shipmate and team leader, Cdr. Bruce Badgett, USN for

his constancy, forehandedness, and perseverance. Without the help, moral support, and

team building skills of these three key individuals this work would not have been possible.

We also thank Dr. Doris Mleczko for her continued interest in and insight into our work.

Her periodic presence on campus lent meaning and substance to our work. Finally, we

thank our families for their patience, support, and encouragement.

XIU

I. INTRODUCTION

Users view and access their databases using specific pairs of corresponding data

models and data languages of database systems. Database computers and systems continue

to associate with their specific pairs of data models and data languages. Because mono-

model and mono-lingual database systems have persisted over the last three decades, many

organizations support multiple database systems. These organizations are compelled to

support multiple database systems in order to maintain diverse types of applications. The

redundancy of data, personnel, maintenance, documentation, and hardware points to the

following need: to move multiple database systems (each of which has a different pair of

data model and data language) to a single database system that can support a multitude of

models and languages.

A. TOWARDS A KERNEL DATABASE SYSTEM DESIGN

If a single operating system can support multitudes of different programming

languages and data structures, can a database system support a variety of data models and

data languages? In this thesis, a kernel database system is proposed which supports, in

addition to classical data models and data languages such as the hierarchical, network,

relational, and functional, the emerging object-oriented data model and data language.

B. EXTENDING AN EXISTING KERNEL DATABASE SYSTEM

The Multi-model and Multi-lingual Database Management System (M2DBMS), at

the Naval Postgraduate School's Laboratory for Database Systems Research has

successfully demonstrated that classical data models and their associated data languages

can be supported on a single database system. Using M DBMS as the experimental Kernel

Database System (KDS), research teams have constructed and implemented model-and-

language interfaces that support the classical data models and languages (Hierarchical and

DLI, Network and CODASYL-DML, Relational and SQL) and that supports one

Artificial-Intelligence based model and language (i.e., Functional and DAPLEX).

This thesis extends the previous research by accommodating an object-oriented-

data- model-and-language interface in the KDS. Consequently, the research shows the

feasibility of using the KDS to support modern data models and languages as well as

classical ones. This thesis details the issues and solutions of creating an object-oriented

database in the kernel format in the KDS.

Creating an object-oriented database in the KDS advances the theory that complex

data structures found in the object-oriented data model can be realized as a kernel database

in a single database system. It is therefore unnecessary to build an entirely new object-

oriented database system to support an object-oriented database.

C. THE OBJECTIVES OF THE THESIS

This thesis has three objectives: First, it shows that complex data structures in an

object-oriented data model can be realized using an attribute-based data model which is the

kernel data model of the KDS. Second, it discovers relevant issues when using the KDS to

support an object-oriented database. Third, it argues the advantages of using a KDS in the

database-system design. As a by-product of these three objectives, this thesis also provides

appendices on the structure, function, and operation of the M2DBMS.

D. THESIS ORGANIZATION

In Chapter II, we present the modern object-oriented database model and introduce

the features, notions, and constructs of the object-oriented database. In Chapter II, the

design test of an object-oriented database in terms of its object-oriented specifications is

also introduced. In Chapter IE, we explain the significance of being able to use the KDS to

support an object-oriented database by providing an overview of the M DBMS, i.e., its

organization, operation, and design. In Chapter III, we also introduce the attribute-based

data model and Kernel Database structure. In Chapter IV, we detail the design of the

Kernel Database System and processes. In Chapter V we show the Insert operation. We

also show how the KDS maps an object-oriented database to an equivalent attribute-based

database. In Chapter V, we analyze our experience on using the object-oriented data model/

language interface in M2DBMS and the need for a Mass_Load() utility. In Chapter VI, is a

discussion of the Kernel Formatting System (KFS) added to our research to assist other

teams and their progress. In Chapter VII, we summarize our accomplishments and point

out some limitations of this research. Using an attribute-based data model, the Kernel

Database System can realize complex data structures in the object-oriented data model.

However, we suggest some future research using the attribute-based data model in Chapter

VII.

II. SUPPORTING THE OBJECT-ORIENTED DATABASE

Prior to this research, it has not been clear whether or not the Kernel Database

System (KDS), designed to support classical databases, can support the complex object-

oriented database. Specifically, can the KDS support an object-oriented database which

includes the object-oriented paradigms of inheritance, covering, encapsulation, and

polymorphism? Object-oriented constructs are complex. Object-oriented paradigms are

fundamentally different from paradigms of classical databases. The real issue involves

whether or not a kernel database with only attribute-value pairs can be used to represent

complex constructs. Can the KDS support complex constructs like those fundamental to

object-oriented paradigms?

A. CLASSICAL AND OBJECT-ORIENTED DATABASE MODELS

Classical databases are specifically designed to support certain well-defined

applications. The relational database supports one-to-one relationships between individuals

and records kept for the individuals, commonly found in record keeping. The hierarchical

database supports the multiple layers of one-to-many relationships commonly found in

assemblies, their subassemblies, their sub-subassemblies, and so on. The network database

supports the many-to-many relationships of supplies and suppliers commonly found

between inventories and suppliers. The functional database supports the association of

rules and facts with inferences commonly found in knowledge-base and expert system

applications [Hsiao, Aug 91, pp 3-4].

On the other hand, the object-oriented database does not aim at any particular type

or kind of applications. It follows an object-oriented paradigm in order to group data as an

abstraction of some real world entities. To properly model the real-world entities, data

should be encapsulated as objects of these real-world entities. Each object can first be

modeled as a separate entity independent of other objects. Each object has it's own set of

attributes and operations. Object-oriented constructs are based on the set theory; the object-

oriented operations on set operations. The object-oriented paradigm combines the idea of

inheritance with the idea of encapsulation to form a coherent whole as a class hierarchy.

Unlike the classical data constructs, object-oriented construct stores operations and data

together [Badge«, 95]. Proponents of object-oriented databases claim by using these ideas,

they can support variety, spontaneity and dynamism in database designs. This thesis is not

aimed at validating these ideas, but is aimed at using the KDS to support an object-oriented

database for the purpose of experimenting with the features of object-oriented constructs.

The object-oriented database implemented on KDS retains its flexibility, portability, and

homogeneity. In this way, we can make use of object-oriented concepts and constructs

without the need of building a new object-oriented database system.

B. TESTING THE OBJECT ORIENTED DATABASE

For creating an object-oriented database, an object-oriented data model (OODM)

and object-oriented data language (OODDL) are developed [Badge«, 95]. After the object-

oriented database is modeled in OODM and specified in OODDL, the database is compiled

into an attribute-based database. The INSERT operation in the attribute-based data

definition language (ABDL) is used to create the attribute-based database in the KDS. This

thesis documents how the INSERT operation creates in the KDS the attribute-based

database which is equivalent to the object-oriented database. This thesis also documents

why there is no modification required in the KDS in order to accomplish the creation.

III. THE MULTI-MODEL MULTI-LINGUAL DATABASE SYSTEM

M2DBS organization has two parts: the multibackend database supercomputer, the

Multimodel/multilingual database system. The Kernel Database System (KDS), the Kernel

Data Model (KDM) and the Kernel Data Language (KDL) are a software subset of the total

M2DBS. To understand the KDS, KDM, and KDL a review of the system organization

helps to place the kernel into context with the overall system architecture.

A. THE MULTIBACKEND DATABASE SUPERCOMPUTER

The multibackend architecture consists of several computers connected in parallel

by Ethernet. The parallel connection supports distribution of the database across these

several computers for rapid access during queries. Each backend computer has its on disk

system controller, meta disk, and stored data disk. Each backend is controlled by a

backend controller that supervises the execution of user transactions (see Figure 1).

Because of the multibackend database design, database access time is significantly

reduced. The response-time ratio for queries is inversely proportional to a given number of

backend computers. So, as the number of backends increase, the response time decreases.

If the number of backends increase proportionally with increases in database capacity, there

will be no change in transaction response-time. Therefore, the multibackend design can

support dynamic growth of the database, and can support this dynamic growth without

noticeable changes in response time.

Controller

Backend

Backend

Backend

Meta data disk

Meta data disk

Base data disks

Base data disks

Base data disks

Figure 1: The Multibackend Database Supercomputer

B. THE MULTIMODEL/MULTILINGUAL DATABASE SYSTEM

The multibackend database supercomputer is used to support the M DBS software.

As mentioned earlier, the software is a KDS supporting any data model, and any data

language chosen by the user. Figure 2 depicts the concept. All data is stored in the KDS as

attribute-valued pairs using the KDM and KDL associated with the KDS (i.e., ABDM and

ABDL). To access the data, and to query the data requires a user interface that presents to

the user the data model and language chosen. The user does not interface with the kernel.

The user interfaces with the chosen data model and language. The system interfaces with

the kernel. Figure 3 shows the multimodel/multilingual database system [Hsiao, 91]. The

four main modules of each user data model/language (UDM/L) interface are the language

interface layer (LIL), the kernel mapping system (KMS), the language interface controller

(LIC)1 and the kernel formatting system (KFS). These four modules represent the core

system for each separate user interface. In other words, each UDM/L interface has to have

its own LIL, KMS, LIC, and KFS which support only the data model and data language

associated with that UDM/L interface. These modules interact with the KDS through the

Test Interface (TI) within the KDS. To construct a new UDM/L does not require a redesign

of the whole database system. The new UDM/L is independent of the other UDM/L's and

no changes to the KDS are made provided the new UDM/L follows the design and

constructs provided by the TI. How to interface with TI is covered in Chapter IV and in the

User Manual (Appendix A).

User Data Model/Langauge
UDM/L

UDM/L

UDM/L (Others)

Kernel Database System

KDM

[ABDM)

TI KDs : KDL

YABDLy

Figure 2: The Kernel Concept

The user's transactions are routed to the KMS by the LIL. The user writes the

transactions in the associated UDM/L provided by LIL. The KMS is a compiler that

transforms the UDM/L into a form that can be mapped to the KDS. LIL sends the

1. In the previous literature, the language interface controller (LIC) is called the kernel controller
(KC). The research team changed the name of this module to clarify the relationship of the control-
ler to the interface. Kernel controller implies the controller is related to the kernel rather than the
language interface.

transaction to KMS, and KMS interprets the transaction. The KMS first identifies whether

or not the user is creating a new database or using an existing database.

KDM

UDM - User Data Model
UDL - User Data Language
LIL - Language Interface Layer
KMS - Kernel Mapping System
LIC - Language Interface Controller
KDS - Kernel Database System
KDM - Kernel Data Model
KDL - Kernel Data Language
KFS - Kernel Formating System

o
System Module

Data Model

Data Language

Figure 3: The Multi-Model/Multi-Lingual Database System

10

If the user is creating a new database, KMS will transform the UDM-database

definition to the KDM-database definition. KMS then routes the KDM-database definition

to the LIC. The LIC, recognizing the KDM-database definition as a new definition, routes

the KDM-database definition to the KDS. Receiving the KDM-database definition causes

the KDS to issue appropriate commands to the multibackend database supercomputer

controller where a new database is created in the KDM form. After creating the new

database, the KDS notifies the LIC that a new database has been created in the UDM form.

Data can now be entered. Subsequently transactions against the database can be made.

UDL transactions are written within the LIL and processed through the KMS. The

KMS performs data-language translations by compiling the UDL transactions into

equivalent KDL transactions. The KMS then routes the compiled KDL transactions to LIC.

The LIC sends the KDL transaction to KDS for execution. The LIC oversees KDL

transaction execution. The LIC executes the KDL-transaction through the TI of the KDS.

Transaction results and/or responses are sent to the LIC which sends them to the KFS. The

KFS is where the results of a query are reformatted into UDM form. The KFS re-compile

the information in KDM form to UDM form. Once the transformation is complete, KFS

routes the transformed information to the LIL where the user sees the information in the

user's data model/language form.

All data in the Multi-model, Multi-Language Database System (M2DBS) is stored

in the Kernel Database System (KDS) according to the constructs of the Kernel Data Model

(KDM) and the Kernel Data Language (KDL). Although many database models can be

used to support a kernel, only the Attribute-Based Data Model (ABDM) supports the

architecture of the MDBS and the parallelism associated with the multibackend design.

The ABDM is the KDM for the M2DBS. The ABDM was chosen as the kernel data model

because ABDM allows for storage of the meta data and base data separately. ABDM

introduces equivalence relations which partition the base data into mutually exclusive sets

called clusters. These clusters are distributed across the backends allowing parallel access

11

to the base data. Coupling ABDM with the ABDL as the KDL facilitates database design.

The attribute-based model and language support database research with a semantically rich

and complete language. The ABDM and ABDL also support database research with a

simple storage and parallel processing architecture.

C. THE ATTRIBUTE-BASED DATA MODEL

The ABDM and its associated data language have proven to provide all of the

required data definition capabilities and manipulation strategies necessary to implement

Hierarchial, Network, Relational, and Functional data models [Demurjian, 87]. The attri-

bute-based data model is simple in design and concept[Hsiao, 91]. As the name implies, the

attribute-based data model refers to storing data as a series of attribute-value pairs.

Attribute-value pairs are the simple building blocks of the kernel database. The attribute-

value pairs consist of attribute names and corresponding values. An attribute-value pair is

a member of the Cartesian product of the attribute name and the domain of values of the

attribute. The pair is formed by using a keyword as the first attribute and the value

associated with that keyword as the second attribute. The keyword serves to form records.

The keyword is the key for the attribute and the record is a grouping of attribute-value pairs.

The second attribute is the record body consisting of a string of characters which represent

information. The first attribute-value pair must be an identifier of the record type (i.e., file

name). This pair is declared using the reserved word TEMP. For example:

(<TEMP, NAME>, <FIRST, Dan>, <LAST, Kelletfc»)

(<TEMP, NAME>, <FIRST, Tae-Wok>, <LAST, Kwon>)

The angle brackets (i.e., <,>) enclose the attribute-value pair. Parenthesis enclose

the entire record. The example record consists of three attribute-value pairs. TEMP is

always the keyword of the first attribute-value pair and the value in this pair is always the

name of a file holding the database. In the example, the name of the file holding these

12

records is NAMES. The attribute name is always the first element of the pair. Attribute

names are always in uppercase. No two attribute-value pairs can have the same attribute

name. Keywords must be unique within the record. All the data stored in the database is

stored in this simple format. Each file represents a table of records. Each record is simply

a row in a table. The keywords (i.e., attribute) denote the column headings. Each record is

the value associated with the attribute from one row. Whatever model the user chooses to

interface with the attribute-based data model, the user's information is translated into a set

of records consisting of attribute-valued pairs.

D. THE ATTRIBUTE-BASED DATA LANGUAGE

The attribute-based data model provides a complete set of operations to access the

database. To append records to the database requires the use of the reserved word

"INSERT". INSERT is followed by the record to append in the database. For example:

[INSERT(record)]

[INSERT(<TEMP, NAME>, <FIRST, Dan>, <LAST, KeUett>)]

[INSERT(<TEMP, NAME>, <FIRST, Tae-Wok>, <LAST, Kwon>)]

Using the reserved word "INSERT" causes the system to create the database file

called NAMES or if there is not a file, the system will create a new one. The records are

then inserted into the new database or appended to the existing database.

Access to the database employs the use of predicates. Predicates are constructed by

using a reserved keyword, a relational operator, and a value. Queries are formed using

reserved words associated with a predicate. Each query is prefaced with a reserved word

followed by a predicate. For example:

[RETRIEVE (predicate)(target list)]

[RETRIEVE(TEMP = NAME) (LAST, FIRST)]

13

The second example will retrieve all the records in NAMES in the order of LAST,

and FIRST. There are five queries supported by the attribute-based data language:

INSERT, DELETE, UPDATE, RETRIEVE, and RETRIEVE-COMMON. There are only

five aggregate operators supported: AVG, SUM, COUNT, MAX, and MIN. The details of

how the other four queries are constructed and how they work are explained in thesis

research by Clark and Yildirim. [Clark, 95].

E. THE KERNEL DATABASE STRUCTURE

A RECORD is a set of attribute-value pairs. Within a record, attribute-value pairs

must have unique attribute-value names. That is, no two attribute-value pairs can have the

same attribute-value name. At least one of the attributes in the record is a key. Following

these two rules ensures each attribute-value pair is single valued and each record can be

identified by at least one key. A record is enclosed by parenthesis. The attribute-value

pairs are contained within these parenthesis: (<COURSE, CS4322>, <INSTRUCTOR, Hsiao>,

<SECTION, 2>, <YEAR, 1995>, <SEMESTER, fall>).

A FILE is a collection of records that share unique set of attributes. If a record

belongs to a certain file, then the first attribute-value pair of the record will contain the

attribute TEMP and the corresponding file name. All records belonging to the same file

will have the same first attribute-value pair. For example, (<TEMP, NAMES>,

<LNAME, Hsiao>, <FNAME, David >, <MIDDLE, K>) indicates that the record belongs

to the file NAMES. The file contains a detailed description of the ABDM and ABDL.

In the kernel data model, the system uses only template files (i.e., .t files) and

descriptor files (i.e., .d files). The schema files belonging to the data model and data language

interfaces outside the KDS generate the template and descriptor files necessary for

mapping an interface model/language into the kernel data model/data language. The

ABDM, being the kernel model, does not need its own schema for mapping to itself.

14

The template and descriptor files (i.e., the .d and .t files) are used to describe the

structure of the attribute-based database. It is these files which tell the kernel database

system what the template names are and the attributes contained within a template.

Furthermore, the attribute type, and any constraints on these attributes, will be noted in

these files. A template can be thought of as the name of a relation in a relational database.

The template file lays out the tables that will be used to form relationships between data in

terms of columns, column headings and rows. The template file contains the name of the

database, followed by the number of templates within the database. After the number of

templates, the next number in the template file is the number of attributes in template.

Attributes are listed in the template file along with their respective type (i.e., string, integer,

etc.). Once all attributes for a template are listed, the number of attributes in the next

template is listed, followed by the next template's name. This process is repeated until all

the templates and attributes have been listed. The User Manual, Appendix A, details the

process for creating a template file. To support object-oriented database research, the

research team created a demonstration database called FACSTU (Faculty and Student).

FACSTU is the object-oriented database created by associated thesis teams. For more

details on the development of the FACSTU database, see the associated thesis.

F. IN SUMMARY

The overall language-interface structure consists of the four LIL, KMS, LIC, and

KFS modules. These four modules are specifically constructed to support a particular data

model and data language. The multimodel/multilingual database system can support

different data models and data languages provided a unique set of these four modules can

be constructed to support the desired data model and data language. As long as a compiler

(KMS) can be constructed that will translate the UDM to KDM the KDS can support the

UDM/L. KDS represents the kernel database system constructed from attribute-value pairs,

records, and files unique to the multibackend database supercomputer and the multimodel/

15

multilingual database system. By designing and implementing a unique language interface,

users can create and access a database using the desired data model/language. But, the

system stores only one set of data. The system stores the data in the kernel-data-model form

of attribute-value pairs [Hsiao, 91].

16

IV. THE KERNEL DATABASE SYSTEM

Developing a user data model and data language interface (UDM/L) between the user

and the Kernel Database System (KDS) requires an understanding of the system's design.

The KDS is the portion of M2DBMS software containing the Test Interface (TI). The TI is

the only portion of the software the user interface will communicate with. Development

requires only minor changes to the TI and does not require any changes to the rest of the

KDS. But, development does require an understanding of TI requirements. The following

describes the KDS for a more thorough understanding of how TI works and why.

A. OPERATING SYSTEM SUPPORT FOR KDS

M2DBS is written in C running on the SunOS UNIX operating system version

4.1.1. SunOS provides the C shell which M2DBS uses to maintain job control. In UNIX,

the shell serves as an interface between the user and the operating system. The shell

receives commands and arranges to have them executed. The shell scripts, or interpreter

files (startcntrl, run.be, stop.db*, zero.db*, etc.), supporting M2DBS are designed to run

on the C shell.

The M2DBS software interacts with the Multibackend Database Supercomptuer

hardware through a set of approximately one hundred system calls provided by UNDX. The

UNIX operating system supports process control, reliable inter-process-communication,

broadcast communication, and a compiler [Watkins, 93]. System calls from the kernel are

17

used for tasks like file I/O and process execution. MDBS constructs its higher level

functions from the eighteen system calls listed below:

Table 1: System Calls Made By MDBS

System Call Purpose Location

accept accept a connection on a socket pcl.c, sndrcv.c

bind bind a name to a socket ack.c, pcl.c, sndrcv.c

close delete a descriptor (file or socket) many places

connect initiate a socket connection pcl.c, sndrcv.c

exit terminate a process many places

gethostname get the name of current host bgetx, bputx, cget.c, cputc
dblx

getnetbyname get access to the network pcl.c

getpid get a process identification number generals.c

gettimeofday get the date and time generals.c

kill send signal to a process shell scripts

listen listen for connection on a socket pcl.c, sndrcv.c

lseek move the read/write pointer cpcountx, diox, dicpx,
rectagx, zerox

open open a file for reading or writing many places

read read input (files or sockets) cpcountx, diox, dispx, iig.c,
metax, pcl.c, rectagx, sndrcv.c

send send a message from a socket ack.c, cbx, sndrcv.c, others

socket create an endpoint for communica-
tion

ack.c, pcl.c, sndrcv.c

unlink remove directory entry (file or
socket)

sndrcv.c, gsmodsetx

write write output (file or socket) besx, cpcountx, diox,
iigdblx, metax, pcl.c, rectagx,
sndrcv.c

18

B. C LIBRARY HEADER FILES INCLUDED

The M2DBS code references the seventeen system-supplied header files listed

below.

Table 2: Header Files Referenced By MDBS

included header files

arpa/inet.h

ctype.h

curses.h

errno.h

fcntl.h

math.h

ndbm.h

netdb.h

netinet/in.h

stdio.h

strings.h

sys/file.h

sys/socket.h

sys/time.h

sys/types.h

sys/un.h

time.h

19

The configure.h header file, is the header file that determines library functions, the

names of symbols, the format of data structures, and the specification of communication

sockets.

C. CONTROLLER AND BACKEND PROCESSES

The parallel architecture of M2DBS is dependent upon communications. There are

constant communications going on between the processes running on one workstation and

the processes running on different workstations. The workstation acting as the "controller"

depends on reliable inter-process communications to coordinate the actions of the six

processes running concurrently on it. Each backend machine depends on reliable inter-

process communication to coordinate the actions of their six backend processes. These Six

backend (BE) processes and six control (CNTRL) processes are executing continuously

while MDBS is running.

26827 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/scntgpcl.out
26829 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/scntppcl.out
26830 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/pp.out
26831 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/iig.out
26832 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/reqprep.out
26839 pO 10:01 /dbll/u/mdbs/VerE.6/CNTRL/dblti.out
26828 pO 10:00 /dbll/u/mdbs/VerE.6/BE/sbegpcl.out
26833 pO 10:00 /dbll/u/mdbs/VerE.6/BE/dirman.out
26834 pO 10:00 /dbll/u/mdbs/VerE.6/BE/cc.out
26835 pO 10:00 /dbll/u/mdbs/VerE.6/BE/recproc.out
26836 pO 10:00 /dbll/u/mdbs/VerE.6/BE/dio.out
26837 pO 10:00 /dbll/u/mdbs/VerE.6/BE/sbeppcl.out

Figure 4: Six Controller (CNTRL) and Six BackJEnd (BE) Processes.

D. PROCESS FUNCTIONS

There are twelve M2DBS processes relating to communications between the

controller and its associated backends. These processes are depicted in Figure 4 and Figure

20

5. Controller processes include "controller get" (CGET), "controller put" (CPUT), "test

interface" (TI), "request processing" (REQP), "insert-information generation" (IIG), and

"post processing" (PP). The six backend processes are backend get (BGET), backend put

(BPUT), record processing (RECP), concurrency control (CC), directory management

(DM), and disk input/output (DIO). All six of these processes run on each backend machine

participating in MDBS.

The controller processes form the interface between the user and the collection of

associated backends. The TI process is the user interface. TI routines activate the selected

interface and capture the user's instructions from the terminal. REQP routines parse the

user's requests and check for proper format and syntax. The EG process handles the

clustering of the database records across the backend machines. Managing a global table of

locality information (backend number, cylinder, track) is handled by the IIG. The PP

formats the results received from the backend machines for display to the user. The CPUT

process sends messages across the ethernet to other MDBS workstations. The CGET

process receives messages from the controller and inter-machine messages from other

workstations functioning as the backends.

The backend processes are replicated on each backend machine. They form the

interface between the controller and the individual backend. Where BGET receives

messages from the associated workstations in the controller or backends across the

ethernet, BPUT sends messages from an individual backend across the ethernet to the

controller and other backend workstations. The BGET process also receives these same

inter-machine messages for its backend machine. The RECP process manipulates records

including selection, retrieval, and value extraction. The CC process maintains the meta-

data and the base-data (record) integrity during the processing of transactions. The DM

process manages all access to the meta-data disk. DM coordinates with RECP formulation

and gathering information about how the records are stored. Finally, the DIO process

manages reads and writes on the base-data (record) disk.

21

REQP

Controller

Backend

DIO

HG f**$ TI

i Ethernet

Figure 5: MDBS Communication Channels

22

Figure 5 shows how these twelve communication processes interface with each

other. In Figure 5, inter-process communication links have arrows showing which process

initiates the link. That is, the arrows show initiation of information flow, not the direction

of information flow. All of the communication channels depicted are established during

"start-up".

E. TI LINKS BETWEEN KERNEL AND NON-KERNEL CODE

Adding a new user interface requires minor modifications to TI. There are critical

linkages between the kernel and non-kernel interfaces contained within the test interface

(TI) code.

a. The LanglFJFlag must be visible to the compiler.

To accomplish this, be sure the "#define LangIF_Flag" statement in the

"Flags.def' file located in the TI directory is not commented out.

b. Ensure there is a function call to initialize the specific non-kernel

language interface.

To accomplish this, load the schema for the non-kernel model by calling

the "creat_?_db_list" (e.g., creat_oo_db_list) function around line 90 in the ti.c file.

c. Add a menu choice and call to the main procedure for the new language

interface.

To accomplish this, the code should be placed within the while loop

following the function call to initialize the interface.

d. Recompile the tiexe file.

To accomplish this may require some minor modifications to one or more

makefiles. The new language interface should be included in its own directory under "src"

23

inside the LangJF directory. The makefiles are adjusted to include a path to these files..

For more information on the design of a non-kernel language interface, see [Bourgeois, 1992].

F. IN SUMMARY

The KDS is supported by a select group of operating system, system calls, by

library files packaged with C, and by communications between twelve continuously

running processes. From the KDS viewpoint, adding a new interface requires only making

minor modifications to the ti.c file and the makefiles. By following the protocols of the ti.c

file, there is no need for the developer to go beyond TI into the system. TI is the gateway

to the Kernel System. An understanding of the system calls, library functions,

communication processes used by the system aids in understanding the development of

new language interfaces. In the next chapter, the INSERT command is analyzed. How the

system inserts new records, individually and in mass, will be detailed.

24

V. THE INSERT OPERATION

The INSERT is the most fundamental operation of the five basic operations

available in the KDS. The INSERT operation is fully functional and requires no

modifications. The INSERT operation works correctly and will support the object-oriented

interface without any further modifications or adjustments.

A. INSERT DESIGN CONSIDERATIONS

The M2DBMS is a one user, and "one-time" interface. The M2DBMS by design

will allow only one database to be in operation at any given time. Therefore, whenever the

user makes any changes to the database in use, after the change is complete the backends

release their linkage to the database. After completing an INSERT, the system completely

exits the current operation and awaits the next command. The user must re-initiate the

INSERT function to add anymore data. To execute a request for any other database other

than the database in use requires the user to exit from the system. The INSERT operation

can only occur within the context of a single database.

As detailed in Chapters in and IV, (see Figure 1, Figure 4, and Figure 5) there are

two major systems in M2DBMS, the Controller and the Backends. These two systems share

twelve processes when executing the INSERT operation (as detailed below in Figure 6).

To execute an INSERT, the database environment must exist on the backends. To create a

database the user must first generate a Template file (e.i., the ".t" files) and a Descriptor file

(i.e., the ".d" files) using the DDL compiler. How to create these files from within the

attribute-based database system (i.e., the KDS) is detailed in the User Manual (Appendix

A). The compiler will copy the Template and Descriptor files to the backends

automatically. These files are necessary because they provide the syntax and the Insert

Process Communication Paths environment for error checking and maintenance of the

relationships between the attribute value pairs.

25

INSERT PROCESS

Attribute Basec
Test Interface

77

TI_S$TrafUn*

Controller
Get

CGET

Controller
Put

CPUT

Request ^
Preparation

REQP J

RP_HOST_MSG
-ParserO
^Chk_ParsedTraf

UnitO
, PvP_BROADCA
ST_REQS_ALL

DM()

KERNEL

BACKEND
/ Backend \

Put
BPUT

Concurrency
Control

CC

C_Init()
C_New_Traffic

Unit()
cscc

NewTrafficUnitO
DSCC_NewTrafUnit()

DM_CNTRL_BE
_MSG()

DM_Parsed
TrafUnitO

INS_DESC_SR()

ReqProcessingO
INS_Processing()
IP_INSERT_Record()

Figure 6: INSERT Process Communications

26

B. THE INSERT OPERATION

Every process and request in the M2DBMS starts at the Test Interface (TI). The TT

is the gateway into KDS. Every operation must follow the constructs and protocols of TI.

Figure 6 and Figure 7 show graphically the system calls occurring as an INSERT executes.

The UDM and UDL interface with KDS through a function called TI_SELECT(). Each

Language Interface must select the Test Interface as the first step in executing operations

that effect the database. The object-oriented language interface module is unique because

the OODDL and OODML include the RTM. The RTM, embedded in the LIC, is the

interface to the TI.

The TLSELECTO function is used to initiate TI-execute(). TI-execute() is a

function that sends message traffic to or receives message traffic from the MDBS.

Message traffic consists of two pointers: the database identification pointer (dbid) and the

trafficid. The trafficid is the pointer identifying the transaction as an INSERT operation.

The TI initiates the execution of the INSERT by sending the traffic unit to Request

Preparation (REQP). If the system can complete the INSERT request statement, it will then

call REQP using the TI_S$TrafUnit() function.

The TI_S$TrafUnit() function passes its two arguments, the database name and

INSERT request, as function parameters to REQP (Figure 8). REQP then checks for proper

format and syntax using the PARSER() function. PARSER() calls Chk_ParsedTrafUnit()

to ensure the INSERT request is using the correct database name, attribute name, and

attribute value type. If there are no errors, REQP will send the traffic unit identifying the

database and the transaction INSERT to the backends for processing.

During these processes, the FNSERT Information Generation (HG) process (see

Figure 6) is handling clustering of the database records across the backend system. The IIG

ensures each backend includes a global table of locality information containing addresses

detailing backends, cylinders and track numbers.

27

TEST INTERFACE (TI)

TT/fisul>s.e

;:;: «•»t*• mm-mm-m ■■ M«ttltltt«»K»ra»IKMIKM

TI-execute() Send a ?ra#c umY to MDBS

Tl-chk-regs-left()
Check if there are requests sent to MDBS
which have not finished execution.

TI-Req-Res-output()

8

TT-print-RegRes ()

Output the result to the current and/or
Response File

Prints out the response from MDBS
into the file specified by the o-file.

i«>r.c
S

TT-S$TrafUnit()

Send a traffic unit
to Request Preparation. TI_R$ReqRes() Return the result of a request.

COMMON/sndrv.c

i
SendQ Receive ()

Sends a message from one task
to another task.
.copy-to-string()
.Send-get-sdQ

Receives the next message
for a task
.rec-get-sd()
.hd-copyO
.body-copy()

Figure 7: Test Interface Process Detail During INSERT Operations

28

Meanwhile, Concurrency Control (CC) (Figure 9) is maintaining the integrity of the

meta data and the base data. CC initializes a series of tables to maintain concurrency

control: the Traffic-Unit-to-Attribute-Identification Table (TUAT), the Attribute-

Identification-to-Traffic-Unit Table (ATUT), the Traffic-Unit-to-Descriptor-

Identification-Sets Table (TUDIST), the Traffic-Unit-to-Cluster-Identification Table

(TUCT), and the Cluster-Identification-to-Traffic-Unit Table (CTUT). CC then executes

the C_New_TrafficUnit(), CSCC_NewTrafficUnit(), or the DSCC_NewTrafUnit()

functions based on what type of message the CC received from the Language Interface

Controller or the other backends.

The Directory Manager (DM) (Figure 10) manages all access to the meta data disk.

The DM receives Traffic-Unit messages from REQP finding the descriptors satisfying the

INSERT operation. The DM then calls the INS_DESC_SR() function. At the same time,

the DM coordinates with Record Processing (RECP)(Figure 11) the gathering of

information about how the base data is to be stored. The DM, after coordinating with

RECP, then broadcasts the descriptor-identification to the other backends.

The RECP manipulates the base data using functions for selection, retrieval, and

value extraction. RECP receives the INSERT request from the REQP in the kernel or from

the other backends. To execute the INSERT, the RECP fetches a Track Buffer (TB) and

then gets free disk area from the Disk Input/Output (DIO)(see Figure 6) by calling the

INS_Processing() function. The DIO handles all reads and writes to the base data disks.

RECP then puts the records into the fetched TB and stores the TB back to the free disk area

by calling the IP_INSERT_Record() function.

The Post Processing (PP) (see Figure 6) properly formats the results. The results are

received from the backends and sent through the TI to the LIC contained in the UDM/UDL.

The LIC will call the KFS for display of the information back to the user. In the case of the

object-oriented interface, the RTM receives the results from the PP. The RTM then calls

the KFS to properly format the results for display to the user. The KFS and RTM are

discussed in Chapter VI.

29

REQUEST PREPARATION (REQP)

reqp.c

mainQ

Process a message
from the host
machine.
RP HOST MSG ()

RP BROADCAST REQS
ALL DM0

Broadcast a set of formated
requests to the back_ends.

Check the requests in the traffic unit
for proper syntax.

nc

Chk ParsedTrafUnitO

Check the request against template
record.

.get-tmpl-ptii)
xhk-request()
.chk-insert-rec()
.Insert-attr-nameQ
.chk-value-type()

6

\

REQUESTCOMPOSER ()

Put a request into the form
required by the Directory
Manager (DM).

RC_ParsedTrafUnit ()

Put the request into the
form required by the
Back-Ends.

Figure 8: Request Preparation Process Detail During INSERT
Operations

30

CONCURRENCY CONTROL (CC)

ccmam.c

main ()

I
C init()

DMmsg ()

iüesüin

1

.ATUTinit()

.CTUTinit()

.TUATinit()

.TUCTinitO

.TUDlSTinit()

cscc
NewTrafficUnit()

.CS_Traffic_Unit_
InitQ

.CCR$DesddSets()

.addTUDISTQ

CS_Try_to_Start()

.RequestCS_
CCLockConversionQ

.cs_cc_
LockConversion()

.C_S$CS()

CSCC_Complete()

,CCR$rdRelease
DidSetsQ

.CSCC_Release
DidSetsQ

III

DSCC NewTraf
UnitO

,DS_Traffic_Unit
JnitQ

,CCR$Attrs()
.TUATaddQ
.ATUTaddQ

DS Try to
Start!)

.DSjCC
_LockConversion(j

.ATUTaFindO
,ATUTSearch()
.ATUTtFindQ
.ATUTrFindQ
.C_S$DS()

DSCC_Complete()

.CCR$raRelease
Attti)

.DSCCJtelease
AttrQ

C New Traffic
"UnitO

C_Traffic_Unit
JnitQ

,CCR$Cids()
.Cadd_TUCT()
.Cadd CTUT

1
C_Try_to_Exec()

. C_Lock_
ConversionQ

. CjConvertableQ

.findCTVTQ

.C_RE_Search_
TUCTQ

.C_S$Rid()

CRequest
ComplefTonO

. CCR$FinishedRid()

.RPCC_
ReleaseClustersQ

Figure 9: Concurrency Control Process Detail During INSERT
Operations

31

DIRECTORY MANAGER (DM)

dirman.c

Main () DM CNTRL ANOTHER BE MSG ()

Process a message
from the controller
or another Back-End.

dmsr.e !!!*£

DM_R$Message ()

Get the message.

.DM-R$Sender()

.DM-R$Type()

ATJookuptbl () Get the pointer to the
Database.

AT binsearch ()

attributes in the attribute table (AT)

10

ATM FIND ()
 r

didef.c

Find an attribute in
the attribute table.

DM ParsedTrafUnit()

Process a traffic unit from REQP.

1*
DM R$ParsedTrafUnit()

Get pointer from parsed INSERT
traffic unit caused by update.

DM_TypeC_AtfsTrafUnit()

Get the pointer for the type C
attributes.

Üiill

1A
/

INS DESC SR()

Finds the descriptors that satisfy
the keywords in the insert request.

DI DEFPRED()

Finds the descriptors that satisfy a predicate. Places their Identifiers in the

Request Descriptor Table (RDT).

Figure 10: Directory Management Process Detail During INSERT
Operations

32

RECORD PROCESSING (RECP)

recprocc

main()

ReqProcessing()
Process a request message.

RPWriteCompleted ()

Physical writing completed.

I reqsr.c

ReqAddrs$RP_R()

Get therequest ID and
Template ID pointer.

streqx

msp.c

INS_PROCESSING()

INSERT a record at the
cluster.

8

IP INSERT RECORD ()

INSERT a record into the
Track Buffer (TB).

SI Insert()

Start INSERT

wcreqsx

WC Insert ()

Physical write complete.

JRB$Send-Completion()

Recp-free ()

TBFETCH() getfreedioreg ()

Read an existing
track.

TB STORE ()

Store TB back to
disk.

Get a free region for
INSERT.

.put-info-dio-reg ()

.map-dio-reg ()

.find-dio-reg ()

.map-TB()

Figure 11: Record Processing Process Detail During INSERT
Operations

33

C. THE MASS_LOAD FUNCTION

The INSERT function, as written is limited. The function allows only one record

INSERT to occur at a time. There are no utilities for loading several records at a time. The

Mass_Load() function solves this problem. As the name implies, the Mass_Load function

batch loads large quantities of user generated data from a data file to the backends.

To use the MassJLoad function, the user must first generate a Template file (i.e.,

the ".t" files) and a Descriptor file (i.e., the ".d" files) using the DDL compiler. The

compiler will copy the Template and Descriptor files to the backends automatically. These

files are necessary because they provide the environment that will maintain the

relationships between the attribute value pairs. When completed, the user can then initiate

the "User generated Data File" selection from the menu. This selection is a necessary first

step in a hierarchy of steps that will batch load data stored in files to the current backends.

The user will then observe after selecting "Usergenerated Data File" the selection menu

has an option "M" which when selected will process the Mass_Load() function. Figure 12

is an example of "User generated data file" produced by the Mass_Load() function. The

data file separates each piece of data with a space and an ampersand (@) symbol.

FACSTU
@

Name
Nl dan a kellett
N2 taewook k kwon
@
Al 117_mervine_dr monterey ca 93940
A2 397_ricketts_rd monterey ca 93940
@
Person
PI Nl Al m
P2 N2 A2 m
@
$

Figure 12: User Generated Data File using Mass_Load ()

34

The Mass_Load() function is a process consisting of four steps. First, the function

will open the "User_generated data file" and check for a match between the database name

in the file and the name of the database currently in use. The function will read the first

capital letter as the name of the current executing database. The function will then check to

see if the database name in the file is in agreement with the database name currently

executing. These must agree or the function will abort. If the names match, then the next

data read is recognized as the template name. The function will then open the template

already on the backends using the "other pointer process" embedded within the function.

Next, the Mass_Load() function will read the data from the "User generate data

file" one by one. With each read, the function will read an attribute name from the template

file. The matching of a data element and an attribute name will create the attribute value

pair. As pairs are created, the function creates an INSERT statement in the attribute data

language for each individual item read. This processing continues until the ampersand (@)

is encountered.

The ampersand (@) symbol acts as the demarcation between templates. When

encountered the Mass_Load() function will stop processing, read the next template. The

reading of data resumes. Processing continues until the dollar ($) symbol is encountered.

The dollar ($) symbol marks the end of the file.

Once the end of file is encountered, the Mass_Load() function passes the INSERT

request statements to REQP in the Kernel System. The REQP receives these INSERT

statements through the TI and checks each statement for proper format and syntax. If all

of the statements pass the error checking, the INSERTS are executed and completed.

D. SUMMARY

The INSERT operation is the most basic operation of the five database operations

available in the KDS. The INSERT operation is supported by the twelve processes

discussed in Chapter IV. Because the INSERT operation will only operate on a single entry,

35

and there axe no utilities within the system to groups of data, the Mass_Load() function is

provided. Using Mass_Load() the users can load data from data file in batch mode. The

INSERT and Mass_Load() functions are operational and require no modifications to

support an object-oriented interface.

36

VI. THE KERNEL FORMATTING SYSTEM

There are two thesis closely associated with this thesis: The Object Oriented Real-

Time Monitor, by Erhan Senocak [Senocak, 1995], and Manipulating Objects in the

M2DBMS, by Robert Clark and Necmi Yildirim [Clark, 1995]. Where this thesis only deals

with the INSERT operation, Clark and Yildirim deal with the other four associated

operations. These four operations are associated with manipulating the data once the data

is appended to the database. Senocak discusses how the queries formed by the four basic

operations are translated from the compiler to KDS required formats using a Real-Time

Monitor (RTM) pictured below in Figure 13. He also deals with how the results of the query

coming from the KDS are passed to the Kernel Formatting System (KFS) for display.

During this associated research, it became obvious that the KFS required modification. We

took on the task of completing these modifications while the other groups continued their

research.

A. MODIFICATIONS TO THE KFS

As explained in Chapter IV, there are twelve M2DBS processes relating to

communications between the controller and its associated backends (see Figure 5). One of

these twelve processes is the Post Processing (PP) process. This process formats the results

of queries received by the backends. The RTM receives the PP's results and temporarily

creates one output file named output_f. The output file consists of a set of attribute value

pairs which can be displayed. But, unless the reader is familiar with the ABDM and ABDL

constructs, the results are not meaningful. This violates the M DBMS design concept. The

results must be in a format understandable to the user of an object oriented DML and DDL.

The user should not have to understand both the object oriented DML and DDL and the

ABDM and ABDL. The user does not interface with the KDS.

37

THE REAL-TIME MONITOR (RTM)j

Kernel
Formatting
System
(Kfs)

result in ÄBDL format
(response to the OOL query)

Query
Constructor

|Pseudocode+ÄBDL queries |
I (for a single OOL query) |

Real Time Monitor (RTM)

(Responses received are processed
until final response obtained)

LanglF
response in

ABDL format

Language mterface
Controller

(Lie)

> —^

ABDL query

KERNEL

Attribute Based
Interface

(TI)

Figure 13: The Real-Time Monitor and Kernel Formatting System

38

To produce results that will be understandable to the user, we modified the existing

display format associated with the KFS. We modified the KFS to present answers to queries

in a table format vice attribute-value pairs. The table format is clear. Answers to queries

listed in a table of columns with headings and rows are self explanatory. Attribute names

form the column headings, and attribute values fill the cells of their associated attribute in

record order. Figure 14 below is an example of query results displayed on the screen for the

user. The figure shows Output_f file contents first. This is how the data is actually stored

within the RTM process. Next the figure displays what the user would see if the data were

displayed in the ADBL. The last display is an example of the table actually generated from

the KFS after the answer to a query is passed to the KFS through the RTM. We converted

the KFS display format from an attribute-based format to a table format to help the user

better understand the results from queries.

B. THE CASE FOR C++

Without dynamic memory allocation, displaying the results of a query in a table is

difficult. The size of the resulting information in memory is unknown. The size of the

required table necessary to display the information is equally unknown. Size is not fixed

until the query is finished processing. The conventional "C" programming language does

not easily support dynamic memory allocation. Allocation of fixed memory blocks to hold

query answers is risky. The designer cannot predict the required size. Databases evolve and

grow, so any valid prediction will decay over time. As designers, we felt compelled to

introduce dynamic memory allocation to the KFS module. To do so required introducing

the C++ programming language and the ease with which it supports dynamic memory

allocation. Although the rest of the system is written in C, the KFS requires dynamic

memory allocation and C++ became a necessary part of the solution.

39

To ease future research, and to ease further expansion and implementation of

M2DBMS, we recommend implementing the system in C++. C++ will facilitate further

research in the human interface associated with the system. C++ will also facilitate

expansion of the system by upgrading the available capabilities, libraries, and objects

available to researchers as they investigate future designs.

RESULTS DISPLAY

output f

(<OID, N3>,<FNAME, dan>,<LNAME, kelleto)
(<OID, N4>,<FNAME, taewook>,<LNAME, kwon>)
(«DID, N6>,<FNAME, david>,<LNAME, hsiao>)
(<OID, N7>,<FNAME, thomas>,<LNAME, wu>)

Output in Attribute Based Format

(<OID, N3>,<FNAME,dan>,<LNAME, kellett>)
(<OID, N4>,<FNAME, taewook>,<LNAME, kwon>)
(<OID, N6>,<FNAME, david>,<LNAME, hsiao>)
(<OID, N7>,<FNAME, thomas>,<LNAME, wu>)

New Output: Table Generated by the KFS

on) FNAME

N3 1 dan
N4 1 taewook
N6 1 david
N7 1 thomas

I LNAME

I kellett
I kwon

I hsiao
I wu

Figure 14: Query Results: Pre and Post KFS Display

40

VII. CONCLUSION

The multimodel/multilingual database system can support different data models

and data languages provided a unique language interface can be constructed to support the

desired data model and data language. The overall language-interface structure consists

of the four LIL, KMS, LIC, and KFS modules. These four modules are specifically

constructed to support a particular data model and data language. Developing a user data

model and data language interface (UDM/L) between the user and the Kernel Database

System (KDS) requires an understanding of the system's design. As long as a compiler

(KMS) can be constructed that will translate the UDM to KDM, the KDS can support the

UDM/L.

The KDS is the portion of M2DBMS software containing the Test Interface (TI). A

careful study of the KDS code, early in the research, revealed a simple design construct of

the system: developers do not need to involve themselves in the minutia of KDS code to

build additional model/language interfaces. The TI is the only portion of the software the

new user interface will communicate with. Development requires only understanding the

TI and does not require any changes to the rest of the KDS. From the KDS viewpoint,

adding a new interface requires only making minor modifications to the ti.c file and the

makefiles. By following the protocols of the ti.c file, there is no need for the developer to

go beyond TT into the system. Once those protocols and constructs are met (as they are in

all of the other language interfaces) the rest of the system will respond. TI is the gateway

to the Kernel System. An understanding of the system calls, library functions,

communication processes used by the system can aid one's understanding but is not

required. The developer is only concerned with the protocols and constructs of the TI.

41

A. SUGGESTIONS FOR FUTURE RESEARCH

1. Develop A More Sophisticated Insert Operation.

The INSERT operation is the most basic operation of the five database operations

available in the KDS. Because the INSERT operation will only operate on a single entry,

and there are no utilities within the system to groups of data, the Mass_Load() function is

provided. Using Mass_Load() the users can load data from data file in batch mode. The

INSERT and Mass_Load() functions are operational and require no modifications to

support an object-oriented interface. However, we believe a more sophisticated INSERT

operation needs to be provided that allows multiple inserts in a single session without

having to resort to batch processing from a data file.

2. Compile The System In C++

To ease future research, and to ease further expansion and implementation of

M2DBMS, we recommend implementing the system in C++. Implementation of the systm

in C++ will facilitate expansion of the system by upgrading the available capabilities,

libraries, and objects available to researchers as they investigate future designs.

Without dynamic allocation, the simple task of displaying the results of a query is

difficult. The size of the resulting information in memory is unknown. The size of the

required memory allocation necessary to display the information is equally unknown. Size

is not fixed until the query is finished processing. The conventional "C" programming

language does not support dynamic allocation. Allocation of fixed memory blocks to hold

query answers is risky. The designer cannot predict the required size. Databases evolve and

grow, so any valid prediction will decay over time.

As designers, we felt introducing the C++ programming language and its support

for dynamic allocation would facilitate future research and aid in problem solutions.

Because the current system is compiled in C, C++ should be able to compile the existing

code with only minor modifications. To add the capabilities of C++ appears to justify such

42

an undertaking. By compiling the code in C++, C++ will provide capabilities that will

facilitate further research in the human interface associated with the system.

3. Its Time To Work On The User Interface.

As the system currently exists, the user interface is inadequate. Certainly, the user

interface does the job of reporting results to the screen and enables researchers to check

their work. But, with the availability of gui.objects, and the the availability of sophisticated

code generation programs, we believe it is time to investigate the user interface.

Current research in human factors engineering, and cognitive sciences indicate that

the ability to use many models within the same system will have its own unique set of user

interface challenges. To date, no research has been done that discusses or investigates the

potential problems inherent in a sophisticated database system that enables the users to

draw on several models and languages at once.

There has been no attention to date applied to how the system "looks and feels" to

users. The interface is primitive. There has also been no research to date on an appropriate

user interface for the M2DBMS by applying new developments in the cognitive sciences.

We recommend a future thesis expand on the theory of cognitive sciences by applying the

techniques of human factors engineering to the M2DBMS user interface. The research

must go beyond "looks and appearance" of the interface, and investigate the impact

different interface styles and methods can have on the usability and cognition of a system

that supplies so many options to the users.

B. SUMMARY

Using an attribute-based data model, the Kernel Database System can realize

complex data structures in the object-oriented data model. A single database system can

support a variety of data models and data languages using a Kernel based on attribute-value

pairs. In this thesis, a kernel database system supports both classical data models and data

languages (i.e., hierarchical, network, relational, and functional) and the emerging object-

43

oriented data model and data language. By successfully creating an object-oriented

database in the KDS, this thesis shows that complex data structures found in the object-

oriented data model can be realized as a kernel database in a single database system. Prior

to this research, it has not been clear whether or not the Kernel Database System (KDS),

designed to support classical databases, can support the complex object-oriented database.

This thesis has shown that object-oriented data can be inserted into a Kernel Data base

consisting solely of attribute-valued pairs. The object-oriented database model and

language are supported by the INSERT operation in the attribute-based data definition

language (ABDL) without any modifications having to be made to the KDS. It is,

therefore, unnecessary to build an entirely new object-oriented database system to support

an object-oriented database.

44

APPENDIX A--THE USER MANUAL

The Multi-Model, Multi-Language Database Management System is located in Lab 500 of

Spanagel Hall at the Naval Postgraduate School, Monterey, California. The Lab is supported by

two sun workstations operating from a Sun 4/110. Work Station dbl 1 contains the user interface

and controller software, commonly referred to as the "front-end". Work Station dbl3 contains the

storage disks and associated memory management software commonly referred to as the "Back

ends". Work Station dbl2 is co-located in the lab and is available for use as a second "back end"

if the need arrises. These resources are dedicated to Database Engineering research.

These instructions will walk you through how the system is used. Before using the system

the user must first create all the schema files and construct the optional Request files. After

creating these, the user can begin research within the MDBS system. For more detail on the

system architecture, and on function logic, see the related theses listed in Appendix 1 of this thesis.

In the following instructions, letters in bold represent Prompts. Italics represent required entries

by the user.

Before using the system, a brush up on "vi" and "emacs" is recommended. The system does

not support XWindows or Lemacs. Editing from the system is facilitated by a basic knowledge of

Unix text editors. To transport files from the system to a personal account elsewhere in Unix,

requires using FTP procedures. The system will not simply copy ("cp") from one terminal to the

other.

Before editing any code, remember, the program code is complex and weighty. Errors

introduced into the code by careless management of upgrades will be difficult and time consuming

to debug. We suggest a copy of the system be made and experimented on, tested and debugged,

before committing to any permanent changes to the original system.

A. LOGGING ON

1. Remote Log On

You can remote log-on to the MDBS from any terminal on the Computer Science

Department's Unix network. You start by entering "rlogin dbll" at the terminal prompt. The user

45

first sees a security warning message, and the Password prompt appears. Figure A-l is an example

of what you will see. By pressing the return key Login incorrect and Login prompts appear. Do

not worry about the "Login incorrect", press Enter and when Login reappears enter the Host name

"mdbs" and then following the prompts, enter the password.

********** WARNING **********

UNAUTHORIZED USE OF THIS DEPARTMENT OF DEFENSE (DOD) INTEREST

COMPUTER SYSTEM AND/OR SOFTWARE IS PROHIBITED BY PUBLIC LAW.

USE OF THIS SYSTEM CONSTITUTES CONSENT TO MONITORING

****** CLASSIFIED PROCESSING ON THIS SYSTEM IS PROHIBITED ******

Password:

Last login: Tue Apr 4 08:50:30 on console

mdbs processes running on dbll:

users logged on to dbll:

8:59am up 35 days, 23:21,4 users, load average: 0.50,0.27,0.04

User tty login@idle JCPU PCPUwhat

mdbs console 8:50am 8 35 35twm

mdbs ttypO 8:51am 3 5 2-sh

mdbs ttypl 8:58am w

Fig A-l: Login process on the dbll machine.

Following these instructions activates the proper associated accounts automatically. The

system logs into the default directory (dbll/u/mdbs) automatically. The mdbs account is used

primarily for thesis research. There are numerous directories from which the M DBMS system

runs. Options exist to predetermine the number of backends that the user desires to use while

running a particular database application. Due to constant manipulation and changes that occur

from thesis research, our focus will be placed on using the kwontw, and badgett account on the

dbll terminal. Entering the unix command "Is", lists all the current accounts on the dbll

terminal inside the mdbs directory. Look for current account on the dbl 1 terminal in the Fig A-2.

46

dbll/u/mdbs> Is

Calendar/ RunData/ andy/ erhan/ master/

Demo/ Sockets/ badgett/ greg/ necmi/

Docs/ ThesislO/ bin/ kellett/ 0-0/

Run/ UserFiles/ dark/ kwontw/

Fig A-2: Current accounts on the dbll terminal (95/04/04).

2. Direct Log On from Terminal DB11

You can directly log on from terminal dbll in Lab 500. The process is the same with the

exception of using the "rlogin" command. Do not use rlogin. Simply enter your name at "dbll

login:". When "password:" appears after the government's security warning, press Enter. "Login

incorrect" will then appear. Ignore this and enter "mbds". When the password prompt reappears

enter the password.

B. AFTER LOGGING ON

1. Copy the schema and request files

The subdirectory UserFiles contains the schema and request files for the existing

databases. If your database exists, its files will be listed here and is ready to be processed.

Otherwise, if the database files are not listed then you must either create them or transfer them into

the UserFiles subdirectory. The UserFiles subdirectory can be visited from any location within

the system by entering "data" at the prompt.

2. Kill any MDBS processes still running on the system.

Prior to executing the command start or begin you must verify that there are no processes

still running the MDBS system. The UNIX command "ps ax" will display all active processes

47

on your terminal whether you own those processes or not. Because an aborted run of the MDBS

system can leave MDBS processes still running, the "ps ax" command will help locate these

processes and by using the UNK command "kill", you can stop the lingering processes. Look for

any process like those highlighted in Figure A-3.

A second method for killing extraneous processes is to use the "stop.cmd" command. This

command will find all the extraneous processes running and safely end them as shown in Fig A-4.

PID TT STAT TIME COMMAND

0 ? D 0:41 swapper

1?IW 0:03/sbin/init -

2 ? D 0:10 pagedaemon

55? S 3:40 portmap

58? IW 0:00 keyserv

63? S 11:43 injouted

80? IW 0:03 syslogd

88? IW 0:14 /usr/lib/sendmail -bd -qlh

95? IW 0:00 rpc.statd

96? IW 0:00 rpc.lockd

103? S 3:18 /usr/etc/automount -m -f /etc/auto.master

3099? IW 0:00 in.tnamed

3188? S 0:00 in.rlogind

12390 ? IW 0:00/usr/lib/lpd

3102 co IW 0:00 -csh (csh)

3113co IW 0:00 /bin/csh /usr/bin/Xll/xinit

3118co IW 0:00 /usr/bin/Xll/xinit.exec -- /usr/bin/Xll/X

3119 coS 0:03 /usr/bin/Xll/X :0

3120co IW 0:00 sh /u/mdbs/.xinitrc

3124 co S 0:02 xclock -update 1 -g 80x80-1+1

3125 co S 0:00 xterm -g 80x40+1-1 -sb -si 150

3126 co IW 0:00 xterm -g 80x20+1+1 -C -sb -si 150

3138 pi IW 0:00 main

3181 piIW 0:00 sh -c /u/mdbs/greg/CNTRL/ti.exe 1

3182 plS 0:00 /u/mdbs/greg/CNTRL/ti.exe 1

3189 p2S 0:00 -csh (csh)

3202 p2R 0:00 ps ax

Fig A-3: Results of executing the ps ax command.

48

dbll/u/mdbs> stop.cmd

stopping processes on back end dbll

killing 26827 26828 26829 26830 26831 26832 26833 2683 3118

Fig A-4: Results of the stop.cmd command.

dbll/u/mdbs> stop.cmd

stopping processes on back end dbl 1

killing no processes

Fig A-5: Results of the stop.cmd command with no MDBS processes running.

If the stop.cmd command is issued and no MDBS processes are running on the system, the

user will be notified that there are no MDBS processes to kill as shown in FigA-5

3. Perform META-DISK Maintenance.

Upon verification that no extraneous processes are running, unless the user wants to use a

database already on the system, the user must ensure old databases have been removed from the

Meta-disk. This is accomplished by using the alias "pry". "pry" checks the Meta-disk and ensures

no data is on it. The "pry" command will display what data is on the disk. If the line displays

zeroes, or the system returns the statement "no data is on the controller", then the data disk is clean

and you are ready to execute the MDBS system. If there is an existing database stored on the disk,

the results of the "pry" command will look similar to Fig A-6.

000000 NO \0 003 E M P R E C \0 \0 \0 \3 \0 \0 \
0000016 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

Fig A-6: Meta-disk with existing data

49

The "zero" command cleans the meta-disk of any existing data. To avoid unexpected

crashes of the system during execution, it is best to ensure the meta-disk is clean. Fig A-7 displays

what the user sees after executing the "zero" command.

dbll/u/mdbs/run-39>zero

No match.
No match.
File to zero = /dev/sdlc
File size = 105638400
Bytes to zero = 8000000
Bytes written...

819200
1638400
2457600
3276800
4096000
4915200
5734400
6553600
7372800
8000000

Fig A-7: Result of the zero command

Provided the you have either cleaned the meta-disk, or plan to process an existing database,

you are now ready to run the MDBS system. From any MDBS directory, type the command "start"

or "begin" to start the MDBS interface.

4. Set Up The User Screen.

We recommend opening two separate C shells while operating the MDBS system. This will

facilitate trouble shooting and research. One shell is used strictly for database execution. The other

shell is used for checking the UserFiles directory. The UserFiles directory should be checked to

ensure all necessary database files exist. After checking the directory, use this same screen to verify

all processes are running.

50

5. Check to see if all processes are running.

When running the MDBS, six backend (BE) processes and six control (CNTRL) processes

should be running. These processes are shown in Fig A-8. If all the processes are not running, then

exit the system pressing [Control]-c. After exiting, kill any extraneous processes with the

"stop.cmd" command. Double check to ensure no extraneous processes are running using the "ps

ax" command, ensure the data disk has been zeroed. If not, zero the meta disk with the "zero"

command. Restart the MDBS system with the "begin" or "start".

26827 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/scntgpcl.out
26829 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/scntppcl.out
26830 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/pp.out
26831 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/iig.out
26832 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/reqprep.out
26839 pO 10:01 /dbll/u/mdbs/VerE.6/CNTRL/dblti.out
26828 pO 10:00 /dbll/u/mdbs/VerE.6/BE/sbegpcl.out
26833 pO 10:00 /dbll/u/mdbs/VerE.6/BE/dirman.out
26834 pO 10:00 /dbll/u/mdbs/VerE.6/BE/cc.out
26835 pO 10:00 /dbll/u/mdbs/VerE.6/BE/recproc.out
26836 pO 10:00 /dbll/u/mdbs/VerE.6/BE/dio.out
26837 pO 10:00 /dbll/u/mdbs/VerE.6/BE/sbeppcl.out

Fig A-8: Six Controller (CNTRL) and Six Back_End (BE) Processes.

C. RUNNING M2DBMS

The attribute-base data model (ABDM) is the kernel data model (KDM) for the M2DBMS system.

The ABDM was chosen as the kernel data model because ABDM allows you to store the meta data

and base data separately. ABDM introduces equivalence relations which partition the base data

into mutually exclusive sets called clusters. These clusters are distributed across the backends

allowing parallel access to the base data. Coupling ABDM with the attribute-based data language

(ABDL) as the kernel data language (KDL) facilitates database design. The attribute-based model and

language support database research with a semantically rich and complete language and with a

51

simple storage and parallel processing architecture. For more information on how M DBMS can

support classical and emerging database designs see Chapters 2, 3,4, and 5 of this thesis.

1. Database Constructs

Data in the ABDM is stored as an attribute-value pair. Attribute-value pairs are the simple

building blocks of the kernel database. The attribute-value pairs consist of attribute names and

corresponding values. When displayed, an attribute-value pair is enclosed by a pair of angled

brackets. The attribute name is always first, followed by the value for the attribute. If the attribute-

value pair has no value, then only the attribute-name is seen. An example would be <FNAME,

Tae-wok>, were "FNAME" is the attribute name and "Tae-wok" is its corresponding value. The

attribute name must always be uppercase.

A RECORD is a set of attribute-value pairs. Within a record, attribute-value pairs must have

unique attribute-value names. That is, no two attribute-value pairs can have the same attribute-

value name. At least one of the attributes in the record is a key. Following these two rules ensures

each attribute-value pair is single valued and each record can be identified by at least one key. A

record is enclosed by parenthesis. The attribute-value pairs are contained within these parenthesis:

(<COURSE, CS4322>, <INSTRUCTOR, Hsiao>, <SECTION, 2>, <YEAR, 1995>,

<SEMESTER, fallx

A FILE is a collection of records that share unique set of attributes. If a record belongs to a

certain file, then the first attribute-value pair of the record will contain the attribute TEMP and the

corresponding file name. All records belonging to the same file will have the same first attribute-

value pair. For example, (<TEMP, NAMES>, <LNAME, Hsiao>, <FNAME, David >,

<MIDDLE, K>) indicates that the record belongs to the file NAMES. The file contains a detailed

description of the ABDM and ABDL. We encourage the user to read these prior t executing the

attributed-based interface.

52

2. Generating A Database Operation

The user can start the execution of the ABDM interface by selecting the option (a) from the

first menu selection screen. The first selection screen will look like Fig A-9. The ABDM interface

does not require the use of a schema file or request file. In the kernel data model, the system uses

template files (i.e., ".t" files) and descriptor files (i.e., ".d" files). The schema files generate the

template and descriptor files necessary for mapping an interface model/language into the kernel

data model/data language. The ABDM, being the kernel model, does not need its own schema for

mapping to itself.

Welcome to Multi-Lingual/Multi-Backend Database System
Select an operation:

(a) - Execute the attribute-based/ABDL interface
(r) - Execute the relational/SQL interface
(h) - Execute the hierarchical/DL/I interface
(n) - Execute the network/CODASYL interface
(f) - Execute the functional/DAPLEX interface
(o) - Execute the Object-Oriented interface
(x) - Exit to the operating system

Select->

Fig A-9: The First Selection Screen.

In the ABDM interface the user creates the template and descriptor file prior to execution.

There is an option to generate a database but using this option is unnecessarily time consuming.

We suggest using a text editor like emacs or vi to create the template and descriptor files.

After selecting the option (a) from The Multi-Lingual/Multi-Backend Database System

menu in Fig A-9, selects option (g) at the next ABDL interface menu. This menu will look like Fig

A-10. The (g) option is used to generate a new database in the attribute-based form.

53

The attribute-based/ABDL interface:

(g) - Generate a database

(1) - Load a database

(r) - Request interface

(x) - Exit to MDBS main menu

Select->

Fig A-10: ABDL Interface Menu

When the (g) option is picked, the generate-database menu (Fig. A-11) is displayed.

This menu is the gateway to database generation. To generate a database, and be able to conduct

operations on the database, the user must:

a. Generate the ".t" Template File.

b. Generate the ".d" Descriptor File.

c. Generate/Modify Set Values by creating the ".s"file.

d. Generate the ".r" Records File.

e. Load the Database.

The Generate-Database menu (Fig. A-l 1) is the main menu for these functions.

Select an operation:

(t) - Generate record template
(d) - Generate descriptors
(m) - Generate/modify sets
(r) - Generate records
(x) - Exit, return to previous menu (ABDL main)

Select- >t

Fig A-ll: Generate-Database menu

54

There are five options on the menu screen, These options include:

• Option (t): a collection of menus for generating the record-template file, which contains
the meta-data for the different record types in our database.

• Option (d): a collection of menus for generating the descriptor files. Descriptor files
contain the directory attributes of the database along with possible initial values for the
descriptors of each directory attribute.

• Option (m): a collection of menus for generating (actually modifying) data sets for each of
the attributes in the database. These data sets are then used to systematically generate arbitrary
records for the database using the (r) option.

• Option (r): a collection of menus for generating the record file. The record file contains

a group of records that are to be mass loaded by the M DBMS.

Together, the (m) and (r) options can be used to generate test or sample databases. Using

option (r) creates a test, or sample database, which contains records that have been systematically

constructed from the sets of values created by the (m) option. Through these two options, the user

can quickly set up a test or sample database.

• Option (x): returns you to the previous menu.

The next sections of this manual will describe how each of these functions is performed.

3. Generating A Template File

Generating the template file is the first step in creating a database on the KDS. The

template and descriptor files (i.e., the ".d" and ".t'Tiles) are used to describe the structure of the

attribute-based database. These files must be present to tell the kernel database system what the

template names are and their associated attributes. For the initial creation of a database, we

suggest that using vi or emacs for generating the ".d" and ".t" files outside the system. The system

can be cumbersome. The following details how to create these files from within the system.

The names of the templates and the attributes associated with each template are described

to the database system through the template and descriptor files. The attribute type and any

constraints on attributes will be noted in these files. A template name is similar to the name of a

55

relation in a relational database. The template file contains the name of the database, followed by

the number of templates within the database. After the number of templates, the next number is

the number of attributes in the following template. The template name is listed followed by the

attributes in that template and their respective type (i.e. string, integer, etc.). Once all attributes for

a template are listed, the number of attributes in the next template is listed, followed by the next

template's name. This process is repeated until all the templates and attributes have been listed.

The following provides the user with a step-by-step reference for executing the "generate

the template file" operation. Remember, attribute values have to be in upper-case and every value must

have no blanks in a single value.

a. Generating A Template File

If user picks the (t) option from the M2DBMS selection menu the following is a

sample of what the user should be seeing and how the process generates a template file. The

sample is followed by the results of the process. The following is what the user will observe on

the screen.

Select an operation:

(t) - Generate record template
(d) - Generate descriptors
(m) - Generate/modify sets
(r) - Generate records
(x) - Exit, return to previous menu (ABDL main)

Select-> t

Enter the template file name: FACSTU.t

ENTER DATABASE ID: FACSTU

ENTER THE NUMBER OF TEMPLATES FOR DATABASE FACSTU1:13

ENTER THE NUMBER OF ATTRIBUTES FOR TEMPLATE #1: 5
ENTER THE NAME OF TEMPLATE #1: Name

ENTER ATTRIBUTE #1 FOR TEMPLATE Name: TEMP
ENTER VALUE TYPE (s = string, i = integer): s

56

ENTER ATTRIBUTE #2 FOR TEMPLATE Name: OID
ENTER VALUE TYPE (s = string, i = integer): s

ENTER ATTRIBUTE #3 FOR TEMPLATE Name: FNAME
ENTER VALUE TYPE (s = string, i = integer): s

ENTER ATTRIBUTE #4 FOR TEMPLATE Name: MI
ENTER VALUE TYPE (s = string, i = integer): s

ENTER ATTRIBUTE #5 FOR TEMPLATE Name: LNAME
ENTER VALUE TYPE (s = string, i = integer): s

ENTER THE NUMBER OF ATTRIBUTES FOR TEMPLATE #2: 5
ENTER THE NAME OF TEMPLATE #2: Person

ENTER ATTRIBUTE #1 FOR TEMPLATE Person: TEMP
ENTER VALUE TYPE (s = string, i = integer): 5

ENTER ATTRIBUTE #2 FOR TEMPLATE Person: OID
ENTER VALUE TYPE (s = string, i = integer): s

ENTER ATTRIBUTE #3 FOR TEMPLATE Person: PNAME
ENTER VALUE TYPE (s = string, i = integer): s

ENTER ATTRIBUTE #4 FOR TEMPLATE Person: PADDRESS
ENTER VALUE TYPE (s = string, i = integer): s

ENTER ATTRIBUTE #5 FOR TEMPLATE Person: SEX
ENTER VALUE TYPE (s = string, i = integer): s

In the above example the user is creating the template file by answering the

questions with values needed for the database design. The user selected "t" from the menu. The

system asked for the name of the new template. The user responded with "FACSTU". After

giving the system a name for the new template, the system begins to establish relationships

between this new template and records that will be associated with it. In the example there are

thirteen related records to FACSTU. The system then asks for the attributes and their associated

type for the 1st, then the 2nd, etc., records. This series of questions will continue through record

number thirteen then stop.

b. An Example Template File (FACSTU.t)

After creating the template files, and the thirteen related template files, the

following results are stored in the system as the FACSTU template.

57

FACSTU /* template file name */
13 /* number of related templates */
5 /* number of attributes in template 1 */
Name /* template is called "name" */
TEMP s /* "name" is an attribute template, type s */
OIDs /* OID is an attribute of types */
FNAME s
Mis
LNAME s
5
Person
TEMPs
OIDs
PNAME s
PADDRESS s
SEXs

This type of storage continues through template 13.

4. Generate a Descriptor File

After making the template files, select option (d) at the selection menu. Option (d)

generates the descriptor files interface for the creation of descriptor files. The descriptor file

contains information with regards to constraints placed upon the attributes within the template. In

order to achieve the mutual exclusivity of the M2DBMS, there are three descriptor types that an

attribute can take on. Type a is an attribute which has a disjointed range of values (i.e. 0 <=

NUMBER <= 100). Type b is an attribute of distinct value (i.e. SEX= M). Type C is an attribute

that has a dynamic range that is determined at run time. The attribute TEMP will be a type b

attribute whose distinct values are the template file names in the data-base. The attribute

NUMBER (street number) is a type a attribute whose value range is from 00 to 99, from 100 to

199, and so on. The attributes FNAME and LNAME are also type a attributes whose value range

goes from the letter A to Z. The following is an example of the process creating a descriptor file

for the demonstration data-base called FACSTU.

a. Generating a Descriptor File

After completing the creation of a template file, the main menu returns. The user

should then select the "d" function.

58

Select an operation:

(t) -
(d)
(m)
(r) ■
(x) ■

Select-> d

Generate record template
Generate descriptors

- Generate/modify sets
Generate records
Exit, return to previous menu (ABDL main)

The system will prompt the user with the following questions:

Enter the template file name: FACSTU.t
Enter the descriptor file name: FACSTU.d
Will attribute 'TEMP' be a directory attribute (Y/N)? y

ENTER THE DESCRIPTOR TYPE FOR TEMP (a,b,c): b

Use '!' to indicate that no lower bound exists ... Enter '@' to stop
Note: '@' Must be Entered When the Lower Bound is Requested

ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR
ENTER UPPER BOUND FOR DESCRIPTOR
ENTER LOWER BOUND FOR DESCRIPTOR

i

ower
/

ower
I

(lower

(lower
I:!
(lower

(lower

(1 ower
/

ower
i

(lower
I

ower
/

(lower

(I

(1

(lower

(lower

bound:

bound:

bound:

bound:

bound:

bound:

bound:

bound

bound

bound

bound

bound

bound

: Name

: Address

: Person

: Faculty

: Course Jac

: Civ Jac

: Mil Jac

: Course

: Course_stu

: Team_stu

: Team

: Team Jac

: Student

59

Note that there are thirteen entries. This descriptor file creates the relationships

between the FACSTU template and its thirteen related records.

Will attribute 'OID' be a directory attribute (Y/N)? n

Will attribute 'FNAME' be a directory attribute (Y/N)? n

Will attribute 'MI' be a directory attribute (Y/N)? n

Will attribute 'LNAME» be a directory attribute (Y/N)? n

 continue.

Will attribute 'OID_F' be a directory attribute (Y/N)? n

Will attribute 'STUDENT_NIM' be a directory attribute (Y/N)? n

Will attribute 'MAJOR' be a directory attribute (Y/N)? n

h. An Example Descriptor File

Once all of these questions are answered, the system will create the FACSTU.d file.

After creating the descriptor file,, the following results are stored in the system as the FACSTU.d

file.

FACSTU
TEMP b s

Name
Address
Person
Faculty
Coerse_fac
CivJFac
Mil_fac
Course
Course_stu
Teaim_stu
Team
Team_fac
Student

$

60

As can be seen, the descriptor file holds the relationships between the main template

file (FACSTU) and the records that are related to it. Each name represents a record or tuple of

attributes and attribute types existing in a set by that name.

5. Generate/Modify the Set Values

After finishing generating the descriptor files the user selects option (m) at the next

selection menu. Selecting (m) initiates execution of the Generate/Modify Set Value files in the

interface. The ABDL interface supports this operation for the creation of initial records to the

database. The generated set file will be named by the user and will end with an ".s" suffix. The file

format used in the ABDM interface resembles the initial record file with set data instead of

attribute names underneath the template name. The End of File is marked by a $ symbol. An

important note when creating a set file is that the system looks for TABS between attribute values in a

record (or tuple). If the spacebar is used, the system will not read the space as the start of a new

attribute and will erroneously read the generating set file. The following illustrates the process

for the generating set file which will be used to generate initial records file.

a. Generating a Set Value File

These step-by-step instructions aid the user in developing a set file on the

M2DBMS based on the template file which was generated earlier. The template and descriptor

files must be generated prior to generating the initial records file. The following is a sample of

the process to generate set value files which are used to generate initial records in the database.

Select an operation:

(t) - Generate record template
(d) - Generate descriptors
(m) - Generate/modify sets
(r) - Generate records
(x) - Exit, return to previous menu (ABDL main)

Select-> m

61

From the main menu select the "m" option. Then, input the template file's name.

Enter the template file name: FACSTU.t

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'TEMP' ON TEMPLATE 'Name':

fn) - generate a new set for it
(m) - modify an existing set for it
(s) - do nothing with it

Select-> s

No action needs to be taken on the record name, the record will encompass the

whole set of attributes and values.

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'FNAME' ON TEMPLATE 'Name*:

(n) - generate a new set for it
(m) - modify, an existing set for it
(s) - do nothing with it

Select-> n

The attribute FNAME belongs to the record "Name". By selecting "n" the user can

input values to associate with FNAME.

Enter the set file name: fname.s

ENTER SET VALUE: Luis
ENTER SET VALUE: Bruce
ENTER SET VALUE: Dan
ENTER SET VALUE: TaeWook
ENTER SET VALUE: Recep
ENTER SET VALUE: David
ENTER SET VALUE: Thomas
ENTER SET VALUE: John
ENTER SET VALUE: @

Set generation completed...modify it (Y/N)? n

The process continues until all of the records, and attributes are associated with

values.

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'MI' ON TEMPLATE 'Name':

(n) - generate a new set for it

62

m) - modify an existing set for it
s) - do nothing with it

Select-> n

Enter the set fde name: mi.ss

ENTER SET VALUE: C
ENTER SET VALUE: D
ENTER SET VALUE: K
ENTER SET VALUE: M
ENTER SET VALUE: R
ENTER SET VALUE: T
ENTER SET VALUE: @

Set generation completed...modify it (Y/N)? n

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE LNAME' ON TEMPLATE Name':

(n) - generate a new set for it
(m) - modify an existing set for it
(s) - do nothing with it

Select-> n

Enter the set file name: Iname.s

ENTER SET VALUE: Ramirez
ENTER SET VALUE: Badgett
ENTER SET VALUE: Keifet
ENTER SET VALUE: Kwon
ENTER SET VALUE: Tan
ENTER SET VALUE: Hsiao
ENTER SET VALUE: Wu
ENTER SET VALUE: Daley
ENTER SET VALUE: @

Set generation completed—modify it (Y/N)? n

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE TEMP' ON TEMPLATE Person':

(n) - generate a new set for it
(m) - modify an existing set for it
(s) - do nothing with it

Select-> s

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'OID' ON TEMPLATE Person':

(n) - generate a new set for it
(m) - modify an existing set for it
(s) - do nothing with it

Select-> n

Enter the set fde name: personoid.s

continue the rest of the tables in the same way.

63

During generate/modify sets, the user must not generate a duplicated set value. A set

value can be used many times, but the existence of an attribute value pair is a unique event in the

database and duplicates are not allowed. A different attribute may share the same value, but there

must not be any attribute-value pair that is a duplicate of another.

For the initial creation of a database, we suggest that using vi or emacs for generating

the ".d" and ".t" files outside the system. The system can be cumbersome. However, once the

".d" and ".t" files are created, the user must use the above steps in the generate/modify operation

to create every ".s" file. The above steps have to be followed from within the database system.

The system cannot find set records generated using any other method. Trying to access set records

from outside sources will produce an error message. Also note, every generated set file's name

will be uppercase. The system will automatically translate lower case names to uppercase. The

name of set value must be in uppercase.

6. Generate A Records File

After executing the generate/modify set files interface, select option (r) at the next

selection menu. Option "r" initiates execution of the generating records files interface. The ABDL

interface supports the generate records function for the loading of records to the database.

Records genereated will belong to a file named after the database with an .r suffix (i.e., for

example, FACSTU.r).

The generate records file format used in the ABDM interface resembles the template file

format. The only difference in the two is that the record file generator will ask for data instead of

attribute names after receiving the template name. The database name will appear at the top of the

file followed by an @ symbol. After each template, an @ symbol must be used as a separator

between templates. The End of File is marked by a $ symbol.

An important note: when creating a mass load file, the system looks for TABS between attribute values

in a record (or tuple). If the spacebar is used between attributes, the system will not read the space as

the start of a new attribute and will erroneously read the mass load file. The following illustrates

the process for generating the initial records file for the demonstration database FACSTU.

64

a. Generating An Initial Records File

The following step-by-step instructions aid in developing an initial records file on

the M2DBMS based on the template file , descriptor file, and set-value file generated by following

the previous sections. The following illustrates the sample process to generate initial record files

followed by the results of the process. Start by selecting "r" from the main menu.

Select an operation:

(t) - Generate record template
(d) - Generate descriptors
(m) - Generate/modify sets
(r) - Generate records
(x) - Exit, return to previous menu (ABDL main)

Select-> r

Enter the template file name: FACSTU.t

Enter the record file name: FACSTU.r

Note that the record file name must always be named after the database using an "r"

extension. Otherwise, the system will not be able to associate the two files.

ENTER THE NAME OF THE FILE CONTAINING THE
VALUES FOR ATTRIBUTE 'OID* ON TEMPLATE Name': NAMEOID.s

ERROR: Cannot open the file.

After entering the name of the template, the above error statement appears. Simply

ignore this statement. The system is accumulating the number of potential records that can be

created based on information held in the Template, Descripter, and Set-Value files. While doing

this, the system also trys to open the file. But the file is not ready yet, so the error statement

appears. Processing continues, therefore, ignore the statement.

ENTER THE NAME OF THE FILE CONTAINING THE
VALUES FOR ATTRIBUTE 'FNAME' ON TEMPLATE 'Name': FNAME.s

ERROR: Cannot open the file.

ENTER THE NAME OF THE FILE CONTAINING THE
VALUES FOR ATTRIBUTE 'MI' ON TEMPLATE 'Name': MI.s

65

ERROR: Cannot open the file.

ENTER THE NAME OF THE FILE CONTAINING THE
VALUES FOR ATTRIBUTE 'LNAME' ON TEMPLATE 'Name': LNAME.s

3072 records can be generated for template 'Name'...

How many records do you want generated? 8

ERROR: Cannot open the file.

 continue the above until all records have been created.

Note, the process begins with giving the system the template name (i.e., FACSTU.t)

then the record file name (FACSTU.r). These two must match. The system then asks for set-value

file names that match the records it finds within the template and descriptor files. When done, the

system will return to the main menu.

b. An Example Records File

By following the steps as they appear on the screen, the following is stored in

memory in the FACSTU.r file. Not all of the entries used to make the below record file were

shown in the example. The list of entries is lengthy and redundant. What is listed below is the

entire record file showing each template, record, and the attribute-value pairs associated with the

attributes listed in each record. Below is the toy database used for thesis research and in the theses

related to this research.

Note, the objects are related through attribute-value pairs of other template names.

FACSTU
@
Name
N2 Luis K Daley /* N2 is a name. The name is Luis K Daley */
N3 TaeWook K Daley
N8 Recep T Ramirez
N2 Bruce K Wu
N6 TaeWook K Hsiao
N5 Dan C Ramirez

66

N7 John M Tan
N6 Thomas R Kwon
@
Person
P3 N6 Al F /* person P3 has a name (N6), address (Al), and a sex (F) */
P7 N8 A6 M
P4 N8 A4 F
P4 N8 A2 M
P4 Nl A4 M
P5 Nl A3 M
P6 Nl A5 M
PI N4 A4 F
@
Address
A2 238 MetsDr Monterey CAA4 320 Montecito Seaside CA6 144 Montecito Seaside
CA8 320 BrownellCr MontereA7 238 SpanagelCr SeasideA2 18 Ricketts_Rd Seaside
A7 14 MetsDr Monterey CA A4 144 Mervine Dr Seaside CA 93955
A4 320 Montecito Seaside CA6 144 Montecito Seaside CA8 320 BrownellCr
MontereA7 238 Spanagel_Cr SeasideA2 18 RickettsRd Seaside A7 14 MetsDr
Monterey CA A4 144 MervineDr Seaside CA 93955
A6 144 Montecito Seaside CA8 320 BrownellCr MontereA7 238 SpanagelCr
SeasideA2 18 RickettsRd Seaside A7 14 MetsDr Monterey CA A4 144 MervineDr
Seaside CA 93955
A8 320 BrownellCr MontereA7 238 SpanagelCr SeasideA2 18 RickettsRd
Seaside A7 14 MetsDr Monterey CA A4 144 MervineDr Seaside CA 93955
A7 238 SpanagelCr SeasideA2 18 RickettsRd Seaside A7 14 MetsDr Monterey
CA A4 144 MervineDr Seaside CA 93955
A2 18 RickettsRd Seaside A7 14 MetsDr Monterey CA A4 144 MervineDr
Seaside CA 93955
A7 14 MetsDr Monterey CA A4 144 MervineDr Seaside CA 93955
A4 144 MervineDr Seaside CA 93955
@
Faculty
P8 CS P6
P6 CS P6
P8 CS P8
@
Civfac
P6AProfP6
P6ProfP7
@

Milfac
P8 LCDR P8
@
Course_fac
SOC3 C4 P7

67

S0C3 C2 P8
S0C2 C2 P7
S0C1 C3 P7
@
Course
C4 HCI4322 2 P8
C4 OOPROG 4322 2 P8
C2 HCI 4114 2 P7
Cl DBI4203 1 P8
@

Course_stu
SOCS3 Cl P2
8OCS10 C4 PI
SOCS7 C2 P5
SOCS7 C2 P4
SOCS9 C3 P3
SOCS10 C2 P4
SOCS4 Cl P3
SOCS8 Cl P5
SOCS3 C3 P2
SOCS6 C2 P5
SOCS1 C3 P3
SOCS8 C4 P3
SOCS10 Cl P5
@
Team_stu
5051 T2 P2
SOS5 T2 PI
SOS7 Tl PS
5052 Tl PI
SOS5 T2 P5
5053 Tl PS
SOS2 T2 P3
@
Team
T2DB5
T2 00P
@
Team_fac
SOT3 SOCS10 Tl
SOT2 SOCS4 T2
SOT3 SOCS2 Tl
@
Student
P3 30 CS PI
P2 30 CS PI

68

PI 10 CS P2
P3 10 CS P4
P5 40 CS P2
$

c. Sample Data Records (FACSTU,r)

The following is the output of the record file. When using the ABDM and ABDL,

the output of the file will be in the Attribute Data format seen below.

FACSTU

@

Name
Nl Luis M Ramirez
N2 Bruce R Badgett
N3 Dan R Kellet
N4 TaeWook K Kwon
N5 Recep T Tan
N6 David K Hsiao
N7 Thomas C Wu
N8 John D Daley

@

Address
Al 144 BrownellCr Monterey CA 93940
A2 320 Mets Dr Seaside CA 93955

A3 117 MervineDr Monterey CA 93940
A4 397 Ricketts Rd Monterey CA 93940
A5 238 Montecito Monterey CA 93940
A6 12 SpanagelCr Monterey CA 93940
A7 14 SpanagelCr Monterey CA 93940
A8 18 SpanagelCr Monterey CA 93940

@

Person
PI Nl Al M
P2 N2 A2 M
P3 N3 A3 M
P4 N4 A4 M

P5 N5 A5 M

69

P6 N6 A6 M

P7 N7 A7 M

P8 N8 A8 IV!

@

Faculty

P6 CS P6

P7 CS P7

P8 CS P8

@

Course_fac

S0C1 Cl P6

SOC2 C2 P7

SOC3 C3 P6

SOC4 C4 P8

@

Civ_fac

P6ProfP6

P7AProfP7
@

Mil_fac
P8 LCDR P8

@

Course

Cl DBSEM 4322 1 P6

C2 OOPROG 4114 1 P7

C3 DBI3320 2 P6

C4 HCI4203 1 P8

@

Course_stu

SOCS1 Cl PI
SOCS2 C2 PI

SOCS3 C4 PI

SOCS4 Cl P2

SOCS5 C4 P2

SOCS6 Cl P3

SOCS7 C2 P3

SOCS8 C3 P3

SOCS9 C4 P3

70

SOCS10 Cl P4
SOCS11 C4 P4
SOCS12 Cl P5
SOCS13 C4 P5

@

Teamstu
5051 PI Tl
5052 P2 Tl
5053 P3 Tl
5054 P4 Tl

5055 P5 Tl
5056 PIT2
5057 P3 T2

@

Team
T1DB5
T2 00P

@

Teamfac
SOT1 P6 Tl
SOT2 P7 Tl
SOT3 P7 T2

@

Student
PI 10 CS PI
P2 20 CS P2
P3 30 CS P3
P4 40 CS P4
P5 50 CS P5

$

D. LOAD THE DATABASE

Before loading the database, the template, descripter, and record files must be created.

Executing a loading of a database on the M DBMS depends on information stored in these files.

The backends depend on the template and descriptor files to manage the data between them.

71

Therefore, they must be loaded onto the back-end system. The following illustrates the process

for loading the database and the results of the process on the back-end system (Workstation dbl3).

1. Loading the Database

The following illustrates the process of loading a database. This example is followed by

a sample of the execution on the back-end system (dbl3). These outputs are seen by entering the

unix command gape on the back-end system (Workstation dbl3).

After finishing the generate records option, the main menu reappears. Select option (I).

Option "1" initiates database loading operations. After selecting option (1), the screen displays

another selection menu. Choose (u). The system will ask for the database name. After entering

the name, another selection menu will appear on screen. Selects option (r). The system will ask

for the record file name. Enter the name of the record file. After following these steps, the system

loads the users database on the back-end system (Workstation dbl3).

The attribute-based/ABDL interface:

) - Generate a database
) - Load a database

r) - Request interface 3 x) - Exit to MDBS main menu

SeIect-> /

Select an operation:

(u) - Use a database
(r) - Mass load a file of records
(x) - Exit, return to previous menu

Se!ect-> u

Enter the name of the database: FACSTU

Select an operation:

(u) - Use a database
(r) - Mass load a file of records
(x) - Exit, return to previous menu

Select-> r

Enter the record file name: FACSTU.r

<Loading Records, Please Stand By>

72

If an error message appears after entering the records name then check to ensure the data

types match between the template and records files. Also make sure that there is no blank data

between a single attribute value. And then user begin this process again.

10 20 30 40 50 60

Select an operation:

(u) - Use a database
(r) - Mass load a file of records
(x) - Exit, return to previous menu

Select->

The system is now loaded with the user's defined database and is ready for manipulation

and use.

2. An Example of a Database Loaded on the Backend

The database is loaded to the back-end. Our research used only one backend. But, the

system is designed to have several working in parrallel to speed the search functions in very large

databases. To see the following, enter the UNIX command gape on each workstation that is a

backend and you want to view.

dbll/u/mdbs> gape

0000000 Quantum ProDrive
0000016 105S cyl 974 al
0000032 t 2 hd 6 sec 35 \0
0000048 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

0000416 \0 \0 \0 \0 016 N 003 373 \0 \0 \0 \0 \0 \0 \0 001
0000432 003 316 \0 002 \0 006 \0 # \0 \0 \0 \0 \0 \0 \0 \0
0000448 \0 \0 ? * \0 \0 \0 M \0 \0 m354 \0 \0 \0 \0
0000464 \0 003 036 374 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000480 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 323
0000496 \0 002 q 346 \0 \0 \0 \0 \0 \0 \0 \0 332 276 205 243
0000512 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0008192 \0 317 \0 033 1 N a m e $ N 1 $ L u i
0008208 sMRamirez$#\0 034 1
0008224 Name$N2$BruceR
0008240 Badgett$#\0 0311Name
0008256 $N3$DanRKellet
0008272 S#\0 033 1Name$N4$Tae
0008288 Wook|K$Kwon$#\0 030 1
0008304 Name$N5$RecepT

73

0008320 Tan$#\0 032 1Name$N6$
0008336 DavidKHsiao$#\0
0008352 030 1Name$N7$Thomas
0008368 CWu$#\0 031 lName$
0008384 8$John$D$DaSey$#
0008400 & \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 A0(\0 \0
0008416 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

0016384 001~\0 11AddressAl
0016400 144$Browne!l Cr$
0016416 MontereyCA~9394
0016432 0$#\0,lAddress$A2
0016448 $ 3 2 0 $ M e t s Dr$Sea
0016464 sideCA93955$#\0

the system continues like this until the entire database is loaded.

E. MANIPULATING THE DATABASE

1. Using the ABDM Interface (REQUEST-INTERFACE)

After a database has been loaded, and the database contains the values for each record

desired by the designer, the database is available for manipulation. Exit the Generate a Database

menu. The next menu will be the Attribute-Based/ABDL Interface menu shown below.

The attribute-based/ABDL interface:

(g) - Generate a database
(f) - Load a database
(r) - Request interface
(x) - Exit to MDBS main menu

Select-> r

The (r) option is used to execute the request interface for attribute-based databases

and to process ABDL requests and transactions. To run a query, or to manipulate the database,

the user must first build a Request File. The Request File is built by selecting "n" from the

Subsession menu, and following the prompts for the type of request desired. The requests built are

stored in the Request file specified at the beginning of the session. This file will later be run by

returning to the Subsession menu, choosing "s" rather than "n".

74

When the (r) option is picked from the ABDL interface, the Request-interface menu shown

below will be displayed.

Select a subsession:
(s) SELECT: select traffic units from an existing list

(or give new traffic units) for execution
NEW LIST: create a new list of traffic units
NEW DATABASE: choose a new database
* PERFORMANCE TESTING
* REDIRECT OUTPUT: select output for answers
* MODIFY: modify an existing list of traffic units
* OLD LIST: execute all the traffic units in an

existing list
(x) EXIT: return to previous menu (ABDL main menu)

Refer to the MLDS/MBDS user manual before choosing
subsessions marked with an asterisk (*)

Select-> n

We are building a new Request File, therefore, we choose "n". The following describes

what each selection above is for.

a. (s)- SELECT

An option for selecting a file of previously created ABDL requests. This option

presents a menu for displaying and submitting these requests for processing.

b. (n)-NEW LIST

An option for creating a new file of ABDL requests. This option presents menus

for the creation of a file of INSERT, DELETE, UPDATE, RETRIEVE and RETRIEVE-

COMMON requests. By following the menu, correct syntax is guaranteed.

c. (d) -NEW DATABASE

An option for choosing a new database to work with. This option allows the user to

switch between different databases defined previously in the system.

d. (r) - REDIRECT OUTPUT

An option for specifying the output mode of the session. This option allows the user

to direct the output to the terminal, a file, or to suppressed output.

75

e. (p) -* PERFORMANCE TESTING

An option for enabling/disabling the internal and external performance

measurement hooks. Do not enter this function until a thorough understanding of the system is

gained. Refer to the note at the bottom of the menu.

/. (m) - * MODIFY

An option for modifying a list of ABDL requests that have been stored in a file.

g. (o)-* OLD LIST

An option for executing all ABDL requests in a given file.

h. (x)-EXIT

Returns to the previous menu (i.e., the ABDL main menu).

Refer to the MLDS/MBDS user manual before choosing subsessions marked with an asterisk (*)

This statement refers to the user manual that is Appendix A of Paul Alan Bourgeois's 17

December 1992 thesis.

2. Creating Requests

We now proceed to execute each of these options in turn. We continue to use the FACSTU

database in our examples. The following will detail how the five basic manipulations belonging

to the KDS can be accessed and used from within the ABDL/ABDM portion of the system (i.e.,

the KDS). The five basic operations belonging to the KDS are the INSERT, RETRIEVE,

DELETE, UPDATE, and RETRIEVE-COMMON.

To generate a request that will manipulate the database using any one of the five basic KDS

operations, the user must enter the file name that will contain the request interfaces. We suggest

linking this file to the database in use by always using the database name as the name of the file.

Enter the name for the traffic unit file
It may be up to 40 characters long including the .ext.
Filenames may include only one '#' character

76

as the first character before the version number.

FILE NAME-> FACSTW1

Enter the character for the desired Traffic Unit type.

(r) Request
(t) Transaction (multiple requests)
(f) Finished entering traffic units.

Select-> r

a. Creating an INSERT Request

The Insert operation takes one set of attribute-value pairs at a time and inserts the

set as a record into the base data of the database. This operation consults the schema previously

defined for the database and distinguishes those attribute values that are keys from those that are

not. Keys are processed by AB DBMS against the meta data of the database to determine the cluster

to which the record belongs and the secondary storage in which the record is to be placed. To load

data using a batch file, use the Mass_load() function detailed in thesis Chapter V.

Enter the character for the desired next step.

0) INSERT
(r) RETRIEVE
(u) UPDATE
(d) DELETE
(c) RETRIEVE COMMON

Select-> i

INSERT Request

Begin entering keywords as you are prompted.
You will be prompted first for the 'Attribute' and then for the 'value'.
End each attribute or value with a single <return>.

When you have finished entering keywords, respond to the ATTRIBUTE> prompt
with a <return>.

ATTRIBUTE (<cr> to finish)-> TEMP

VALUE-> Name

ATTRIBUTE (<cr> to fmish)-> OID

VALUE-> N9

ATTRIBUTE (<cr> to finish)-> FNAME

VALUE-> David

ATTRIBUTE (<cr> to fi«isfa)-> MI

VALUE-> K

ATTRIBUTE (<cr> to finish)-> LNAME

VALUE-> Hsaio

ATTRIBUTE (<cr> to fmish)->

The process will use the information above to construct an Insert Request following the

conventions required by the system:

[INSERT(<TEMP, Name>,<OID, N9>,<FNAME, David>,<MI, K>,<LNAME, Hsaio>)]

Continue selecting "r" for request, then "i" for insert, inputing the information

requested, until all of the inserts desired are complete.

b. Creating a RETRIEVE Request

The Retrieve operation takes two arguments: a query and a target list. The query

specifies the set of records to be retrieved from the base data and the target list specifies the values

to be displayed from the retrieved data. A simple target list lists the values of attribute-value pairs

whose attribute have been targeted. A complex target list may specify an aggregate function over

a specific attribute. An example of complex functions is taking the AVERAGE over attribute

GRADE. The output being an average grade resulting from a manipulation of all the grades in the

database.

Again, start the process by selecting "r" for Request from the Request Interface

menu. The next menu shown below allows selection of the Retrieve process. Follow the prompts

and menus.

Enter the character for the desired next step.

(i) INSERT
(r) RETRIEVE
(u) UPDATE
(d) DELETE
(c) RETRIEVE COMMON

Select-> r

RETRIEVE Request

Enter responses as you are prompted. You will be prompted first for
the predicates of the query, then attributes for the target-list,
next for an attribute for the optional BY clause and finally for
a pointer for the optional WITH clause.

When you have finished entering predicates for the query, respond
to the ATTRIBUTE> prompt with a <return>.

ATTRIBUTE (<cr> to finish)-> TEMP

Enter the character for the desired relational operator

(a) = EQUAL
(b) 1= NOT EQUAL
(c) > GREATER THAN
(d) >= GREATER THAN or EQUAL
(e) < LESS THAN
(f) <= LESS THAN or EQUAL

Select-> a

VALUE-> Name

So far your conjunction is
(TEMP=Name).
Do you wish to 'and' additional predicates to this conjunction? (y/n) > n

79

Do you wish to append more conjunctions to the query? (y/n) > n

Begin entering attributes for the Target-List. When you are
through entering attributes respond to the ATTRIBUTE> prompt with <
Do you wish to be prompted for aggregation (Y/N)? n

ATTRIBUTE

ATTRIBUTE

ATTRIBUTE

ATTRIBUTE

<cr> to finish)-> OID

<cr> to finish)-> FNAME

<cr> to finish)-> MI

<cr> to finish)-> LNAME

ATTRIBUTE (<cr> to finish)->

Do you wish to use a BY clause (Y/N)? n

At this point, the Retrieve Request has been constructed by the system using the

answers given to the prompts provided. The request is :

[RETRIEVE((TEMP=Name)) (OID, FNAME, MI, LNAME)]

c. Creating an UPDATE Request

The Update operation takes two arguments: a query and a modifier. The

operation is carried out in four steps.

• Step one - the records which satisfy the query are retrieved from the base data. This step
is like the Retrieve operation.

Step two - each retrieved record is tagged for later removal. This step is also know as
writing the deleting tag into a record.

Step three - the record with the deletion tag is placed on the secondary storage where it
originally came from. This step is like the Insert operation. We note that no record has been
physically removed by this operation. The removal of record deletion tags is the function of
the garbage-collecting routine of the system which is carried out in a non-prime time
periodically.

Step four - for each record to be tagged for deletion, this operation makes a copy of the
record. The copy is changed by the modifier specified by the user. The modified copy is
then entered into the database by the Insert operation as a new record. The old copy is marked
for later deletion.

8«

Update is a process that uses the Retrieve, Delete, and Insert processes to allow

modification of a particular record and attribute-value pair.

Enter the character for the desired next step.

(i) INSERT
(r) RETRIEVE
(u) UPDATE
(d) DELETE
(c) RETRIEVE COMMON

Select-> u

UPDATE Request

Enter responses as you are prompted. You will be first
asked for the predicates necessary to build the query and then
the attribute and expression required to construct the modifier.

When you are finished entering predicates for the query,
respond to the ATTREBUTE> prompt with a <return>.

ATTRIBUTE (<cr> to finish)-> TEMP

Enter the character for the desired relational operator

(a) = EQUAL
(b) /= NOT EQUAL
(c) > GREATER THAN
(d) >= GREATER THAN or EQUAL
(e) < LESS THAN
(f) <= LESS THAN or EQUAL

Select-> a

VALUE-> Name

So far your conjunction is
(TEMP=Name).
Do you wish to 'and' additional predicates to this conjunction? (y/n) > y

ATTRIBUTE (<cr> to finish)-> OID

81

Enter the character for the desired relational operator

(a) - EQUAL
(b) /= NOT EQUAL
(c) > GREATER THAN

(d) >= GREATER THAN or EQUAL

(e) < LESS THAN

(D <= LESS THAN or EQUAL

Select- > a

->N9

So far your conjunction is
(TEMP=Name)and(OID=N9).
Do you wish to 'and' additional predicates to this conjunction? (y/n) > n

Do you wish to append more conjunctions to the query? (y/n) > n

Enter the attribute-being=modified.
ATTRIBUTE (<cr> to finish)-> LNAME

Enter the number indicating the desired modifier type

(0) Set attribute equal to a constant
(1) Set attribute equal to a function of itself
(2) Set attribute equal to a function of another attribute
(3) Set attribute equal to a function of another attribute

of a query
(4) Set attribute equal to a function of another attribute

of a pointer

Select-> 0

Enter Constant-> Tarn

By following the prompts and menus, the system has built the Update Request

desired. The Update is:

[UPDATE((TEMP= Name) and (OID= N9)) <LNAME=Tam>]

82

d. Creating a DELETE Request

The Delete operation takes only one argument, a query. In ABDBMS (the KDS),

the Delete operation is carried out in the three steps which are the same steps as steps one through

three of the Update operation.

Enter the character for the desired next step.

0) INSERT
(r) RETRIEVE
(u) UPDATE
(d) DELETE
(c) RETRIEVE COMMON

Select-> d
DELETE Request

Enter responses as you are prompted. You will be
asked to enter attributes, values, and relational operators
as predicates for the query.
When you are finished entering predicates
respond to the ATTRIBUTE> prompt with a <return>.

ATTRIBUTE (<cr> to finish)-> TEMP

Enter the character for the desired relational operator

(a) = EQUAL
(b) /= NOT EQUAL
(c) > GREATER THAN
(d) >= GREATER THAN or EQUAL
(e) < LESS THAN
(f) <= LESS THAN or EQUAL

S elect-> a

-> Name

So far your conjunction is
(TEMP=Name).
Do you wish to 'and' additional predicates to this conjunction? (y/n) > y

83

ATTRIBUTE (<cr> to fänäsh)-> OID

Enter the character for the desired relational operator

(a) - EQUAL
(b) 1= NOT EQUAL
(c) > GREATER THAN
(d) >= GREATER THAN or EQUAL
(e) < LESS THAN
(f) <= LESS THAN or EQUAL

Select- > a

VALUE=> N9

So far your conjunction is
(TEMP=Name)and(OID=N9).
Do you wish to 'and' additional predicates to this conjunction? (y/n) > n

Do you wish to append more conjunctions to the query? (y/n) > n

By following the prompts and menus, the system has built the Delete Request. The

actual request looks like:

[DELETE ((TEMP=Name) and (OID=N9))]

e. Creating a RETRWE-COMMON Request

The Retrieve-Common operation consists of two Retrieve operations with a

Common clause. The common clause specifies an attribute of the record set determined by the

first Retrieve operation and an attribute of the record set determined by the second Retrieve

operation. The clause requires that output of the operation is a set of which is composed of two

records - one from the first record set and other from the second record set such that these two

records have common attribute values for the attributes specified in the common clause. Each

output record can be reduced in size if a target list is used in either Retrieve operation.

Enter the character for the desired nest step.

84

(i) INSERT
(r) RETRIEVE
(u) UPDATE
(d) DELETE
(c) RETRIEVE COMMON

SeIect-> c

RETRIEVE COMMON Request

First enter the source RETRIEVE

RETRIEVE Request

Enter responses as you are prompted. You will be prompted first for
the predicates of the query, then attributes for the target-list,
next for an attribute for the optional BY clause and finally for
a pointer for the optional WITH clause.
When you have finished entering predicates for the query, respond
to the ATTRIBUTE> prompt with a <return>.

ATTRIBUTE (<cr> to fmish)-> TEMP

Enter the character for the desired relational operator

(a) = EQUAL
(b) /= NOT EQUAL
(c) > GREATER THAN
(d) >= GREATER THAN or EQUAL
(e) < LESS THAN
(f) <= LESS THAN or EQUAL

Select- > a

-> Name

So far your conjunction is
(TEMP=Name).
Do you wish to 'and' additional predicates to this conjunction? (y/n) > y

ATTRD3UTE (<cr> to finish)-> OID

85

Enter the character for the desired relational operator

(a) = EQUAL

(b) 1= NOT EQUAL
(c) > GREATER THAN
(d) >= GREATER THAN or EQUAL
(e) < LESS THAN
(f) <= LESS THAN or EQUAL

Select- > a

->N4

So far your conjunction is
(TEMP=Name)and(QID=N4).
Do you wish to 'and' additional predicates to this conjunction? (y/n) > n

Do you wish to append more conjunctions to the query? (y/n) > n

Begin entering attributes for the Target-List. When you are
through entering attributes respond to the ATTRIBUTE> prompt with <return>.
Do you wish to be prompted for aggregation (Y/N)? n
ATTRIBUTE (<cr> to finish)-> OID

ATTRIBUTE (<cr> to fmish)-> FNAME

ATTRIBUTE (<cr> to finish)-> LNAME

ATTRIBUTE (<cr> to finlsh)->

Do you wish to use a BY clause (Y/N)? n

COMMON ATTRIBUTE 1> OID

COMMON ATTRIBUTE 2> OIDS

The request being built is:

[RETRIEVE((TEMP=Name)and(OID=N4))(OID,FNAME,LNAME)COMMON(OID,OID_
S)

Enter the target retrieve

RETRIEVE Request

86

Enter responses as you are prompted. You will be prompted first for
the predicates of the query, then attributes for the target-list,
next for an attribute for the optional BY clause and finally for
a pointer for the optional WITH clause.

When you have finished entering predicates for the query, respond
to the ATTRIBUTE> prompt with a <return>.

ATTRIBUTE (<cr> to fmish)-> TEMP

Enter the character for the desired relational operator

(a) = EQUAL
(b) /= NOT EQUAL
(c) > GREATER THAN
(d) >= GREATER THAN or EQUAL
(e) < LESS THAN
(f) <= LESS THAN or EQUAL

Select-> a

VALUE-> Coursejstu

So far your conjunction is
(TEMP=Course_stu).
Do you wish to 'and' additional predicates to this conjunction? (y/n) > n

Do you wish to append more conjunctions to the query? (y/n) > n

Begin entering attributes for the Target-List. When you are
through entering attributes respond to the ATTRD3UTE> prompt with <return>.
Do you wish to be prompted for aggregation (Y/N)? n

ATTRIBUTE (<cr> to finish)-> OID

ATTRD3UTE (<cr> to finish)-> OIDJ

ATTRIBUTE (<cr> to finish)->

Do you wish to use a BY clause (Y/N)? n

The request being processed is:

[RETRIEVE((TEMP=Name)and(OID=N4))(OID,FNAME,LNAME)

87

COMMON(OID,OID_S)RETRIEVE(TEMP=Course_stu)(OID,OID_S)]

3. Running and Testing the Requests

In the above processes, using the Request Interface from within the ABDL interface the

user built a request file responding to prompts and menus from within the Subsession menu. In our

example we named our Request file FACSTU#L Building the request does not automatically

yeild results. The request file has to be run. To run the file, choose "r" from the ABDL interface,

then choose "f from the Request Interface. Then select "s" from the Subsession menu to run the

file. The menu below will appear.

Enter TI_read_name

Enter the name for the traffic unit file
It may be up to 40 characters long including the .ext.
Filenames may include only one '#' character
as the first character before the version number.

FILE NAME-> FACSTUM

After entering the file name, the contents of the file appear on screen as listed below.

(0)[RETRIEVE(TEMP=Name)(OID,FNAME,MI,LNAME)]
(l)[INSERT(<TE]VIP,Name>,<OID?N9>,<FNAME,Steven>,<MIJ>,<LNAME,greg>)]
(2)[RETRIEVE(TEMP=Name)(OID,FNAME,MI,LNAME)]
(3)[RETRIEVE(TEMP=Person)(OID,PNAME,PADDRESS,SEX)]
(4)[INSERT(<TEMP5Person>?<OID,P9>,<PNAME,N9>,<PADDRESS?A9>,<SEX,F>)]
(5)[RETRffiVE(TEMP=Person)(QID?PNAME.PADDRESS,SEX)]
(6)[UPDATE((TEMP=Name)and(OIB=N9))<LNAME=Tam>]
(7)[RETRIEVE(TEMP=Name)(OID,FNAME.LNAME)BYLNAME)]
(8)[RETRIEVE(TEMP=Address)(NUMBER,STREET,CITY,ZIPCODE)]
(9)[UPDATE((TEMP=Address)and(OID=A8))<ZIPCODE=93956>]
(10)[RETRIEVE(TEMP=Address)(NUMBER,STREET?CITY,ZIPCODE)]
(ll)[DELETE(TEMP=Name)and(OID=N9)]
(12)[RETRIEVE(TEMP=Name)(QIB?FNAME,LNAME)]
(13)[RETRIEVE((TEMP=Name)and(QID=N4))(OID,FNAME?LNAME)

COMMON(OID5OID_S)RETRIEVE(TEMP=Course_stu)(OID)]

88

Select Options:

(d)
(n)
(num)

(x)

redisplay the traffic units in the list
enter a new traffic unit to be executed
execute the traffic unit at [num]
from the above list
exit from this SELECT subsession

Option-> 0

The menu above is asking for which part of the request individually to run. The user input

the Request Index Number "0" to run the first query. The results of the query appear on the screen

like the listing below.

(<OID, Nl>, <FNAME, Luis>, <ML M>, <LNAME, Ramirez>)
(<OID, N2>, <FNAME, Bruce>, <MI, R>, <LNAME, Badgett>)
(<OID, N3>, <FNAME, Dan>, <MI, R>, <LNAME, Kellet>)
(<OID, N4>, <FNAME, TaeWook>, <MI, K>, <LNAME, Kwon>)
(<OID, N5>? <FNAME, Recep>, <MI, T>, <LNAME, Tan>)
(<OID, N6>, <FNAME, David>, <MI, K>, <LNAME, Hsiao>)
(<OID, N7>, <FNAME, Thomas>, <MI, C>, <LNAME, Wu>)
(<OID, N8>, <FNAME, John>, <MI, D>, <LNAME, Daley>)Exit

Continue in this fashion to run the requests. Use the index number to select each of the

requests desired from the Request File.

89

90

APPENDIX B--CONTROLLER FILE CATALOG

A. COMMUNICATIONS COMMON

All Controller files are located on Work Station dbl 1 under: mbds/u/greg/CNTRL

Table 3: CCOM--Communications COMMON

File Name File Description #include #define

cgetx Controller Get: Responsible for receipt of messages from
the backend.

<stdio.h>
<sys/

types.h>
<netint/

in.h>
flags.def

dblocal.def
com-

mdata.def
msg.def

1 beno.def

none

cputx Controller Put: Responsible for sending messages to the
backend.

<stdio.h>
<sys/

types.h>
<netint/

in.h>
flags.def

dblocal.def
com-

mdata.def
msg.def
beno.def

none

flags.def Flag Definitions: A file included in cgetx and cputx that
specifies which flags to define using mnemonic identifi-

ers.

none EnExFlag
EnExFlagg
m_pr_flag

pr_flag
SRTime-

Flag
LangIF_Fla

g

make_result Make file specifying order of compilation and where to
place object code.

none none

91

Table 4: COMMON

File Name File Description #include #define

tmplsr.c Template subroutines: A file grouping funcitons required <stdio.h> none
to: flags.def

Identify the task using this routine. dblocal.def
Create database id (dbid). com-

Create a record template for the database dbid mdata.def
Get number of backends to set. beno.def

Set number of backends. msg.def
Extract userid, and dbid. msg.ext

92

B. INSERT INFORMATION GENERATOR

Table 5: HG-Insert Information Generator

File Name File Description #include #define

bes.c Backend Selector: Called when a backend returns a clus-
ter-id (or a null value). Determines a backend for record

insertion when all backends have returned a cluster-id (or
null value). Otherwise, it saves the cluster-id (or null

value) returned by the backend.

<stdio.h>
<sys/file.h>

flags.def
beno.def
comm-
data.def
iig.def

dblocal.def
tmpl.def
iig.ext

none

didgen.c Database ID Generator: New Descriptor: Generates a
new descriptor id for a type-c attribute.

<stdio.h>
flags.def
comm-
data.def
iig.def

dblocal.def
tmpl.def
iig.ext

none

iig.c main(argc, argv) for Insertion Information Generator. <stdio.h>
<sys/file.h>

flags.def
beno.def

com-
mdata.def

iig.def
dblocal.def

tmpl.def
iig.dcl

tmpl.dcl

none

extern:
msg_q[MS

GLEN]
msg_hdr

93

Table 5: ÜG-Iesert Information Generator

File Name File Description #include #define

iigdbl.c Load a type-C attribute in the TCDT <stdio.h>
<sys/file.h>

flags.def
beno.def

com-
mdata.def
msg.def
iig.def

dblocal.def
tmpl.def
iig.ext

none

iigsr.c IGG subroutines for: <stdio.h> none
Receiving the requested and clustered. flags.def

Receiving requested and descriptor. beno.def
Sending backend number selected to insert a record to the com-

backends. mdata.def
Broadcasting a descriptor id to the backends. msg.def

Sending results of the internal timing to the controller. iig.def
dblocal.def

dblocal.def Buffersize speeds reading and writing CINBT (Cluster-id none IJLG
Next Backend Tables) BUFFER-

struct attribute table entry. SIZE
struct attribut table AT_MaxTy

peC

flags.def A file which specifies which flags to define using mne- none EnExFlag
monic identifiers. pr_flag

SRTime-
Flag

LangIF_Fla
g

iig.def Holds the clustered information associated with an insert
request:

- Builds required structures for request-id, cluster-id,
information.

- CINBT - Cluster Id Next Backend Table.
- IIG-descriptor: attribute-value pair lengths
- IIG-descriptor-descriptor-id table element.

none none

94

Table 5: ÜG-Insert Information Generator

File Name File Description #include #define

iig.dcl Aggregates a collection of rid_cid_info and CTNBT data. none none

iig.ext Globalizes rid_cid_info, cidg_cnt, CINBT, CINBT_file,
AT_file.

none none

make_result Compiling instructions and paths. none none

POST PROCESSING

Table 6: PP-Post Processing

File Name File Description #include #define

pp.c main (arge, argv) for post processing. <stdio.h> extern:
-initializes. flags.def msg_q

-processes a message from a task in the controller includ- beno.def [MSGLEN]
ing cases common to all tasks. com- msg_hdr

-receive number of request in the transaciton from mdata.def
RPREP and put the information in the entry, adding the msg.def

entry to the transaction information list. dblocal.def
pp.def
pp. del

tmpl.def
tmpl.dcl

ppby.c Creates and manipulates a hashing—the bucket table. <stdio.h>
flags.def
beno.def

com-
mdata.def

pp.def
pp.ext

none

95

Table 6: PP-Post Processing

File Name File Description #include #define

pprba.c Groups aggregate_info , allocating a by-block structure to
be used when hashing by_clause information.

- Checks for buffer size.
- Allocates space for new RP-by-hash.

- Allocates an instance of PP-ResultBuffer for a request..
- Puts the request id, adds new entry to list, frees entry in
PP_ResultBuffer list for a request. Puts the results for a
request in PP_ResultBuffer and sends a completion sig-

nal

<stdio.h>
flags.def
beno.def

com-
mdata.def

pp.def
pp.ext

none

ppsr.c PP subroutines for:
-returning results (sent by a backend) in the buffer.

-returning traffic unit and error message (sent by Request
Preparation) in the buffer.

-returning number of requests in a transaction.
-sending reuslts for a request to the host machine.
-sending a traffic unit that has errors to the host.

-sending msg to host signaling transaction finished.
-sending results of internal timing to the controller.

<stdio.h>
flags.def

dblocal.def
beno.def

com-
mdata.def
msg.def
pp.def
pp.ext

tmpl.def

none

repmon.c Post Processing Reply Monitor: Monitors sending results
to the host machine:

-store results from a backend in a buffer.
-when all backends have returned results send buffer info

with a competion signal to host.

<stdio.h>
<ctype.h>
flags.def
beno.def

com-
mdata.def
msg.def
pp.def
pp.ext

flags.def Defines flags needed by PP mnemonically. none EnExFlag
EnExFlagg
m_pr_flag
SRTime-

Flag
LangIF_Fla

g

96

Table 6: PP--Post Processing

File Name File Description #include #define

pp.def Defines maximums, minimums, sizes, lengths and groups none NMAX
aggregate data via "struct": aggregate_info, NMIN

PP_ResultBuffer, trans_info struct: MAX_AG_
aggre- OPS

gate_info MAX_ATT
PP_Result- R

Buffer MXAVLN
trans_info

pp.del Declares PP structures-PP_ResultBuffer, trans_info. none none

pp.ext Globalizes structures-PP_ResultBuffer, trans_info none none

make_result Compiling and resulting Paths— information. none none

D. REQUEST PROCESSED

Table 7: REQP--Request Processing

File Name File Description #include #define

chkptu.c Check Point Utilities: A grouping of functions.
- Checks all the request in a traffic unit against the record

template.
- Checks the validity of a request.

- Checks for proper attributes and attribute types.
- Checks validity of non-insert requests.

<stdio.h>
flags.def
beno.def
comm-
data.def
reqp.def
reqp.ext

none

mallocs.c Memory Allocation functions creating tables for:
Aggregate definition node, aggregate index definition

node, RC (Request Composer) request index definition
node, Request count definition node, Request table defi-

nition node, Request index definition node, update
request information node.

<stdio.h>
dblocal.def

com-
mdata.def
reqp.def

none

97

Table 7: REQP--Request Processing

File Name File Description #include #define

reqcomp.c Request Composer—a grouping of functions:
- Puts requests in the format needed by the DM (Direc-

tory Manager).
- Puts requests into the form required by the backends.
- Puts inserts into the form required by the backends.

- Converts a formatted request from parsed request and
adds them to a set of formatted requests.

- Deals with modifiers (Type III, IV).
- Formats Retrieves.

<stdio.h>
flags.def
beno.def
comm-
data.def
reqp.def
reqp.ext
msg.def

none

reqp.c main(argc, argv):
- Scheduling functions.

- Processing messages from host.

<stdio.h>
flags.def
beno.def
comm-
data.def
reqp.def
reqp.ext
msg.def
tmpl.def
tmpl.dcl

commsg.c

extern:
msg_q

msg_hdr
*mem_ptr

rcomtype[2]
no_agg[2]

*index_req_
ptr

reqpsr.c Request Processing Subroutines necessary for REQP:
- Receive and buffer the nxt msg for REQP.

- Return senders name and type of msg in the buffer.
- Return datbase id and traffic unit.

- Return record with changed cluster (sent by BE).
- Broadcast a set of formmated requests to backends.

- Notify RECP a Retreive-Common is coming.
- Send requests to Post-Processing.

- Send aggregate operators (in traffic unit) to PP (not
completed).

- Send requests with erros to PP.
- Send a msg to all DM's in BE's no more generated

Inserts.
- Send results of internal timing to the controller.

<stdio.h>
dblocal.def

flags.def
beno.def

com-
mdata.def
reqp.def
reqp.ext
msg.def
tmpl.def

none

dblocal.def Defines R_E_Q_P none R_E_Q_P

98

Table 7: REQP--Request Processing

File Name File Description #include #define

flags.def Defines flags required by REQP processes. none EnExFlag
EnExFlagg
m_pr_flag

pr_flag
SRTime-

Flag
LangIF_Fla

g

reqp.def Defines constants and structures needed for REQP
- Number of request per transaction

- area used to store information about update requests.
-structure of request index..

none NOPred
RC_null_ag

g-OP

reqp.dcl Declarations. none none

reqp.ext Globalizes upd_req_info and SchedNo none none

lsrc.c Lexicon Subroutines for reserved words and symbols none none

ysrc.c Parser Initiation Subroutines.
- Establishes table pointers.

- Establishes counters, slots, request types, aggreagate
operators.

- Establishes types of updates, relatioal operators, routing
indicators.

- Establishes tokens.
- Transaction handling

none YYDEBUG

make_result Compiling and paths. none none

flags.def (2) Unused flags—all are commented out. none none

99

E. TEST INTERFACE

Table 8: TI-Test Interface

File Name

dbl.c

dblsr.c

gdb.c

gsdesc.c

gsgenrec.c

File Description

Database load:
- Loads directory tables and/or records.

- Loads record templates for a new database.
- Saves database id.

- Sends database id to other processes.
Gets Users id and broadcasts user id and database ids.

Database Load Subroutines:
- Sends msg to create a database and template.

- Sends msg to insert attribute, descriptor, and catch-all
descriptors.

- Generates descriptor ids.
- Sends msg to insert type C attributes.

- Checks status of actions taken.
- checks the response to DBL of action.

Generate Database: Creates arbitrarily large test data-
bases for MDBS using standard template file as input. It

creates a standard record file as output.
- main (argc,argv)

Generate Standard Descriptor: Generates descriptor file
for each template.

- Includes interactive menus
- Establishes upper/lower bounds.

Applies to the gdb.c test db generates

Generate Standard Generic Records: Generates records
using sets. Applies to gdb.c test db generates

#include

<stdio.h>
flags.def
beno.dcl

dblocal.def
com-

mdata.def
tmpl.def
tstintdef
msg.def

none

<stdio.h>
com-

mdata.def
tstint.def

<stdio.h>
<ctype.c>
flags.def

com-
mdata.def
tstint.def

<stdio.h>
flags.def

com-
mdata.def
tstintdef

#define

none

DEBUG

none

100

Table 8: TI--Test Interface

File Name File Description #include #define

gsgmset.c Generate Standard Generate/Modify Sets: Generates and
modifies sets of values. Applies to gbd.c test db generater.

<stdio.h>
<ctype.c>
flags.def

com-
mdata.def
tstintdef

none

gsmodset.c Generate Standard Modify Set: Modifies a set of values
for an attribute by reading the set into an array for manip-

ulation. Applies to gbd.c test db generater.

<stdio.h>
<ctype.c>
flags.def

com-
mdata.def
tstintdef

none

gstmpl.c Generate Standard Template: Generates a record template <stdio.h>
<ctype.c>
flags.def

com-
mdata.def
tstint.def

mtestc Internal Performance Tests - provides users with a way to
monitor internal message processing routines.

- Internal Test.
- Initiate Timers.

- Computes average time to process a certain msg.

<stdio.h>
<ctype.c>
beno.def

com-
mdata.def
tstint.def
tstintext
msg.def

ti.c Test Interface Main Program: main (arge, argv) <stdio.h>
flags.def
beno.def
msg.def

com-
mdata.def
tstintdef
tstint.dcl

dblocal.def
tmpl.def
tmpl.dcl

none

101

Table 8: TI-Test Interface

File Name File Description #include #define

tireqs.c Test Interface Request Subroutines: Prompts user for the <stdio.h> none
keywords needed to assemble a request: <ctype.h>

- Insert flags.def
- Retrieve com-
- Delete mdata.def
- Update tstint.def

- Retrieve_common tstintext
- Attribute names.

tireqsubs.c Subroutines necessary to build and process requests: <stdio.h> none
- Construct queries from conjunctions <ctype.h>

- Build conjunctions flags.def
- Build modifiers. com-

- Get Expressions to be performed. mdata.def
- Get attribute names and values tstint.def

- Get aggregate operators. tstintext

tisr.c Test Interface Subroutines: <stdio.h>
- Send msg to use a database. flags.def

- Receive the next msg for TI and store it in a buffer. dblocal.def
- Handle errors com-

- Request preparation and indicate completion. mdata.def
- Assign the proper db to the proper user. tstintdef

tstint.ext
msg.def

tisubs.c Subroutines required for processing traffic units: <stdio.h> extern:
- Read in name of traffic unit or response file. flags.def msg_q[MS

- Determine input file to be used. dblocal.def GLEN]
- Write traffic unit into the new traffic unit list file. com- msg_hdr

- Read traffic unit from input file into buffer. mdata.def
- Get traffic units from user and save to TU list file. tstint.def

- Prompt for type—single request or transaction. tstint.ext
- Display all TU's in list file. msg.def
- Determine format of output. beno.def

- Send TU for execution in MDBS.
- Output or Print results/response from MDBS.

- Handle errors in TU's
- Check if there are unfinished request in MDBS.

102

Table 8: TI-Test Interface

File Name File Description #include #define

tstint.c Test the Interface:
- Test interface through continuation of session or during

a subsession.
- Select an output media for answers to requests.

- Change database being used.
- Save TU's to a file of the user's selection.

- Allow modifications of old traffic units.
- Retrieve and execute an old TU list or individual TU.

- Print out the traffic unit sent.
- Save new database id.

***GSMAIN contained in get_DB(dbid) funtion.

<stdio.h>
<ctype.h>
flags.def

com-
mdata.def
tstintdef
tstintext
msg.def

none

unixtime.c Globalizes both stop and start timers. <stdio.h>
<time.h>
flags.def

com-
mdata.def

extern:
CRT_flg
*resultptr

dblocal.def Defines T_I none T_I

flags.def Defines flags required within TL none LangIF_Fla
g

103

Table 8: TI-Test Interface

File Name

tstint.def

tstint.dcl

tstintext

File Description

Defines sizes, lengths, maximums, minimums, and maxi-
mum number of traffic units.

Test record template to be used when included in a file.

Globalizes variables and constants used in tstint.dcl

#include

none

none

none

#define

MNTrafUni
ts

RESLength
AOLength

SetSize
MRLength
MAX_REC

ORDS
MAXLINE
TIMER_QS

IZE
TIMER_Q

WIDTH
TIM_STR_

LEN
NO_OF_RE

Q_REPS
MPLength

REQLength
TULength
ALLCAPS
NOTHING

DBCAP
ONECAP
NOCAPS

FnVnS
TLEOTU

dbl_eof
dbl eod

none

none

F. COMMON FILES TO BOTH FRONT AND BACKENDS

All the files common to both the front and backends are located on dbl 1 under:

104

mbds/u/greg/

Table 9: COMMON-Files held in common by every module.

File Name File Description #include #define

ack.c Acknowledgements: A collection of functions:
- Retrieves host number from host name.

- Initialize sockets for reliable broadcasting for Get's.
- Initialize sockets for reliable broadcasting for Put's.
- Gets acknowledgements after sending a msg of type

DATAGRAM else retransmits.
- Send a retransmission to a particular computer

- Determins how long a broadcast msg is and returns
number of fragments needed.

- Slows repeated broadcast msges allowing receiveres to
catch up.

- Tags msgs in case retransmissions get lost too.
- Untags received msgs since not part of MDBS process-

ing.
- Gets msgs off the net.

- Assemble received msg fragments.

<stdio.h>
<sys/

socket.h>
<netinet/

in.h>
<netdb.h>
<errno.h>

<sys/
time.h>

<strings.h>
flags.def

dblocal.def
com-

mdata.def
msg.def
beno.def
pcl.def
ack.dcl

extern:

this_host[5]

host_names
[MaxBack-
ends+l][M
AXPLACE

S]

cb.c Initialize communications between controller and back-
ends.

<stdio.h>
dblocal.def

flags.def
com-

mdata.def
msg.def
beno.def
pcl.def

extern:

this_host[5]

comio.c Communication I/O routines:
- Keyboard input.

- File I/O.
- Error handling.

<stdio.h>
<ctype.h>

com-
mdata.def
dblocal.def
tstintdef

commsg.c Handles all the common message types that are sent to
each task. Included in the main program of each task.

none none

105

Table 9: COMMQN—Files held in common by every module.

File Name File Description #include #define

dblgeneralc. General database loading: Extracts and puts array data <stdio.h> none
into the msg buffer. flags.def

com-
mdata.def

dblocal.def
msg.def
msg.ext

dbtmp- Database template modifier: <stdio.h> none
mod.c - Creates a database node. flags.def

- Extracts user id from request id. com-
- Assigns database node to the user. mdata.def

dblocal.def
tmpl.def
tmpl.ext

error.c Returns error msg when based on switch number from <stdio.h> none
this collection of user error messages. com-

mdata.def
dblocal.def

generals.c General String Functions: <stdio.h> extern:
- Converts a number to a string of max length of 15. <sys/ - errno

- Converts strings to numbers and returns number value. time.h>
- Compare strings and their values flags.def

- Concatenate Strings. com-
- Get system time in sec and microseconds. mdata.def

- Convert strings to long integer and return value. dblocal.def
- Write process id to ".procname.pid"

msend.c Message Send <stdio.h>
flags.def

com-
mdata.def

dblocal.def
msg.def

none

106

Table 9: COMMON-Files held in common by every module.

File Name File Description #include #define

newdb.c Creates an entry for a new database. <stdio.h>
flags.def

com-
mdata.def
dblocal.def

msg.def
tmpl.def
tmpl.ext

none

newtmpl.c Creates an entry for a new template. <stdio.h>
flags.def

com-
mdata.def

dblocal.def
msg.def
tmpl.def
tmpl.ext

none

107

Table 9: CQMMON-Files held in common by every module.

File Name File Description #include #define

pcl.c Process Controller: <stdio.h> MAXAD-
- Initialize the client putting PCL in BE and Cntrlr. <sys/ DRSIZE

- Initialize Backends and unique socket. types.h> MAX-
- Set up paths to controller. <sys/ ALIASES

- Put message into buffer and send it when a BE wants to socket.h>
talk to the controller. <netinet/

- Initialize the server, creating temporary sockets for in.h>
braodcast msgs. <arpa/

- Get messages from off the Ethernet and prioritize. inet.h>
- Get first message for initialization of BE's. <sys/file.h>

- Set up socket address IAW host_name and port. <ndbm.h>
- Broadcast to all other BEs. <ctype.h>

- Save host name.in backends. <errno.h>
- Close all sockets. <sys/

- Do DBM time.h>
flags.def

com-
mdata.def

dblocal.def
msg.def
beon.def
pcl.def
ack.def

selectx Select Database. <stdio.h>
flags.def

com-
mdata.def

dblocal.def
tmpl.def

none

tmpl.ext

setbeno.c Set the backend number and number of backends for this <stdio.h> none
task. flags.def

beno.def

setnobes.c Set the number of backends variable in task. <stdio.h>
flags.def
beno.def

none

108

Table 9: COMMON-Files held in common by every module.

File Name File Description #include #define

sndrcv.c - Initiate subroutines <stdio.h> extern:
- Create the connections required for inter-process com- <sys/ - db_info

munications. types.h> -

- Send messages from one task to another task on the <sys/ *head_db_i
same computer. socket.h> nfo

- Receive next message for a task. <netinet/
- Get socket descriptor for receiver. in.h>

- Get descriptor for next message to be read. <errno.h>
- Copy header from buffer into msg header. <sys/

- Copy header and msg into buffer. time.h>
- Denote finish of subroutine. flags.def

- Print process names and message types (useful in com-
debugging). mdata.def

- Copy msg from buffer into message header and msg. dblocal.def
- Perform diagnostics on processes. msg.def

sndrcv.def
sndrcv.dcl

utilities.c A collection of necessary functions for: <stdio.h>
- Opening MDBS files. flags.def

- Adding Paths. com-
- Confirming database. mdata.def

- Reading templates. tmpl.def
- Creating database information nodes. dblocal.def

- Freeing templates from the template list.

waitmsg.c Waits for I/O or a message. <stdio.h>
<sys/

types.h>
<sys/

time.h>
flags.def

com-
mdata.def
msg.def

sndrcv.def
sndrcv.ext

none

109

Table 9: COMMON-FMes held in common by every module.

File Name File Description #include #define

ack.def Globalizes variables required for acknowledgments. none extern:

retrans__soc
k_get

send_ack_s
ock

receive_ack
_sock

retrns_sock
_send

beno.def Globalizes backend numbers. none extern:
- NoBack-

ends

BACKEND
_NO

commdata.
def

Common Data Definitions:- MBDS file area constants:

- Lengths that many need to be changed:

none DATA_AR
EA

HOME
MaxPath-

Length
NoBElength
MAX_AG_

ATTR
MAX_RET

R
MAX_RTS
MFNLength

USE-
RidLength
DBIDLNT

H
TlLength

110

Table 9: COMMON-Files held in common by every module.

File Name File Description #include #define

commdata.
def (cont'd)

Common Data Definitions: none

Maximum sizes, entries, tracks, numbers....

Timer Constants:

RNLength
ANLength
AVLength
DIL_AttrId
DIL_DescId
DIL_ength

Max-
NoReqs
MaxCids

MAX_FIEL
DS

RT_MAX_
ENTRY

REQ_MAX
_TYPE_C
ReqMax-
DidSets

QR_MAX_
DIDS

RecDisk-
Size

no_tracks
TrackSize
RecSize

MAX_ADD
RS

UpdCoef
ErrDelay

TIMER_QS
IZE

TIMER_Q
WIDTH

NO_OF_RE
Q_REPS

TIM_STR_
LEN

ARRLEN
NO_OF_M
EASURE-
MENTS

111

Table 9: COMMON-Files held in common by every module.

File Name File Description #include #define

commdata.
def (cont'd)

Common Data Definitions: Non-lengths
- Used to signal RECP that more addrs are coming.

none MORADD
R

SPACE
BOTrans
EOTrans

- Request types:

BORequest
EORequest

EOConj
EOQuery
EORecord

RETRIEVE
UPDATE
DELETE
INSERT
FETCH

RET_COM
- Routing indicators: RET_COM

_S
RET_COM

_T
RIAPO
RIRMR

- Relational Operators: RIRMIDU
RIBS

RIRCRF
RIRCI
RIDIG
ROLT
ROLE
ROGT
ROGE
ROEQ
RONE

112

Table 9: COMMON-Files held in common by every module.

File Name File Description

commdata.
def (cont'd)

Common Data Definitions: - Aggregate Operators

Modifier types in an update request:

- End of Expression in an update.
Addrs found in DM going to RECP

- Results coming from backends:

#include

none

Index for controller, Backends:

End of message indicators:

#define

AOMAX
AOMIN
AOAVG
AOSUM

AOCOUNT
MTO
MT1
MT2
MT3
MT4

EOExpr
BOAddr
EOAddr

BOResult
EOResult
CSignal
CSInsert

CSNonln-
sert

EOAttr
CTRL

STRING
SMALLJN

TEGER
LARGEJN

TEGER
TRUE
FALSE
EOMsg

ring_the_be
11

TU end

113

Table 9: COMMON-Files held in common by every module.

File Name File Description #include #define

commdata.
def (cont'd)

Common Data Definitions: none EOField
EndString

EndNumber
NOBOUND

- Internal testing definitions: MIN_RQP_
MSGTYPE
MIN_IIG_
MSGTYPE
MIN_PP_M

SGTYPE
MAX_PP_
MSGTYPE
MIN_DM_
MSGTYPE

- External timing definitions: MAX_DM_
MSGTYPE

- Hashing constants: MIN_CC_
MSGTYPE
MAX_CC_
MSGTYPE
MIN_RP_

MSGTYPE
MAX_RP_
MSGTYPE

pleng
cvtflg
streq

BUCKET_
MARK

MAX_OVE
RFLOW

MAX_CO
MPARE

NUMBER_
OF BUCK-

ETS
MAX_BUC
KET_SIZE
MAX_BLK

_SIZE

114

Table 9: COMMON-Files held in common by every module.

File Name File Description #include #define

msg.def Message lengths and message passing id definitions: none TSPA
LENHD
HDLEN
MSGIN-

TOOFFSET
RESTMS-

GLEN
MASJiOS

T_LEN

115

Table 9: COMMON-Files held in common by every module.

File Name File Description #include #define

msg.def Message lengths and message passing id definitions: none Resplength
(cont'd) - Controller tasks defined: REQP

IIG
PP

G_PCLC
P_PCLC

- Host task defined: TI
- Backend tasks defined: DM

RECP
CC

G_PCLB
P_PCLB

DIO
- Message types defined: Host-

TrafUnit
CH_ReqRes
ChHJTrans

Done
Get Tmpl

- Msg types for msgs from Req-Prep to Post-Proc: ReturnTmpl
errReturnT-

mpl
- Msg types for msgs from ReqPrep to DM NoOfReqs-

- Msg types for msgs from ReqPrep to RECP InTrans
- Msg types for msgs from IIG to DM AggOps

ReqsWith-
- Msg types for msgs from DM to HG Err

ParsedTraf
- Msg types for msgs from RECP to PP Unit

RetComNo-
tification
NewDesc

BeNo
Clusld
Req-

ForNewD-
escld

BC_Res
BC_AO_Re

s

L16

Table 9: COMMON--Files held in common by every module.

File Name File Description #include #defme

msg.def - Msg types for msgs from RECP to REQP: none Rec-
(cont'd) Changed-

- Msg types for msgs from DM in one backend to DM's Clus
in others: RetFet-

- Msg types for msgs from DM to RECP: Caused-
ByUpdRes

SpaceLeft
- Msg types for msgs from RECP to DM: reqDiskAd-

drs
- Msg types for disk I/O signals RECP to RECP Changed-

ClusRes
Updlns

- Msg types for msgs from DM to Concur-Ctrl(BE) Fetch
Old-

NewValues
SrceFin-

ished
PIO_READ

- Msg types for msgs from Concur-Ctrl to DM PIO_WRIT
E

OLD_REQ
- Msg types for msgs from RECP to Concur-Ctrl TypeC_attrs

TrafUnit
DidSet-

sTrafUnit
CidsFor-

- Msg types to All Tasks TrafUnit
AttrRe-
alease

InsAllAt-
trsRelease
DidSetsRe-

lease
AttrLocked

Did-
SetsLocked
CidsLocked

Rid-
OffiniReq

NoMoreGe-
nlns

117 UpdFin-
ished

Bucketinfo
BC_BY_R

ES

Table 9: COMMON-Fües held in common by every module.

File Name

msg.def
(cont'd)

File Description

Massage types to ALL tasks:

- Error Messages:

Messages for timing Request Preparation (REQP)

#include

none

#define

Catchall
LoadtypeC

Error
ErrorFree
NewDB
Template
SetNoBEs

BEwho
Createerr
Inserterr

Lookuperr
Finderr
Descerr
Cathcerr

Updateerr
LoadCerr

errNewDB
errTemplate
SelectData-

base
errSelect-
Database
TReqNo-

tOKM
TReqOKIR

eqM
TReqOK-

AggM
TReq-

CompM
TReqBroad

M
TReqSyn-

ErrM
TReqCh-

C1M
TReqN-
MG1M

TReqAllM

118

Table 9: COMMON-Files held in common by every module.

File Name File Description #include #define

msg.def
(cont'd)

Messages for timing Insert Info Gen (IIG):

Messages for timing Post Processing (PP):

none

Messages for timing Directory Mgmt (DM):

Messages for timing Concurrency Control (CC):

119

TldTyCM
TClIdm

TReqFNe-
DeldM

TIIGA11M
TReqW-

ErrM
TNoORIT

M
TAggOpsM
TBCResM

TBCA-
oResM

TPPA11M
TDM_PTU

M
TDM_NM

GEM
TDM_BNM
TDM_ND

M
TDM_DM
TDM_DCM
TDM_DA_I

M
TDM_DD_

AM
TDM_DCA

M
TDM_ALM
TDM_L_D

SM
TDM_C_L

M
TDM_ONV

M
TDMJJFM
TDM_A11M

TCi-
FoTrUnM
TTyCAt-

Tum
TDiS-

eTrUnM
TAtRelM
TlnAlA-

tReM

Table 9: COMMON--Files held in common by every module.

File Name File Description #include #define

msg.def
(cont'd)

- Messages for timing Concurrency Control (CC):

- Messages for timing Record Processing (RECP)

- Messages to get the time from any process:

none TDiSeRem
TUpFinM

TRecpCpM
TCCAUM
TReqDis-

AddrM
TChCl-
ResM

TnoMoGe-
InM

TFetchM
ToOl-

dReqM
TPio-

WriteM
TPioReadM
TRecpAUM
TDisklOM
GeTimes

Tim_Arr_E
mp

Stop

pcl.def Process Control definitions for ethernet:

- Internet Port numbers:

none MaxBack-
ends

charMax-
Backends

CNTRL_N
AME

OFFSET
NETNAME
BEJPORT
CNTRL_P

ORT
MAX-

PLACES
MAXISI

BRDCSTS
Z

120

Table 9: COMMON-Files held in common by every module.

File Name File Description #include #define

sndrcv.def Socket Definitions for communications. <sys/un.h>
<errno.H>

PREFIX
NoCntrl-

Proc
NoBeProc

tmpl.def Template Definitions for database information tables. none none

ack.def Definitions for acknowledgements. none RETPORT
ACKPORT
MAXINT
DELM-
CHAR

ISIPREFIX
NOFRAGS
host_name_

len
min_ws_nu

mber
max_ws_nu

mber

beno.dcl Backend Number Declarations. none none

msg.dcl Message Declarations. none none

sndrcv.dcl Globalizes and declares variables for socket connections:
Initiating, sending, and receiving.

none none

tmpl.dcl Associates users to databases. none none

msg.ext Globalizes variables msg_q and msgjidr. none none

sndrcv.ext Variables global to intsr, send, and receive. none none

tmpl.ext Associates database id's with databases. none none

121

122

APPENDIX C--MASS_LOAD() FUNCTION SOURCE CODE

#include <stdio.h>
#include <strings.h>
tinclude <ctype.h>
tinclude <licommdata.h>
#include <ool.h>
#include <ool_lildcl.h>
#include <ool_kc.h>
#include "flags.def"

o_mass_load(record_file)
char *record_file;

/* This function is used to load a group of records from a
record file. The syntax is the same as that of an ABDL
record file. Calls procedure make_insert(--) for each
object.

*/

/* An important note is either all the inserts are
accomplished or none are done. This is due to the use of a
transaction file, which will
not execute the requests until there are no errors in the
file. */

{
char

1],

struct

struct

db_name [DBNLength + 1],
cls_name [RNLength + 1], input_line [80],
request [1024], supcls_array [10][RNLength +

*add_path();

ocls_node
*cls_ptr;

obj_dbid_node *db_ptr;
int i,

continu = TRUE,
*error = FALSE,
more_objects, not_found;

char key[ANLength + 1];

123

FILE *record_fd, *trans_fd;

#ifdef EnExFlag
printf("Enter o_mass_load\n");
fflush(stdout);

#endif

/* ool_ptr and okc_ptr are initialized here for the KC
routine, */

/*
ool_chk_responses_left.
*/
ool_ptr = &(cuser_obj_ptr->ui_li_type.li_ool);
okc_ptr = &(ool_ptr->oi_kc_data.kci_o_kc);

if (! (record_fd = fopen(record_file, "r")))
printf("\n\nERROR -- the file, %s, does not exist.\n",

record_file);
else

{
trans_fd = fopen(".TransFile", "w"); /* open

transaction file */
db_ptr = ool_info_ptr->oi_curr_db.cdi_db.dn_obj;

/*check database name */
fscanf(record_fd, "%s \n", db_name);
to_caps(db_name);
if (strcmp (db_name, db_ptr->odn_name))

{
printf("\n\nERROR -- %s is the currently opened

database. This is not", db_ptr->odn_name);
printf("\n a mass insert file for that

database.");
*error = TRUE;
}

else /* correct database name */
{
cls_ptr = db_ptr->odn_first_cls;
fscanf(record_fd, "%s \n", input_line);
if (strcmp(input_line, "@"))

{
*error = TRUE;
printf("ERROR--missing '&'");
}

124

/*get all the classes in this loop*/
else

{
continu = TRUE;
do
{
not_found = TRUE;
if (fscant(record_fd, "\n %s \n", cls_name))

/* check for correct */
{
while (cls_ptr && not_found)

if (Istrcmp(cls_name, cls_ptr->ocn_name))
not_found = FALSE;
else
cls_ptr = cls_ptr->ocn_next_cls;

}
if (not_found)

{
printf("\n\nERROR %s is not a class name",

cls_name);
*error = TRUE;
}

/*if correct class name, insert in request and call
make_insert*/

else
{
more_objects = TRUE;
while(more_obj ects)

{
/*reset array to 0; array keeps track of super

classes visited to avoid naming same class
twice if there is a cycle*/
for (i = 0; i < 10; i++)

supcls_array[i][0] = '\0';
if (fscanf(record_fd, "%s \n", key))

if (Istrcmp(key, "@"))
more_objects = FALSE;

else if (!strcmp(key, "$"))
{
more_objects = FALSE;
continu = FALSE;
}

else

125

{
make_insert(cls_ptr, request, record_fd, trans_fd,
&error, supcls_array, key);

}
/*end if @|1$ */
else

{
*error = TRUE;
printf("ERROR--missing '@' or '$'");

}
}/*end while more_objects*/
cls_ptr = db_ptr->odn_first_cls;
}/*end if correct class name*/

}
while(continu && lerror); /*end do loop*/

} /*end if '©'*/
} /*end if odn name is

okay*/
if (!error && strcmp(key, "$"))

{
printf("\nERROR -- \"$\" missing.\n");
*error = TRUE;
}

fclose(record_fd);
fclose(trans_fd);

/*if no errors, insert the records in the database*/
if(!error) /* insert the records */

{
trans_fd = fopen(".TransFile", "r");
while (fscanf(trans_fd, "%[^\n]",request) &&

strcmp(request,"\n"))
{
printf("%s\n",request);
TI_S$TrafUnit(db_ptr->odn_name, request);
ool_chk_responses_left(FALSE) ;
TI_finish();
fscanf(trans_fd, "%[\n]",request);
}

fclose(trans_fd);
system("rm .TransFile");
}/* end "if !error, insert records"*/

126

}/*end if record open*/

#ifdef EnExFlag
printf("Exit o_mass_load\n");
fflush(stdout);

#endif

} /* end o_mass_load */

/* called by o_mass_load. Builds ABDL inserts, traversing
inheritance tree. If a class is a sub class, builds
separate INSERTS for each of its super classes, using the
OBJ_ID value from the root of this branch of the
inheritance hierarchy for each class INSERT.*/

make_insert(cls_ptr, request, record_fd, trans_fd, error,
supcls_array, key)

struct
char

int
FILE

ocls_node *cls_ptr;
request [1024],
supcls_array[10][RNLength + 1],
key[ANLength + 1];
*error;
*record_fd, *trans_fd;

{
struct
struct
char

int

oattr_node *attr_ptr;
o_supcls_node *supcls_ptr;

attr[ANLength + 1],
cl[RNLength + 1],

input_line [80];
cont = TRUE,

num_attr,
no_cycle,
i;

cont = TRUE;
/*if this is a subclass, climb hierarchy and build

supclasses*/
A Following part of the code is never placed

0)
into the running system code. The code

127

supcls_ptr = cls_ptr->ocn_first_supcls;
i = 0;
while(supcls_ptr)

{
no_cycle = TRUE;
while ((supcls_array[i][0] != '\0') && no_cycle)

/*check to see if there is a cycle with this supclass*/

{
if (Istrcmp(supcls_ptr->osn_name,

supcls_array[i]))
no_cycle = FALSE;

i++;

}
if (no_cycle)

{
strcpy(supcls_array[i], supcls_ptr->osn_name);
make_insert(supcls_ptr->osn_supcls, request,

record_fd, trans_fd, &error, supcls_array, key);
}

supcls_ptr = supcls_ptr->osn_next_supcls;
} /*end while supcls*/

} /*end if cls_ptr->ocn_supcls*/

/*build the ABDL insert*/
attr_ptr = cls_ptr->ocn_first_attr;
num_attr = cls_ptr->ocn_num_attr; /* initialize attr

count */
/*put class name and OBJECTID in INSERT*/
strcpy(request, "[INSERT (<TEMP, ");

/*change class name to first letter caps, rest lower case
to conform

to ABDL*/
strcpy(cl, cls_ptr->ocn_name);
if((cls_ptr->ocn_name[0] >= 'a') && (cls_ptr->ocn_name [0]

<= 'z'))
cl[0] = toupper(cls_ptr->ocn_name[0]);

for(i = 1; i < strlen(cls_ptr->ocn_name); ++i)
if((cls_ptr->ocn_name[i] >= 'A')&&(cls_ptr->ocn_name[i]

<= 'Z'))
cl[i] = tolower(cls_ptr->ocn_name[i]);

/*end change case block*/

128

strcat(request, cl);
strcat(request, ">, <");
strcat(request, "OBJECTID");
strcat(request, ", ");
strcat(request, key);
if (!strcmp(attr_ptr->oan_name, "OBJECTID"))

{
attr_ptr = attr_ptr->oan_next_attr;
-- num_attr; /* initialize attr count */
}

/*put non-key values in INSERT*/
while (cont && num_attr)

{
if (fscanf(record_fd, "%[* \t\n]", input_line) != 1)

cont = FALSE;
else if (!strcmp(input_line, "@") I I

!strcmp(input_line, "$"))
{
printf("ERROR -- '@' or '$' out of sequence.");
*error = TRUE;
cont = FALSE;
}

else
{
strcat(request, ">, <");
strcat(request, attr_ptr->oan_name);
strcat(request, ", ");

/* fix up attr value into ABDL form and append into
INSERT */

if (input_line[0] >= 'a' && input_line[0] <= 'z')
input_line[0] = toupper(input_line[0]);

for (i = 1; i < strlen(input_line); ++i)
if (input_line[i] >= 'A' && input_line[i] <= 'Z')

input_line[i] = tolower(input_line[i]);
strcat(request, input_line);

-- num_attr;
attr_ptr = attr_ptr->oan_next_attr;
fscanf(record_fd, "%[\t]", input_line);
fscanf(record_fd, "%[\n]", input_line);
}/*end if input_line*/

}/*end while cont and attr*/

129

if (cont)
{
strcat(request, ">)]");
fprintf(trans_fd, "%s\n", request);
}

}/*end make_insert*/

130

APPENDIX D--KFS SOURCE CODE

#include. <stdio.h>
#include <licommdata.h>
#include <ool.h>
#inelüde "flags.def"

o_kernel_formatting_system()
{

int i = 0,
j = 0,
NumCol = 0;

int OddMark = TRUE;
int FirstAttribute = TRUE;
int FirstAttributeSet = TRUE;
char *response;
char temp[InputCols + 1];
struct temp_str_info *value,

*temp_str_info_alloc();

#ifdef EnExFlag
printf("Enter o_kernel_formatting_system\n");

#endif

response = ool_ptr->oi_kfs_data.kfsi_obj.koi_response;
++response; /* skip '[' character in response */

while (Response != CSignal) /* CSignal is '?' */

{
temp[i] = *response;

++i;

if (Response == EMARK) /* EMARK is ' \0" */
{

i = 0;
if (OddMark) /* end of attribute name */

{
if (FirstAttributeSet)

{
if (FirstAttribute)

{
strcpy(ool_ptr->oi_kfs_data.kfsi_obj.koi_first_attr,

temp);
FirstAttribute = FALSE;
if (strcmp(temp, "COMMON"))

{
write_attr(temp);

/* print first attr as heading */
++NumCol;

131

}

else

{
if (strcmp(ool_ptr->oi_kfs_data.kfsi_obj.koi_first_attr,

temp))
{
write_attr(temp);

/* print next attr as heading */
++NumCol;

}
else

{ /* heading attributes are already completed */
printf("\n");
FirstAttributeSet = FALSE;

for (j = 0; (j < (NumCol * ANLength + NumCol)); j++)
printf("-");

printf("\n");
/* print first line of values already stored */
while (ool_ptr-

>oi_kfs_data.kfsi_obj.koi_attr_values)

{
value = ool_ptr-

>oi_kfs_data.kfsi_obj.koi_attr_values;
write_attr(value->tsi_str);
ool_ptr->oi_kfs_data.kfsi_obj.koi_attr_values =

value-

rs i_next;
}

printf("\n") ;

}
/* end else, i.e. heading attributes already completed */

} /* end not FirstAttribute */

} /* end if FirstAttributeSet */

else /* not FirstAttributeSet */

{
if (!strcmp(temp,

ool_ptr-
>oi_kfs_data.kfsi_obj.koi_first_attr))

printf("\n");
/* we are back to the first attr name */

}

} /* end if OddMark */

else /* not OddMark, i.e. end of attribute value */

{
if (FirstAttributeSet)

132

/* don't print value, but store it */

{
if (strcmp(temp, "File"))

(
if (!ool_ptr-

>oi_kfs_data.kfsi_obj.koi_attr_values)

{
value = temp_str_info_alloc();
ool_ptr-

>oi_kfs_data.kfsi_obj.koi_attr_values =value;
}

else
{
value->tsi_next = temp_str_info_alloc();
value = value->tsi_next;

}
strcpy(value->tsi_str, temp);

}

if (*(response +1) == CSignal)
{
printf("\n");
for (j = 0; (j < (NumCol * ANLength + NumCol));

j++)
printf("-");

printf("Xn");

/* print first line of values already stored */
while (ool_ptr-

>oi_kfs_data.kfsi_obj.koi_attr_values)
{
value = ool_ptr-

>oi_kfs_data.kfsi_obj.koi_attr_values;
write_attr(value->tsi_str);
ool_ptr->oi_kfs_data.kfsi_obj.koi_attr_values

value-
>tsi_next;

}
}

}
else /* not FirstAttributeSet's value */

{
if (strcmp(temp, "File"))

write_attr(temp);
}

} /* end else not OddMark */

OddMark = !OddMark;

} /* end if {»response == EMARK) */

133

++response;

} /* end while (^response != CSignal) */

printf("\n"); /* for the last line of results */

/* free up kfs attr values list */
while (ool_ptr->oi_kfs_data.kfsi_obj.koi_attr_values)

{
value = ool_ptr->oi_kfs_data.kfsi_obj.koi_attr_values;
ool_ptr->oi_kfs_data.kfsi_obj.koi_attr_values = value->tsi_next;
free(value);

}

#ifdef EnExFlag
printf("Exit o_kernel_formatting_system\n");

#endif

} /* end o_kernel_formatting_system */

write_attr(temp)
char temp[];

{
while (strlen(temp) < ANLength)

strcat(temp, " ");
strcat(temp, "I");
printf("%s", temp);

}

134

135

136

LIST OF REFERENCES

[1] Hsiao, David K., "A Parallel, Scalable, Mircoprocessor-Based Database Computer
for Performance Gains and Capacity Growth", IEEE Micro, 1991.

[2] Badgett, Robert B., Design and Specification of an Object-Oriented Data Definition
Language, Master's Thesis, Naval Postgraduate School, Monterey, California, Sep-
tember 1995.

[3] Demurjican, Steven Arthur, The Multi-Lingual Database System--A paradigm and
Test-Bed for the Investigation of Data-Model Transformations, Data-Language
Translations, and Data-Model Semantics, Ohio State University, Ph.D , 1987,
Univeristy Microfilms International Dissertation Service, 1988.

[4] Clark, Robert and Necmi Yildirim, Manipulating Objects in the M2DBMS, Master's
Thesis, Naval Postgraduate School, Monterey, California, September 1995.

[5] Watkins, S., H., A Porting Methodology for Parallel Database Systems, Master's
Thesis, Naval Postgraduate School, Monterey, California, September 1993.

[6] Bourgeois, Paul, The Multibackend Database System (MDBS) User's Manual, Mas-
ter's Thesis, Naval Postgraduate School, Monterey, California, December 1992.

[7] Senocak, E., The Design and Implementation of a Real-Time Monitor for the Execu-
tion of Compiled Object-Oriented Transactions (O-ODDL and O-ODML Monitor),
Master's Thesis, Naval Postgraduate School, Monterey, California, September
1995.

137

138

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library
Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

3. Dr Ted Lewis, Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Dr David K. Hsiao, Code CS/HS.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Dr C. Thomas Wu, Code CS/KA.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. Ms Doris Mleczko
Code P22305
Weapons Division
Naval Air Warfare Center
PtMugu,CA 93042-5001

7. Ms Sharon Cain
NAIC/SCDD
4115HebbleCreekRd
Wright Patterson AFB, OH 45433-5622

8. LCDR Daniel A. Kellett, USN
5203 Faraday Court
Fairfax, VA 22032

139

9. Capt. Tae-Wook Kwon
367-830
Chung-Book Goi San-Gun Chungan-Myen
Jochun-RI 4 GU 859
South Korea

10. Capt. Tae-Wook Kwon
1033 Spruance Road
Monterey, California 93940

140

