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ABSTRACT

The coupling was made between a structural analysis code
(VEC/DYNA3D) and an underwater shock analysis code (USA). The
coupled computer program (USA/DYNA3D) was verified using a
set of benchmark problems which had known analytical
solutions. The benchmark problems were elastic analyses of a
spherical and an infinite cylinder subjected to a plane wave.
The comparison between the numerical and analytical solutions
was very good.

An underwater explosion test was performed with an
aluminum cylinder subjected to a far field, side on
explosion. A pre-shot calculation vsing USA/DYNA3D determined
critical locations to measure both axial and hoop strains of
the cylinder. After the experiments, a post-shot calculation
was undertaken using the free field pressure obtained from
the physical experiment. The numerical results obtained using
the elastoplastic analysis were very comparable to the
experimental data except for some positions.

A series of numerical experiments were performed to
determine the cause of the difference between the numerical
and experimental results at some positions. It was found from
the experimental data that there might be some rotation in
the cylinder relative to the explosive. Considering the
rotation in the numerical model improved the comparison. In
addition, numerical sensitivity analyses were undertaken to
determine the importance of various physical and numerical
modelling factors.

Finally, this study showed there were three major
response modes of the cylinder subjected to a side on
explosion. They were the accordion mode, breathing mode as
well as the whipping mode. lLarge plastic strains occurred at
the center of the cylinder on the reverse side to the
explosive and near the ends of the cylinder' on the near side
to the explosive. The large plastic strains seemed to be
related to the whipping motion.
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I. INTRODUCTION

A research program is underway at the Naval Post Graduate
School to study numerical modeling of ship structures
subjected to both near and far field underwater explosions.
This program is expected to improve the understanding of
factors affecting the reliability of numerical models. In
addition, it will provide insight into the dynamic response of
surface ship and submarine hulls and the physics that lead to
failure when a hull is subjected to an underwater shock wave.
The current study centers around simple cylinders constructed
of a homogenous material. Future studies will include more
complex materials and structures as experience increases and
the reliability of the numerical models is proven.

This paper describes progress of the research program to
date and the expected line of future research. Previous
results of this research program were provided in references
1-2. This report will describe the results of two numerical
verification tests which were performed to prove the validity
of a computer code software link which was developed for this
project. It will also compare the numerical results with
experimental results obtained from a underwater explosion test
of an aluminum cylinder subjected to a side on attack. 1In
addition, analyses were performed to determine the sensitivity

of the results to mesh refinement, boundary effects, rotation




from expected configuration, and use of different types of
shell elements. Results show that the computer code closely
models simple known analytic results, and can provide close
correlation to experimental results. Most of the
inconsistencies between experimental and numerical results are
most likely caused by uncertainties associated with physical
model fabrication and the underwater explosion test rather
than a failure of the numerical method to provide correct
answers. Recommendations will be provided to improve control
of future underwater explosion tests. Finally, preparations
for future testing will be described and recommendations for

additional study are provided.




II. NUMERICAL CODE DESCRIPTION AND VALIDATION

A. GENERAL DESCRIPTION OF THE METHOD

The primary purpose of this study was to match numerical
results obtained from a computer program with experimental
results from an underwater explosion test. For this initial
study of a side on attack, a relatively simple model was used.
The model consisted of a unstiffened, right circular cylinder
constructed of a homogeneous material submerged in water. The
cylinder was modelled using a dynamic finite element method
(FEM) code called VEC/DYNA3D and the water was modelled using
a boundary element method (BEM) code called USA (Underwater
Shock Analyzer). The linkage between the two codes was
developed in 1391 at the reqguest of the Naval Post Graduate
schcol under funding provided by the Defense Nuclear Agency

(DNA) .

B. VEC/DYNA3D FINITE ELEMENT METHOD CODE

VEC/DYNA3D (Ref. 3] is an explicit finite element code.
It has been used successfully for various types of nonlinear
engineering prcblems since its conception in 1376. VEC/DYNA3D
was selected for this study for several reasons. First, as
stated above, VEC/DYNA3D is an explicit code. This attribute
has two distinct advantages and two disadvantages. The

advantages are its relatively high speed and its ability to be




implemented on a relatively small s-and alone engineering work
station. 1Initial work for this study is being performed on
IBM RISC 6000 work stations. Once the USA/DYNA3D interface is
proven to be reliable and accurate and experience has been
gained in the use of the software, work will begin on more
complex models using main frame type computers. Therefore it
was important to obtain a code that was able to work
significant problems on a small work station and yet be
compatible with the main frames expected to be used in the
future. DYNA3D is compatible with a full range of engineering
work stations and has been implemented on the Los Alamos CRAY
computer. Problems including up to 20000 solid elements have
been run on work stations with 16 megabytes of random access
memory .

Tre firsc disadvantage associated with the explicit
numerical code 1s that the code 1s not inherently stakle.
This means that any problems dealing with time integration,
including the underwater shock problewms included in this study
must be treated with care. Integration time steps must be
matched closely with the size of the elements in the problem.
This is performed automatically by DYNA3D in the stand alone
mode. However, when coupled with the USA code, this
automation is no longer functional. Incorrect selection of
integratirn time steps can lead to significant oscillations
and inaccuracies in the final solution. The second problem

associated with the explicit codes 1s the mesh reflection




effect. Non-uniform meshes result in inaccurate solutions due
to mesh reflection. Two factors appear to be important in
ensuring that correct solution was obtained. The first 1is
mesh size and the second 1is total mass of neighboring
elements. Sensitivity analyses indicate that error in the
final solution is relatively small if neighboring elements are
kept within ten percent of each other in size. This was used
as a rule of thumb in performance of this study. This lead to
some inefficiency 1in obtaining solutions since often
refinement had be performed over a larger area of the mesh to
obtain a mesh independent solution than might normally be
required in an implicit code. The additional area means more
total elements and a subseguent increase in computation time
to obtain the problem solution. These disadvantages can be
overcome through careful planning. In general, they did not
significantly overshadow the benefits associated with using an
explicit code.

The second reason for selecting VEC/DYNA3D was its wide
range of available material models and eguations of state
including the ability to model strain rate sensitivity,
explosive materials and acoustic media. In additiorn,
VEC/DYNA3D has a large degree of interactivity when used with
the INGRID pre-processor [Ref. 4] and TAURUS post-processor
[Ref. 5]. Changes can be entered with relative ease using the

pre-processor and most physical components can be obtained




through knowledgeable use of the post-processor once the

calculations are complete.

C. USA BOUNDARY ELEMENT METHOD CODE

The Underwater Shock Analyzer (USA) computer code [Ref. 6]
is a boundary element computer code based on the Doubly
Asymptotic Approximation (DAA) theory developed by Geers in
1971 (Ref. 7). Through the use of the DAA theory and the
boundary element formulation, USA computes the acoustic
pressure loading and added mass matrices which represent the
fluid surrounding the submerged shell. The acoustic pressure
loading and added mass are applied at selected wetted nodes.
This formulation has the benefit of significantly decreasing
the number of elements required to model the submerged system
since external water elements need not be included in the
calculations. The reduced number of elements requires
substantially less time and storage space to obtain a
solution.

However, it must be noted that this code has limitations
which result directly from the fundamental assumptions
associated with the DAA theory (Ref. 6). First, DAA is not
theoretically appropriate for concave or multiple structures
or near surface problems involving convex bodies. However,
studies show that only results in highly shadowed, closely
spaced areas or regions of strong concavity are affected.

Secondly, DAA requires that the source of the incident wave be




sufficiently removed from the structure since it can only
account for acoustic waves and not hydrodynamic flow.
Finally, the DAA theory 1s based on an early time (high
frequency) approximation coupled with a late time (low
frequency) approximation. Therefore, although the DAA
solution will be very good at early times when the high
frequency approximation is dominant and at late times when the
low frequency approximation is dominant, it can vary
significantly from the analytic or exact solution during
intermediate times when neither the high or low freqguency
solution is dominant. A detailed description of DAA theory is

provided by reference 7.

D. COMPUTER CODE VERIFICATION

Since the USA/DYNA3D interface was new and had not been
tested, some effort was expended on performing a verification
of the performance of the code. To perform the verification,
two cases with known analytic results were modelled using the
USA/DYNA3D code. The first case was a quarter cylinder and
the second was an infinite cylinder. Results were
satisfactory for both cases and the code interface is believed
to be performing correctly.

1. DETAILED DESCRIPTION OF THE SPHERICAL MODEL

The numerical study was perfo;med on a quarter

symmetry model of a sphere containing 150 elements. Figure

IT.1 shows the model and figure II.2 shows the test geometry.




Figure II.1. Elastic sphere test case model.

Figure II.2. Elastic cylinder test case geometry.




The thickness to diameter ratio of the shell is 1 to 50 and
the shell is constructed of steel. The excitaticn is provided
by a very small step pressure wave. As a result, the shell
response is considered to be completely elastic. The case was
run using the elastic material model of DYNA3D and, since
results are being compared to the analytic results found in
reference 8, the same material and water properties as those
found in reference 8 were used. As stated in reference 8, the
exact solution is obtained from separation of variables as
shown in reference 9. The material and water properties used
are listed below:

Steel Properties

Young'’'s Modulus E=206.84 GPa
Foisson’s ratio v=0.33
Mass density pP=7784.5 kg/m

Water Properties

Sound speed c=1461.2 m/s

Density p=999.6 kg/m

The numerical results using the USA/DYNA3D combination
for the above test case compare favorably with the exact
results. The normalized results are shown in figure II.3. It
can be seen that the numerical results lag the exact results,
but the difference is negligible. Copies of the INGRID pre-
processor input and output as well as the USA pre-processor

inputs are provided in Appendix A.
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2. DETAILED DESCRIPTION OF THE INFINITE CYLINDER MODEL

The infinite cylinder model was run using the same
material and water properties shown above. Figure II.4 shows
the geometry used for the analyses and, as shown in figure
I1.5, a single ring of elements was used to model the infinite
cylinder by enforcing symmetry boundary conditions on each end
of the model. In addition, since this is a two dimensional
problem, the TWODIM option 1in USA was used to generate the
added mass and DAA matrices. Further, the value of the 1
variable was set to 0.0. 7n is the factor that accounts for
curvature. This resulted in a DAAl solution for comparison to
a known analyric DaAl solution. The first model attempted had
a longitudinal length of 0.1 inches. However, 1t was
discovered that this resulted in a oscillatory sclution as
shown 1in the first graph 1in Figure II.6. A similar
oscillation occurred on the reverse side of the cylinder as
shown in Fiygure II.7. After a check of the input data to
ensure that the prcblem was not caused by numerical
instability, 1t was hypothesized that the oscillation was
caused by residual three dimensional effects caused by the
finite width of the model. As a test of this hypothesis, two
additional models were run with widths of 0.01 and 0.001
inches. As shown in Figure II.6 and II.7, reduction in width
progressively reduced the oscillations on both the front and
back of the cylinder. At 0.001 inches, oscillations are

absent.
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Figure II.4. Infinite cylinder problem geometry.
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Pigure II1.5. Infinite cylinder validation model.
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The final results from the 0.001 inch model with a 1
variable value of 0.0 were compared to the analytical exact
and analytical DAAl solutions with favorable results as shown
in figure 1II1.8. It can be seen that the results on both the
front and back sides of the cylinder lie very close to the
analytic DAAl solution.

A further investigation was conducted to determine
what value of the n variable would result in the numerical
solution closest to the analytic modal solution. Values of

0.0, 0.25, 0.5, 0.75 and 1.0 were tested. The results are

w

shown in figures II.8 through II.12. Review of the results
show that the value of the N variable that provides the
results nearezt the analytical modal solution varies depending
on time and position on the cylinder.

For the front of the cylinder, a DAA2 variable value
of 0.0 gives results fairly close to the analytical solution
for all times. However, values of 0.25 and 0.5, although they
do neot match closely at early times, match more closely at
late times,.

On the reverse side, a value of 0.0 provides a result
very near the analytical DaAal solution, but varies
substantially from the analytical modal solution. Values of
0.5 and 0.75 provide results near the analytical modal
solution with 0.75 being the best result.

Assuming that interest lies in late time results over
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the entire cylinder, the results show that the best overall
value of 1 for an infinite cylinder lies between 0.5 and 0.75.
More compact bodies will have best results with higher 10
values.

The INGRID pre-processor input and output for the infinite
cylinder verification, as well as the USA code pre-processor

input are provided in Appendix B.




III. EXPERIMENTAL METHOD AND DESCRIPTION OF MODELS

A. DESCRIPTION OF PHYSICAL MODEL USED FOR THE FAR FIELD STUDY

The physical model was an unstiffened right circular

cylinder with the following characteristics.

Dimensions:
Length 42 inches (1.067 m)
Diameter 12 inches (0.305 m)
wWeight 60.5 pounds (27.5 Kg)
Materials:
Shell 1,4 inch thick 6061-T6 Aluminum (0.é4 cm)

End Plates 1 inch thick 6061-T6 Aluminum (2.54 cm)

The cylinders used for this test were constructed from
commercially available material. Fabrication was performed at
the Naval Postgraduate School. The end plates were welded to
the shell using a Tungsten Inert Gas (TIG) process.

The 6061-T6 aluminum was selected on the basis of its high
strength and strain rate 1nsensitivity. The material
properties of the aluminum used for the shell were verified
using the MTS machine at the Naval Postgraduate School.

Results of tensile testing determined that the material




properties were near nominal with a Young’s modulus of 10800

ksi (75.6 GPa) and yield strength of 43 ksi (300 MPa).

B. UNDERWATER EXPLOSION TEST

The underwater explosion test was performed at the Dynamic
Testing Incorporated (DTI) facilities in Rustburg, Virginia.
The facility is in a quarry and the depth of the water 1is
approximately 130 feet (39.6 m) at the location of the test.
As a result, bottom reflection was not a factor in the test.

The charge used for the test was 60 pounds (27.3 Kg) of
HBX-1. The peak pressure generated by the charge was 2360
psig (16.3 MPa) which was substantially lower than the
calculated peak pressure of 2680 psig (18.5 MPa) for the 60
pound (27.3 Kg) charge at a 25 foot (7.62 m) standoff
distance. The test charge was activated by a radio control
device.

The test depth for both the charge and the cylinder was 12
feet (2.6c m). This depth allowed the bubble generated by the
explosion to vent at the surface prior to encountering the
cylinder and eliminated the possibility of a bubble pulse. In
addition, the 12 foot (3.66 m) depth provided a clear pressure
cutoff.

The cylinder was held in place with a crane rig and the
charge was suspended from a float. Distance and alignment of
the charge to the cylinder was established and maintained

using a tensioned span wire from the charge float to the




cylinder support rig. Post-shot calculations found the
arrival time of the shock wave to be consistent with a
distance of 25 feet (3.66 m) and sound of speed in water of
4800 ft/sec (1463 m/s). Test profile and arrangement are
provided as figures III.1 and III.2.

Strain measurement was performed using CEA-06-250UW-350
strain gages. These are general purpose strain gages with an
optimum range of * 1500 microstrain and are good for both
static and dynamic test measurements. The strain gages were
bonded to the c¢ylinder using a M bond 200 by a instrumentation
technician employed by DTI. All pre-shot calibration and
connecticn were performed by DTI technicians.

The test called for 14 total strain gages (seven to
measure hoop strains and seven to measure axial strains). Of
the fourteen strain gages, three failed. The dynamic range of
the test exceeded the optimum range of the strain gages by a
significant factor. This is the most probable cause of the
high strain gage failure rate. The instrumentation diagram
for the test is provided as figure III.3. The strain gage
located at Bl was placed nearest the charge during the test.
Strain gage output was filtered at 2000 Hz. Locations noted
on figure III.3 will be used for reference throughout the
remainder of the report.

Slight damage to the cylinder was noted upon completion of
the test. Post-shot investigations found all strain gages

firmly attached to the cylinder at the locations specified in
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the instrumentation diagram. However, some water intrusion
was noted under the protective coating of several of the
strain gages. This intrusion may also have played a part in
the strain gage failures. The results of the test were
forwarded to the Naval Postgraduate School. A copy of the

report is enclosed as Appendix C.

C. NUMERICAL MODEL

This study was performed using two primary mesh densities.
The low density, full model mesh (figure III.4) was used for
rotaticn, shell type and quadrature sensitivity analyses. The
high density quarter model was used to perform direct

comparison to experimental results and examine end effects.

Figure III.4. Low density, full model

The computational efficiency of the quarter mcdel allowed a

more refined mesh without a subsequent increase 1in
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computational time or random access memory storage capability.
A sample quarter model was run and results checked against a
full model with the same mesh configuration to certify that
the symmetry boundary conditions used to form the quarter
model were valid. The refined mesh quarter model is shown in

figure III.5.

T )t S e A SRR S G S A
e i e
t O -

Figure III.5. Refined mesh model.

In addition to the two model- noted above, several
additional quarter models with varying mesh density were run
to verify mesh size independence of the quarter model results.
It was found that the most critical locations for the mesh
sensitivity check were the locations with the highest strain.
The areas with the highest strain were located near each end
on the side of the cylinder located nearest the explosive

charge. Figure 1I1I.6 shows the strain pattern on the surface
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of c¢ylinder side nearest the charge. The high strain
locations are symmetrically located 16.5 inches (0.42 m) from
the axial midpoint of the cylinder. The other region of
significant plastic strain was located on the surface of the
reverse side of the cylinder at the axial midpoint. Figure

IIT.7 shows the effective plastic strain pattern for this

location. Effective plastic strain 1is defined by the
relation:
1
— _ V2 - 2 2 272
€, = -?;-[(elp €,p)° + (Ep - €5,)% + (€5, - €,5)°]

where e, €, and e, represent the principal plastic

p
strain components [Ref. 10]. The near side high strain
regions cover a much smaller area than the reverse side
region. That is, much higher strain gradients occurred on the
near side compared to other locations on the cylinder. This
condition plays a significant rcll in mesh design and
integration time increment selection.

Figures III.8 through I11.10 show the results of the mesh
sensitivity test. It was found that strains in the axial
direction were more sensitive to mesh density than hoop strain

results. Figure II1I.8 shows the strain at the surface of the

cylinder at the point nearest the charge (location Bl). This
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location has no permanent plastic strain. It can be seen that
there is no significant difference between the results for the
three mesh densities checked. Figure III.10 shows strain
results for the surface of the shell at the point most remote
from the charge in the circumferential direction at the axial
midplane (location B3). This location had the second highest
strain of the positions checked. Although there is a slight
difference between the three different mesh results, it is
apparent that these differences are insignificant when
compared to the overall plastic strain. Figure III.9 shows
the strain results for the locations that experienced the
highest plastic strains (locations 2l and Cl). The difference
in the hoop direction is noticeable but small enough to be
neglected. However, the results in the axial direction are
significant with a 30 percent variance between the average
plastic strains for the high density mesh and medium density
mesh. Additional refinement was not possible due to random
access memory limitations on the system used to perform the
analysis. On the basis of the above results it was determined
that the medium mesh model was adeguate for comparison of
numerical to experimental results for all hoop strains and all
axial strains except at the locations near the end on the side
nearest the charge. The high density mesh was used for the
axlal strain comparison at the remaining locations. Care was
taken to ensure that the mesh was as uniform as possible for

both the full and the guarter mesh models to avoid problems
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with mesh reflection as noted earlier in this report.

Thin shell elements were used for both the shell and end
plates. Since relatively small out of plane displacements
were encountered in the test model, it was determined that the
four node Belytschko/Lin/Tsay shell formulation (Ref 11],
which is the default formulation for VEC/DYNA3D, was adequate
for the analysis. A Hughes/Liu [Ref. 12] shell model and a
eight node brick shell model were also run for comparison.

The Belytschko/Lin/Tsay shell was selected over the
Hughes/Liu shell and 8 node brick shell formulation because of
its higher relative computational efficiency.

The aluminum was treated as a kinematic/isotropic
elastic/plastic material with no strain rate sensitivity.
Research has shown that shock velocities much higher than the
velocities encountered in the test are required to induce
strain rate sensitivity in 6061-T6 aluminum.

The pressure input for the model was obtained from the
free field pressure transducer time record of the underwater
explosion test. The 17000 point trace was numerically
condensed to 100 points and entered into the TIMINT pre-
processor of USA using the VARLIN (variable linear) option.
Figure 1III.1l1 shows the pressure profile used for the
analysis. Free surface effects were neglected and the speed
of sound in water used for the test was 4800 ft/sec (1463 m/s)
since the test was performed in fresh water at approximately

40 degrees Fahrenheit (4.5 degrees centigrade).
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IV. FAR FIELD STUDY RESULTS

A. EXPERIMENTAL TO NUMERICAL COMPARISON

As described earlier in the report, an underwater
explosion test was conducted at the Dynamic Testing,
Incorporated facility in Rustburg, Virginia. The test
included a side-on attack of a cylinder with a stand off
distance of 25 feet (7.62 m) using a 60 pound (27.3 Kg) HBX-1
charge. Fourteen strain gages were attached to the cylinder,
of which eleven provided useable data. Four statements can be
made about the results. First, the numerical results compared
well with the experimental results qualitatively. That is, the
numerical response had the same general shape as the
experimental results and it predicted compression and tension
correctly. There was one exception to the above statement at
position B3 (Figure IV.9). The numerical model indicated a
tensile axial strain at position B3 while the experimental
data indicated a compressive strain. Physically, it can be
observed that the shock wave is spherical and initially
strikes the cylinder center. This places the cylinder in
bending. Therefore, tensile strain 1s expected in the axial
direction on the reverse side of the cylinder. It is believed
that the poles on the axial strain gage at position B3 were

reversed resulting in an error in sign of the data returned by




the strain gage. As a result, the negative of the
experimental strain is plotted versus the numerical results in
Figure IV.9 with satisfactory results.

Second, there were variations in magnitude between the
numerical results and the experimental data. Further,
magnitudes matched the experimental results more closely at
the position nearest the charge and error increased as
distance from the point nearest the charge increased in both
the axial and circumferential directions. In addition,
numerical and experimental results match more closely in areas
with lower values of total strain. Finally, axial strains
were affected more than hoop strains. Charge size factors
were eliminated as a possible cause of the magnitude
differential since the measured pressure profile was used to
perform the post underwater explosion test numerical
calculaticons. In addition, the possibility of the charge being
located closer to the shell than the specified standoff
distance was eliminated by comparing the actual shock wave
travel time measured from the strain gage traces to the
expected shock wave travel time calculated for the speed of
sound in water for fresh water at 40 degrees Fahrenheit (4.4
degree centigrade). The results indicated less than two
inches difference between the calculated and measured values
for stand off distance.

Third, the frequency of oscillation of the numerical data

was lower than the experimental data. The higher frequency
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oscillation in the physical model compared to the numerical
model indicates that the experimental model 1s "stiffer" than
the numerical model. This is an unexpected result, since
numerical finite element solutions are normally expected to be
stiffer than the physical model. 1In addition, the numerical
results for axial strain tended to "ring" at all locations.
The "ringing" is not a significant factor for hoop strains.
It should also be noted that the "ringing" i1s heaviest at the
front and back of the cylinder at the center. The causes of
the “ringing” and the high stiffness of the physical model
have not been determined and are a topic of additional study.
Finally, there 1s an unexpected asymmetry 1in the
experimental results. The axial strain gage at position Cl
{figure IV.10) measured 50% lower than the axial strain gage
at Al (figure IV.1) and the hoop strain gage at position C2
{figure IV.1l1l) measured nearly 50 percent higher than the hoop
strain gage at position A2 (figure IV.2). Failure of strain
gages at positions Al, Cl, and C2 prevented additional
comparisons. The asymmetric results can result from two
factors. The shell may have been rotated from the expected
orientation by underwater currents or by forces placed on the
cylinder and rigging by the instrumentation cables or there
could have been a failure in the bonding between the strain
gage and the cylinder surface on one or more strain gages.
Figures IV.1l through IV.1ll1 provide the results of the

numerical to experimental data comparison.
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B. SENSITIVITY ANALYSES

A series of sensitivity analyses were performed 1in an
effort to explain the differences between the numerical and
experimental results noted in the previous section. In
addition, these analyses provided additional insight into the
relative importance of various factors in the performance of
underwater explosion tests and the associated calculations.
Seven sensitivity analyses were performed. The first was the
mesh sensitivity test. The results c¢f this analysis have
already been discussed. The other six analyses were, end
effect, shell element formulation, integration time increment

length, quadrature, rotational ©position and 1N value
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sensitivity checks. The results of these analyses are
provided in the following subsections.
1. END EFFECT SENSITIVITY ANALYSIS

As previously noted, the most severe deformation
occurred at locations near the end of the cylinder (positions
Al and Cl). Two processes cause this phenomena. First, the
relatively large mass of the end plates apply large inertial
forces to the cylinder shell near the end plates. Second, the
one inch thick end plates are very stiff and their lack of
flexibility causes the weaker material of the shell near the
end plates to deform 1in response to applied forces. A
examination of the numerical and experimental data reveals
that these effects are concentrated near the end plates and
result in large strain gradients. This means that elements on
either side of a selected element near the end of the cylinder
can have significantly different strain values. Accurate
placement of strain gages within this region and careful mesh
design along with adequately short time integraticn increments
are critical in obtaining satisfactory results in a numerical
to experimental data comparison. In addition, as stated
earlier, the end plates are attached to the shell using a
Tungsten Inert Gas process. This welding process results in
high temperatures near the end of the cylinder. Since the
aluminum for this model is at a peak hardened condition, this

process could result in a change of the material properties
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near the end cf the cylinder that can only be restored by
performing the age hardening process again after the welding
is complete. These factors can result in an uncertainty in
the expected strain compared to what might occur under ideal
circumstances.

The mesh sensitivity results clearly display the
importance of mesh design within this region. However, even
with proper design, the large gradients can result 1in
significant differences between the predicted and actual
strains since the strain computed for the element 1is an
average of the strain over the entire element vice a strain at
a specific point. The best possible results would be obtained
in these regions with large gradients if the mesh could be
refined such that the size of the elements is the same size as
the gage length of the strain gage. However, this would
result in a prohibitively large number of elements and a
subsequent increase in problem solution times. These problems
can be overcome by placing strain gages in areas that are
expected to have consistently increasing or decreasing strains
and then ensuring that the mesh is designed so that the strain
gage location is at the center of the element. If possible,
large gradient regions should be avoided. If strain gages
must be placed in a high gradient region, then the strain
gages should be placed to one side or the other of the minimum
or maximum strain location. Placement at the minimum or

maximum point will result in an error since the average for
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the element will lie above a minimum or below a maximum 3.f the
element is not the same size as the gage length of the strain
gage.

In this study, the strain gages located at Al and C1
were located at the point of highest compressive strain.
Therefore, a study was performed to determine the relative
importance of the noted location factors. Figures 1IV.12
through IV.16 show the results of this study. Strains of two
additional elements nearer the end were compared to the
measured strain and the actual strain gage location. Elements

nearer the end plate were selected since the welding effects
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Figure IV.12. End effect sensitivity results.
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described in the previous paragraph would tend to move the
high strain location nearer to the end plate by weakening the
material near the end plate. Only the positions with useable
experimental results are shown. In four of the five cases
(positions Al axial, A2 hoop, Cl axial and C2 hoop), 1if
asymmetry effects are taken into account, the element one
nearer to the end from the actual strain location provides a
better estimate of the actual strain measured during the
underwater explosion test. At the fifth location (A2 axial),
the second element closer to the end provides the best
results. These results require additional study to separate
and quantify the effect of the phenomena.
2. SHELL FORMULATION, QUADRATURE RULE AND INTEGRATION
TIME INCREMENT SENSITIVITY ANALYSES
In addition to the above end effects, there was some
concern that the mid plane reference for the thin shell
element would result in a greater flexible length than the
actual physical model. This concern was based on the fact
that the mass and stiffness of the end plates is concentrated
into a planar surface co-located with the mid plane of the end
plate in the thin shell analysis. This resulted in the shell
portion of the structure being one 1inch 1longer in the
numerical model than the physical model. This problem could
have been avoided by using the Hughes/Liu formulation and

shifting the reference plane to the inner surface of the
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shell. To resolve this issue a study was conducted to compare
the performance of different types of thin and thick shell
element formulations.

Results from the Belytschko/Tsay/Lin shell formulation
were compared to results from the same model using the
Hughes/Liu shell formulation. As stated earlier, the
Belytschko/Lin/Tsay shell has the advantages of increased
computational efficiency and a high degree of stability with
large deformations at the expense of reduced accuracy at high
levels of plastic strain. The major difference between the
two formulation stems from the fact that the element normal
direction 1s updated periodically in the Hughes/Liu
formulation. The Belytschko/Lin/Tsay formulation assumes
negligible cut of plane deformations, and therefore, dces not
update the shell normal. As a result, the inaccuracy of the
Belytschko/Lin/Tsay formulation will increase as shell
deformation becomes significant.

The models used to compare the two formulations were
identical in all aspects with the exception of the shell
formulation. The center line plane was used for the reference
on both models. The results confirmed that the strain levels
encountered 1in this underwater explosion test were small
enough to support use of the Belytschko/Lin/Tsay formulation.
However, 1t was apparent that differences did occur for
positions with significant plastic strain in the axial

direction (Positions Al, A2, B3, Cl, and C2). Although the
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differences in these cases were not significant enough to
require use of the Hughes/Liu formulation, it is also noted
that higher strain may result 1in larger differences.
Therefore the Belytschko/Lin/Tsay formulation should not be
used 1n cases where significant denting occurs unless
stability problems occur while using the Hughes/Liu
formulation.

As stated earlier, the presence of high strain
gradients near the end plates causes small changes in end
condition or distance to be significant. When 1t became
apparent that end effects would be important in the results an
investigation was performed to determine if an eight node
brick shell formulation would provide more accurate results
near the end of the cylinder. The thin shell formulation
results as well as the experimental results were compared to
results from a model computed using eight node brick shell
elements. All three formulations are compared to experimental
results 1n figures 1IV.17 through 1IV.27. The following
information can be gleaned from the plotted results. First,
1t 1s apparent that the greatest differences occur near the
positions with the highest strains. At the same time, it can
be noted that there 1is wvirtually no difference at the
locations with no permanent strain. Second, as shown 1in
figures IV.17, IV.18, IV.24, IV.25 and IV.27, it is clear that
there is a significant difference between the eight node brick

shell results and the Belytschko/Lin/Tsay results at the
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locations with high levels of permanent plastic strain.
However, contrary to the expected results, the eight node
brick shell results move further from the expected values than
the other formulations. It is also noted that the Hughes/Liu
formulation lies between the eight node brick shell and the
Belytschko/Lin/Tsay formulation.

Additional research was performed to determine the
cause of the disparities. The study revealed that the eight
node brick shell is sensitive to integration time increment
and will move marginally closer to the thin shell results if
time integration 1s cut in half. However, the overall shift
is only about 10 percent of the total difference. Quadrature

rule (number of points used in the Gauss quadrature numerical
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integration scheme) proved to be a more significant effect.
Use of five point quadrature moved the three results closer
together while having the most profound effect on the
Belytschko/Lin/Tsay formulation. Again, the affect of
quadrature rule affected the thick shell results only
marginally. Figure IV.28 shows the combined results for the

location with greatest plastic deformation.

0
-0.2x104 F\ | - HUGHES/LIU - 3 PT :
< -—— EIGHT NODE BRICK - 5 PT. REDUCED INCREMEN
é —— BELYTSCHKO/LIN/TSAY - 5 PT
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Figure IV.28. Effect of changing gquadrature rule and time
integration increment at location of highest
strain (Al and C1l hoop).

In summary, all three formulations appear to be
satisfactory as long as care is used in designing the mesh and

selecting the integration time and quadrature integration
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rule parameters. Specifically, when using Belytschko/Lin/Tsay
formulations in areas with relatively high strain, the number
of guadrature points should be increased until stable results
are achieved. When using eight node brick shell elements,
integration time increment must be selected with care but
number of quadrature points seems to be less critical. The
Hughes/Liu formulation appeared to be relatively insensitive
to both quadrature rule and integration time 1increment.
Reference 13 provides some useful thumbrules for
selection of time increments. The following criteria are

recommended.

At =0 for brick shells

\"4
9 —
(ApC)
A, ,
At = 0.9—=5 for thin shells
Dc

V - element volume
At - time increment

A_ - maximum surface area

s
D - maximum diagonal
c - speed of sound in the material

A, - maximum area of any surface

The above criteria were found to be adequate except for the

highest strain areas where the thick shell element rule did
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not provide stable solutions. In areas such as Al and Cl, a
value of the integration time increment half of the above
recommendation proved to be satisfactory for the eight node
brick shell.
3. ROTATION SENSITIVITY ANALYSIS

A sensitivity analysis was performed to determine the
effect of an in plane rotation away from the expected
symmetric orientation in an effort to explain the cause of the
asymmetric results of the underwater explosion test. It was
hypothesized that an unplanned rotaticn greater than ten
degrees would have been detected by the personnel performing
the test. Four different models were run within this range
representing rotations of 0.0, 2.5, 5.0 and 10.0 degrees. The
results are shown along with experimental results where
avallable 1in figures IV.29 through 1IV.42. The following
observations are made concerning the results. First, the most
dramatic affects are on the reverse side ot the cylinder at
position B3 (Figures IV.37 and IV.38). The results show that
the differential between the numerical and experimental
results at position B3 can be explained by a six to eight
degree rotation from the symmetric configuration. Rotational
effects at locations Bl and B2 on the centerline (Figures
IV.33 through 1IV.36) are insignificant. Hoop strain at

position C2 (Figure IV.41) is approximately 60 percent
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higher than the hoop strain at position A2 (Figure IV.32)
with a rotation of ten degrees. This is also consistent with
the experimental data. Similar positive results were obtained
for positions Al and (1 axial strains. It was _further
discovered that rotating the cylinder about its axis could
further improve the results. However, even though these
rotations did improve the results, significant differences
still exist between the experimental and numerical strains at
the ends of the cylinders. Although it 1is clear that the
model can account for rotational effects, it 1s also clear
that other factors are causing the large differences. Once
again, welding affects are suspected to be the probable cause.

The important point to note out of these results is
that even small rotations from expected orientation can result
in significant errors on 1in expected results. Therefore
extreme care must be taken to ensure that instrumentation
cable tensicn and other unanticipated factors do not cause
undetected rotations.

4. PHYSICAL FINDINGS

a. RESPONSE MODES
It was determined that a cylinder subject to a side
on explosion will have three primary response modes. The
first mode 1s an accordion motion. The accordion motion

results from the compression and subsequent release of the
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cylinder in the axial direction. Figure IV.43 shows a plot of

points located at the center of each end plate. It 1is clear
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Figure 1IV.43. Cylinder accordion motion.

that the twc end plates are travelling in opposite directions
at the same time generating the accordion motion.

The cylinder is also subject to a whipping mode
parallel to the direction of shock wave travel. The whipping
mode 135 the most significant motion experienced by the
cylinder and is caused as a result of the curvature of the
shock wave. In the symmetric situation, the shock wave will
come in contact with the center of the cylinder first. This
will cause the center to move first, followed by the ends.
The cylinder will then move in an oscillatory motion that 1is
a function of the stiffness and mass distribution of the

cylinder and the water surrounding the cylinder. Figure IV.44
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Figure IV.44. Cylinder whipping motion in plane parallel
to shock wave direction.

shows a plot of a points located at the center and ends of a
line located parallel to the axis on the near side of the
cylinder. The plot shows that the end plates are moving in
the ogposite direction o©f the c¢ylinder throughout the

trans.ent response of the cylinder. Figure IV.45 shows a

)

scale facrcocr 20 drawing of the cylinder at two different
times. The cylinder’s opposite direction of curvature at the
two different times is a result of the whipping motion.

The final response mode noted was & breathing
motion in the plane perpendicular to the shock wave direction
of travel. Although breathing motion also occurred 1in the
direction parallel to the shock wave travel, 1t was not as

obvious since the much larger whipping motion turned out to be
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Figure IV.45. Cylinder curvature as a result of whipping
motion (scale factor 20).

the predominant mode in that direction. Figure IV.46 shows a
plot of two points located at the top and bottom of the
cylinder in a plane perpendicular to the axis at the axial mid

point of the cylinder. It can be observed that the upper
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Figure IV.46. Cylinder breathing motion perpendicular to
the shock wave direction of travel.

point 1s moving in a direction opposite to the lower point
throughout the transient respconse of the cylinder. The
breathing motion 1is also caused by the compression and
subsequent release of the cylinder. Figure IV.47 provides an
illustration of the breathing motion. The two scale factor 40
drawings are for two separate times and show the shell first
bowed inward toward the axis and then outward away from the

axis.

b. ROTATIONAL EFFECTS
Plastic strain fringe plots generated as a result
of the rotation sensitivity analysis revealed some interesting

information on the causes of the strain distribution
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Figure IV.47. 1Illustration of cylinder breathing mode at
two different times (scale factor 40).

experienced by the «cylinder. The experimental results
included a reduction in the strain at the rear of the cylinder
at position B3, a decrease at A2 relative to C2 and an

increase at Al relative to Cl. The fringe plots show why this
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strain distribution occurs. Figure IV.48 shows the effective
plastic strain distribution for a 7.5 degree rotation. The
left side of the cylinder is nearest the charge. The results
show that the rotation tends to diffuse the strain around the
cylinder on the near end while concentrating it at the far
end. This causes the distribution noted for positions Al, C1,
A2 and C2. At the same time, the high stress region on the
reverse side of the cylinder tends to move away from the
charge. This placed location B3 in a lower strain region
which led to the experimental and numerical results noted at

position B3.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS.
1. NUMERICAL MODELLING

Two general conclusions can be reached from the
material contained in this report. First, the USA/DYNA3d
connection 1is successful and can replicate the response of
simple analytical models.

Second, numerical modeling can predict the response of
a simple cylinder to an underwater explosion. Far field
numerical predictions generally match experimental results if
rotation and end effects resulting from fabrication caused
material gproperty changes are correctly modelled. It was
found that vresults 1in high strain areas are extremely
sensitive to shell formulation, mesh design, quadrature rule
and integration time increment. The best results were achieve
with brick shell elements. However, the eight node brick
shell required substantially longer computation times to
achieve the desired results because of the need to reduce the
integration time increment. In addition, it was found that
thin shell formulations can also provide correct results.
However, results for the Belytschko/Lin/Tsay formulation

appear to be very sensitive to the number of gquadrature points
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used for the numerical integration scheme in high strain
areas.
2. PHYSICAL ASPECTS

Primary damage areas are near the ends of the cylinder
on the side nearest the charge where the stiff, heavy, flat
end plates caused a concentration of the effective plastic
strain. Damage also occurred on the reverse side as a result
of a bending effect similar to that described in the near
field results. The cylinder experienced breathing, whipping
and accordion response modes.

In addition, it was discovered that rotation tends to
diffuse strain on the end nearest the charge while
concentrating the strain at the far end on the side nearest
the charge. The high strain area located at the center of the
Ccylinder on the reverse side tends to migrate toward the end

most remote from the charge.

B. RECOMMENDATIONS.
1. TOPICS FOR ADDITIONAL STUDY.
4. WELDING FABRICATION EFFECTS.

An analysis should be performed to quantify the
relative effect that the change 1in material properties
generated by the welding fabrication process has on the
numerical results. This analysis could include the

measurement of material properties near a weldment. These
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properties could then be added as a separate material in the
numerical model.
b. EIGHT NODE BRICK SHELL SENSITIVITY ANALYSES.

Although it was fairly clear that the eight node
brick shell formulation comes closest to predicting the
overall response of the shell, 1t was also noted that the
formulation is very sensitive to integration time increment in
areas with high strain. Commonly used thumbrules did not
appear to be adequate in this case. In addition, additional
analyses need to be performed to determine the mesh
sensitivity of the eight node brick shell in this model.

c. FAILURE CRITERIA.

This study was performed on a model with relatively
low total plastic strain (less than one percent) . In order
to deal with larger strains, a failure model must be
introduced into the material modelling of the cylinder. The
model should include structural instability as well as
material rupture criteria.

d. NEAR FIELD EXPERIMENTATION

Although the numerical predictions appear to be
physically correct, the physical results obtained using them
cannot be assumed completely correct until they are confirmed
with experimental results. A study should be conducted to
compare near field experimental results with numerical

predictions.
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2. RECOMMENDATIONS TO IMPROVE TEST CONTROL.

Several factors made the comparison of the numerical
to experimental results difficult. If properly controlled,
the analysis process could be simplified. First, rotation of
the cylinder must be carefully controlled. Second, unless
specifically required, high strain gradient areas should be
avoided. Placement of the strain gages becomes critical in
these locations as does mesh design and integration time
increment . If these areas cannot be avoided, additional
sensitivity analyses may be required to determine the adequacy
of the mesh and integration time increment. Finally, analysis
near welded seams should be avoided unless the effects can be
quantified. If near weld analysis cannot be avoided,
consideration should be given to restoring the heat treatment

after the weld process.
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APPENDIX A - SPHERICAL VALIDATION MODEL
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A. INGRID PRE-PROCESSOR INPUT DATA

dn3d vec term 5.0 piti 0.01 prti 1000.

mat 1 type 1 e 9.7e+l pr 0.3 ro 7.79
shell endmat

led 1 2 0.0 0.0 10.0 0.0
led 2 2 0.0 0.00025 10.0 0.00025
plan 2

0 0O 0 -1 0 0.00001 symm

000 -1 0 0 0.00001 symm
start

-1 6 -11 ;

-1 6 -11 ;

°]. 6 -ll ’

-1. 0. 1.

-1. 0. 1.

-1. 0. 1.

sfi -1 -3 ; -1 -3 ; -1 -3 ; sp 0 0 O 1.

pri -1 -3 ; -1 -3 ; -1 -3 ; 1 -1.0 0.
thick 0.02
mate 1
end
end
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cC.

FLUMAS PRE-PROCESSOR DATA

FLUMAS DATA FOR SPHERICAL SHELL QUARTER MODEL
sph.flu sph.geo sph.nom sph.daa $

o B s B B e |

o E
ok ZTmgmamg
N
. o

HORRKRHERROOOT T M NN A
.__\

i Is ey I N R I

o

150

1 1501

RO RO ROROEOEHRORGEOREHE (RO R

FLUNAM
PRTGMT
EIGMAF
PCHCDS
FRWTFL
RENUMB
PRTCOE
OCTMOD
MAINKY
NSTRC
NBRA
RHO
NVEC
CQ(1)
NSRADI

$ RAD1

$
$

100

NSORDR
SPHRAD

GEONAM
PRTTRN
TWODIM
NASTAM
FRWTGE
STOGMT
STRMAS
CAVFLU

NSTRF
NCYL
CEE
CQ(2)

RAD2

GRDNAM
PRTAMF
HAFMOD
STOMAS
FRWTGR
ROTGEO
SPHERE
FRWTFV

NGEN
NCAV
CQ(3)

JBEG

DAANAM
CALCAM
QUAMOD
STOINV
FRESUR
ROTQUA
ROTSYM
EFUDGE

NGENF

Co(4)

JEND

JINC




D. AUGMAT PRE-PROCESSOR DATA

AUGMAT DATA FOR SPHERICAL SHELL QUARTER MODEL

sph.nom sph.flu sph.geo sph.pre $
FFFF

O RU NS |
-3

37 42

U Uy U A D W D W

[
o)
U 2O

101

STRNAM
FRWTGE
FLUSKY
PRTGMT
MODTRN
MAINKY
DAA2
NSTR
NSETLC
NDICOS
NUMCON
ICON
ICON
ICON
ICON

FLUNAM
FRWTST
DAAFRM
PRTTRN
STRLCL

NSFR

JSTART
NSTART
NSTART

NSTART
NSTART

GEONAM
FRWTFL
SYMCON
PRTSTF
INTWAT

NFRE

JSTOP
NSTOP
NSTOP

NSTOP
NSTOP

PRENAM
PLNWAV
DOFTAB
PRTAUG

NFTR

JINC

NINC
NINC
NINC
NINC




E. TIMINT PRE-PROCESSOR INPUT DATA

TIMINT DATA FOR SPHERICAL SHELL

sph.pre sph.pos $
sph.rst

0. 0. 10000.

1.

(e

m o .
mmo
m

(e

.00025
000 1000

[}
o
(e}
O
AR R RO EGE RO RO RN R BRI

MororrukENnTm
B oi—q .
o
[
™
o

PRENAM
RESNAM
XC

SX
EXPWAV
HYPERB
JPHIST
PNORM
DTHIST
PHIST
NTINT
STRTIM
NSAVER
LOCBEG
DISPLA

POSNAM

YC
SY
SPLINE
BUBPUL

NCHGAL
DELTIM
NRESET
LOCRES

QUARTER MODEL

c
Sz
VARLIN PACKET
REFSEC EXPLOS

NSODFL
LOCWRT NSTART
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APPENDIX B - INFINITE CYLINDER VALIDATION INPUT DATA
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A. INGRID PRE-PROCESSOR INPUT DATA
INFINITE CYLINDER MODEL
dn3d vec term 5.0 plti 0.01 prti 1000.

mat 1 type 1 e 9.813e+l1 pr 0.3 ro 7.85
shell quad 0 thick 0.010 endmat

led 1 2 0.0 0.0 10.0 0.0
lcd 2 2 0.0 0.000025 10.0 0.000025
plan 3
00 0 0 -1 0 0.00001 symm
0 0 -.0005 0 0 -1 0.001 symm
0 0 .0005 0 0 1 0.001 symm
start
-1 6 -11 ;
-1 6 -11 ;
12 ;
-1. 0. 1
-1. 0. 1.
-.0005 .000S5
allo33031.0
4010020
pri -1 -3 ; -1 -3 ; ;1 -1.0 0. 0. 0.
mate 1
end
end
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INGRID PRE-PROCESSOR OUTPUT DATA

INFINITE

1 32
3 ) p
- ) .
5. ﬂOUE+h 1.0.0
Q Q 1]
b] ) 0,000
0 0 0
1 17 RS
material type =
9. 813E+01 J.0040
3.000E-01 0.0
O COUE«SD T, don
0.000E+D0 0O.,0CCO
TLOONEe T T ST
GLVOUNESGD 2L 00y
section progpert
1 0L DE- o
1 LLo-
3 L=
12 N
I g -
14 Lo
ic p
17 N
21 3. -
_h
R K
) s,
30 3.
ER 3.
32 e
34 3.
35 3.
36 3.
57 3.
3 5. .
gl 3.
Z 5

KR

3
3
40
4
4

t

[PV

¢33

e

2 20 |

N 2209 e
: ST T S S B
MIGE-DI C.0COE+I0 0.C00E~0T
o2 0o 0o 1 0 N

0 00.0000E+00  (0.0O00E
AE4NN G.00NE+D0 ©.000E+ND 0

.LGE~00 0.G0CE+0G 9.000E+00 0.9G0E+ )0
CAELELDG GLOGCEGD 5. C00Eend 0. 00ER0
L3G0E+00 0.000E+00 0.000E+G0 0.000E+00
S E.n f.,oér 00 D.A03END 0. 00ESD0
L AUIEreT 0.000E+00 0.G0JE+GO .O00OE+00

l

g7
.
-
*
,\—7

Ach

228934
HH124
'4341

~4‘.I

:ll;

7

‘Eedy

B+
T+ 00
=+00
JE+O1
E+00
E+00
E+OO

E+00
E+OU
+")')

N

00E-02 C.

.30901703

SOJE-CH

1564344763756E+00 -

.453090“488491E+00 -

£6778535035327E+00

.OOOOOOOOOOOOCE¢OO

1564344763756E+00

.309017032384%E+G0
.45393054884%1E+00

23849E+00 -.

000.Q0CNE+DO 2

.5000Q00.37487 -

5000000237487E- 03
.5000000237487E-03
-.50000002
.5000000237487E-03
.£000000237487E-03
.50000006237

.J0GE+00 0.

38 laraze

0 0 0
C.000E+00

0

O D

0

0 0

.ONJQE+00 0.000E+00 N.0O00DE+D0

£+50 0.000E+0Q0
CE+20 0.00CE+D0

.000E+00 0.000E+00

"00E-00 0.C00E+0Q0
J0GCE+QC

237487E-03

487E-03
237487E-03

SOCCOUTOGICHIED - SIIINOCI3TIE7E-03 7.
3 -.5000070137487E-03 4.

E+90 -.5003C Ti57E-G3 4.

S LE- 10 - .S000! 7337E-03 4.
557 E+00 -.5000 Ti:TE-UY 4L
70T E+T0 - L5000 T4eTE-03 0 4.
SO0 QTOEN0Y L2 XS o
15643 3TL0E. 0 L5000 3 4.
J30%0L 3847803 L5007 3 4.
4539905428451E. 0 L50UC it 3 4.
E8775C3035307E- 00 L5, 73 30 4.
70TI0E3056846E 70 57 3 30 4.
LBT901T082187I500 -8 5 3.
SAPLODAE48E40IENCD -] 3 2 4.
JEIOSSEERIITRELDD -2 : 5004
23753834 14104E00 -5 5004,
1000000 I00C00ES DT - .58 300 4.
2050170 ZEL3 LEC 300 4.
LBF1TIE SELI0 0 LEC E-Cr 4.
LS LT *E g T2 4.
.387483 E 5y E-03 4.
.1000500 : .50 E-23 4.
2876863525954 -5 £-03 4.
LPSINEE5450124 -2 E-03 5.
B3I0NE5223312 -2 E-03 4.
LEUY01700I88IFER DG <L i E-CX 4.
7371 0328683REw L .5 -5 4.
.93762335259645450 .5 7TE-C3 4.
.2510555400124E-00 L5000 I00237487E-03 4.
.8910065292312E+00 .5000000227487E-03 4.
802017002592 E+00  .SO000IC23TIRTE-03 4.
.707106328683€E+00 .5000000237487E-03 4.
SLCNGTSO0T000 BN —.=nﬁ,,(_:374=7£-01 7.
4

4.

4

4.

3

4.

4

4

4

.5877853035327E+00

&

TE-CZ

o
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S0E-TD L. )
e :
STRE-DD LR
1- 1
oE- DL z
L7 1
Bl L. 3
13 :
oL * =
Lo 1
R : 3

A z
DU . -
S e L

TN de L L

—

s bt e b b b e 4 e e e b b e e e e
[T
[e SO, IV SN N}

GUTE-C

[ O N )

LODOE-DD

R i

BN

G

SOt s

o

PRt

1.0Q00E-02

%2 1.000E-02

i =4
I =
PR Lo

t

Gt L
Lk ) e D

o
~d o

L.GOQE-02

7o
o)
DGGE-02
i1
o
R
A
SE-CZ
13
.OCCE-C2
19

000E-02
Z0

.GOUE-CZ

21

.Q00E-02

. R
41 1.
Tl o
. - o
4o :
E-CC
o e egeem
= DEFINITIINS
Aot mepye e R
L S U O P e s

~1.

1) 1 ) 1 ] )
e

'
el R s T e T T JN SN

4 !

! ! +

N SO N S W =) D LN e L DL S LI D
)

)
[

e da B2 L BRI PIBD LD = 3 a2 ks b

L

.OJLE*OO 1.
.ON0E+D0-
.CO0E+0Q0-1.
.0QIE+00-1
LONZESDC-1
.000E+00-1
.000E+00-1
.000E+00-~1
LCUCE+00-1
.QU0E+00-1
.000E+00-1
.CUNE+00-1.
.0CGE+00-1.
.DO0E+Q00-1.
.00NE+00-1.00C
.00 "~JL-1.:

k,

1.GUJL+UO l
JONE+00-1.
LONJE+G0-1.
LLOYE+CC-.
.000E+00-1.
LONAE+00-1.
.000E+0Q00-1

LOD0E+GO-1.
.OUOE+(00-1
.CGROOE+00-1
GUOLE+00-1
0COE+00-1
D(OE+OO l
“oOO

QQG:¢

Ul(t&l‘
Q3CE+LL -
OOOE+“
Q0ZE+NG -3

.OUCE¢53 1

COCGE+iv-1

LO000E«GG-1
LGGOE-
OIOE-J0-1
.DOQE-G0-1

OFDE¢O'-1

CO-1

tuffou

-i.
-1.
NCCE~-CO-1.
!
-1.

T L OUTELTO

NERTN OPEATE
O0ZE+00
CGOE+CO

L000ELNOD

CI0E+0QD
000E+00

L0TTELDD
.DO0E+VO
.DOGE+CO
.OCGUE+0Q
.000E+00
.20CE+QO

.000E+C0

Q02E+00

.?C?E+OO

£+020




b e e

Pt b b b ped b d b b b ek b pd e b e ps b

[

e

ARV R A LN
[RINS VRN R B SN VE SN P SIR ALY SN TR BV N

e Ga e !

R I B G A B S R

APCIRE R

Tiat bt

IR
LRV

[RFIRNG IR NI SR

P

B W A R TN I IR A

3G ke b e

I I

t

VIS S S R e/ T VI |

Pl

A O e 2L
~E N U M L Oa T e e

t
RIS AN Y SN

drdtartat
RYe)

107




C. FLUMAS PRE-PROCESSOR INPUT DATA

FLUMAS DATA FOR INFINITE CYLINDER MODEL
.flu cyl.geo cyl.nom cyl.daa $ FLUNAM
$ PRTGMT
$ EIGMAF
$ PCHCDS
$ FRWTFL
$ RENUMB
$ PRTCOE
$ OCTMOD
$
$
$
$
$
$
$
$

Q
<
P

Hmmea g
RO RO G B NN
R e e Be B B B |

MAINKY
NSTRC
NBRA
RHO
NVEC
CQ(1)
DHALF
NSRADI

<
O Z mm
o

O s

$ NSORDR
1 20 1 $ NORD

HEORORRROoOOUOMTITTIMI A
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1. 1 20 1 $ RADL RAD2

GEONAM
PRTTRN
TWODIM
NASTAM
FRWTGE
STOGMT
STRMAS
CAVFLU

NSTRF
NCYL
CEE

CQ(2)
CXHF

JBEG

GRDNAM DAANAM
PRTAMF CALCAM
HAFMOD QUAMOD
STOMAS STOINV
FRWTGR FRESUR
ROTGEO ROTQUA
SPHERE ROTSYM
FRWTFV EFUDGE

NGEN
NCAV

CYHF

JBEG

JEND

NGENF

CZHF
JEND JINC

JINC




D. AUGMAT PRE-PROCESSOR DATA
AUGMAT DATA FOR INFINITE CYLINDER
cyl.nom cyl.flu cyl.geo cyl.pre $
FFFF $
FFTT $
TTFT S
FFF )
DYNA $
0.75 S
42 126 3 3 $
1 $
01201 S
2 $
2 1 7 6 $
2 33 38 5 $
109

MODEL
STRNAM
FRWTGE
FLUSKY
PRTGMT
MOCTRN
MAINKY
DAA2
NSTR
NSETLC
NDICOS
NUMCON
ICON
ICON

FLUNAM
FRWTST
DAAFRM
PRTTRN
STRLCL

NSFR

JSTART

NSTART
NSTART

GEONAM
FRWTFL
SYMCON
PRTSTF
INTWAT

NFRE

JSTOP

NSTOP
NSTOP

PRENAM
PLNWAV
DOFTAB
PRTAUG

NFTR
JINC

NINC
NINC




E. TIMINT PRE-PROCESSOR DATA

TIME INTEGRATION DATA FOR INFINITE CYLINDER MODEL

cyl.pre cyl.pos

cyl.rst

10000. 0.0000 0.000000
1.0000 0.0000 0.000000
FFFF

FFFF

0.

O

.e-6 l.e-6
0

0.00025
0000 10000
000

MORORRUIRN

wmrnnvrndnrnrnrnnrn N

PRENAM POSNAM

RESNAM
XC YC zC
SX SY Sz

EXPWAV SPLINE VARLIN PACKET
HYPERB BUBPUL REFSEC EXPLOS
JPHIST

PNORM HYDPRE

DTHIST

PHIST(1) PHIST(2)

NTINT NCHGAL

STRTIM DELTIM

NSAVER NRESET NSODFL

LOCBEG LOCRES LOCWRT NSTART
DISPLA
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DYNAMIC TESTING, INC.
P.O. Box 494 e Rustburg, Virginia 24588-0494 e (804) 846-0244 e Fax (804) 846-2107

DTI-R-TSG
DT191-183
4 September 1991

United States Naval Postgraduate School
Department of Mechanical Engineering
Monterey, Calitornia 93943-5100

Attention:  Dr. Young Shin
Subject: Cylinder Test Resuits, DTI Job No. 131

Enclosure: (1) Instrumentation Time-Histories, Test No. 1
(2) Instrumentation Time-Histories, Test No. 2
{3) Test Photographs
(4) Data Provided in ASCIl Format

Gentlemen:

Dynamic Testing, inc. (DTI), is pleased to provide the following results for the cylinder
tests conducted at our facility on 20 and 22 August 1991.

The first test, conducted on Tuesday, 20 August 1991, using a 60-pound HBX
cylindrical charge, consisted of one cylinder oriented for an end-on shot with a 28-foot
standoff at a depth of 12 feet. There were a total of 7 strain gauges per axis for a
total of 14 strain gauges. One free-field pressure gauge was located 28 feet from the
charge, but was positioned in such a way that no reflection from the cylinder occurred.
There were three pair of strain gauges located in the center of the cylinder, one at Bt,
B2, and B3. Two pair of strain gauges were located 4.5 inches from each end
oriented at A1, A3, C1, and C3. Before the test It was noted that gauge A1C was
not working properly, so we oriented the cylinder so that the end, designated C, was
toward the blast (see Figure 1).

The strain gauges were oriented to monitor longitudinal and circumferential strains.
Predicted analysis Indicated a .2 percent strain at 30 feet. No visual damage was
observed. .

The second test, conducted Thursday, 22 August 1991, using a 60-pound HBX
cylindrical charge, consisted of one cylinder oriented for a side shot with a 25-foot
standoff at a depth of 12 feet. There were a total of 7 strain gauges per axis for a
total of 14 strain gauges. One free-field pressure gauge was located 25 feet froin the
charge, and positioned so no reflection from the cylinder occurred. There were three
pair of strain gauges located in the center of the cylinder, one at B1, B2, and B3.
Two pair of strain gauges were located 4.5 inches from each end oriented at Al, A2,
C1, and C2 (see above).

The strain gauges were oriented to monitor longitudinal and circumferential strains.
Predicted analysis indicated a .48 percent strain at 25 feet. No visual damage was
observed.




Dr. Young Shin

United States Naval Postgraduate School
DT191-183

4 September 1991

Page 2

The test configuration consisted of one cylinder being suspended by the crane and one
chaige suspended trom a float (see Figures 2a and 2b for test conligwations).

We trust you will find the enclosed satisfactory. It was a pleasure woiking with you
on this project.

If you have any questions or comments, please do not hesitate to conlact Mr. Randy
Fairticld or the uudersigned.

Sincerely,

DYNAMIC TESTING, INC.

\j"w A Buigely

Tony S. Grigsby
Instrumentation Technician

TSG:mal

cc:  G.G. Amir
G.D. Snyder
R.D. Faiitield
W.G. Lyon
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United States Naval Postgraduate School
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. September 1991
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Figure 1. Cylinder Orientation Prior to Test No. 1
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Dr. Young Shin
United States Naval Postgraduate School

DT191-183

4 September 1991

Page 4

To crane
Charge float

]\ A
12 12
i ______ ] -

Cylinder Charge

Figure 2a. Test Configuration for Test No. 1

To crane
Charge fioat
= I —
12 12
//
9, —
|
. 25 >
Cylinder Charge

Figure 2b. Test Configuration for Test No. 2
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