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ABSTRACT 

If a single operating system can support multitudes of different programming 

languages and data structures, a database system can support a variety of data models and 

data languages. In this thesis, a Kernel Database System (KDS) supporting classical data 

models and data languages (i.e., hierarchical, network, relational, and functional) is used 

to support a demonstration object-oriented data model and data language. 

This thesis extends previous research by accommodating an object-oriented-data- 

model-and-language interface in the KDS. Consequently, the research shows that it is 

feasible to use the KDS to support modern data models and languages as well as classical 

ones. This thesis details the KDS design, Insert operation, and Display function. This thesis 

also details how to implement modifications to the Test-Interface so that the KDS can 

support the object-oriented database. 

This thesis proves complex data structures in an object-oriented data model can be 

realized using an attribute-based data model which is the kernel data model of the KDS. 

Second, it details how the KDS is designed showing why no changes needed to be made to 

the KDS to implement the object-oriented toy database. Third, it argues the advantages of 

using a KDS in the database-system design. The KDS design produces savings in costs 

from compatability, reduced training, expandability, and software reuse. 
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I. INTRODUCTION 

Users view and access their databases using specific pairs of corresponding data 

models and data languages of database systems. Database computers and systems continue 

to associate with their specific pairs of data models and data languages. Because mono- 

model and mono-lingual database systems have persisted over the last three decades, many 

organizations support multiple database systems. These organizations are compelled to 

support multiple database systems in order to maintain diverse types of applications. The 

redundancy of data, personnel, maintenance, documentation, and hardware points to the 

following need: to move multiple database systems (each of which has a different pair of 

data model and data language) to a single database system that can support a multitude of 

models and languages. 

A. TOWARDS A KERNEL DATABASE SYSTEM DESIGN 

If a single operating system can support multitudes of different programming 

languages and data structures, can a database system support a variety of data models and 

data languages? In this thesis, a kernel database system is proposed which supports, in 

addition to classical data models and data languages such as the hierarchical, network, 

relational, and functional, the emerging object-oriented data model and data language. 

B. EXTENDING AN EXISTING KERNEL DATABASE SYSTEM 

The Multi-model and Multi-lingual Database Management System (M2DBMS), at 

the Naval Postgraduate School's Laboratory for Database Systems Research has 

successfully demonstrated that classical data models and their associated data languages 

can be supported on a single database system. Using M DBMS as the experimental Kernel 

Database System (KDS), research teams have constructed and implemented model-and- 

language interfaces that support the classical data models and languages (Hierarchical and 



DLI, Network and CODASYL-DML, Relational and SQL) and that supports one 

Artificial-Intelligence based model and language (i.e., Functional and DAPLEX). 

This thesis extends the previous research by accommodating an object-oriented- 

data- model-and-language interface in the KDS. Consequently, the research shows the 

feasibility of using the KDS to support modern data models and languages as well as 

classical ones. This thesis details the issues and solutions of creating an object-oriented 

database in the kernel format in the KDS. 

Creating an object-oriented database in the KDS advances the theory that complex 

data structures found in the object-oriented data model can be realized as a kernel database 

in a single database system. It is therefore unnecessary to build an entirely new object- 

oriented database system to support an object-oriented database. 

C. THE OBJECTIVES OF THE THESIS 

This thesis has three objectives: First, it shows that complex data structures in an 

object-oriented data model can be realized using an attribute-based data model which is the 

kernel data model of the KDS. Second, it discovers relevant issues when using the KDS to 

support an object-oriented database. Third, it argues the advantages of using a KDS in the 

database-system design. As a by-product of these three objectives, this thesis also provides 

appendices on the structure, function, and operation of the M2DBMS. 

D. THESIS ORGANIZATION 

In Chapter II, we present the modern object-oriented database model and introduce 

the features, notions, and constructs of the object-oriented database. In Chapter II, the 

design test of an object-oriented database in terms of its object-oriented specifications is 

also introduced. In Chapter IE, we explain the significance of being able to use the KDS to 

support an object-oriented database by providing an overview of the M DBMS, i.e., its 



organization, operation, and design. In Chapter III, we also introduce the attribute-based 

data model and Kernel Database structure. In Chapter IV, we detail the design of the 

Kernel Database System and processes. In Chapter V we show the Insert operation. We 

also show how the KDS maps an object-oriented database to an equivalent attribute-based 

database. In Chapter V, we analyze our experience on using the object-oriented data model/ 

language interface in M2DBMS and the need for a Mass_Load() utility. In Chapter VI, is a 

discussion of the Kernel Formatting System (KFS) added to our research to assist other 

teams and their progress. In Chapter VII, we summarize our accomplishments and point 

out some limitations of this research. Using an attribute-based data model, the Kernel 

Database System can realize complex data structures in the object-oriented data model. 

However, we suggest some future research using the attribute-based data model in Chapter 

VII. 





II. SUPPORTING THE OBJECT-ORIENTED DATABASE 

Prior to this research, it has not been clear whether or not the Kernel Database 

System (KDS), designed to support classical databases, can support the complex object- 

oriented database. Specifically, can the KDS support an object-oriented database which 

includes the object-oriented paradigms of inheritance, covering, encapsulation, and 

polymorphism? Object-oriented constructs are complex. Object-oriented paradigms are 

fundamentally different from paradigms of classical databases. The real issue involves 

whether or not a kernel database with only attribute-value pairs can be used to represent 

complex constructs. Can the KDS support complex constructs like those fundamental to 

object-oriented paradigms? 

A.        CLASSICAL AND OBJECT-ORIENTED DATABASE MODELS 

Classical databases are specifically designed to support certain well-defined 

applications. The relational database supports one-to-one relationships between individuals 

and records kept for the individuals, commonly found in record keeping. The hierarchical 

database supports the multiple layers of one-to-many relationships commonly found in 

assemblies, their subassemblies, their sub-subassemblies, and so on. The network database 

supports the many-to-many relationships of supplies and suppliers commonly found 

between inventories and suppliers. The functional database supports the association of 

rules and facts with inferences commonly found in knowledge-base and expert system 

applications [Hsiao, Aug 91, pp 3-4]. 

On the other hand, the object-oriented database does not aim at any particular type 

or kind of applications. It follows an object-oriented paradigm in order to group data as an 

abstraction of some real world entities. To properly model the real-world entities, data 

should be encapsulated as objects of these real-world entities. Each object can first be 

modeled as a separate entity independent of other objects. Each object has it's own set of 

attributes and operations. Object-oriented constructs are based on the set theory; the object- 



oriented operations on set operations. The object-oriented paradigm combines the idea of 

inheritance with the idea of encapsulation to form a coherent whole as a class hierarchy. 

Unlike the classical data constructs, object-oriented construct stores operations and data 

together [Badge«, 95]. Proponents of object-oriented databases claim by using these ideas, 

they can support variety, spontaneity and dynamism in database designs. This thesis is not 

aimed at validating these ideas, but is aimed at using the KDS to support an object-oriented 

database for the purpose of experimenting with the features of object-oriented constructs. 

The object-oriented database implemented on KDS retains its flexibility, portability, and 

homogeneity. In this way, we can make use of object-oriented concepts and constructs 

without the need of building a new object-oriented database system. 

B.        TESTING THE OBJECT ORIENTED DATABASE 

For creating an object-oriented database, an object-oriented data model (OODM) 

and object-oriented data language (OODDL) are developed [Badge«, 95]. After the object- 

oriented database is modeled in OODM and specified in OODDL, the database is compiled 

into an attribute-based database. The INSERT operation in the attribute-based data 

definition language (ABDL) is used to create the attribute-based database in the KDS. This 

thesis documents how the INSERT operation creates in the KDS the attribute-based 

database which is equivalent to the object-oriented database. This thesis also documents 

why there is no modification required in the KDS in order to accomplish the creation. 



III. THE MULTI-MODEL MULTI-LINGUAL DATABASE SYSTEM 

M2DBS organization has two parts: the multibackend database supercomputer, the 

Multimodel/multilingual database system. The Kernel Database System (KDS), the Kernel 

Data Model (KDM) and the Kernel Data Language (KDL) are a software subset of the total 

M2DBS. To understand the KDS, KDM, and KDL a review of the system organization 

helps to place the kernel into context with the overall system architecture. 

A.        THE MULTIBACKEND DATABASE SUPERCOMPUTER 

The multibackend architecture consists of several computers connected in parallel 

by Ethernet. The parallel connection supports distribution of the database across these 

several computers for rapid access during queries. Each backend computer has its on disk 

system controller, meta disk, and stored data disk. Each backend is controlled by a 

backend controller that supervises the execution of user transactions (see Figure 1). 

Because of the multibackend database design, database access time is significantly 

reduced. The response-time ratio for queries is inversely proportional to a given number of 

backend computers. So, as the number of backends increase, the response time decreases. 

If the number of backends increase proportionally with increases in database capacity, there 

will be no change in transaction response-time. Therefore, the multibackend design can 

support dynamic growth of the database, and can support this dynamic growth without 

noticeable changes in response time. 
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Backend 

Backend 

Backend 
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Meta data disk 
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Figure 1: The Multibackend Database Supercomputer 

B. THE MULTIMODEL/MULTILINGUAL DATABASE SYSTEM 

The multibackend database supercomputer is used to support the M DBS software. 

As mentioned earlier, the software is a KDS supporting any data model, and any data 

language chosen by the user. Figure 2 depicts the concept. All data is stored in the KDS as 

attribute-valued pairs using the KDM and KDL associated with the KDS (i.e., ABDM and 

ABDL). To access the data, and to query the data requires a user interface that presents to 

the user the data model and language chosen. The user does not interface with the kernel. 

The user interfaces with the chosen data model and language. The system interfaces with 

the kernel. Figure 3 shows the multimodel/multilingual database system [Hsiao, 91]. The 

four main modules of each user data model/language (UDM/L) interface are the language 



interface layer (LIL), the kernel mapping system (KMS), the language interface controller 

(LIC)1 and the kernel formatting system (KFS). These four modules represent the core 

system for each separate user interface. In other words, each UDM/L interface has to have 

its own LIL, KMS, LIC, and KFS which support only the data model and data language 

associated with that UDM/L interface. These modules interact with the KDS through the 

Test Interface (TI) within the KDS. To construct a new UDM/L does not require a redesign 

of the whole database system. The new UDM/L is independent of the other UDM/L's and 

no changes to the KDS are made provided the new UDM/L follows the design and 

constructs provided by the TI. How to interface with TI is covered in Chapter IV and in the 

User Manual (Appendix A). 

User Data Model/Langauge 
UDM/L 

UDM/L 

UDM/L (Others) 

Kernel Database System 

KDM 

[ ABDM) 

TI KDs : KDL 

YABDLy 

Figure 2: The Kernel Concept 

The user's transactions are routed to the KMS by the LIL. The user writes the 

transactions in the associated UDM/L provided by LIL. The KMS is a compiler that 

transforms the UDM/L into a form that can be mapped to the KDS. LIL sends the 

1. In the previous literature, the language interface controller (LIC) is called the kernel controller 
(KC). The research team changed the name of this module to clarify the relationship of the control- 
ler to the interface. Kernel controller implies the controller is related to the kernel rather than the 
language interface. 



transaction to KMS, and KMS interprets the transaction. The KMS first identifies whether 

or not the user is creating a new database or using an existing database. 

KDM 

UDM - User Data Model 
UDL - User Data Language 
LIL - Language Interface Layer 
KMS - Kernel Mapping System 
LIC - Language Interface Controller 
KDS - Kernel Database System 
KDM - Kernel Data Model 
KDL - Kernel Data Language 
KFS - Kernel Formating System 

o 
System Module 

Data Model 

Data Language 

Figure 3: The Multi-Model/Multi-Lingual Database System 
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If the user is creating a new database, KMS will transform the UDM-database 

definition to the KDM-database definition. KMS then routes the KDM-database definition 

to the LIC. The LIC, recognizing the KDM-database definition as a new definition, routes 

the KDM-database definition to the KDS. Receiving the KDM-database definition causes 

the KDS to issue appropriate commands to the multibackend database supercomputer 

controller where a new database is created in the KDM form. After creating the new 

database, the KDS notifies the LIC that a new database has been created in the UDM form. 

Data can now be entered. Subsequently transactions against the database can be made. 

UDL transactions are written within the LIL and processed through the KMS. The 

KMS performs data-language translations by compiling the UDL transactions into 

equivalent KDL transactions. The KMS then routes the compiled KDL transactions to LIC. 

The LIC sends the KDL transaction to KDS for execution. The LIC oversees KDL 

transaction execution. The LIC executes the KDL-transaction through the TI of the KDS. 

Transaction results and/or responses are sent to the LIC which sends them to the KFS. The 

KFS is where the results of a query are reformatted into UDM form. The KFS re-compile 

the information in KDM form to UDM form. Once the transformation is complete, KFS 

routes the transformed information to the LIL where the user sees the information in the 

user's data model/language form. 

All data in the Multi-model, Multi-Language Database System (M2DBS) is stored 

in the Kernel Database System (KDS) according to the constructs of the Kernel Data Model 

(KDM) and the Kernel Data Language (KDL). Although many database models can be 

used to support a kernel, only the Attribute-Based Data Model (ABDM) supports the 

architecture of the MDBS and the parallelism associated with the multibackend design. 

The ABDM is the KDM for the M2DBS. The ABDM was chosen as the kernel data model 

because ABDM allows for storage of the meta data and base data separately. ABDM 

introduces equivalence relations which partition the base data into mutually exclusive sets 

called clusters. These clusters are distributed across the backends allowing parallel access 

11 



to the base data. Coupling ABDM with the ABDL as the KDL facilitates database design. 

The attribute-based model and language support database research with a semantically rich 

and complete language. The ABDM and ABDL also support database research with a 

simple storage and parallel processing architecture. 

C.        THE ATTRIBUTE-BASED DATA MODEL 

The ABDM and its associated data language have proven to provide all of the 

required data definition capabilities and manipulation strategies necessary to implement 

Hierarchial, Network, Relational, and Functional data models [Demurjian, 87]. The attri- 

bute-based data model is simple in design and concept[Hsiao, 91]. As the name implies, the 

attribute-based data model refers to storing data as a series of attribute-value pairs. 

Attribute-value pairs are the simple building blocks of the kernel database. The attribute- 

value pairs consist of attribute names and corresponding values. An attribute-value pair is 

a member of the Cartesian product of the attribute name and the domain of values of the 

attribute. The pair is formed by using a keyword as the first attribute and the value 

associated with that keyword as the second attribute. The keyword serves to form records. 

The keyword is the key for the attribute and the record is a grouping of attribute-value pairs. 

The second attribute is the record body consisting of a string of characters which represent 

information. The first attribute-value pair must be an identifier of the record type (i.e., file 

name). This pair is declared using the reserved word TEMP. For example: 

(<TEMP, NAME>, <FIRST, Dan>, <LAST, Kelletfc») 

(<TEMP, NAME>, <FIRST, Tae-Wok>, <LAST, Kwon>) 

The angle brackets (i.e., <,>) enclose the attribute-value pair. Parenthesis enclose 

the entire record. The example record consists of three attribute-value pairs. TEMP is 

always the keyword of the first attribute-value pair and the value in this pair is always the 

name of a file holding the database. In the example, the name of the file holding these 

12 



records is NAMES. The attribute name is always the first element of the pair. Attribute 

names are always in uppercase. No two attribute-value pairs can have the same attribute 

name. Keywords must be unique within the record. All the data stored in the database is 

stored in this simple format. Each file represents a table of records. Each record is simply 

a row in a table. The keywords (i.e., attribute) denote the column headings. Each record is 

the value associated with the attribute from one row. Whatever model the user chooses to 

interface with the attribute-based data model, the user's information is translated into a set 

of records consisting of attribute-valued pairs. 

D.        THE ATTRIBUTE-BASED DATA LANGUAGE 

The attribute-based data model provides a complete set of operations to access the 

database. To append records to the database requires the use of the reserved word 

"INSERT". INSERT is followed by the record to append in the database. For example: 

[INSERT(record)] 

[INSERT(<TEMP, NAME>, <FIRST, Dan>, <LAST, KeUett>)] 

[INSERT(<TEMP, NAME>, <FIRST, Tae-Wok>, <LAST, Kwon>)] 

Using the reserved word "INSERT" causes the system to create the database file 

called NAMES or if there is not a file, the system will create a new one. The records are 

then inserted into the new database or appended to the existing database. 

Access to the database employs the use of predicates. Predicates are constructed by 

using a reserved keyword, a relational operator, and a value. Queries are formed using 

reserved words associated with a predicate. Each query is prefaced with a reserved word 

followed by a predicate. For example: 

[RETRIEVE (predicate)(target list)] 

[RETRIEVE(TEMP = NAME) (LAST, FIRST)] 

13 



The second example will retrieve all the records in NAMES in the order of LAST, 

and FIRST. There are five queries supported by the attribute-based data language: 

INSERT, DELETE, UPDATE, RETRIEVE, and RETRIEVE-COMMON. There are only 

five aggregate operators supported: AVG, SUM, COUNT, MAX, and MIN. The details of 

how the other four queries are constructed and how they work are explained in thesis 

research by Clark and Yildirim. [Clark, 95]. 

E.   THE KERNEL DATABASE STRUCTURE 

A RECORD is a set of attribute-value pairs. Within a record, attribute-value pairs 

must have unique attribute-value names. That is, no two attribute-value pairs can have the 

same attribute-value name. At least one of the attributes in the record is a key. Following 

these two rules ensures each attribute-value pair is single valued and each record can be 

identified by at least one key. A record is enclosed by parenthesis. The attribute-value 

pairs are contained within these parenthesis: (<COURSE, CS4322>, <INSTRUCTOR, Hsiao>, 

<SECTION, 2>, <YEAR, 1995>, <SEMESTER, fall>). 

A FILE is a collection of records that share unique set of attributes. If a record 

belongs to a certain file, then the first attribute-value pair of the record will contain the 

attribute TEMP and the corresponding file name. All records belonging to the same file 

will have the same first attribute-value pair. For example, (<TEMP, NAMES>, 

<LNAME, Hsiao>, <FNAME, David >, <MIDDLE, K>) indicates that the record belongs 

to the file NAMES. The file contains a detailed description of the ABDM and ABDL. 

In the kernel data model, the system uses only template files (i.e., .t files) and 

descriptor files (i.e., .d files). The schema files belonging to the data model and data language 

interfaces outside the KDS generate the template and descriptor files necessary for 

mapping an interface model/language into the kernel data model/data language. The 

ABDM, being the kernel model, does not need its own schema for mapping to itself. 
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The template and descriptor files (i.e., the .d and .t files) are used to describe the 

structure of the attribute-based database. It is these files which tell the kernel database 

system what the template names are and the attributes contained within a template. 

Furthermore, the attribute type, and any constraints on these attributes, will be noted in 

these files. A template can be thought of as the name of a relation in a relational database. 

The template file lays out the tables that will be used to form relationships between data in 

terms of columns, column headings and rows. The template file contains the name of the 

database, followed by the number of templates within the database. After the number of 

templates, the next number in the template file is the number of attributes in template. 

Attributes are listed in the template file along with their respective type (i.e., string, integer, 

etc.). Once all attributes for a template are listed, the number of attributes in the next 

template is listed, followed by the next template's name. This process is repeated until all 

the templates and attributes have been listed. The User Manual, Appendix A, details the 

process for creating a template file. To support object-oriented database research, the 

research team created a demonstration database called FACSTU (Faculty and Student). 

FACSTU is the object-oriented database created by associated thesis teams. For more 

details on the development of the FACSTU database, see the associated thesis. 

F. IN SUMMARY 

The overall language-interface structure consists of the four LIL, KMS, LIC, and 

KFS modules. These four modules are specifically constructed to support a particular data 

model and data language. The multimodel/multilingual database system can support 

different data models and data languages provided a unique set of these four modules can 

be constructed to support the desired data model and data language. As long as a compiler 

(KMS) can be constructed that will translate the UDM to KDM the KDS can support the 

UDM/L. KDS represents the kernel database system constructed from attribute-value pairs, 

records, and files unique to the multibackend database supercomputer and the multimodel/ 
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multilingual database system. By designing and implementing a unique language interface, 

users can create and access a database using the desired data model/language. But, the 

system stores only one set of data. The system stores the data in the kernel-data-model form 

of attribute-value pairs [Hsiao, 91]. 

16 



IV. THE KERNEL DATABASE SYSTEM 

Developing a user data model and data language interface (UDM/L) between the user 

and the Kernel Database System (KDS) requires an understanding of the system's design. 

The KDS is the portion of M2DBMS software containing the Test Interface (TI). The TI is 

the only portion of the software the user interface will communicate with. Development 

requires only minor changes to the TI and does not require any changes to the rest of the 

KDS. But, development does require an understanding of TI requirements. The following 

describes the KDS for a more thorough understanding of how TI works and why. 

A.        OPERATING SYSTEM SUPPORT FOR KDS 

M2DBS is written in C running on the SunOS UNIX operating system version 

4.1.1. SunOS provides the C shell which M2DBS uses to maintain job control. In UNIX, 

the shell serves as an interface between the user and the operating system. The shell 

receives commands and arranges to have them executed. The shell scripts, or interpreter 

files (startcntrl, run.be, stop.db*, zero.db*, etc.), supporting M2DBS are designed to run 

on the C shell. 

The M2DBS software interacts with the Multibackend Database Supercomptuer 

hardware through a set of approximately one hundred system calls provided by UNDX. The 

UNIX operating system supports process control, reliable inter-process-communication, 

broadcast communication, and a compiler [Watkins, 93]. System calls from the kernel are 
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used for tasks like file I/O and process execution. MDBS constructs its higher level 

functions from the eighteen system calls listed below: 

Table 1: System Calls Made By MDBS 

System Call Purpose Location 

accept accept a connection on a socket pcl.c, sndrcv.c 

bind bind a name to a socket ack.c, pcl.c, sndrcv.c 

close delete a descriptor (file or socket) many places 

connect initiate a socket connection pcl.c, sndrcv.c 

exit terminate a process many places 

gethostname get the name of current host bgetx, bputx, cget.c, cputc 
dblx 

getnetbyname get access to the network pcl.c 

getpid get a process identification number generals.c 

gettimeofday get the date and time generals.c 

kill send signal to a process shell scripts 

listen listen for connection on a socket pcl.c, sndrcv.c 

lseek move the read/write pointer cpcountx, diox, dicpx, 
rectagx, zerox 

open open a file for reading or writing many places 

read read input (files or sockets) cpcountx, diox, dispx, iig.c, 
metax, pcl.c, rectagx, sndrcv.c 

send send a message from a socket ack.c, cbx, sndrcv.c, others 

socket create an endpoint for communica- 
tion 

ack.c, pcl.c, sndrcv.c 

unlink remove directory entry (file or 
socket) 

sndrcv.c, gsmodsetx 

write write output (file or socket) besx, cpcountx, diox, 
iigdblx, metax, pcl.c, rectagx, 
sndrcv.c 
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B. C LIBRARY HEADER FILES INCLUDED 

The M2DBS code references the seventeen system-supplied header files listed 

below. 

Table 2: Header Files Referenced By MDBS 

included header files 

arpa/inet.h 

ctype.h 

curses.h 

errno.h 

fcntl.h 

math.h 

ndbm.h 

netdb.h 

netinet/in.h 

stdio.h 

strings.h 

sys/file.h 

sys/socket.h 

sys/time.h 

sys/types.h 

sys/un.h 

time.h 
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The configure.h header file, is the header file that determines library functions, the 

names of symbols, the format of data structures, and the specification of communication 

sockets. 

C.        CONTROLLER AND BACKEND PROCESSES 

The parallel architecture of M2DBS is dependent upon communications. There are 

constant communications going on between the processes running on one workstation and 

the processes running on different workstations. The workstation acting as the "controller" 

depends on reliable inter-process communications to coordinate the actions of the six 

processes running concurrently on it. Each backend machine depends on reliable inter- 

process communication to coordinate the actions of their six backend processes. These Six 

backend (BE) processes and six control (CNTRL) processes are executing continuously 

while MDBS is running. 

26827 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/scntgpcl.out 
26829 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/scntppcl.out 
26830 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/pp.out 
26831 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/iig.out 
26832 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/reqprep.out 
26839 pO 10:01 /dbll/u/mdbs/VerE.6/CNTRL/dblti.out 
26828 pO 10:00 /dbll/u/mdbs/VerE.6/BE/sbegpcl.out 
26833 pO 10:00 /dbll/u/mdbs/VerE.6/BE/dirman.out 
26834 pO 10:00 /dbll/u/mdbs/VerE.6/BE/cc.out 
26835 pO 10:00 /dbll/u/mdbs/VerE.6/BE/recproc.out 
26836 pO 10:00 /dbll/u/mdbs/VerE.6/BE/dio.out 
26837 pO 10:00 /dbll/u/mdbs/VerE.6/BE/sbeppcl.out 

Figure 4: Six Controller (CNTRL) and Six BackJEnd (BE) Processes. 

D.        PROCESS FUNCTIONS 

There are twelve M2DBS processes relating to communications between the 

controller and its associated backends. These processes are depicted in Figure 4 and Figure 
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5. Controller processes include "controller get" (CGET), "controller put" (CPUT), "test 

interface" (TI), "request processing" (REQP), "insert-information generation" (IIG), and 

"post processing" (PP). The six backend processes are backend get (BGET), backend put 

(BPUT), record processing (RECP), concurrency control (CC), directory management 

(DM), and disk input/output (DIO). All six of these processes run on each backend machine 

participating in MDBS. 

The controller processes form the interface between the user and the collection of 

associated backends. The TI process is the user interface. TI routines activate the selected 

interface and capture the user's instructions from the terminal. REQP routines parse the 

user's requests and check for proper format and syntax. The EG process handles the 

clustering of the database records across the backend machines. Managing a global table of 

locality information (backend number, cylinder, track) is handled by the IIG. The PP 

formats the results received from the backend machines for display to the user. The CPUT 

process sends messages across the ethernet to other MDBS workstations. The CGET 

process receives messages from the controller and inter-machine messages from other 

workstations functioning as the backends. 

The backend processes are replicated on each backend machine. They form the 

interface between the controller and the individual backend. Where BGET receives 

messages from the associated workstations in the controller or backends across the 

ethernet, BPUT sends messages from an individual backend across the ethernet to the 

controller and other backend workstations. The BGET process also receives these same 

inter-machine messages for its backend machine. The RECP process manipulates records 

including selection, retrieval, and value extraction. The CC process maintains the meta- 

data and the base-data (record) integrity during the processing of transactions. The DM 

process manages all access to the meta-data disk. DM coordinates with RECP formulation 

and gathering information about how the records are stored. Finally, the DIO process 

manages  reads and writes on the base-data (record) disk. 
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Figure 5: MDBS Communication Channels 
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Figure 5 shows how these twelve communication processes interface with each 

other. In Figure 5, inter-process communication links have arrows showing which process 

initiates the link. That is, the arrows show initiation of information flow, not the direction 

of information flow. All of the communication channels depicted are established during 

"start-up". 

E.        TI LINKS BETWEEN KERNEL AND NON-KERNEL CODE 

Adding a new user interface requires minor modifications to TI. There are critical 

linkages between the kernel and non-kernel interfaces contained within the test interface 

(TI) code. 

a. The LanglFJFlag must be visible to the compiler. 

To accomplish this, be sure the "#define LangIF_Flag" statement in the 

"Flags.def' file located in the TI directory is not commented out. 

b. Ensure there is a function call to initialize the specific non-kernel 

language interface. 

To accomplish this, load the schema for the non-kernel model by calling 

the "creat_?_db_list" (e.g., creat_oo_db_list) function around line 90 in the ti.c file. 

c. Add a menu choice and call to the main procedure for the new language 

interface. 

To accomplish this, the code should be placed within the while loop 

following the function call to initialize the interface. 

d. Recompile the tiexe file. 

To accomplish this may require some minor modifications to one or more 

makefiles. The new language interface should be included in its own directory under "src" 
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inside the LangJF directory. The makefiles are adjusted to include a path to these files.. 

For more information on the design of a non-kernel language interface, see [Bourgeois, 1992]. 

F.        IN SUMMARY 

The KDS is supported by a select group of operating system, system calls, by 

library files packaged with C, and by communications between twelve continuously 

running processes. From the KDS viewpoint, adding a new interface requires only making 

minor modifications to the ti.c file and the makefiles. By following the protocols of the ti.c 

file, there is no need for the developer to go beyond TI into the system. TI is the gateway 

to the Kernel System. An understanding of the system calls, library functions, 

communication processes used by the system aids in understanding the development of 

new language interfaces. In the next chapter, the INSERT command is analyzed. How the 

system inserts new records, individually and in mass, will be detailed. 
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V. THE INSERT OPERATION 

The INSERT is the most fundamental operation of the five basic operations 

available in the KDS. The INSERT operation is fully functional and requires no 

modifications. The INSERT operation works correctly and will support the object-oriented 

interface without any further modifications or adjustments. 

A.        INSERT DESIGN CONSIDERATIONS 

The M2DBMS is a one user, and "one-time" interface. The M2DBMS by design 

will allow only one database to be in operation at any given time. Therefore, whenever the 

user makes any changes to the database in use, after the change is complete the backends 

release their linkage to the database. After completing an INSERT, the system completely 

exits the current operation and awaits the next command. The user must re-initiate the 

INSERT function to add anymore data. To execute a request for any other database other 

than the database in use requires the user to exit from the system. The INSERT operation 

can only occur within the context of a single database. 

As detailed in Chapters in and IV, (see Figure 1, Figure 4, and Figure 5) there are 

two major systems in M2DBMS, the Controller and the Backends. These two systems share 

twelve processes when executing the INSERT operation (as detailed below in Figure 6). 

To execute an INSERT, the database environment must exist on the backends. To create a 

database the user must first generate a Template file (e.i., the ".t" files) and a Descriptor file 

(i.e., the ".d" files) using the DDL compiler. How to create these files from within the 

attribute-based database system (i.e., the KDS) is detailed in the User Manual (Appendix 

A). The compiler will copy the Template and Descriptor files to the backends 

automatically. These files are necessary because they provide the syntax and the Insert 

Process Communication Paths environment for error checking and maintenance of the 

relationships between the attribute value pairs. 
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Figure 6: INSERT Process Communications 
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B. THE INSERT OPERATION 

Every process and request in the M2DBMS starts at the Test Interface (TI). The TT 

is the gateway into KDS. Every operation must follow the constructs and protocols of TI. 

Figure 6 and Figure 7 show graphically the system calls occurring as an INSERT executes. 

The UDM and UDL interface with KDS through a function called TI_SELECT(). Each 

Language Interface must select the Test Interface as the first step in executing operations 

that effect the database. The object-oriented language interface module is unique because 

the OODDL and OODML include the RTM. The RTM, embedded in the LIC, is the 

interface to the TI. 

The TLSELECTO function is used to initiate TI-execute(). TI-execute() is a 

function that sends message traffic to or receives message traffic from the MDBS. 

Message traffic consists of two pointers: the database identification pointer (dbid) and the 

trafficid. The trafficid is the pointer identifying the transaction as an INSERT operation. 

The TI initiates the execution of the INSERT by sending the traffic unit to Request 

Preparation (REQP). If the system can complete the INSERT request statement, it will then 

call REQP using the TI_S$TrafUnit() function. 

The TI_S$TrafUnit() function passes its two arguments, the database name and 

INSERT request, as function parameters to REQP (Figure 8). REQP then checks for proper 

format and syntax using the PARSER() function. PARSER() calls Chk_ParsedTrafUnit() 

to ensure the INSERT request is using the correct database name, attribute name, and 

attribute value type. If there are no errors, REQP will send the traffic unit identifying the 

database and the transaction INSERT to the backends for processing. 

During these processes, the FNSERT Information Generation (HG) process (see 

Figure 6) is handling clustering of the database records across the backend system. The IIG 

ensures each backend includes a global table of locality information containing addresses 

detailing backends, cylinders and track numbers. 
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TEST INTERFACE (TI) 

TT/fisul>s.e 

;:;: «•»t*• mm-mm-m ■■ M«ttltltt«»K»ra»IKMIKM 

TI-execute() Send a ?ra#c umY to MDBS 

Tl-chk-regs-left() 
Check if there are requests sent to MDBS 
which have not finished execution. 

TI-Req-Res-output() 

8 

TT-print-RegRes () 

Output the result to the current and/or 
Response File 

Prints out the response from MDBS 
into the file specified by the o-file. 

i«>r.c 
S 

TT-S$TrafUnit() 

Send a traffic unit 
to Request Preparation. TI_R$ReqRes() Return the result of a request. 

COMMON/sndrv.c 

i 
SendQ Receive () 

Sends a message from one task 
to another task. 
.copy-to-string() 
.Send-get-sdQ 

Receives the next message 
for a task 
.rec-get-sd() 
.hd-copyO 
.body-copy() 

Figure 7: Test Interface Process Detail During INSERT Operations 
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Meanwhile, Concurrency Control (CC) (Figure 9) is maintaining the integrity of the 

meta data and the base data. CC initializes a series of tables to maintain concurrency 

control: the Traffic-Unit-to-Attribute-Identification Table (TUAT), the Attribute- 

Identification-to-Traffic-Unit Table (ATUT), the Traffic-Unit-to-Descriptor- 

Identification-Sets Table (TUDIST), the Traffic-Unit-to-Cluster-Identification Table 

(TUCT), and the Cluster-Identification-to-Traffic-Unit Table (CTUT). CC then executes 

the C_New_TrafficUnit(), CSCC_NewTrafficUnit(), or the DSCC_NewTrafUnit() 

functions based on what type of message the CC received from the Language Interface 

Controller or the other backends. 

The Directory Manager (DM) (Figure 10) manages all access to the meta data disk. 

The DM receives Traffic-Unit messages from REQP finding the descriptors satisfying the 

INSERT operation. The DM then calls the INS_DESC_SR() function. At the same time, 

the DM coordinates with Record Processing (RECP)(Figure 11) the gathering of 

information about how the base data is to be stored. The DM, after coordinating with 

RECP, then broadcasts the descriptor-identification to the other backends. 

The RECP manipulates the base data using functions for selection, retrieval, and 

value extraction. RECP receives the INSERT request from the REQP in the kernel or from 

the other backends. To execute the INSERT, the RECP fetches a Track Buffer (TB) and 

then gets free disk area from the Disk Input/Output (DIO)(see Figure 6) by calling the 

INS_Processing() function. The DIO handles all reads and writes to the base data disks. 

RECP then puts the records into the fetched TB and stores the TB back to the free disk area 

by calling the IP_INSERT_Record() function. 

The Post Processing (PP) (see Figure 6) properly formats the results. The results are 

received from the backends and sent through the TI to the LIC contained in the UDM/UDL. 

The LIC will call the KFS for display of the information back to the user. In the case of the 

object-oriented interface, the RTM receives the results from the PP. The RTM then calls 

the KFS to properly format the results for display to the user. The KFS and RTM are 

discussed in Chapter VI. 
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REQUEST PREPARATION (REQP) 
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Operations 
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CONCURRENCY CONTROL (CC) 
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Figure 9: Concurrency Control Process Detail During INSERT 
Operations 
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DIRECTORY MANAGER (DM) 

dirman.c 
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Figure 10: Directory Management Process Detail During INSERT 
Operations 
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RECORD PROCESSING (RECP) 
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Figure 11: Record Processing Process Detail During INSERT 
Operations 
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C.        THE MASS_LOAD FUNCTION 

The INSERT function, as written is limited. The function allows only one record 

INSERT to occur at a time. There are no utilities for loading several records at a time. The 

Mass_Load() function solves this problem. As the name implies, the Mass_Load function 

batch loads large quantities of user generated data from a data file to the backends. 

To use the MassJLoad function, the user must first generate a Template file (i.e., 

the ".t" files) and a Descriptor file (i.e., the ".d" files) using the DDL compiler. The 

compiler will copy the Template and Descriptor files to the backends automatically. These 

files are necessary because they provide the environment that will maintain the 

relationships between the attribute value pairs. When completed, the user can then initiate 

the "User generated Data File" selection from the menu. This selection is a necessary first 

step in a hierarchy of steps that will batch load data stored in files to the current backends. 

The user will then observe after selecting "Usergenerated Data File" the selection menu 

has an option "M" which when selected will process the Mass_Load() function. Figure 12 

is an example of "User generated data file" produced by the Mass_Load() function. The 

data file separates each piece of data with a space and an ampersand (@) symbol. 

FACSTU 
@ 

Name 
Nl dan a kellett 
N2 taewook k kwon 
@ 
Al 117_mervine_dr monterey ca 93940 
A2 397_ricketts_rd monterey ca 93940 
@ 
Person 
PI Nl Al m 
P2 N2 A2 m 
@ 
$ 

Figure 12: User Generated Data File using Mass_Load () 
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The Mass_Load() function is a process consisting of four steps. First, the function 

will open the "User_generated data file" and check for a match between the database name 

in the file and the name of the database currently in use. The function will read the first 

capital letter as the name of the current executing database. The function will then check to 

see if the database name in the file is in agreement with the database name currently 

executing. These must agree or the function will abort. If the names match, then the next 

data read is recognized as the template name. The function will then open the template 

already on the backends using the "other pointer process" embedded within the function. 

Next, the Mass_Load() function will read the data from the "User generate data 

file" one by one. With each read, the function will read an attribute name from the template 

file. The matching of a data element and an attribute name will create the attribute value 

pair. As pairs are created, the function creates an INSERT statement in the attribute data 

language for each individual item read. This processing continues until the ampersand (@) 

is encountered. 

The ampersand (@) symbol acts as the demarcation between templates. When 

encountered the Mass_Load() function will stop processing, read the next template. The 

reading of data resumes. Processing continues until the dollar ($) symbol is encountered. 

The dollar ($) symbol marks the end of the file. 

Once the end of file is encountered, the Mass_Load() function passes the INSERT 

request statements to REQP in the Kernel System. The REQP receives these INSERT 

statements through the TI and checks each statement for proper format and syntax. If all 

of the statements pass the error checking, the INSERTS are executed and completed. 

D.        SUMMARY 

The INSERT operation is the most basic operation of the five database operations 

available in the KDS. The INSERT operation is supported by the twelve processes 

discussed in Chapter IV. Because the INSERT operation will only operate on a single entry, 
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and there axe no utilities within the system to groups of data, the Mass_Load() function is 

provided. Using Mass_Load() the users can load data from data file in batch mode. The 

INSERT and Mass_Load() functions are operational and require no modifications to 

support an object-oriented interface. 
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VI. THE KERNEL FORMATTING SYSTEM 

There are two thesis closely associated with this thesis: The Object Oriented Real- 

Time Monitor, by Erhan Senocak [Senocak, 1995],   and Manipulating Objects   in the 

M2DBMS, by Robert Clark and Necmi Yildirim [Clark, 1995]. Where this thesis only deals 

with the INSERT operation, Clark and Yildirim deal with the other four associated 

operations. These four operations are associated with manipulating the data once the data 

is appended to the database. Senocak discusses how the queries formed by the four basic 

operations are translated from the compiler to KDS required formats using a Real-Time 

Monitor (RTM) pictured below in Figure 13. He also deals with how the results of the query 

coming from the KDS are passed to the Kernel Formatting System (KFS) for display. 

During this associated research, it became obvious that the KFS required modification. We 

took on the task of completing these modifications while the other groups continued their 

research. 

A.        MODIFICATIONS TO THE KFS 

As explained in Chapter IV, there are twelve M2DBS processes relating to 

communications between the controller and its associated backends (see Figure 5). One of 

these twelve processes is the Post Processing (PP) process. This process formats the results 

of queries received by the backends. The RTM receives the PP's results and temporarily 

creates one output file named output_f. The output file consists of a set of attribute value 

pairs which can be displayed. But, unless the reader is familiar with the ABDM and ABDL 

constructs, the results are not meaningful. This violates the M DBMS design concept. The 

results must be in a format understandable to the user of an object oriented DML and DDL. 

The user should not have to understand both the object oriented DML and DDL and the 

ABDM and ABDL. The user does not interface with the KDS. 
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THE REAL-TIME MONITOR (RTM)j 
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KERNEL 

Attribute Based 
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Figure 13: The Real-Time Monitor and Kernel Formatting System 
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To produce results that will be understandable to the user, we modified the existing 

display format associated with the KFS. We modified the KFS to present answers to queries 

in a table format vice attribute-value pairs. The table format is clear. Answers to queries 

listed in a table of columns with headings and rows are self explanatory. Attribute names 

form the column headings, and attribute values fill the cells of their associated attribute in 

record order. Figure 14 below is an example of query results displayed on the screen for the 

user. The figure shows Output_f file contents first. This is how the data is actually stored 

within the RTM process. Next the figure displays what the user would see if the data were 

displayed in the ADBL. The last display is an example of the table actually generated from 

the KFS after the answer to a query is passed to the KFS through the RTM. We converted 

the KFS display format from an attribute-based format to a table format to help the user 

better understand the results from queries. 

B.        THE CASE FOR C++ 

Without dynamic memory allocation, displaying the results of a query in a table is 

difficult. The size of the resulting information in memory is unknown. The size of the 

required table necessary to display the information is equally unknown. Size is not fixed 

until the query is finished processing. The conventional "C" programming language does 

not easily support dynamic memory allocation. Allocation of fixed memory blocks to hold 

query answers is risky. The designer cannot predict the required size. Databases evolve and 

grow, so any valid prediction will decay over time. As designers, we felt compelled to 

introduce dynamic memory allocation to the KFS module. To do so required introducing 

the C++ programming language and the ease with which it supports dynamic memory 

allocation. Although the rest of the system is written in C, the KFS requires dynamic 

memory allocation and C++ became a necessary part of the solution. 
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To ease future research, and to ease further expansion and implementation of 

M2DBMS, we recommend implementing the system in C++. C++ will facilitate further 

research in the human interface associated with the system. C++ will also facilitate 

expansion of the system by upgrading the available capabilities, libraries, and objects 

available to researchers as they investigate future designs. 

RESULTS  DISPLAY 

output f 

(<OID, N3>,<FNAME, dan>,<LNAME, kelleto) 
(<OID, N4>,<FNAME, taewook>,<LNAME, kwon>) 
(«DID, N6>,<FNAME, david>,<LNAME, hsiao>) 
(<OID, N7>,<FNAME, thomas>,<LNAME, wu>) 

Output in Attribute Based Format 

(<OID, N3>,<FNAME,dan>,<LNAME, kellett>) 
(<OID, N4>,<FNAME, taewook>,<LNAME, kwon>) 
(<OID, N6>,<FNAME, david>,<LNAME, hsiao>) 
(<OID, N7>,<FNAME, thomas>,<LNAME, wu>) 

New Output: Table Generated by the KFS 

on) FNAME 

N3 1 dan 
N4 1  taewook 
N6 1 david 
N7 1 thomas 

I LNAME 

I kellett 
I kwon 

I hsiao 
I wu 

Figure 14: Query Results: Pre and Post KFS Display 
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VII. CONCLUSION 

The multimodel/multilingual database system can support different data models 

and data languages provided a unique language interface can be constructed to support the 

desired data model and data language. The overall language-interface structure consists 

of the four LIL, KMS, LIC, and KFS modules. These four modules are specifically 

constructed to support a particular data model and data language. Developing a user data 

model and data language interface (UDM/L) between the user and the Kernel Database 

System (KDS) requires an understanding of the system's design. As long as a compiler 

(KMS) can be constructed that will translate the UDM to KDM, the KDS can support the 

UDM/L. 

The KDS is the portion of M2DBMS software containing the Test Interface (TI). A 

careful study of the KDS code, early in the research, revealed a simple design construct of 

the system: developers do not need to involve themselves in the minutia of KDS code to 

build additional model/language interfaces. The TI is the only portion of the software the 

new user interface will communicate with. Development requires only understanding the 

TI and does not require any changes to the rest of the KDS. From the KDS viewpoint, 

adding a new interface requires only making minor modifications to the ti.c file and the 

makefiles. By following the protocols of the ti.c file, there is no need for the developer to 

go beyond TT into the system. Once those protocols and constructs are met (as they are in 

all of the other language interfaces) the rest of the system will respond. TI is the gateway 

to the Kernel System. An understanding of the system calls, library functions, 

communication processes used by the system can aid one's understanding but is not 

required. The developer is only concerned with the protocols and constructs of the TI. 
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A.        SUGGESTIONS FOR FUTURE RESEARCH 

1. Develop A More Sophisticated Insert Operation. 

The INSERT operation is the most basic operation of the five database operations 

available in the KDS. Because the INSERT operation will only operate on a single entry, 

and there are no utilities within the system to groups of data, the Mass_Load() function is 

provided. Using Mass_Load() the users can load data from data file in batch mode. The 

INSERT and Mass_Load() functions are operational and require no modifications to 

support an object-oriented interface. However, we believe a more sophisticated INSERT 

operation needs to be provided that allows multiple inserts in a single session without 

having to resort to batch processing from a data file. 

2. Compile The System In C++ 

To ease future research, and to ease further expansion and implementation of 

M2DBMS, we recommend implementing the system in C++. Implementation of the systm 

in C++ will facilitate expansion of the system by upgrading the available capabilities, 

libraries, and objects available to researchers as they investigate future designs. 

Without dynamic allocation, the simple task of displaying the results of a query is 

difficult. The size of the resulting information in memory is unknown. The size of the 

required memory allocation necessary to display the information is equally unknown. Size 

is not fixed until the query is finished processing. The conventional "C" programming 

language does not support dynamic allocation. Allocation of fixed memory blocks to hold 

query answers is risky. The designer cannot predict the required size. Databases evolve and 

grow, so any valid prediction will decay over time. 

As designers, we felt introducing the C++ programming language and its support 

for dynamic allocation would facilitate future research and aid in problem solutions. 

Because the current system is compiled in C, C++ should be able to compile the existing 

code with only minor modifications. To add the capabilities of C++ appears to justify such 
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an undertaking. By compiling the code in C++, C++ will provide capabilities that will 

facilitate further research in the human interface associated with the system. 

3.  Its Time To Work On The User Interface. 

As the system currently exists, the user interface is inadequate. Certainly, the user 

interface does the job of reporting results to the screen and enables researchers to check 

their work. But, with the availability of gui.objects, and the the availability of sophisticated 

code generation programs, we believe it is time to investigate the user interface. 

Current research in human factors engineering, and cognitive sciences indicate that 

the ability to use many models within the same system will have its own unique set of user 

interface challenges. To date, no research has been done that discusses or investigates the 

potential problems inherent in a sophisticated database system that enables the users to 

draw on several models and languages at once. 

There has been no attention to date applied to how the system "looks and feels" to 

users. The interface is primitive. There has also been no research to date on an appropriate 

user interface for the M2DBMS by applying new developments in the cognitive sciences. 

We recommend a future thesis expand on the theory of cognitive sciences by applying the 

techniques of human factors engineering to the M2DBMS user interface. The research 

must go beyond "looks and appearance" of the interface, and investigate the impact 

different interface styles and methods can have on the usability and cognition of a system 

that supplies so many options to the users. 

B.        SUMMARY 

Using an attribute-based data model, the Kernel Database System can realize 

complex data structures in the object-oriented data model. A single database system can 

support a variety of data models and data languages using a Kernel based on attribute-value 

pairs. In this thesis, a kernel database system supports both classical data models and data 

languages (i.e., hierarchical, network, relational, and functional) and the emerging object- 
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oriented data model and data language. By successfully creating an object-oriented 

database in the KDS, this thesis shows that complex data structures found in the object- 

oriented data model can be realized as a kernel database in a single database system. Prior 

to this research, it has not been clear whether or not the Kernel Database System (KDS), 

designed to support classical databases, can support the complex object-oriented database. 

This thesis has shown that object-oriented data can be inserted into a Kernel Data base 

consisting solely of attribute-valued pairs. The object-oriented database model and 

language are supported by the INSERT operation in the attribute-based data definition 

language (ABDL) without any modifications having to be made to the KDS. It is, 

therefore, unnecessary to build an entirely new object-oriented database system to support 

an object-oriented database. 
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APPENDIX A--THE USER MANUAL 

The Multi-Model, Multi-Language Database Management System is located in Lab 500 of 

Spanagel Hall at the Naval Postgraduate School, Monterey, California. The Lab is supported by 

two sun workstations operating from a Sun 4/110. Work Station dbl 1 contains the user interface 

and controller software, commonly referred to as the "front-end". Work Station dbl3 contains the 

storage disks and associated memory management software commonly referred to as the "Back 

ends". Work Station dbl2 is co-located in the lab and is available for use as a second "back end" 

if the need arrises. These resources are dedicated to Database Engineering research. 

These instructions will walk you through how the system is used. Before using the system 

the user must first create all the schema files and construct the optional Request files. After 

creating these, the user can begin research within the MDBS system. For more detail on the 

system architecture, and on function logic, see the related theses listed in Appendix 1 of this thesis. 

In the following instructions, letters in bold represent Prompts. Italics represent required entries 

by the user. 

Before using the system, a brush up on "vi" and "emacs" is recommended. The system does 

not support XWindows or Lemacs. Editing from the system is facilitated by a basic knowledge of 

Unix text editors. To transport files from the system to a personal account elsewhere in Unix, 

requires using FTP procedures. The system will not simply copy ("cp") from one terminal to the 

other. 

Before editing any code, remember, the program code is complex and weighty. Errors 

introduced into the code by careless management of upgrades will be difficult and time consuming 

to debug. We suggest a copy of the system be made and experimented on, tested and debugged, 

before committing to any permanent changes to the original system. 

A.    LOGGING ON 

1.  Remote Log On 

You can remote log-on to the MDBS from any terminal on the Computer Science 

Department's Unix network. You start by entering "rlogin dbll" at the terminal prompt. The user 
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first sees a security warning message, and the Password prompt appears. Figure A-l is an example 

of what you will see. By pressing the return key Login incorrect and Login prompts appear. Do 

not worry about the "Login incorrect", press Enter and when Login reappears enter the Host name 

"mdbs" and then following the prompts, enter the password. 

********** WARNING ********** 

UNAUTHORIZED USE OF THIS DEPARTMENT OF DEFENSE (DOD) INTEREST 

COMPUTER SYSTEM AND/OR SOFTWARE IS PROHIBITED BY PUBLIC LAW. 

USE OF THIS SYSTEM CONSTITUTES CONSENT TO MONITORING 

****** CLASSIFIED PROCESSING ON THIS SYSTEM IS PROHIBITED ****** 

Password: 

Last login: Tue Apr 4 08:50:30 on console 

mdbs processes running on dbll: 

users logged on to dbll: 

8:59am up 35 days, 23:21,4 users, load average: 0.50,0.27,0.04 

User    tty      login@idle JCPU  PCPUwhat 

mdbs    console  8:50am    8    35    35twm 

mdbs    ttypO    8:51am    3     5     2-sh 

mdbs    ttypl    8:58am w 

Fig A-l: Login process on the dbll machine. 

Following these instructions activates the proper associated accounts automatically. The 

system logs into the default directory (dbll/u/mdbs) automatically. The mdbs account is used 

primarily for thesis research. There are numerous directories from which the M DBMS system 

runs. Options exist to predetermine the number of backends that the user desires to use while 

running a particular database application. Due to constant manipulation and changes that occur 

from thesis research, our focus will be placed on using the kwontw, and badgett account on the 

dbll terminal. Entering the unix command "Is", lists all the current accounts on the dbll 

terminal inside the mdbs directory. Look for current account on the dbl 1 terminal in the Fig A-2. 

46 



dbll/u/mdbs> Is 

Calendar/ RunData/   andy/ erhan/ master/ 

Demo/ Sockets/   badgett/ greg/ necmi/ 

Docs/ ThesislO/  bin/ kellett/ 0-0/ 

Run/ UserFiles/ dark/ kwontw/ 

Fig A-2: Current accounts on the dbll terminal (95/04/04). 

2.   Direct Log On from Terminal DB11 

You can directly log on from terminal dbll in Lab 500. The process is the same with the 

exception of using the "rlogin" command. Do not use rlogin. Simply enter your name at "dbll 

login:". When "password:" appears after the government's security warning, press Enter. "Login 

incorrect" will then appear. Ignore this and enter "mbds". When the password prompt reappears 

enter the password. 

B. AFTER LOGGING ON 

1. Copy the schema and request files 

The subdirectory UserFiles contains the schema and request files for the existing 

databases. If your database exists, its files will be listed here and is ready to be processed. 

Otherwise, if the database files are not listed then you must either create them or transfer them into 

the UserFiles subdirectory. The UserFiles subdirectory can be visited from any location within 

the system by entering "data" at the prompt. 

2. Kill any MDBS processes still running on the system. 

Prior to executing the command start or begin you must verify that there are no processes 

still running the MDBS system.   The UNIX command "ps ax"  will display all active processes 
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on your terminal whether you own those processes or not. Because an aborted run of the MDBS 

system can leave MDBS processes still running, the "ps ax" command will help locate these 

processes and by using the UNK command "kill", you can stop the lingering processes. Look for 

any process like those highlighted in Figure A-3. 

A second method for killing extraneous processes is to use the "stop.cmd" command. This 

command will find all the extraneous processes running and safely end them as shown in Fig A-4. 

PID TT STAT TIME COMMAND 

0 ? D    0:41 swapper 

1?IW   0:03/sbin/init - 

2 ? D    0:10 pagedaemon 

55? S 3:40 portmap 

58? IW 0:00 keyserv 

63? S    11:43 injouted 

80? IW 0:03 syslogd 

88? IW 0:14 /usr/lib/sendmail -bd -qlh 

95? IW 0:00 rpc.statd 

96? IW 0:00 rpc.lockd 

103? S 3:18 /usr/etc/automount -m -f /etc/auto.master 

3099? IW 0:00 in.tnamed 

3188? S 0:00 in.rlogind 

12390 ? IW 0:00/usr/lib/lpd 

3102 co IW 0:00 -csh (csh) 

3113co IW 0:00 /bin/csh /usr/bin/Xll/xinit 

3118co IW 0:00 /usr/bin/Xll/xinit.exec -- /usr/bin/Xll/X 

3119 coS 0:03 /usr/bin/Xll/X :0 

3120co IW 0:00 sh /u/mdbs/.xinitrc 

3124 co S 0:02 xclock -update 1 -g 80x80-1+1 

3125 co S 0:00 xterm -g 80x40+1-1 -sb -si 150 

3126 co IW 0:00 xterm -g 80x20+1+1 -C -sb -si 150 

3138 pi IW 0:00 main 

3181 piIW 0:00 sh -c /u/mdbs/greg/CNTRL/ti.exe 1 

3182 plS 0:00 /u/mdbs/greg/CNTRL/ti.exe 1 

3189 p2S 0:00 -csh (csh) 

3202 p2R 0:00 ps ax 

Fig A-3: Results of executing the ps ax command. 
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dbll/u/mdbs> stop.cmd 

stopping processes on back end dbll 

killing 26827 26828 26829 26830 26831 26832 26833 2683 3118 

Fig A-4: Results of the stop.cmd command. 

dbll/u/mdbs> stop.cmd 

stopping processes on back end dbl 1 

killing no processes 

Fig A-5: Results of the stop.cmd command with no MDBS processes running. 

If the stop.cmd command is issued and no MDBS processes are running on the system, the 

user will be notified that there are no MDBS processes to kill as shown in FigA-5 

3.   Perform META-DISK Maintenance. 

Upon verification that no extraneous processes are running, unless the user wants to use a 

database already on the system, the user must ensure old databases have been removed from the 

Meta-disk. This is accomplished by using the alias "pry". "pry" checks the Meta-disk and ensures 

no data is on it. The "pry" command will display what data is on the disk. If the line displays 

zeroes, or the system returns the statement "no data is on the controller", then the data disk is clean 

and you are ready to execute the MDBS system. If there is an existing database stored on the disk, 

the results of the "pry" command will look similar to Fig A-6. 

000000  NO \0 003   E   M   P   R  E   C \0 \0 \0 \3 \0 \0 \ 
0000016 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 

Fig A-6: Meta-disk with existing data 
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The "zero" command cleans the meta-disk of any existing data. To avoid unexpected 

crashes of the system during execution, it is best to ensure the meta-disk is clean. Fig A-7 displays 

what the user sees after executing the "zero" command. 

dbll/u/mdbs/run-39>zero 

No match. 
No match. 
File to zero = /dev/sdlc 
File size = 105638400 
Bytes to zero = 8000000 
Bytes written... 

819200 
1638400 
2457600 
3276800 
4096000 
4915200 
5734400 
6553600 
7372800 
8000000 

Fig A-7:  Result of the zero command 

Provided the you have either cleaned the meta-disk, or plan to process an existing database, 

you are now ready to run the MDBS system. From any MDBS directory, type the command "start" 

or "begin" to start the MDBS interface. 

4.   Set Up The User Screen. 

We recommend opening two separate C shells while operating the MDBS system. This will 

facilitate trouble shooting and research. One shell is used strictly for database execution. The other 

shell is used for checking the UserFiles directory. The UserFiles directory should be checked to 

ensure all necessary database files exist. After checking the directory, use this same screen to verify 

all processes are running. 
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5.   Check to see if all processes are running. 

When running the MDBS, six backend (BE) processes and six control (CNTRL) processes 

should be running. These processes are shown in Fig A-8. If all the processes are not running, then 

exit the system pressing [Control]-c. After exiting, kill any extraneous processes with the 

"stop.cmd" command. Double check to ensure no extraneous processes are running using the "ps 

ax" command, ensure the data disk has been zeroed. If not, zero the meta disk with the "zero" 

command.   Restart the MDBS system with the "begin" or "start". 

26827 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/scntgpcl.out 
26829 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/scntppcl.out 
26830 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/pp.out 
26831 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/iig.out 
26832 pO 10:00 /dbll/u/mdbs/VerE.6/CNTRL/reqprep.out 
26839 pO 10:01 /dbll/u/mdbs/VerE.6/CNTRL/dblti.out 
26828 pO 10:00 /dbll/u/mdbs/VerE.6/BE/sbegpcl.out 
26833 pO 10:00 /dbll/u/mdbs/VerE.6/BE/dirman.out 
26834 pO 10:00 /dbll/u/mdbs/VerE.6/BE/cc.out 
26835 pO 10:00 /dbll/u/mdbs/VerE.6/BE/recproc.out 
26836 pO 10:00 /dbll/u/mdbs/VerE.6/BE/dio.out 
26837 pO 10:00 /dbll/u/mdbs/VerE.6/BE/sbeppcl.out 

Fig A-8: Six Controller (CNTRL) and Six Back_End (BE) Processes. 

C.        RUNNING M2DBMS 

The attribute-base data model (ABDM) is the kernel data model (KDM) for the M2DBMS system. 

The ABDM was chosen as the kernel data model because ABDM allows you to store the meta data 

and base data separately. ABDM introduces equivalence relations which partition the base data 

into mutually exclusive sets called clusters. These clusters are distributed across the backends 

allowing parallel access to the base data. Coupling ABDM with the attribute-based data language 

(ABDL) as the kernel data language (KDL) facilitates database design. The attribute-based model and 

language support database research with a semantically rich and complete language and with a 
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simple storage and parallel processing architecture. For more information on how M DBMS can 

support classical and emerging database designs see Chapters 2, 3,4, and 5 of this thesis. 

1.  Database Constructs 

Data in the ABDM is stored as an attribute-value pair. Attribute-value pairs are the simple 

building blocks of the kernel database. The attribute-value pairs consist of attribute names and 

corresponding values. When displayed, an attribute-value pair is enclosed by a pair of angled 

brackets. The attribute name is always first, followed by the value for the attribute. If the attribute- 

value pair has no value, then only the attribute-name is seen. An example would be <FNAME, 

Tae-wok>, were "FNAME" is the attribute name and "Tae-wok" is its corresponding value. The 

attribute name must always be uppercase. 

A RECORD is a set of attribute-value pairs. Within a record, attribute-value pairs must have 

unique attribute-value names. That is, no two attribute-value pairs can have the same attribute- 

value name. At least one of the attributes in the record is a key. Following these two rules ensures 

each attribute-value pair is single valued and each record can be identified by at least one key. A 

record is enclosed by parenthesis. The attribute-value pairs are contained within these parenthesis: 

(<COURSE, CS4322>, <INSTRUCTOR, Hsiao>, <SECTION, 2>, <YEAR, 1995>, 

<SEMESTER, fallx 

A FILE is a collection of records that share unique set of attributes. If a record belongs to a 

certain file, then the first attribute-value pair of the record will contain the attribute TEMP and the 

corresponding file name. All records belonging to the same file will have the same first attribute- 

value pair. For example, (<TEMP, NAMES>, <LNAME, Hsiao>, <FNAME, David >, 

<MIDDLE, K>) indicates that the record belongs to the file NAMES. The file contains a detailed 

description of the ABDM and ABDL. We encourage the user to read these prior t executing the 

attributed-based interface. 
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2.   Generating A Database Operation 

The user can start the execution of the ABDM interface by selecting the option (a) from the 

first menu selection screen. The first selection screen will look like Fig A-9. The ABDM interface 

does not require the use of a schema file or request file. In the kernel data model, the system uses 

template files (i.e., ".t" files) and descriptor files (i.e., ".d" files). The schema files generate the 

template and descriptor files necessary for mapping an interface model/language into the kernel 

data model/data language. The ABDM, being the kernel model, does not need its own schema for 

mapping to itself. 

Welcome to Multi-Lingual/Multi-Backend Database System 
Select an operation: 

(a) - Execute the attribute-based/ABDL interface 
(r) - Execute the relational/SQL interface 
(h) - Execute the hierarchical/DL/I interface 
(n) - Execute the network/CODASYL interface 
(f) - Execute the functional/DAPLEX interface 
(o) - Execute the Object-Oriented interface 
(x) - Exit to the operating system 

Select-> 

Fig A-9: The First Selection Screen. 

In the ABDM interface the user creates the template and descriptor file prior to execution. 

There is an option to generate a database but using this option is unnecessarily time consuming. 

We suggest using a text editor like emacs or vi   to create the template and descriptor files. 

After selecting the option (a) from The Multi-Lingual/Multi-Backend Database System 

menu in Fig A-9, selects option (g) at the next ABDL interface menu. This menu will look like Fig 

A-10. The (g) option is used to generate a new database in the attribute-based form. 
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The attribute-based/ABDL interface: 

(g) - Generate a database 

(1) - Load a database 

(r) - Request interface 

(x) - Exit to MDBS main menu 

Select-> 

Fig A-10: ABDL Interface Menu 

When the (g) option is picked, the generate-database menu (Fig. A-11) is displayed. 

This menu is the gateway to database generation. To generate a database, and be able to conduct 

operations on the database, the user must: 

a. Generate the ".t" Template File. 

b. Generate the ".d" Descriptor File. 

c. Generate/Modify Set Values by creating the ".s"file. 

d. Generate the ".r" Records File. 

e. Load the Database. 

The Generate-Database menu (Fig. A-l 1) is the main menu for these functions. 

Select an operation: 

(t) - Generate record template 
(d) - Generate descriptors 
(m) - Generate/modify sets 
(r) - Generate records 
(x) - Exit, return to previous menu (ABDL main) 

Select- >t 

Fig A-ll: Generate-Database menu 
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There are five options on the menu screen, These options include: 

• Option (t): a collection of menus for generating the record-template file, which contains 
the meta-data for the different record types in our database. 

• Option (d): a collection of menus for generating the descriptor files. Descriptor files 
contain the directory attributes of the database along with possible initial values for the 
descriptors of each directory attribute. 

• Option (m): a collection of menus for generating (actually modifying) data sets for each of 
the attributes in the database. These data sets are then used to systematically generate arbitrary 
records for the database using the (r) option. 

• Option (r): a collection of menus for generating the record file. The record file contains 

a group of records that are to be mass loaded by the M DBMS. 

Together, the (m) and (r) options can be used to generate test or sample databases. Using 

option (r) creates a test, or sample database, which contains records that have been systematically 

constructed from the sets of values created by the (m) option. Through these two options, the user 

can quickly set up a test or sample database. 

• Option (x): returns you to the previous menu. 

The next sections of this manual will describe how each of these functions is performed. 

3.   Generating A Template File 

Generating the template file is the first step in creating a database on the KDS. The 

template and descriptor files (i.e., the ".d" and ".t'Tiles) are used to describe the structure of the 

attribute-based database. These files must be present to tell the kernel database system what the 

template names are and their associated attributes. For the initial creation of a database, we 

suggest that using vi or emacs for generating the ".d" and ".t" files outside the system. The system 

can be cumbersome. The following details how to create these files from within the system. 

The names of the templates and the attributes associated with each template are described 

to the database system through the template and descriptor files. The attribute type and any 

constraints on attributes will be noted in these files. A template name is similar to the name of a 
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relation in a relational database. The template file contains the name of the database, followed by 

the number of templates within the database. After the number of templates, the next number is 

the number of attributes in the following template. The template name is listed followed by the 

attributes in that template and their respective type (i.e. string, integer, etc.). Once all attributes for 

a template are listed, the number of attributes in the next template is listed, followed by the next 

template's name. This process is repeated until all the templates and attributes have been listed. 

The following provides the user with a step-by-step reference for executing the "generate 

the template file" operation. Remember, attribute values have to be in upper-case and every value must 

have no blanks in a single value. 

a.   Generating A Template File 

If user picks the (t) option from the M2DBMS selection menu the following is a 

sample of what the user should be seeing and how the process generates a template file. The 

sample is followed by the results of the process. The following is what the user will observe on 

the screen. 

Select an operation: 

(t) - Generate record template 
(d) - Generate descriptors 
(m) - Generate/modify sets 
(r) - Generate records 
(x) - Exit, return to previous menu (ABDL main) 

Select-> t 

Enter the template file name: FACSTU.t 

ENTER DATABASE ID: FACSTU 

ENTER THE NUMBER OF TEMPLATES FOR DATABASE FACSTU1:13 

ENTER THE NUMBER OF ATTRIBUTES FOR TEMPLATE #1: 5 
ENTER THE NAME OF TEMPLATE #1: Name 

ENTER ATTRIBUTE #1 FOR TEMPLATE Name: TEMP 
ENTER VALUE TYPE (s = string, i = integer): s 

56 



ENTER ATTRIBUTE #2 FOR TEMPLATE Name: OID 
ENTER VALUE TYPE (s = string, i = integer): s 

ENTER ATTRIBUTE #3 FOR TEMPLATE Name: FNAME 
ENTER VALUE TYPE (s = string, i = integer): s 

ENTER ATTRIBUTE #4 FOR TEMPLATE Name: MI 
ENTER VALUE TYPE (s = string, i = integer): s 

ENTER ATTRIBUTE #5 FOR TEMPLATE Name: LNAME 
ENTER VALUE TYPE (s = string, i = integer): s 

ENTER THE NUMBER OF ATTRIBUTES FOR TEMPLATE #2: 5 
ENTER THE NAME OF TEMPLATE #2: Person 

ENTER ATTRIBUTE #1 FOR TEMPLATE Person: TEMP 
ENTER VALUE TYPE (s = string, i = integer): 5 

ENTER ATTRIBUTE #2 FOR TEMPLATE Person: OID 
ENTER VALUE TYPE (s = string, i = integer): s 

ENTER ATTRIBUTE #3 FOR TEMPLATE Person: PNAME 
ENTER VALUE TYPE (s = string, i = integer): s 

ENTER ATTRIBUTE #4 FOR TEMPLATE Person: PADDRESS 
ENTER VALUE TYPE (s = string, i = integer): s 

ENTER ATTRIBUTE #5 FOR TEMPLATE Person: SEX 
ENTER VALUE TYPE (s = string, i = integer): s 

In the above example the user is creating the template file by answering the 

questions with values needed for the database design. The user selected "t" from the menu. The 

system asked for the name of the new template. The user responded with "FACSTU". After 

giving the system a name for the new template, the system begins to establish relationships 

between this new template and records that will be associated with it. In the example there are 

thirteen related records to FACSTU. The system then asks for the attributes and their associated 

type for the 1st, then the 2nd, etc., records. This series of questions will continue through record 

number thirteen then stop. 

b.   An Example Template File (FACSTU.t) 

After creating the template files, and the thirteen related template files, the 

following results are stored in the system as the FACSTU template. 
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FACSTU /* template file name */ 
13 /* number of related templates */ 
5 /* number of attributes in template 1 */ 
Name /* template is called "name" */ 
TEMP s /* "name" is an attribute template, type s       */ 
OIDs /* OID is an attribute of types */ 
FNAME s 
Mis 
LNAME s 
5 
Person 
TEMPs 
OIDs 
PNAME s 
PADDRESS s 
SEXs 

This type of storage continues through template 13. 

4.   Generate a Descriptor File 

After making the template files, select option (d) at the selection menu. Option (d) 

generates the descriptor files interface for the creation of descriptor files. The descriptor file 

contains information with regards to constraints placed upon the attributes within the template. In 

order to achieve the mutual exclusivity of the M2DBMS, there are three descriptor types that an 

attribute can take on. Type a is an attribute which has a disjointed range of values (i.e. 0 <= 

NUMBER <= 100). Type b is an attribute of distinct value (i.e. SEX= M). Type C is an attribute 

that has a dynamic range that is determined at run time. The attribute TEMP will be a type b 

attribute whose distinct values are the template file names in the data-base. The attribute 

NUMBER (street number) is a type a attribute whose value range is from 00 to 99, from 100 to 

199, and so on. The attributes FNAME and LNAME are also type a attributes whose value range 

goes from the letter A to Z. The following is an example of the process creating a descriptor file 

for the demonstration data-base called FACSTU. 

a.   Generating a Descriptor File 

After completing the creation of a template file, the main menu returns. The user 

should then select the "d" function. 
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Select an operation: 

(t) - 
(d) 
(m) 
(r) ■ 
(x) ■ 

Select-> d 

Generate record template 
Generate descriptors 

- Generate/modify sets 
Generate records 
Exit, return to previous menu (ABDL main) 

The system will prompt the user with the following questions: 

Enter the template file name: FACSTU.t 
Enter the descriptor file name: FACSTU.d 
Will attribute 'TEMP' be a directory attribute (Y/N)? y 

ENTER THE DESCRIPTOR TYPE FOR TEMP (a,b,c): b 

Use '!' to indicate that no lower bound exists ... Enter '@' to stop 
Note: '@' Must be Entered When the Lower Bound is Requested 

ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 
ENTER UPPER BOUND FOR DESCRIPTOR 
ENTER LOWER BOUND FOR DESCRIPTOR 

i 

ower 
/ 

ower 
I 

(lower 

(lower 
I:! 
(lower 

(lower 

(1 ower 
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ower 
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(lower 
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ower 
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(1 

(lower 

(lower 

bound: 

bound: 

bound: 

bound: 

bound: 

bound: 

bound: 

bound 

bound 

bound 

bound 

bound 

bound 

: Name 

: Address 

: Person 

: Faculty 

: Course Jac 

: Civ Jac 

: Mil Jac 

: Course 

: Course_stu 

: Team_stu 

: Team 

: Team Jac 

: Student 
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Note that there are thirteen entries.  This descriptor file creates the relationships 

between the FACSTU template and its thirteen related records. 

Will attribute 'OID' be a directory attribute (Y/N)? n 

Will attribute 'FNAME' be a directory attribute (Y/N)? n 

Will attribute 'MI' be a directory attribute (Y/N)? n 

Will attribute 'LNAME» be a directory attribute (Y/N)? n 

 continue. 

Will attribute 'OID_F' be a directory attribute (Y/N)? n 

Will attribute 'STUDENT_NIM' be a directory attribute (Y/N)? n 

Will attribute 'MAJOR' be a directory attribute (Y/N)? n 

h.  An Example Descriptor File 

Once all of these questions are answered, the system will create the FACSTU.d file. 

After creating the descriptor file,, the following results are stored in the system as the FACSTU.d 

file. 

FACSTU 
TEMP b s 

Name 
Address 
Person 
Faculty 
Coerse_fac 
CivJFac 
Mil_fac 
Course 
Course_stu 
Teaim_stu 
Team 
Team_fac 
Student 

$ 
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As can be seen, the descriptor file holds the relationships between the main template 

file (FACSTU) and the records that are related to it. Each name represents a record or tuple of 

attributes and attribute types existing in a set by that name. 

5.   Generate/Modify the Set Values 

After finishing generating the descriptor files the user selects option (m) at the next 

selection menu. Selecting (m) initiates execution of the Generate/Modify Set Value files in the 

interface. The ABDL interface supports this operation for the creation of initial records to the 

database. The generated set file will be named by the user and will end with an ".s" suffix. The file 

format used in the ABDM interface resembles the initial record file with set data instead of 

attribute names underneath the template name. The End of File is marked by a $ symbol. An 

important note when creating a set file is that the system looks for TABS between attribute values in a 

record (or tuple). If the spacebar is used, the system will not read the space as the start of a new 

attribute and will erroneously read the generating set file. The following illustrates the process 

for the generating set file which will be used to generate initial records file. 

a.    Generating a Set Value File 

These step-by-step instructions    aid the user in developing a set file on the 

M2DBMS based on the template file which was generated earlier. The template and descriptor 

files must be generated prior to generating the initial records file. The following is a sample of 

the process to generate set value files which are used to generate initial records in the database. 

Select an operation: 

(t) - Generate record template 
(d) - Generate descriptors 
(m) - Generate/modify sets 
(r) - Generate records 
(x) - Exit, return to previous menu (ABDL main) 

Select-> m 

61 



From the main menu select the "m" option. Then, input the template file's name. 

Enter the template file name: FACSTU.t 

CHOOSE ACTION TO BE TAKEN FOR 
ATTRIBUTE 'TEMP' ON TEMPLATE 'Name': 

fn) - generate a new set for it 
(m) - modify an existing set for it 
(s) - do nothing with it 

Select-> s 

No action needs to be taken on the record name, the record will encompass the 

whole set of attributes and values. 

CHOOSE ACTION TO BE TAKEN FOR 
ATTRIBUTE 'FNAME' ON TEMPLATE 'Name*: 

(n) - generate a new set for it 
(m) - modify, an existing set for it 
(s) - do nothing with it 

Select-> n 

The attribute FNAME belongs to the record "Name". By selecting "n" the user can 

input values to associate with FNAME. 

Enter the set file name: fname.s 

ENTER SET VALUE: Luis 
ENTER SET VALUE: Bruce 
ENTER SET VALUE: Dan 
ENTER SET VALUE: TaeWook 
ENTER SET VALUE: Recep 
ENTER SET VALUE: David 
ENTER SET VALUE: Thomas 
ENTER SET VALUE: John 
ENTER SET VALUE: @ 

Set generation completed...modify it (Y/N)? n 

The process continues until all of the records,  and attributes are associated with 

values. 

CHOOSE ACTION TO BE TAKEN FOR 
ATTRIBUTE 'MI' ON TEMPLATE 'Name': 

(n) - generate a new set for it 
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m) - modify an existing set for it 
s) - do nothing with it 

Select-> n 

Enter the set fde name: mi.ss 

ENTER SET VALUE: C 
ENTER SET VALUE: D 
ENTER SET VALUE: K 
ENTER SET VALUE: M 
ENTER SET VALUE: R 
ENTER SET VALUE: T 
ENTER SET VALUE: @ 

Set generation completed...modify it (Y/N)? n 

CHOOSE ACTION TO BE TAKEN FOR 
ATTRIBUTE LNAME' ON TEMPLATE Name': 

(n) - generate a new set for it 
(m) - modify an existing set for it 
(s) - do nothing with it 

Select-> n 

Enter the set file name: Iname.s 

ENTER SET VALUE: Ramirez 
ENTER SET VALUE: Badgett 
ENTER SET VALUE: Keifet 
ENTER SET VALUE: Kwon 
ENTER SET VALUE: Tan 
ENTER SET VALUE: Hsiao 
ENTER SET VALUE: Wu 
ENTER SET VALUE: Daley 
ENTER SET VALUE: @ 

Set generation completed—modify it (Y/N)? n 

CHOOSE ACTION TO BE TAKEN FOR 
ATTRIBUTE TEMP' ON TEMPLATE Person': 

(n) - generate a new set for it 
(m) - modify an existing set for it 
(s) - do nothing with it 

Select-> s 

CHOOSE ACTION TO BE TAKEN FOR 
ATTRIBUTE 'OID' ON TEMPLATE Person': 

(n) - generate a new set for it 
(m) - modify an existing set for it 
(s) - do nothing with it 

Select-> n 

Enter the set fde name: personoid.s 

continue the rest of the tables in the same way. 
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During generate/modify sets, the user must not generate a duplicated set value. A set 

value can be used many times, but the existence of an attribute value pair is a unique event in the 

database and duplicates are not allowed. A different attribute may share the same value, but there 

must not be any attribute-value pair that is a duplicate of another. 

For the initial creation of a database, we suggest that using vi or emacs for generating 

the ".d" and ".t" files outside the system. The system can be cumbersome. However, once the 

".d" and ".t" files are created, the user must use the above steps in the generate/modify operation 

to create every ".s" file. The above steps have to be followed from within the database system. 

The system cannot find set records generated using any other method. Trying to access set records 

from outside sources will produce an error message. Also note, every generated set file's name 

will be uppercase. The system will automatically translate lower case names to uppercase. The 

name of set value must be in uppercase. 

6.   Generate A Records File 

After executing the generate/modify set files interface, select option (r) at the next 

selection menu. Option "r" initiates execution of the generating records files interface. The ABDL 

interface supports the generate records function for the loading of records to the database. 

Records genereated will belong to a file named after the database with an .r suffix (i.e., for 

example, FACSTU.r). 

The generate records file format used in the ABDM interface resembles the template file 

format. The only difference in the two is that the record file generator will ask for data instead of 

attribute names after receiving the template name. The database name will appear at the top of the 

file followed by an @ symbol. After each template, an @ symbol must be used as a separator 

between templates. The End of File is marked by a $ symbol. 

An important note: when creating a mass load file, the system looks for TABS between attribute values 

in a record (or tuple). If the spacebar is used between attributes, the system will not read the space as 

the start of a new attribute and will erroneously read the mass load file. The following illustrates 

the process for generating the initial records file for the demonstration database FACSTU. 
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a.   Generating An Initial Records File 

The following step-by-step instructions aid in developing an initial records file on 

the M2DBMS based on the template file , descriptor file, and set-value file generated by following 

the previous sections. The following illustrates the sample process to generate initial record files 

followed by the results of the process. Start by selecting "r" from the main menu. 

Select an operation: 

(t) - Generate record template 
(d) - Generate descriptors 
(m) - Generate/modify sets 
(r) - Generate records 
(x) - Exit, return to previous menu (ABDL main) 

Select-> r 

Enter the template file name: FACSTU.t 

Enter the record file name: FACSTU.r 

Note that the record file name must always be named after the database using an "r" 

extension. Otherwise, the system will not be able to associate the two files. 

ENTER THE NAME OF THE FILE CONTAINING THE 
VALUES FOR ATTRIBUTE 'OID* ON TEMPLATE Name': NAMEOID.s 

ERROR: Cannot open the file. 

After entering the name of the template, the above error statement appears. Simply 

ignore this statement. The system is accumulating the number of potential records that can be 

created based on information held in the Template, Descripter, and Set-Value files. While doing 

this, the system also trys to open the file. But the file is not ready yet, so the error statement 

appears. Processing continues, therefore, ignore the statement. 

ENTER THE NAME OF THE FILE CONTAINING THE 
VALUES FOR ATTRIBUTE 'FNAME' ON TEMPLATE 'Name': FNAME.s 

ERROR: Cannot open the file. 

ENTER THE NAME OF THE FILE CONTAINING THE 
VALUES FOR ATTRIBUTE 'MI' ON TEMPLATE 'Name': MI.s 
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ERROR: Cannot open the file. 

ENTER THE NAME OF THE FILE CONTAINING THE 
VALUES FOR ATTRIBUTE 'LNAME' ON TEMPLATE 'Name': LNAME.s 

3072 records can be generated for template 'Name'... 

How many records do you want generated? 8 

ERROR: Cannot open the file. 

 continue the above until all records have been created. 

Note, the process begins with giving the system the template name (i.e., FACSTU.t) 

then the record file name (FACSTU.r). These two must match. The system then asks for set-value 

file names that match the records it finds within the template and descriptor files. When done, the 

system will return to the main menu. 

b.   An Example Records File 

By following the steps as they appear on the screen, the following is stored in 

memory in the FACSTU.r file. Not all of the entries used to make the below record file were 

shown in the example. The list of entries is lengthy and redundant. What is listed below is the 

entire record file showing each template, record, and the attribute-value pairs associated with the 

attributes listed in each record. Below is the toy database used for thesis research and in the theses 

related to this research. 

Note, the objects are related through attribute-value pairs of other template names. 

FACSTU 
@ 
Name 
N2 Luis K Daley /* N2 is a name. The name is Luis K Daley */ 
N3 TaeWook K Daley 
N8 Recep T Ramirez 
N2 Bruce K Wu 
N6 TaeWook K Hsiao 
N5 Dan C Ramirez 
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N7 John M Tan 
N6 Thomas R Kwon 
@ 
Person 
P3 N6 Al F /* person P3 has a name (N6), address (Al), and a sex (F) */ 
P7 N8 A6 M 
P4 N8 A4 F 
P4 N8 A2 M 
P4 Nl A4 M 
P5 Nl A3 M 
P6 Nl A5 M 
PI N4 A4 F 
@ 
Address 
A2 238 MetsDr Monterey CAA4 320 Montecito Seaside CA6 144 Montecito Seaside 
CA8 320 BrownellCr MontereA7 238 SpanagelCr SeasideA2 18 Ricketts_Rd Seaside 
A7 14 MetsDr Monterey CA A4 144 Mervine Dr Seaside CA 93955 
A4 320 Montecito Seaside CA6 144 Montecito Seaside CA8 320 BrownellCr 
MontereA7 238 Spanagel_Cr SeasideA2 18 RickettsRd Seaside A7 14 MetsDr 
Monterey CA A4 144 MervineDr Seaside CA 93955 
A6 144 Montecito Seaside CA8 320 BrownellCr MontereA7 238 SpanagelCr 
SeasideA2 18 RickettsRd Seaside A7 14 MetsDr Monterey CA A4 144 MervineDr 
Seaside CA 93955 
A8 320 BrownellCr MontereA7 238 SpanagelCr SeasideA2 18 RickettsRd 
Seaside A7 14 MetsDr Monterey CA A4 144 MervineDr Seaside CA 93955 
A7 238 SpanagelCr SeasideA2 18 RickettsRd Seaside A7 14 MetsDr Monterey 
CA A4 144 MervineDr Seaside CA 93955 
A2 18 RickettsRd Seaside A7 14 MetsDr Monterey CA A4 144 MervineDr 
Seaside CA 93955 
A7 14 MetsDr Monterey CA A4 144 MervineDr Seaside CA 93955 
A4 144 MervineDr Seaside CA 93955 
@ 
Faculty 
P8 CS P6 
P6 CS P6 
P8 CS P8 
@ 
Civfac 
P6AProfP6 
P6ProfP7 
@ 

Milfac 
P8 LCDR P8 
@ 
Course_fac 
SOC3 C4 P7 
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S0C3 C2 P8 
S0C2 C2 P7 
S0C1 C3 P7 
@ 
Course 
C4 HCI4322 2 P8 
C4 OOPROG 4322 2 P8 
C2 HCI 4114 2 P7 
Cl DBI4203 1 P8 
@ 

Course_stu 
SOCS3 Cl P2 
8OCS10 C4 PI 
SOCS7 C2 P5 
SOCS7 C2 P4 
SOCS9 C3 P3 
SOCS10 C2 P4 
SOCS4 Cl P3 
SOCS8 Cl P5 
SOCS3 C3 P2 
SOCS6 C2 P5 
SOCS1 C3 P3 
SOCS8 C4 P3 
SOCS10 Cl P5 
@ 
Team_stu 
5051 T2 P2 
SOS5 T2 PI 
SOS7 Tl PS 
5052 Tl PI 
SOS5 T2 P5 
5053 Tl PS 
SOS2 T2 P3 
@ 
Team 
T2DB5 
T2 00P 
@ 
Team_fac 
SOT3 SOCS10 Tl 
SOT2 SOCS4 T2 
SOT3 SOCS2 Tl 
@ 
Student 
P3 30 CS PI 
P2 30 CS PI 
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PI 10 CS P2 
P3 10 CS P4 
P5 40 CS P2 
$ 

c.   Sample Data Records (FACSTU,r) 

The following is the output of the record file. When using the ABDM and ABDL, 

the output of the file will be in the Attribute Data format seen below. 

FACSTU 

@ 

Name 
Nl Luis M Ramirez 
N2 Bruce R Badgett 
N3 Dan R Kellet 
N4 TaeWook K Kwon 
N5 Recep T Tan 
N6 David K Hsiao 
N7 Thomas C Wu 
N8 John D Daley 

@ 

Address 
Al 144 BrownellCr Monterey CA 93940 
A2 320 Mets Dr Seaside CA 93955 

A3 117 MervineDr Monterey CA 93940 
A4 397 Ricketts Rd Monterey CA 93940 
A5 238 Montecito Monterey CA 93940 
A6 12 SpanagelCr Monterey CA 93940 
A7 14 SpanagelCr Monterey CA 93940 
A8 18 SpanagelCr Monterey CA 93940 

@ 

Person 
PI Nl Al M 
P2 N2 A2 M 
P3 N3 A3 M 
P4 N4 A4 M 

P5 N5 A5 M 
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P6 N6 A6 M 

P7 N7 A7 M 

P8 N8 A8 IV! 

@ 

Faculty 

P6 CS P6 

P7 CS P7 

P8 CS P8 

@ 

Course_fac 

S0C1 Cl P6 

SOC2 C2 P7 

SOC3 C3 P6 

SOC4 C4 P8 

@ 

Civ_fac 

P6ProfP6 

P7AProfP7 
@ 

Mil_fac 
P8 LCDR P8 

@ 

Course 

Cl DBSEM 4322 1 P6 

C2 OOPROG 4114 1 P7 

C3 DBI3320 2 P6 

C4 HCI4203 1 P8 

@ 

Course_stu 

SOCS1 Cl PI 
SOCS2 C2 PI 

SOCS3 C4 PI 

SOCS4 Cl P2 

SOCS5 C4 P2 

SOCS6 Cl P3 

SOCS7 C2 P3 

SOCS8 C3 P3 

SOCS9 C4 P3 

70 



SOCS10 Cl P4 
SOCS11 C4 P4 
SOCS12 Cl P5 
SOCS13 C4 P5 

@ 

Teamstu 
5051 PI Tl 
5052 P2 Tl 
5053 P3 Tl 
5054 P4 Tl 

5055 P5 Tl 
5056 PIT2 
5057 P3 T2 

@ 

Team 
T1DB5 
T2 00P 

@ 

Teamfac 
SOT1 P6 Tl 
SOT2 P7 Tl 
SOT3 P7 T2 

@ 

Student 
PI 10 CS PI 
P2 20 CS P2 
P3 30 CS P3 
P4 40 CS P4 
P5 50 CS P5 

$ 

D. LOAD THE DATABASE 

Before loading the database, the template, descripter, and record files must be created. 

Executing a loading of a database on the M DBMS depends on information stored in these files. 

The backends depend on the template and descriptor files to manage the data between them. 
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Therefore, they must be loaded onto the back-end system. The following illustrates the process 

for loading the database and the results of the process on the back-end system (Workstation dbl3). 

1.   Loading the Database 

The following illustrates the process of loading a database. This example is followed by 

a sample of the execution on the back-end system (dbl3). These outputs are seen by entering the 

unix command gape on the back-end system (Workstation dbl3). 

After finishing the generate records option, the main menu reappears. Select option (I). 

Option "1" initiates database loading operations. After selecting option (1), the screen displays 

another selection menu. Choose (u). The system will ask for the database name. After entering 

the name, another selection menu will appear on screen. Selects option (r). The system will ask 

for the record file name. Enter the name of the record file. After following these steps, the system 

loads the users database on the back-end system (Workstation dbl3). 

The attribute-based/ABDL interface: 

) - Generate a database 
) - Load a database 

r) - Request interface 3 x) - Exit to MDBS main menu 

SeIect-> / 

Select an operation: 

(u) - Use a database 
(r) - Mass load a file of records 
(x) - Exit, return to previous menu 

Se!ect-> u 

Enter the name of the database: FACSTU 

Select an operation: 

(u) - Use a database 
(r) - Mass load a file of records 
(x) - Exit, return to previous menu 

Select-> r 

Enter the record file name: FACSTU.r 

<Loading Records, Please Stand By> 
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If an error message appears after entering the records name then check to ensure the data 

types match between the template and records files. Also make sure that there is no blank data 

between a single attribute value. And then user begin this process again. 

10   20   30   40   50   60 

Select an operation: 

(u) - Use a database 
(r) - Mass load a file of records 
(x) - Exit, return to previous menu 

Select-> 

The system is now loaded with the user's defined database and is ready for manipulation 

and use. 

2.   An Example of a Database Loaded on the Backend 

The database is loaded to the back-end. Our research used only one backend. But, the 

system is designed to have several working in parrallel to speed the search functions in very large 

databases. To see the following, enter the UNIX command gape on each workstation that is a 

backend and you want to view. 

dbll/u/mdbs> gape 

0000000 Quantum      ProDrive 
0000016       105S      cyl      974      al 
0000032 t      2      hd      6      sec      35 \0 
0000048 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 

0000416 \0 \0 \0 \0 016   N 003 373 \0 \0 \0 \0 \0 \0 \0 001 
0000432 003 316 \0 002 \0 006 \0  # \0 \0 \0 \0 \0 \0 \0 \0 
0000448 \0 \0   ?   * \0 \0 \0  M \0 \0   m354 \0 \0 \0 \0 
0000464 \0 003 036 374 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 
0000480 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 323 
0000496 \0 002   q 346 \0 \0 \0 \0 \0 \0 \0 \0 332 276 205 243 
0000512 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 
* 
0008192 \0 317 \0 033   1   N  a  m   e  $   N   1   $  L   u   i 
0008208 s$M$Ramirez$#\0 034   1 
0008224 Name$N2$Bruce$R$ 
0008240 Badgett$#\0 0311Name 
0008256 $N3$Dan$R$Kellet 
0008272 S#\0 033   1Name$N4$Tae 
0008288 Wook|K$Kwon$#\0 030   1 
0008304 Name$N5$Recep$T$ 
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0008320   Tan$#\0 032   1Name$N6$ 
0008336   David$K$Hsiao$#\0 
0008352 030   1Name$N7$Thomas 
0008368 $C$Wu$#\0 031   lName$ 
0008384 8$John$D$DaSey$# 
0008400 & \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 A0(\0 \0 
0008416 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 

0016384 001~\0   11Address$Al$ 
0016400   144$Browne!l       Cr$ 
0016416   Monterey$CA$~9394 
0016432   0$#\0,lAddress$A2 
0016448   $  3  2   0  $   M  e   t  s       Dr$Sea 
0016464   side$CA$93955$#\0 

the system continues like this until the entire database is loaded. 

E. MANIPULATING THE DATABASE 

1.   Using the ABDM Interface (REQUEST-INTERFACE) 

After a database has been loaded, and the database contains the values for each record 

desired by the designer, the database is available for manipulation. Exit the Generate a Database 

menu. The next menu will be the Attribute-Based/ABDL Interface menu shown below. 

The attribute-based/ABDL interface: 

(g) - Generate a database 
(f) - Load a database 
(r) - Request interface 
(x) - Exit to MDBS main menu 

Select-> r 

The (r) option is used to execute the request interface for attribute-based databases 

and to process ABDL requests and transactions. To run a query, or to manipulate the database, 

the user must first build a Request File. The Request File is built by selecting "n" from the 

Subsession menu, and following the prompts for the type of request desired. The requests built are 

stored in the Request file specified at the beginning of the session. This file will later be run by 

returning to the Subsession menu, choosing "s" rather than "n". 
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When the (r) option is picked from the ABDL interface, the Request-interface menu shown 

below will be displayed. 

Select a subsession: 
(s)     SELECT: select traffic units from an existing list 

(or give new traffic units) for execution 
NEW LIST: create a new list of traffic units 
NEW DATABASE: choose a new database 
* PERFORMANCE TESTING 
* REDIRECT OUTPUT: select output for answers 
* MODIFY: modify an existing list of traffic units 
* OLD LIST: execute all the traffic units in an 

existing list 
(x)    EXIT: return to previous menu (ABDL main menu) 

Refer to the MLDS/MBDS user manual before choosing 
subsessions marked with an asterisk (*) 

Select-> n 

We are building a new Request File, therefore, we choose "n". The following describes 

what each selection above is for. 

a. (s)- SELECT 

An option for selecting a file of previously created ABDL requests. This option 

presents a menu for displaying and submitting these requests for processing. 

b. (n)-NEW LIST 

An option for creating a new file of ABDL requests. This option presents menus 

for the creation of a file of INSERT, DELETE, UPDATE, RETRIEVE and RETRIEVE- 

COMMON requests. By following the menu, correct syntax is guaranteed. 

c. (d) -NEW DATABASE 

An option for choosing a new database to work with. This option allows the user to 

switch between different databases defined previously in the system. 

d. (r) - REDIRECT OUTPUT 

An option for specifying the output mode of the session. This option allows the user 

to direct the output to the terminal, a file, or to suppressed output. 
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e.   (p) -* PERFORMANCE TESTING 

An option for enabling/disabling the internal and external performance 

measurement hooks. Do not enter this function until a thorough understanding of the system is 

gained. Refer to the note at the bottom of the menu. 

/.    (m) - * MODIFY 

An option for modifying a list of ABDL requests that have been stored in a file. 

g.   (o)-* OLD LIST 

An option for executing all ABDL requests in a given file. 

h.   (x)-EXIT 

Returns to the previous menu (i.e., the ABDL main menu). 

Refer to the MLDS/MBDS user manual before choosing subsessions marked with an asterisk (*) 

This statement refers to the user manual that is Appendix A of Paul Alan Bourgeois's 17 

December 1992 thesis. 

2.   Creating Requests 

We now proceed to execute each of these options in turn. We continue to use the FACSTU 

database in our examples. The following will detail how the five basic manipulations belonging 

to the KDS can be accessed and used from within the ABDL/ABDM portion of the system (i.e., 

the KDS). The five basic operations belonging to the KDS are the INSERT, RETRIEVE, 

DELETE, UPDATE, and RETRIEVE-COMMON. 

To generate a request that will manipulate the database using any one of the five basic KDS 

operations, the user must enter the file name that will contain the request interfaces. We suggest 

linking this file to the database in use by always using the database name as the name of the file. 

Enter the name for the traffic unit file 
It may be up to 40 characters long including the .ext. 
Filenames may include only one '#' character 
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as the first character before the version number. 

FILE NAME-> FACSTW1 

Enter the character for the desired Traffic Unit type. 

(r) Request 
(t) Transaction (multiple requests) 
(f) Finished entering traffic units. 

Select-> r 

a.   Creating an INSERT Request 

The Insert operation takes one set of attribute-value pairs at a time and inserts the 

set as a record into the base data of the database. This operation consults the schema previously 

defined for the database and distinguishes those attribute values that are keys from those that are 

not. Keys are processed by AB DBMS against the meta data of the database to determine the cluster 

to which the record belongs and the secondary storage in which the record is to be placed. To load 

data using a batch file, use the Mass_load() function detailed in thesis Chapter V. 

Enter the character for the desired next step. 

0) INSERT 
(r) RETRIEVE 
(u) UPDATE 
(d) DELETE 
(c) RETRIEVE COMMON 

Select-> i 

INSERT Request 

Begin entering keywords as you are prompted. 
You will be prompted first for the 'Attribute' and then for the 'value'. 
End each attribute or value with a single <return>. 

When you have finished entering keywords, respond to the ATTRIBUTE> prompt 
with a <return>. 



ATTRIBUTE (<cr> to finish)-> TEMP 

VALUE-> Name 

ATTRIBUTE (<cr> to fmish)-> OID 

VALUE-> N9 

ATTRIBUTE (<cr> to finish)-> FNAME 

VALUE-> David 

ATTRIBUTE (<cr> to fi«isfa)-> MI 

VALUE-> K 

ATTRIBUTE (<cr> to finish)-> LNAME 

VALUE-> Hsaio 

ATTRIBUTE (<cr> to fmish)-> 

The process will use the information above to construct an Insert Request following the 

conventions required by the system: 

[INSERT(<TEMP, Name>,<OID, N9>,<FNAME, David>,<MI, K>,<LNAME, Hsaio>)] 

Continue selecting "r" for request, then "i" for insert, inputing the information 

requested, until all of the inserts desired are complete. 

b.   Creating a RETRIEVE Request 

The Retrieve operation takes two arguments: a query and a target list. The query 

specifies the set of records to be retrieved from the base data and the target list specifies the values 

to be displayed from the retrieved data. A simple target list lists the values of attribute-value pairs 

whose attribute have been targeted. A complex target list may specify an aggregate function over 

a specific attribute. An example of complex functions is taking the AVERAGE over attribute 

GRADE. The output being an average grade resulting from a manipulation of all the grades in the 

database. 



Again, start the process by selecting "r" for Request from the Request Interface 

menu. The next menu shown below allows selection of the Retrieve process. Follow the prompts 

and menus. 

Enter the character for the desired next step. 

(i) INSERT 
(r) RETRIEVE 
(u) UPDATE 
(d) DELETE 
(c) RETRIEVE COMMON 

Select-> r 

RETRIEVE Request 

Enter responses as you are prompted. You will be prompted first for 
the predicates of the query, then attributes for the target-list, 
next for an attribute for the optional BY clause and finally for 
a pointer for the optional WITH clause. 

When you have finished entering predicates for the query, respond 
to the ATTRIBUTE> prompt with a <return>. 

ATTRIBUTE (<cr> to finish)-> TEMP 

Enter the character for the desired relational operator 

(a) = EQUAL 
(b) 1= NOT EQUAL 
(c) > GREATER THAN 
(d) >= GREATER THAN or EQUAL 
(e) < LESS THAN 
(f) <= LESS THAN or EQUAL 

Select-> a 

VALUE-> Name 

So far your conjunction is 
(TEMP=Name). 
Do you wish to 'and' additional predicates to this conjunction? (y/n) > n 

79 



Do you wish to append more conjunctions to the query? (y/n) > n 

Begin entering attributes for the Target-List. When you are 
through entering attributes respond to the ATTRIBUTE> prompt with < 
Do you wish to be prompted for aggregation (Y/N)? n 

ATTRIBUTE 

ATTRIBUTE 

ATTRIBUTE 

ATTRIBUTE 

<cr> to finish)-> OID 

<cr> to finish)-> FNAME 

<cr> to finish)-> MI 

<cr> to finish)-> LNAME 

ATTRIBUTE (<cr> to finish)-> 

Do you wish to use a BY clause (Y/N)? n 

At this point, the Retrieve Request has been constructed by the system using the 

answers given to the prompts provided. The request is : 

[RETRIEVE((TEMP=Name)) (OID, FNAME, MI, LNAME)] 

c.    Creating an UPDATE Request 

The Update operation takes two arguments: a query and a modifier. The 

operation is carried out in four steps. 

•     Step one - the records which satisfy the query are retrieved from the base data. This step 
is like the Retrieve operation. 

Step two - each retrieved record is tagged for later removal. This step is also know as 
writing the deleting tag into a record. 

Step three - the record with the deletion tag is placed on the secondary storage where it 
originally came from. This step is like the Insert operation. We note that no record has been 
physically removed by this operation. The removal of record deletion tags is the function of 
the garbage-collecting routine of the system which is carried out in a non-prime time 
periodically. 

Step four - for each record to be tagged for deletion, this operation makes a copy of the 
record.   The copy is changed by the modifier specified by the user.   The modified copy is 
then entered into the database by the Insert operation as a new record. The old copy is marked 
for later deletion. 
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Update is a process that uses the Retrieve, Delete, and Insert processes to allow 

modification of a particular record and attribute-value pair. 

Enter the character for the desired next step. 

(i) INSERT 
(r) RETRIEVE 
(u) UPDATE 
(d) DELETE 
(c) RETRIEVE COMMON 

Select-> u 

UPDATE Request 

Enter responses as you are prompted. You will be first 
asked for the predicates necessary to build the query and then 
the attribute and expression required to construct the modifier. 

When you are finished entering predicates for the query, 
respond to the ATTREBUTE> prompt with a <return>. 

ATTRIBUTE (<cr> to finish)-> TEMP 

Enter the character for the desired relational operator 

(a) = EQUAL 
(b) /= NOT EQUAL 
(c) > GREATER THAN 
(d) >= GREATER THAN or EQUAL 
(e) < LESS THAN 
(f) <= LESS THAN or EQUAL 

Select-> a 

VALUE-> Name 

So far your conjunction is 
(TEMP=Name). 
Do you wish to 'and' additional predicates to this conjunction? (y/n) > y 

ATTRIBUTE (<cr> to finish)-> OID 
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Enter the character for the desired relational operator 

(a) - EQUAL 
(b) /= NOT EQUAL 
(c) > GREATER THAN 

(d) >= GREATER THAN or EQUAL 

(e) < LESS THAN 

(D <= LESS THAN or EQUAL 

Select- > a 

->N9 

So far your conjunction is 
(TEMP=Name)and(OID=N9). 
Do you wish to 'and' additional predicates to this conjunction? (y/n) > n 

Do you wish to append more conjunctions to the query? (y/n) > n 

Enter the attribute-being=modified. 
ATTRIBUTE (<cr> to finish)-> LNAME 

Enter the number indicating the desired modifier type 

(0) Set attribute equal to a constant 
(1) Set attribute equal to a function of itself 
(2) Set attribute equal to a function of another attribute 
(3) Set attribute equal to a function of another attribute 

of a query 
(4) Set attribute equal to a function of another attribute 

of a pointer 

Select-> 0 

Enter Constant-> Tarn 

By following the prompts and menus, the system has built the Update  Request 

desired. The Update is: 

[UPDATE((TEMP= Name) and (OID= N9)) <LNAME=Tam>] 
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d.   Creating a DELETE Request 

The Delete operation takes only one argument, a query. In ABDBMS (the KDS), 

the Delete operation is carried out in the three steps which are the same steps as steps one through 

three of the Update operation. 

Enter the character for the desired next step. 

0) INSERT 
(r) RETRIEVE 
(u) UPDATE 
(d) DELETE 
(c) RETRIEVE COMMON 

Select-> d 
DELETE Request 

Enter responses as you are prompted. You will be 
asked to enter attributes, values, and relational operators 
as predicates for the query. 
When you are finished entering predicates 
respond to the ATTRIBUTE> prompt with a <return>. 

ATTRIBUTE (<cr> to finish)-> TEMP 

Enter the character for the desired relational operator 

(a) = EQUAL 
(b) /= NOT EQUAL 
(c) > GREATER THAN 
(d) >= GREATER THAN or EQUAL 
(e) < LESS THAN 
(f) <= LESS THAN or EQUAL 

S elect-> a 

-> Name 

So far your conjunction is 
(TEMP=Name). 
Do you wish to 'and' additional predicates to this conjunction? (y/n) > y 
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ATTRIBUTE (<cr> to fänäsh)-> OID 

Enter the character for the desired relational operator 

(a) - EQUAL 
(b) 1= NOT EQUAL 
(c) > GREATER THAN 
(d) >= GREATER THAN or EQUAL 
(e) < LESS THAN 
(f) <= LESS THAN or EQUAL 

Select- > a 

VALUE=> N9 

So far your conjunction is 
(TEMP=Name)and(OID=N9). 
Do you wish to 'and' additional predicates to this conjunction? (y/n) > n 

Do you wish to append more conjunctions to the query? (y/n) > n 

By following the prompts and menus, the system has built the Delete Request. The 

actual request looks like: 

[DELETE ((TEMP=Name) and (OID=N9))] 

e.   Creating a RETRWE-COMMON Request 

The Retrieve-Common operation consists of two Retrieve operations with a 

Common clause. The common clause specifies an attribute of the record set determined by the 

first Retrieve operation and an attribute of the record set determined by the second Retrieve 

operation. The clause requires that output of the operation is a set of which is composed of two 

records - one from the first record set and other from the second record set such that these two 

records have common attribute values for the attributes specified in the common clause. Each 

output record can be reduced in size if a target list is used in either Retrieve operation. 

Enter the character for the desired nest step. 
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(i) INSERT 
(r) RETRIEVE 
(u) UPDATE 
(d) DELETE 
(c) RETRIEVE COMMON 

SeIect-> c 

RETRIEVE COMMON Request 

First enter the source RETRIEVE 

RETRIEVE Request 

Enter responses as you are prompted. You will be prompted first for 
the predicates of the query, then attributes for the target-list, 
next for an attribute for the optional BY clause and finally for 
a pointer for the optional WITH clause. 
When you have finished entering predicates for the query, respond 
to the ATTRIBUTE> prompt with a <return>. 

ATTRIBUTE (<cr> to fmish)-> TEMP 

Enter the character for the desired relational operator 

(a) = EQUAL 
(b) /= NOT EQUAL 
(c) > GREATER THAN 
(d) >= GREATER THAN or EQUAL 
(e) < LESS THAN 
(f) <= LESS THAN or EQUAL 

Select- > a 

-> Name 

So far your conjunction is 
(TEMP=Name). 
Do you wish to 'and' additional predicates to this conjunction? (y/n) > y 

ATTRD3UTE (<cr> to finish)-> OID 
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Enter the character for the desired relational operator 

(a) = EQUAL 

(b) 1= NOT EQUAL 
(c) > GREATER THAN 
(d) >= GREATER THAN or EQUAL 
(e) < LESS THAN 
(f) <= LESS THAN or EQUAL 

Select- > a 

->N4 

So far your conjunction is 
(TEMP=Name)and(QID=N4). 
Do you wish to 'and' additional predicates to this conjunction? (y/n) > n 

Do you wish to append more conjunctions to the query? (y/n) > n 

Begin entering attributes for the Target-List. When you are 
through entering attributes respond to the ATTRIBUTE> prompt with <return>. 
Do you wish to be prompted for aggregation (Y/N)? n 
ATTRIBUTE (<cr> to finish)-> OID 

ATTRIBUTE (<cr> to fmish)-> FNAME 

ATTRIBUTE (<cr> to finish)-> LNAME 

ATTRIBUTE (<cr> to finlsh)-> 

Do you wish to use a BY clause (Y/N)? n 

COMMON ATTRIBUTE 1> OID 

COMMON ATTRIBUTE 2> OIDS 

The request being built is: 

[RETRIEVE((TEMP=Name)and(OID=N4))(OID,FNAME,LNAME)COMMON(OID,OID_ 
S) 

Enter the target retrieve 

RETRIEVE Request 
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Enter responses as you are prompted. You will be prompted first for 
the predicates of the query, then attributes for the target-list, 
next for an attribute for the optional BY clause and finally for 
a pointer for the optional WITH clause. 

When you have finished entering predicates for the query, respond 
to the ATTRIBUTE> prompt with a <return>. 

ATTRIBUTE (<cr> to fmish)-> TEMP 

Enter the character for the desired relational operator 

(a) = EQUAL 
(b) /= NOT EQUAL 
(c) > GREATER THAN 
(d) >= GREATER THAN or EQUAL 
(e) < LESS THAN 
(f) <= LESS THAN or EQUAL 

Select-> a 

VALUE-> Coursejstu 

So far your conjunction is 
(TEMP=Course_stu). 
Do you wish to 'and' additional predicates to this conjunction? (y/n) > n 

Do you wish to append more conjunctions to the query? (y/n) > n 

Begin entering attributes for the Target-List. When you are 
through entering attributes respond to the ATTRD3UTE> prompt with <return>. 
Do you wish to be prompted for aggregation (Y/N)? n 

ATTRIBUTE (<cr> to finish)-> OID 

ATTRD3UTE (<cr> to finish)-> OIDJ 

ATTRIBUTE (<cr> to finish)-> 

Do you wish to use a BY clause (Y/N)? n 

The request being processed is: 

[RETRIEVE((TEMP=Name)and(OID=N4))(OID,FNAME,LNAME) 
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COMMON(OID,OID_S)RETRIEVE(TEMP=Course_stu)(OID,OID_S)] 

3.   Running and Testing the Requests 

In the above processes, using the Request Interface from within the ABDL interface the 

user built a request file responding to prompts and menus from within the Subsession menu. In our 

example we named our Request file FACSTU#L Building the request does not automatically 

yeild results. The request file has to be run. To run the file, choose "r" from the ABDL interface, 

then choose "f from the Request Interface. Then select "s" from the Subsession menu to run the 

file.   The menu below will appear. 

Enter TI_read_name 

Enter the name for the traffic unit file 
It may be up to 40 characters long including the .ext. 
Filenames may include only one '#' character 
as the first character before the version number. 

FILE NAME-> FACSTUM 

After entering the file name, the contents of the file appear on screen as listed below. 

(0)[RETRIEVE(TEMP=Name)(OID,FNAME,MI,LNAME)] 
(l)[INSERT(<TE]VIP,Name>,<OID?N9>,<FNAME,Steven>,<MIJ>,<LNAME,greg>)] 
(2)[RETRIEVE(TEMP=Name)(OID,FNAME,MI,LNAME)] 
(3)[RETRIEVE(TEMP=Person)(OID,PNAME,PADDRESS,SEX)] 
(4)[INSERT(<TEMP5Person>?<OID,P9>,<PNAME,N9>,<PADDRESS?A9>,<SEX,F>)] 
(5)[RETRffiVE(TEMP=Person)(QID?PNAME.PADDRESS,SEX)] 
(6)[UPDATE((TEMP=Name)and(OIB=N9))<LNAME=Tam>] 
(7)[RETRIEVE(TEMP=Name)(OID,FNAME.LNAME)BYLNAME)] 
(8)[RETRIEVE(TEMP=Address)(NUMBER,STREET,CITY,ZIPCODE)] 
(9)[UPDATE((TEMP=Address)and(OID=A8))<ZIPCODE=93956>] 
(10)[RETRIEVE(TEMP=Address)(NUMBER,STREET?CITY,ZIPCODE)] 
(ll)[DELETE(TEMP=Name)and(OID=N9)] 
(12)[RETRIEVE(TEMP=Name)(QIB?FNAME,LNAME)] 
(13)[RETRIEVE((TEMP=Name)and(QID=N4))(OID,FNAME?LNAME) 

COMMON(OID5OID_S)RETRIEVE(TEMP=Course_stu)(OID)] 
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Select Options: 

(d) 
(n) 
(num) 

(x) 

redisplay the traffic units in the list 
enter a new traffic unit to be executed 
execute the traffic unit at [num] 
from the above list 
exit from this SELECT subsession 

Option-> 0 

The menu above is asking for which part of the request individually to run. The user input 

the Request Index Number "0" to run the first query. The results of the query appear on the screen 

like the listing below. 

(<OID, Nl>, <FNAME, Luis>, <ML M>, <LNAME, Ramirez>) 
(<OID, N2>, <FNAME, Bruce>, <MI, R>, <LNAME, Badgett>) 
(<OID, N3>, <FNAME, Dan>, <MI, R>, <LNAME, Kellet>) 
(<OID, N4>, <FNAME, TaeWook>, <MI, K>, <LNAME, Kwon>) 
(<OID, N5>? <FNAME, Recep>, <MI, T>, <LNAME, Tan>) 
(<OID, N6>, <FNAME, David>, <MI, K>, <LNAME, Hsiao>) 
(<OID, N7>, <FNAME, Thomas>, <MI, C>, <LNAME, Wu>) 
(<OID, N8>, <FNAME, John>, <MI, D>, <LNAME, Daley>)Exit 

Continue in this fashion to run the requests. Use the index number to select each of the 

requests desired from the Request File. 
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APPENDIX B--CONTROLLER FILE CATALOG 

A.    COMMUNICATIONS COMMON 

All Controller files are located on Work Station dbl 1 under: mbds/u/greg/CNTRL 

Table 3: CCOM--Communications COMMON 

File Name File Description #include #define 

cgetx Controller Get: Responsible for receipt of messages from 
the backend. 

<stdio.h> 
<sys/ 

types.h> 
<netint/ 

in.h> 
flags.def 

dblocal.def 
com- 

mdata.def 
msg.def 

1 beno.def 

none 

cputx Controller Put: Responsible for sending messages to the 
backend. 

<stdio.h> 
<sys/ 

types.h> 
<netint/ 

in.h> 
flags.def 

dblocal.def 
com- 

mdata.def 
msg.def 
beno.def 

none 

flags.def Flag Definitions: A file included in cgetx and cputx that 
specifies which flags to define using mnemonic identifi- 

ers. 

none EnExFlag 
EnExFlagg 
m_pr_flag 

pr_flag 
SRTime- 

Flag 
LangIF_Fla 

g 

make_result Make file specifying order of compilation and where to 
place object code. 

none none 
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Table 4: COMMON 

File Name File Description #include          #define 

tmplsr.c Template subroutines: A file grouping funcitons required <stdio.h> none 
to: flags.def 

Identify the task using this routine. dblocal.def 
Create database id (dbid). com- 

Create a record template for the database dbid mdata.def 
Get number of backends to set. beno.def 

Set number of backends. msg.def 
Extract userid, and dbid. msg.ext 

92 



B.        INSERT INFORMATION GENERATOR 

Table 5: HG-Insert Information Generator 

File Name File Description #include #define 

bes.c Backend Selector: Called when a backend returns a clus- 
ter-id (or a null value). Determines a backend for record 

insertion when all backends have returned a cluster-id (or 
null value). Otherwise, it saves the cluster-id (or null 

value) returned by the backend. 

<stdio.h> 
<sys/file.h> 

flags.def 
beno.def 
comm- 
data.def 
iig.def 

dblocal.def 
tmpl.def 
iig.ext 

none 

didgen.c Database ID Generator: New Descriptor: Generates a 
new descriptor id for a type-c attribute. 

<stdio.h> 
flags.def 
comm- 
data.def 
iig.def 

dblocal.def 
tmpl.def 
iig.ext 

none 

iig.c main(argc, argv) for Insertion Information Generator. <stdio.h> 
<sys/file.h> 

flags.def 
beno.def 

com- 
mdata.def 

iig.def 
dblocal.def 

tmpl.def 
iig.dcl 

tmpl.dcl 

none 

extern: 
msg_q[MS 

GLEN] 
msg_hdr 
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Table 5: ÜG-Iesert Information Generator 

File Name File Description #include #define 

iigdbl.c Load a type-C attribute in the TCDT <stdio.h> 
<sys/file.h> 

flags.def 
beno.def 

com- 
mdata.def 
msg.def 
iig.def 

dblocal.def 
tmpl.def 
iig.ext 

none 

iigsr.c IGG subroutines for: <stdio.h> none 
Receiving the requested and clustered. flags.def 

Receiving requested and descriptor. beno.def 
Sending backend number selected to insert a record to the com- 

backends. mdata.def 
Broadcasting a descriptor id to the backends. msg.def 

Sending results of the internal timing to the controller. iig.def 
dblocal.def 

dblocal.def Buffersize speeds reading and writing CINBT (Cluster-id none IJLG 
Next Backend Tables) BUFFER- 

struct attribute table entry. SIZE 
struct attribut table AT_MaxTy 

peC 

flags.def A file which specifies which flags to define using mne- none EnExFlag 
monic identifiers. pr_flag 

SRTime- 
Flag 

LangIF_Fla 
g 

iig.def Holds the clustered information associated with an insert 
request: 

- Builds required structures for request-id, cluster-id, 
information. 

- CINBT - Cluster Id Next Backend Table. 
- IIG-descriptor: attribute-value pair lengths 
- IIG-descriptor-descriptor-id table element. 

none none 

94 



Table 5: ÜG-Insert Information Generator 

File Name File Description #include #define 

iig.dcl Aggregates a collection of rid_cid_info and CTNBT data. none none 

iig.ext Globalizes rid_cid_info, cidg_cnt, CINBT, CINBT_file, 
AT_file. 

none none 

make_result Compiling instructions and paths. none none 

POST PROCESSING 

Table 6: PP-Post Processing 

File Name File Description #include #define 

pp.c main (arge, argv) for post processing. <stdio.h> extern: 
-initializes. flags.def msg_q 

-processes a message from a task in the controller includ- beno.def [MSGLEN] 
ing cases common to all tasks. com- msg_hdr 

-receive number of request in the transaciton from mdata.def 
RPREP and put the information in the entry, adding the msg.def 

entry to the transaction information list. dblocal.def 
pp.def 
pp. del 

tmpl.def 
tmpl.dcl 

ppby.c Creates and manipulates a hashing—the bucket table. <stdio.h> 
flags.def 
beno.def 

com- 
mdata.def 

pp.def 
pp.ext 

none 
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Table 6: PP-Post Processing 

File Name File Description #include #define 

pprba.c Groups aggregate_info , allocating a by-block structure to 
be used when hashing by_clause information. 

- Checks for buffer size. 
- Allocates space for new RP-by-hash. 

- Allocates an instance of PP-ResultBuffer for a request.. 
- Puts the request id, adds new entry to list, frees entry in 
PP_ResultBuffer list for a request. Puts the results for a 
request in PP_ResultBuffer and sends a completion sig- 

nal 

<stdio.h> 
flags.def 
beno.def 

com- 
mdata.def 

pp.def 
pp.ext 

none 

ppsr.c PP subroutines for: 
-returning results (sent by a backend) in the buffer. 

-returning traffic unit and error message (sent by Request 
Preparation) in the buffer. 

-returning number of requests in a transaction. 
-sending reuslts for a request to the host machine. 
-sending a traffic unit that has errors to the host. 

-sending msg to host signaling transaction finished. 
-sending results of internal timing to the controller. 

<stdio.h> 
flags.def 

dblocal.def 
beno.def 

com- 
mdata.def 
msg.def 
pp.def 
pp.ext 

tmpl.def 

none 

repmon.c Post Processing Reply Monitor: Monitors sending results 
to the host machine: 

-store results from a backend in a buffer. 
-when all backends have returned results send buffer info 

with a competion signal to host. 

<stdio.h> 
<ctype.h> 
flags.def 
beno.def 

com- 
mdata.def 
msg.def 
pp.def 
pp.ext 

flags.def Defines flags needed by PP mnemonically. none EnExFlag 
EnExFlagg 
m_pr_flag 
SRTime- 

Flag 
LangIF_Fla 

g 
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Table 6: PP--Post Processing 

File Name File Description #include #define 

pp.def Defines maximums, minimums, sizes, lengths and groups none NMAX 
aggregate data via "struct": aggregate_info, NMIN 

PP_ResultBuffer, trans_info struct: MAX_AG_ 
aggre- OPS 

gate_info MAX_ATT 
PP_Result- R 

Buffer MXAVLN 
trans_info 

pp.del Declares PP structures-PP_ResultBuffer, trans_info. none none 

pp.ext Globalizes structures-PP_ResultBuffer, trans_info none none 

make_result Compiling and resulting Paths— information. none none 

D. REQUEST PROCESSED 

Table 7: REQP--Request Processing 

File Name File Description #include #define 

chkptu.c Check Point Utilities: A grouping of functions. 
- Checks all the request in a traffic unit against the record 

template. 
- Checks the validity of a request. 

- Checks for proper attributes and attribute types. 
- Checks validity of non-insert requests. 

<stdio.h> 
flags.def 
beno.def 
comm- 
data.def 
reqp.def 
reqp.ext 

none 

mallocs.c Memory Allocation functions creating tables for: 
Aggregate definition node, aggregate index definition 

node, RC (Request Composer) request index definition 
node, Request count definition node, Request table defi- 

nition node, Request index definition node, update 
request information node. 

<stdio.h> 
dblocal.def 

com- 
mdata.def 
reqp.def 

none 
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Table 7: REQP--Request Processing 

File Name File Description #include #define 

reqcomp.c Request Composer—a grouping of functions: 
- Puts requests in the format needed by the DM (Direc- 

tory Manager). 
- Puts requests into the form required by the backends. 
- Puts inserts into the form required by the backends. 

- Converts a formatted request from parsed request and 
adds them to a set of formatted requests. 

- Deals with modifiers (Type III, IV). 
- Formats Retrieves. 

<stdio.h> 
flags.def 
beno.def 
comm- 
data.def 
reqp.def 
reqp.ext 
msg.def 

none 

reqp.c main(argc, argv): 
- Scheduling functions. 

- Processing messages from host. 

<stdio.h> 
flags.def 
beno.def 
comm- 
data.def 
reqp.def 
reqp.ext 
msg.def 
tmpl.def 
tmpl.dcl 

commsg.c 

extern: 
msg_q 

msg_hdr 
*mem_ptr 

rcomtype[2] 
no_agg[2] 

*index_req_ 
ptr 

reqpsr.c Request Processing Subroutines necessary for REQP: 
- Receive and buffer the nxt msg for REQP. 

- Return senders name and type of msg in the buffer. 
- Return datbase id and traffic unit. 

- Return record with changed cluster (sent by BE). 
- Broadcast a set of formmated requests to backends. 

- Notify RECP a Retreive-Common is coming. 
- Send requests to Post-Processing. 

- Send aggregate operators (in traffic unit) to PP (not 
completed). 

- Send requests with erros to PP. 
- Send a msg to all DM's in BE's no more generated 

Inserts. 
- Send results of internal timing to the controller. 

<stdio.h> 
dblocal.def 

flags.def 
beno.def 

com- 
mdata.def 
reqp.def 
reqp.ext 
msg.def 
tmpl.def 

none 

dblocal.def Defines R_E_Q_P none R_E_Q_P 
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Table 7: REQP--Request Processing 

File Name File Description #include #define 

flags.def Defines flags required by REQP processes. none EnExFlag 
EnExFlagg 
m_pr_flag 

pr_flag 
SRTime- 

Flag 
LangIF_Fla 

g 

reqp.def Defines constants and structures needed for REQP 
- Number of request per transaction 

- area used to store information about update requests. 
-structure of request index.. 

none NOPred 
RC_null_ag 

g-OP 

reqp.dcl Declarations. none none 

reqp.ext Globalizes upd_req_info and SchedNo none none 

lsrc.c Lexicon Subroutines for reserved words and symbols none none 

ysrc.c Parser Initiation Subroutines. 
- Establishes table pointers. 

- Establishes counters, slots, request types, aggreagate 
operators. 

- Establishes types of updates, relatioal operators, routing 
indicators. 

- Establishes tokens. 
- Transaction handling 

none YYDEBUG 

make_result Compiling and paths. none none 

flags.def (2) Unused flags—all are commented out. none none 
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E. TEST INTERFACE 

Table 8: TI-Test Interface 

File Name 

dbl.c 

dblsr.c 

gdb.c 

gsdesc.c 

gsgenrec.c 

File Description 

Database load: 
- Loads directory tables and/or records. 

- Loads record templates for a new database. 
- Saves database id. 

- Sends database id to other processes. 
Gets Users id and broadcasts user id and database ids. 

Database Load Subroutines: 
- Sends msg to create a database and template. 

- Sends msg to insert attribute, descriptor, and catch-all 
descriptors. 

- Generates descriptor ids. 
- Sends msg to insert type C attributes. 

- Checks status of actions taken. 
- checks the response to DBL of action. 

Generate Database: Creates arbitrarily large test data- 
bases for MDBS using standard template file as input. It 

creates a standard record file as output. 
- main (argc,argv) 

Generate Standard Descriptor: Generates descriptor file 
for each template. 

- Includes interactive menus 
- Establishes upper/lower bounds. 

Applies to the gdb.c test db generates 

Generate Standard Generic Records: Generates records 
using sets. Applies to gdb.c test db generates 

#include 

<stdio.h> 
flags.def 
beno.dcl 

dblocal.def 
com- 

mdata.def 
tmpl.def 
tstintdef 
msg.def 

none 

<stdio.h> 
com- 

mdata.def 
tstint.def 

<stdio.h> 
<ctype.c> 
flags.def 

com- 
mdata.def 
tstint.def 

<stdio.h> 
flags.def 

com- 
mdata.def 
tstintdef 

#define 

none 

DEBUG 

none 

100 



Table 8: TI--Test Interface 

File Name File Description #include #define 

gsgmset.c Generate Standard Generate/Modify Sets: Generates and 
modifies sets of values. Applies to gbd.c test db generater. 

<stdio.h> 
<ctype.c> 
flags.def 

com- 
mdata.def 
tstintdef 

none 

gsmodset.c Generate Standard Modify Set: Modifies a set of values 
for an attribute by reading the set into an array for manip- 

ulation. Applies to gbd.c test db generater. 

<stdio.h> 
<ctype.c> 
flags.def 

com- 
mdata.def 
tstintdef 

none 

gstmpl.c Generate Standard Template: Generates a record template <stdio.h> 
<ctype.c> 
flags.def 

com- 
mdata.def 
tstint.def 

mtestc Internal Performance Tests - provides users with a way to 
monitor internal message processing routines. 

- Internal Test. 
- Initiate Timers. 

- Computes average time to process a certain msg. 

<stdio.h> 
<ctype.c> 
beno.def 

com- 
mdata.def 
tstint.def 
tstintext 
msg.def 

ti.c Test Interface Main Program: main (arge, argv) <stdio.h> 
flags.def 
beno.def 
msg.def 

com- 
mdata.def 
tstintdef 
tstint.dcl 

dblocal.def 
tmpl.def 
tmpl.dcl 

none 
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Table 8: TI-Test Interface 

File Name File Description #include #define 

tireqs.c Test Interface Request Subroutines: Prompts user for the <stdio.h> none 
keywords needed to assemble a request: <ctype.h> 

- Insert flags.def 
- Retrieve com- 
- Delete mdata.def 
- Update tstint.def 

- Retrieve_common tstintext 
- Attribute names. 

tireqsubs.c Subroutines necessary to build and process requests: <stdio.h> none 
- Construct queries from conjunctions <ctype.h> 

- Build conjunctions flags.def 
- Build modifiers. com- 

- Get Expressions to be performed. mdata.def 
- Get attribute names and values tstint.def 

- Get aggregate operators. tstintext 

tisr.c Test Interface Subroutines: <stdio.h> 
- Send msg to use a database. flags.def 

- Receive the next msg for TI and store it in a buffer. dblocal.def 
- Handle errors com- 

- Request preparation and indicate completion. mdata.def 
- Assign the proper db to the proper user. tstintdef 

tstint.ext 
msg.def 

tisubs.c Subroutines required for processing traffic units: <stdio.h> extern: 
- Read in name of traffic unit or response file. flags.def msg_q[MS 

- Determine input file to be used. dblocal.def GLEN] 
- Write traffic unit into the new traffic unit list file. com- msg_hdr 

- Read traffic unit from input file into buffer. mdata.def 
- Get traffic units from user and save to TU list file. tstint.def 

- Prompt for type—single request or transaction. tstint.ext 
- Display all TU's in list file. msg.def 
- Determine format of output. beno.def 

- Send TU for execution in MDBS. 
- Output or Print results/response from MDBS. 

- Handle errors in TU's 
- Check if there are unfinished request in MDBS. 
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Table 8: TI-Test Interface 

File Name File Description #include #define 

tstint.c Test the Interface: 
- Test interface through continuation of session or during 

a subsession. 
- Select an output media for answers to requests. 

- Change database being used. 
- Save TU's to a file of the user's selection. 

- Allow modifications of old traffic units. 
- Retrieve and execute an old TU list or individual TU. 

- Print out the traffic unit sent. 
- Save new database id. 

***GSMAIN contained in get_DB(dbid) funtion. 

<stdio.h> 
<ctype.h> 
flags.def 

com- 
mdata.def 
tstintdef 
tstintext 
msg.def 

none 

unixtime.c Globalizes both stop and start timers. <stdio.h> 
<time.h> 
flags.def 

com- 
mdata.def 

extern: 
CRT_flg 
*resultptr 

dblocal.def Defines T_I none T_I 

flags.def Defines flags required within TL none LangIF_Fla 
g 
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Table 8: TI-Test Interface 

File Name 

tstint.def 

tstint.dcl 

tstintext 

File Description 

Defines sizes, lengths, maximums, minimums, and maxi- 
mum number of traffic units. 

Test record template to be used when included in a file. 

Globalizes variables and constants used in tstint.dcl 

#include 

none 

none 

none 

#define 

MNTrafUni 
ts 

RESLength 
AOLength 

SetSize 
MRLength 
MAX_REC 

ORDS 
MAXLINE 
TIMER_QS 

IZE 
TIMER_Q 

WIDTH 
TIM_STR_ 

LEN 
NO_OF_RE 

Q_REPS 
MPLength 

REQLength 
TULength 
ALLCAPS 
NOTHING 

DBCAP 
ONECAP 
NOCAPS 

FnVnS 
TLEOTU 

dbl_eof 
dbl eod 

none 

none 

F. COMMON FILES TO BOTH FRONT AND BACKENDS 

All the files common to both the front and backends are located on dbl 1 under: 
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mbds/u/greg/ 

Table 9: COMMON-Files held in common by every module. 

File Name File Description #include #define 

ack.c Acknowledgements: A collection of functions: 
- Retrieves host number from host name. 

- Initialize sockets for reliable broadcasting for Get's. 
- Initialize sockets for reliable broadcasting for Put's. 
- Gets acknowledgements after sending a msg of type 

DATAGRAM else retransmits. 
- Send a retransmission to a particular computer 

- Determins how long a broadcast msg is and returns 
number of fragments needed. 

- Slows repeated broadcast msges allowing receiveres to 
catch up. 

- Tags msgs in case retransmissions get lost too. 
- Untags received msgs since not part of MDBS process- 

ing. 
- Gets msgs off the net. 

- Assemble received msg fragments. 

<stdio.h> 
<sys/ 

socket.h> 
<netinet/ 

in.h> 
<netdb.h> 
<errno.h> 

<sys/ 
time.h> 

<strings.h> 
flags.def 

dblocal.def 
com- 

mdata.def 
msg.def 
beno.def 
pcl.def 
ack.dcl 

extern: 

this_host[5] 

host_names 
[MaxBack- 
ends+l][M 
AXPLACE 

S] 

cb.c Initialize communications between controller and back- 
ends. 

<stdio.h> 
dblocal.def 

flags.def 
com- 

mdata.def 
msg.def 
beno.def 
pcl.def 

extern: 

this_host[5] 

comio.c Communication I/O routines: 
- Keyboard input. 

- File I/O. 
- Error handling. 

<stdio.h> 
<ctype.h> 

com- 
mdata.def 
dblocal.def 
tstintdef 

commsg.c Handles all the common message types that are sent to 
each task. Included in the main program of each task. 

none none 
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Table 9: COMMQN—Files held in common by every module. 

File Name File Description #include #define 

dblgeneralc. General database loading: Extracts and puts array data <stdio.h> none 
into the msg buffer. flags.def 

com- 
mdata.def 

dblocal.def 
msg.def 
msg.ext 

dbtmp- Database template modifier: <stdio.h> none 
mod.c - Creates a database node. flags.def 

- Extracts user id from request id. com- 
- Assigns database node to the user. mdata.def 

dblocal.def 
tmpl.def 
tmpl.ext 

error.c Returns error msg when based on switch number from <stdio.h> none 
this collection of user error messages. com- 

mdata.def 
dblocal.def 

generals.c General String Functions: <stdio.h> extern: 
- Converts a number to a string of max length of 15. <sys/ - errno 

- Converts strings to numbers and returns number value. time.h> 
- Compare strings and their values flags.def 

- Concatenate Strings. com- 
- Get system time in sec and microseconds. mdata.def 

- Convert strings to long integer and return value. dblocal.def 
- Write process id to ".procname.pid" 

msend.c Message Send <stdio.h> 
flags.def 

com- 
mdata.def 

dblocal.def 
msg.def 

none 
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Table 9: COMMON-Files held in common by every module. 

File Name File Description #include #define 

newdb.c Creates an entry for a new database. <stdio.h> 
flags.def 

com- 
mdata.def 
dblocal.def 

msg.def 
tmpl.def 
tmpl.ext 

none 

newtmpl.c Creates an entry for a new template. <stdio.h> 
flags.def 

com- 
mdata.def 

dblocal.def 
msg.def 
tmpl.def 
tmpl.ext 

none 
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Table 9: CQMMON-Files held in common by every module. 

File Name File Description #include #define 

pcl.c Process Controller: <stdio.h> MAXAD- 
- Initialize the client putting PCL in BE and Cntrlr. <sys/ DRSIZE 

- Initialize Backends and unique socket. types.h> MAX- 
- Set up paths to controller. <sys/ ALIASES 

- Put message into buffer and send it when a BE wants to socket.h> 
talk to the controller. <netinet/ 

- Initialize the server, creating temporary sockets for in.h> 
braodcast msgs. <arpa/ 

- Get messages from off the Ethernet and prioritize. inet.h> 
- Get first message for initialization of BE's. <sys/file.h> 

- Set up socket address IAW host_name and port. <ndbm.h> 
- Broadcast to all other BEs. <ctype.h> 

- Save host name.in backends. <errno.h> 
- Close all sockets. <sys/ 

- Do DBM time.h> 
flags.def 

com- 
mdata.def 

dblocal.def 
msg.def 
beon.def 
pcl.def 
ack.def 

selectx Select Database. <stdio.h> 
flags.def 

com- 
mdata.def 

dblocal.def 
tmpl.def 

none 

tmpl.ext 

setbeno.c Set the backend number and number of backends for this <stdio.h> none 
task. flags.def 

beno.def 

setnobes.c Set the number of backends variable in task. <stdio.h> 
flags.def 
beno.def 

none 
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Table 9: COMMON-Files held in common by every module. 

File Name File Description #include #define 

sndrcv.c - Initiate subroutines <stdio.h> extern: 
- Create the connections required for inter-process com- <sys/ - db_info 

munications. types.h> - 

- Send messages from one task to another task on the <sys/ *head_db_i 
same computer. socket.h> nfo 

- Receive next message for a task. <netinet/ 
- Get socket descriptor for receiver. in.h> 

- Get descriptor for next message to be read. <errno.h> 
- Copy header from buffer into msg header. <sys/ 

- Copy header and msg into buffer. time.h> 
- Denote finish of subroutine. flags.def 

- Print process names and message types (useful in com- 
debugging). mdata.def 

- Copy msg from buffer into message header and msg. dblocal.def 
- Perform diagnostics on processes. msg.def 

sndrcv.def 
sndrcv.dcl 

utilities.c A collection of necessary functions for: <stdio.h> 
- Opening MDBS files. flags.def 

- Adding Paths. com- 
- Confirming database. mdata.def 

- Reading templates. tmpl.def 
- Creating database information nodes. dblocal.def 

- Freeing templates from the template list. 

waitmsg.c Waits for I/O or a message. <stdio.h> 
<sys/ 

types.h> 
<sys/ 

time.h> 
flags.def 

com- 
mdata.def 
msg.def 

sndrcv.def 
sndrcv.ext 

none 
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Table 9: COMMON-FMes held in common by every module. 

File Name File Description #include #define 

ack.def Globalizes variables required for acknowledgments. none extern: 

retrans__soc 
k_get 

send_ack_s 
ock 

receive_ack 
_sock 

retrns_sock 
_send 

beno.def Globalizes backend numbers. none extern: 
- NoBack- 

ends 

BACKEND 
_NO 

commdata. 
def 

Common Data Definitions:- MBDS file area constants: 

- Lengths that many need to be changed: 

none DATA_AR 
EA 

HOME 
MaxPath- 

Length 
NoBElength 
MAX_AG_ 

ATTR 
MAX_RET 

R 
MAX_RTS 
MFNLength 

USE- 
RidLength 
DBIDLNT 

H 
TlLength 
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Table 9: COMMON-Files held in common by every module. 

File Name File Description #include #define 

commdata. 
def (cont'd) 

Common Data Definitions: none 

Maximum sizes, entries, tracks, numbers.... 

Timer Constants: 

RNLength 
ANLength 
AVLength 
DIL_AttrId 
DIL_DescId 
DIL_ength 

Max- 
NoReqs 
MaxCids 

MAX_FIEL 
DS 

RT_MAX_ 
ENTRY 

REQ_MAX 
_TYPE_C 
ReqMax- 
DidSets 

QR_MAX_ 
DIDS 

RecDisk- 
Size 

no_tracks 
TrackSize 
RecSize 

MAX_ADD 
RS 

UpdCoef 
ErrDelay 

TIMER_QS 
IZE 

TIMER_Q 
WIDTH 

NO_OF_RE 
Q_REPS 

TIM_STR_ 
LEN 

ARRLEN 
NO_OF_M 
EASURE- 
MENTS 
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Table 9: COMMON-Files held in common by every module. 

File Name File Description #include #define 

commdata. 
def (cont'd) 

Common Data Definitions: Non-lengths 
- Used to signal RECP that more addrs are coming. 

none MORADD 
R 

SPACE 
BOTrans 
EOTrans 

- Request types: 

BORequest 
EORequest 

EOConj 
EOQuery 
EORecord 

RETRIEVE 
UPDATE 
DELETE 
INSERT 
FETCH 

RET_COM 
- Routing indicators: RET_COM 

_S 
RET_COM 

_T 
RIAPO 
RIRMR 

- Relational Operators: RIRMIDU 
RIBS 

RIRCRF 
RIRCI 
RIDIG 
ROLT 
ROLE 
ROGT 
ROGE 
ROEQ 
RONE 
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Table 9: COMMON-Files held in common by every module. 

File Name File Description 

commdata. 
def (cont'd) 

Common Data Definitions: - Aggregate Operators 

Modifier types in an update request: 

- End of Expression in an update. 
Addrs found in DM going to RECP 

- Results coming from backends: 

#include 

none 

Index for controller, Backends: 

End of message indicators: 

#define 

AOMAX 
AOMIN 
AOAVG 
AOSUM 

AOCOUNT 
MTO 
MT1 
MT2 
MT3 
MT4 

EOExpr 
BOAddr 
EOAddr 

BOResult 
EOResult 
CSignal 
CSInsert 

CSNonln- 
sert 

EOAttr 
CTRL 

STRING 
SMALLJN 

TEGER 
LARGEJN 

TEGER 
TRUE 
FALSE 
EOMsg 

ring_the_be 
11 

TU end 
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Table 9: COMMON-Files held in common by every module. 

File Name File Description #include #define 

commdata. 
def (cont'd) 

Common Data Definitions: none EOField 
EndString 

EndNumber 
NOBOUND 

- Internal testing definitions: MIN_RQP_ 
MSGTYPE 
MIN_IIG_ 
MSGTYPE 
MIN_PP_M 

SGTYPE 
MAX_PP_ 
MSGTYPE 
MIN_DM_ 
MSGTYPE 

- External timing definitions: MAX_DM_ 
MSGTYPE 

- Hashing constants: MIN_CC_ 
MSGTYPE 
MAX_CC_ 
MSGTYPE 
MIN_RP_ 

MSGTYPE 
MAX_RP_ 
MSGTYPE 

pleng 
cvtflg 
streq 

BUCKET_ 
MARK 

MAX_OVE 
RFLOW 

MAX_CO 
MPARE 

NUMBER_ 
OF BUCK- 

ETS 
MAX_BUC 
KET_SIZE 
MAX_BLK 

_SIZE 
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Table 9: COMMON-Files held in common by every module. 

File Name File Description #include #define 

msg.def Message lengths and message passing id definitions: none TSPA 
LENHD 
HDLEN 
MSGIN- 

TOOFFSET 
RESTMS- 

GLEN 
MASJiOS 

T_LEN 
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Table 9: COMMON-Files held in common by every module. 

File Name File Description #include #define 

msg.def Message lengths and message passing id definitions: none Resplength 
(cont'd) - Controller tasks defined: REQP 

IIG 
PP 

G_PCLC 
P_PCLC 

- Host task defined: TI 
- Backend tasks defined: DM 

RECP 
CC 

G_PCLB 
P_PCLB 

DIO 
- Message types defined: Host- 

TrafUnit 
CH_ReqRes 
ChHJTrans 

Done 
Get Tmpl 

- Msg types for msgs from Req-Prep to Post-Proc: ReturnTmpl 
errReturnT- 

mpl 
- Msg types for msgs from ReqPrep to DM NoOfReqs- 

- Msg types for msgs from ReqPrep to RECP InTrans 
- Msg types for msgs from IIG to DM AggOps 

ReqsWith- 
- Msg types for msgs from DM to HG Err 

ParsedTraf 
- Msg types for msgs from RECP to PP Unit 

RetComNo- 
tification 
NewDesc 

BeNo 
Clusld 
Req- 

ForNewD- 
escld 

BC_Res 
BC_AO_Re 

s 
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Table 9: COMMON--Files held in common by every module. 

File Name File Description #include #defme 

msg.def - Msg types for msgs from RECP to REQP: none Rec- 
(cont'd) Changed- 

- Msg types for msgs from DM in one backend to DM's Clus 
in others: RetFet- 

- Msg types for msgs from DM to RECP: Caused- 
ByUpdRes 

SpaceLeft 
- Msg types for msgs from RECP to DM: reqDiskAd- 

drs 
- Msg types for disk I/O signals RECP to RECP Changed- 

ClusRes 
Updlns 

- Msg types for msgs from DM to Concur-Ctrl(BE) Fetch 
Old- 

NewValues 
SrceFin- 

ished 
PIO_READ 

- Msg types for msgs from Concur-Ctrl to DM PIO_WRIT 
E 

OLD_REQ 
- Msg types for msgs from RECP to Concur-Ctrl TypeC_attrs 

TrafUnit 
DidSet- 

sTrafUnit 
CidsFor- 

- Msg types to All Tasks TrafUnit 
AttrRe- 
alease 

InsAllAt- 
trsRelease 
DidSetsRe- 

lease 
AttrLocked 

Did- 
SetsLocked 
CidsLocked 

Rid- 
OffiniReq 

NoMoreGe- 
nlns 
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ished 

Bucketinfo 
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Table 9: COMMON-Fües held in common by every module. 

File Name 

msg.def 
(cont'd) 

File Description 

Massage types to ALL tasks: 

- Error Messages: 

Messages for timing Request Preparation (REQP) 

#include 

none 

#define 

Catchall 
LoadtypeC 

Error 
ErrorFree 
NewDB 
Template 
SetNoBEs 

BEwho 
Createerr 
Inserterr 

Lookuperr 
Finderr 
Descerr 
Cathcerr 

Updateerr 
LoadCerr 

errNewDB 
errTemplate 
SelectData- 

base 
errSelect- 
Database 
TReqNo- 

tOKM 
TReqOKIR 

eqM 
TReqOK- 

AggM 
TReq- 

CompM 
TReqBroad 

M 
TReqSyn- 

ErrM 
TReqCh- 

C1M 
TReqN- 
MG1M 

TReqAllM 
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Table 9: COMMON-Files held in common by every module. 

File Name File Description #include #define 

msg.def 
(cont'd) 

Messages for timing Insert Info Gen (IIG): 

Messages for timing Post Processing (PP): 

none 

Messages for timing Directory Mgmt (DM): 

Messages for timing Concurrency Control (CC): 

119 

TldTyCM 
TClIdm 

TReqFNe- 
DeldM 

TIIGA11M 
TReqW- 

ErrM 
TNoORIT 

M 
TAggOpsM 
TBCResM 

TBCA- 
oResM 

TPPA11M 
TDM_PTU 

M 
TDM_NM 

GEM 
TDM_BNM 
TDM_ND 

M 
TDM_DM 
TDM_DCM 
TDM_DA_I 

M 
TDM_DD_ 

AM 
TDM_DCA 

M 
TDM_ALM 
TDM_L_D 

SM 
TDM_C_L 

M 
TDM_ONV 

M 
TDMJJFM 
TDM_A11M 

TCi- 
FoTrUnM 
TTyCAt- 

Tum 
TDiS- 

eTrUnM 
TAtRelM 
TlnAlA- 

tReM 



Table 9: COMMON--Files held in common by every module. 

File Name File Description #include #define 

msg.def 
(cont'd) 

- Messages for timing Concurrency Control (CC): 

- Messages for timing Record Processing (RECP) 

- Messages to get the time from any process: 

none TDiSeRem 
TUpFinM 

TRecpCpM 
TCCAUM 
TReqDis- 

AddrM 
TChCl- 
ResM 

TnoMoGe- 
InM 

TFetchM 
ToOl- 

dReqM 
TPio- 

WriteM 
TPioReadM 
TRecpAUM 
TDisklOM 
GeTimes 

Tim_Arr_E 
mp 

Stop 

pcl.def Process Control definitions for ethernet: 

- Internet Port numbers: 

none MaxBack- 
ends 

charMax- 
Backends 

CNTRL_N 
AME 

OFFSET 
NETNAME 
BEJPORT 
CNTRL_P 

ORT 
MAX- 

PLACES 
MAXISI 

BRDCSTS 
Z 
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Table 9: COMMON-Files held in common by every module. 

File Name File Description #include #define 

sndrcv.def Socket Definitions for communications. <sys/un.h> 
<errno.H> 

PREFIX 
NoCntrl- 

Proc 
NoBeProc 

tmpl.def Template Definitions for database information tables. none none 

ack.def Definitions for acknowledgements. none RETPORT 
ACKPORT 
MAXINT 
DELM- 
CHAR 

ISIPREFIX 
NOFRAGS 
host_name_ 

len 
min_ws_nu 

mber 
max_ws_nu 

mber 

beno.dcl Backend Number Declarations. none none 

msg.dcl Message Declarations. none none 

sndrcv.dcl Globalizes and declares variables for socket connections: 
Initiating, sending, and receiving. 

none none 

tmpl.dcl Associates users to databases. none none 

msg.ext Globalizes variables msg_q and msgjidr. none none 

sndrcv.ext Variables global to intsr, send, and receive. none none 

tmpl.ext Associates database id's with databases. none none 
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APPENDIX C--MASS_LOAD() FUNCTION SOURCE CODE 

#include <stdio.h> 
#include <strings.h> 
tinclude <ctype.h> 
tinclude <licommdata.h> 
#include <ool.h> 
#include <ool_lildcl.h> 
#include <ool_kc.h> 
#include "flags.def" 

o_mass_load(record_file) 
char *record_file; 

/* This function is used to load a group of records from a 
record file.  The syntax is the same as that of an ABDL 
record file. Calls procedure make_insert(--) for each 
object. 

*/ 

/* An important note is either all the inserts are 
accomplished or none are done.  This is due to the use of a 
transaction file, which will 
not execute the requests until there are no errors in the 
file.  */ 

{ 
char 

1], 

struct 

struct 

db_name      [DBNLength + 1], 
cls_name    [RNLength + 1], input_line   [80], 
request      [1024], supcls_array [10][RNLength + 

*add_path(); 

ocls_node 
*cls_ptr; 

obj_dbid_node   *db_ptr; 
int     i, 

continu  = TRUE, 
*error    = FALSE, 
more_objects, not_found; 

char     key[ANLength + 1]; 
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FILE     *record_fd, *trans_fd; 

#ifdef EnExFlag 
printf("Enter o_mass_load\n"); 
fflush(stdout); 

#endif 

/* ool_ptr and okc_ptr are initialized here for the KC 
routine, */ 

/* 
ool_chk_responses_left. 
*/ 
ool_ptr = &(cuser_obj_ptr->ui_li_type.li_ool); 
okc_ptr = &(ool_ptr->oi_kc_data.kci_o_kc); 

if (! (record_fd = fopen(record_file, "r"))) 
printf("\n\nERROR -- the file, %s, does not exist.\n", 

record_file); 
else 

{ 
trans_fd = fopen(".TransFile", "w"); /* open 

transaction file */ 
db_ptr = ool_info_ptr->oi_curr_db.cdi_db.dn_obj; 

/*check database name */ 
fscanf(record_fd, "%s \n", db_name); 
to_caps(db_name); 
if (strcmp (db_name, db_ptr->odn_name)) 

{ 
printf("\n\nERROR -- %s is the currently opened 

database.  This is not", db_ptr->odn_name); 
printf("\n        a mass insert file for that 

database."); 
*error = TRUE; 
} 

else /* correct database name */ 
{ 
cls_ptr = db_ptr->odn_first_cls; 
fscanf(record_fd, "%s \n", input_line); 
if (strcmp(input_line, "@")) 

{ 
*error = TRUE; 
printf("ERROR--missing '&'"); 
} 
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/*get all the classes in this loop*/ 
else 

{ 
continu = TRUE; 
do 
{ 
not_found = TRUE; 
if (fscant(record_fd, "\n %s \n", cls_name)) 

/* check for correct */ 
{ 
while (cls_ptr && not_found) 

if (Istrcmp(cls_name, cls_ptr->ocn_name)) 
not_found = FALSE; 
else 
cls_ptr = cls_ptr->ocn_next_cls; 

} 
if (not_found) 

{ 
printf("\n\nERROR %s is not a class name", 

cls_name); 
*error = TRUE; 
} 

/*if correct class name, insert in request and call 
make_insert*/ 

else 
{ 
more_objects = TRUE; 
while(more_obj ects) 

{ 
/*reset array to 0; array keeps track of super 

classes visited to avoid naming same class 
twice if there is a cycle*/ 
for (i = 0; i < 10; i++) 

supcls_array[i][0] = '\0'; 
if (fscanf(record_fd, "%s \n", key)) 

if (Istrcmp(key, "@")) 
more_objects = FALSE; 

else if (!strcmp(key, "$")) 
{ 
more_objects = FALSE; 
continu      = FALSE; 
} 

else 
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{ 
make_insert(cls_ptr, request, record_fd, trans_fd, 
&error, supcls_array, key); 

} 
/*end if @|1$ */ 
else 

{ 
*error = TRUE; 
printf("ERROR--missing '@' or '$'"); 

} 
}/*end while more_objects*/ 
cls_ptr = db_ptr->odn_first_cls; 
}/*end if correct class name*/ 

} 
while(continu && lerror); /*end do loop*/ 

} /*end if '©'*/ 
} /*end if odn name is 

okay*/ 
if (!error && strcmp(key, "$")) 

{ 
printf("\nERROR -- \"$\" missing.\n"); 
*error = TRUE; 
} 

fclose(record_fd); 
fclose(trans_fd); 

/*if no errors, insert the records in the database*/ 
if(!error) /* insert the records */ 

{ 
trans_fd = fopen(".TransFile", "r"); 
while (fscanf(trans_fd, "%[^\n]",request) && 

strcmp(request,"\n")) 
{ 
printf("%s\n",request); 
TI_S$TrafUnit(db_ptr->odn_name, request); 
ool_chk_responses_left(FALSE) ; 
TI_finish(); 
fscanf(trans_fd,    "%[\n]",request); 
} 

fclose(trans_fd); 
system("rm   .TransFile"); 
}/*   end   "if   !error,   insert  records"*/ 
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}/*end if record open*/ 

#ifdef EnExFlag 
printf("Exit o_mass_load\n"); 
fflush(stdout); 

#endif 

} /* end o_mass_load */ 

/* called by o_mass_load. Builds ABDL inserts, traversing 
inheritance tree. If a class is a sub class, builds 
separate INSERTS for each of its super classes, using the 
OBJ_ID value from the root of this branch of the 
inheritance hierarchy for each class INSERT.*/ 

make_insert(cls_ptr, request, record_fd, trans_fd, error, 
supcls_array, key) 

struct 
char 

int 
FILE 

ocls_node  *cls_ptr; 
request [1024], 
supcls_array[10][RNLength + 1], 
key[ANLength + 1]; 
*error; 
*record_fd, *trans_fd; 

{ 
struct 
struct 
char 

int 

oattr_node *attr_ptr; 
o_supcls_node   *supcls_ptr; 

attr[ANLength  +  1], 
cl[RNLength  +   1], 

input_line   [80]; 
cont   =  TRUE, 

num_attr, 
no_cycle, 
i; 

cont = TRUE; 
/*if this is a subclass, climb hierarchy and build 

supclasses*/ 
A      Following part of the code is never placed 

0) 
into the running system code. The code 
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supcls_ptr = cls_ptr->ocn_first_supcls; 
i = 0; 
while(supcls_ptr) 

{ 
no_cycle = TRUE; 
while ((supcls_array[i][0] != '\0') && no_cycle) 

/*check to see if there is a cycle with this supclass*/ 

{ 
if (Istrcmp(supcls_ptr->osn_name, 

supcls_array[i])) 
no_cycle = FALSE; 

i++; 

} 
if (no_cycle) 

{ 
strcpy(supcls_array[i], supcls_ptr->osn_name); 
make_insert(supcls_ptr->osn_supcls, request, 

record_fd, trans_fd, &error, supcls_array, key); 
} 

supcls_ptr = supcls_ptr->osn_next_supcls; 
}  /*end while supcls*/ 

}  /*end if cls_ptr->ocn_supcls*/ 

/*build the ABDL insert*/ 
attr_ptr = cls_ptr->ocn_first_attr; 
num_attr = cls_ptr->ocn_num_attr; /* initialize attr 

count */ 
/*put class name and OBJECTID in INSERT*/ 
strcpy(request, "[INSERT (<TEMP, "); 

/*change class name to first letter caps, rest lower case 
to conform 

to ABDL*/ 
strcpy(cl, cls_ptr->ocn_name); 
if((cls_ptr->ocn_name[0] >= 'a') && (cls_ptr->ocn_name [0] 

<= 'z')) 
cl[0] = toupper(cls_ptr->ocn_name[0]); 

for(i = 1; i < strlen(cls_ptr->ocn_name); ++i) 
if((cls_ptr->ocn_name[i] >= 'A')&&(cls_ptr->ocn_name[i] 

<= 'Z')) 
cl[i]   =  tolower(cls_ptr->ocn_name[i]); 

/*end change  case block*/ 
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strcat(request, cl); 
strcat(request, ">, <"); 
strcat(request, "OBJECTID"); 
strcat(request, ", "); 
strcat(request, key); 
if (!strcmp(attr_ptr->oan_name, "OBJECTID")) 

{ 
attr_ptr = attr_ptr->oan_next_attr; 
-- num_attr; /* initialize attr count */ 
} 

/*put non-key values in INSERT*/ 
while (cont && num_attr) 

{ 
if (fscanf(record_fd, "%[*   \t\n]", input_line) != 1) 

cont = FALSE; 
else if (!strcmp(input_line, "@") I I 

!strcmp(input_line, "$")) 
{ 
printf("ERROR -- '@' or '$' out of sequence."); 
*error = TRUE; 
cont = FALSE; 
} 

else 
{ 
strcat(request, ">, <"); 
strcat(request, attr_ptr->oan_name); 
strcat(request, ", "); 

/* fix up attr value into ABDL form and append into 
INSERT */ 

if (input_line[0] >= 'a' && input_line[0] <= 'z') 
input_line[0] = toupper(input_line[0]); 

for (i = 1; i < strlen(input_line); ++i) 
if (input_line[i] >= 'A' && input_line[i] <= 'Z') 

input_line[i] = tolower(input_line[i]); 
strcat(request, input_line); 

-- num_attr; 
attr_ptr  =  attr_ptr->oan_next_attr; 
fscanf(record_fd,    "%[   \t]",   input_line); 
fscanf(record_fd,   "%[   \n]",   input_line); 
}/*end  if   input_line*/ 

}/*end while  cont  and attr*/ 
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if (cont) 
{ 
strcat(request, ">)]"); 
fprintf(trans_fd, "%s\n", request); 
} 

}/*end make_insert*/ 
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APPENDIX D--KFS SOURCE CODE 

#include. <stdio.h> 
#include <licommdata.h> 
#include <ool.h> 
#inelüde "flags.def" 

o_kernel_formatting_system() 
{ 

int    i = 0, 
j = 0, 
NumCol = 0; 

int   OddMark = TRUE; 
int    FirstAttribute = TRUE; 
int   FirstAttributeSet = TRUE; 
char   *response; 
char  temp[InputCols + 1]; 
struct temp_str_info  *value, 

*temp_str_info_alloc(); 

#ifdef EnExFlag 
printf("Enter o_kernel_formatting_system\n"); 

#endif 

response = ool_ptr->oi_kfs_data.kfsi_obj.koi_response; 
++response;   /* skip '[' character in response */ 

while (Response != CSignal)   /* CSignal is '?' */ 

{ 
temp[i] = *response; 

++i; 

if   (Response   ==  EMARK)      /*   EMARK  is   ' \0"    */ 
{ 

i   =   0; 
if (OddMark)  /* end of attribute name */ 

{ 
if (FirstAttributeSet) 

{ 
if (FirstAttribute) 

{ 
strcpy(ool_ptr->oi_kfs_data.kfsi_obj.koi_first_attr, 

temp); 
FirstAttribute = FALSE; 
if (strcmp(temp, "COMMON")) 

{ 
write_attr(temp); 

/* print first attr as heading */ 
++NumCol; 
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} 

else 

{ 
if (strcmp(ool_ptr->oi_kfs_data.kfsi_obj.koi_first_attr, 

temp)) 
{ 
write_attr(temp); 

/* print next attr as heading */ 
++NumCol; 

} 
else 

{ /* heading attributes are already completed */ 
printf("\n"); 
FirstAttributeSet = FALSE; 

for (j = 0; (j < (NumCol * ANLength + NumCol)); j++) 
printf("-"); 

printf("\n"); 
/* print first line of values already stored */ 
while (ool_ptr- 

>oi_kfs_data.kfsi_obj.koi_attr_values) 

{ 
value = ool_ptr- 

>oi_kfs_data.kfsi_obj.koi_attr_values; 
write_attr(value->tsi_str); 
ool_ptr->oi_kfs_data.kfsi_obj.koi_attr_values = 

value- 

rs i_next; 
} 

printf("\n") ; 

} 
/* end else, i.e. heading attributes already completed */ 

} /* end not FirstAttribute */ 

} /* end if FirstAttributeSet */ 

else   /* not FirstAttributeSet */ 

{ 
if (!strcmp(temp, 

ool_ptr- 
>oi_kfs_data.kfsi_obj.koi_first_attr)) 

printf("\n"); 
/* we are back to the first attr name */ 

} 

} /* end if OddMark */ 

else  /* not OddMark, i.e. end of attribute value */ 

{ 
if (FirstAttributeSet) 
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/* don't print value, but store it */ 

{ 
if (strcmp(temp, "File")) 

( 
if (!ool_ptr- 

>oi_kfs_data.kfsi_obj.koi_attr_values) 

{ 
value = temp_str_info_alloc(); 
ool_ptr- 

>oi_kfs_data.kfsi_obj.koi_attr_values =value; 
} 

else 
{ 
value->tsi_next = temp_str_info_alloc(); 
value = value->tsi_next; 

} 
strcpy(value->tsi_str, temp); 

} 

if (*(response +1) == CSignal) 
{ 
printf("\n"); 
for (j = 0; (j < (NumCol * ANLength + NumCol)); 

j++) 
printf("-"); 

printf("Xn"); 

/* print first line of values already stored */ 
while (ool_ptr- 

>oi_kfs_data.kfsi_obj.koi_attr_values) 
{ 
value = ool_ptr- 

>oi_kfs_data.kfsi_obj.koi_attr_values; 
write_attr(value->tsi_str); 
ool_ptr->oi_kfs_data.kfsi_obj.koi_attr_values 

value- 
>tsi_next; 

} 
} 

} 
else   /* not FirstAttributeSet's value */ 

{ 
if (strcmp(temp, "File")) 

write_attr(temp); 
} 

} /* end else not OddMark */ 

OddMark = !OddMark; 

}   /* end if {»response == EMARK) */ 
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++response; 

}  /* end while (^response != CSignal) */ 

printf("\n");  /* for the last line of results */ 

/* free up kfs attr values list */ 
while (ool_ptr->oi_kfs_data.kfsi_obj.koi_attr_values) 

{ 
value = ool_ptr->oi_kfs_data.kfsi_obj.koi_attr_values; 
ool_ptr->oi_kfs_data.kfsi_obj.koi_attr_values = value->tsi_next; 
free(value); 

} 

#ifdef EnExFlag 
printf("Exit o_kernel_formatting_system\n"); 

#endif 

} /* end o_kernel_formatting_system */ 

write_attr(temp) 
char temp[]; 

{ 
while (strlen(temp) < ANLength) 

strcat(temp, " "); 
strcat(temp, "I"); 
printf("%s", temp); 

} 
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