
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1997

Provably-Secure Programming

Languages for Remote Evaluation

Volpano, Dennis

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/35033

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36727642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Provably-Secure Programming Languages
for Remote Evaluation

Dennis Volpano
Naval Postgraduate School, Monterey

Remote evaluation and dynamically-extensible systems pose serious safety and security risks.
Programming language design has a major role in overcoming some of these risks, h n p o r t a n t
research areas include designing suitable languages for remote evaluation, identitying appropr ia te
security and safety properties for them, and developing provably-sound logics tor reasoning about
the properties in the context of separate compilation and dynamic linking.

Recently, there has been phenomenal growth in the use of the Internet, driven in
part by H T T P servers that make up the World Wide Web and new programming
languages like Java [5]. This has rekindled interest in an area that Stamos and
Gifford termed re.mote evaluation [12]. In this paradigm, a client sends a procedure
to a server to execute on its behalf. Tile server executes the procedure and returns
the results to the client. This differs from remote procedure call (RPC) and other
forms of gateway programming which are examples of server-side programming, not

remote evaluation.
Various languages have been proposed to support the paradigm. Among them

are distributed dialects of Scheme [4; 7], Tcl (Safe-l-cl) which grew out of active
messaging [2], Obliq [3] and General Magic's Telescript(tm) [14]. Sun's Java is also
aimed at remote evaluation but from a slightly different perspective. With Java, a
procedure in byte-code form, called an Applet, is downloaded from a Web server
and executed within a browser on the client's machine.

I t has long been widely known that there are serious security risks associated with
remote evaluation. By security, we mean server privacy, integrity and availability.
Remote procedures that execute with server privileges and have access to server
resources can compromise security. This is a real threat to the future of Internet
computing and dynamic extensibility in OS kernels and active networks.

Though attention has been given to security issues in this setting, they have not
been treated with anywhere near the rigor tbund in other areas of security such
as encryption. Languages like Obliq, Netscape's JavaScript and Java have', not been
carefully designed from a security point of view. As new holes are discovered, they
are patched, but it is not clear that this process will ever converge. One can never
be sure that executing programs in these languages will not compromise security
in some way. As a result, browsers tend to be quite paranoid when it comes to
executing remote code. They implement rather restrictive security policies theft
prevent all but very anemic applications from being executed remotely.

117

60 Dennis Volpano

1. SECURITY PROPERTIES FOR PROGRAMMING LANGUAGES

Many security issues in remote evaluation can actually be addressed through careful
and systematic programming language design. What is needed is a prow~bly-secure
programming language, one whose design is guided by a need to preserve some set
of explicitly-stated security properties. But what kinds of security properties do we
want programs to have? First, we might expect the language to be, in some sense,
safe. Tha t is, it should have fieatures that promote robust code and avoid accidents,
unlike C. We want a precise characterization of how a well-typed program can be-
have when executed. New formulations of type soundness are needed tbr imperative
programming languages that specify all possible errors tha t can cause well-typed
programs to abort according to the semantics. Traditional type soundness argu-
ments merely rule out well-typed programs from evaluating to a special type-error
value. These new fbrmulations will tbrce one to identify, in the semantics, vari-
ous points where program execution should abort, tbr example, when at tempting
to dereference a dangling pointer. The idea is that a sale implementation of the
language would then be required to detect these points. An open question is what
teatures can a programming language have that allow it to be implemented saiely
and efficiently?

For other security properties, we can look to securit?t models for information
flow in multi-level systems [9; 10; 11]. Various models such as, Noninterference [6],
Separability [10] and Restrictiveness [8] have been proposed. They are basically
properties of multi-level systems that say high-level system inputs do not interfere
with low-level system outputs. Each security model offers a different notion of
security. The Noninterference model, fbr example, addresses protection tbr program
inputs only and is not a property of nondeterministic programs. It may be too weak
in some cases. Consider programs that generate cryptographic keys, for example.
They are expected to convert low-level input seeds into high-level output keys.
Noninteri~renee would not be concerned with whether these keys wound up being
low-level outputs. Separability, on the other hand, is a stronger notion of security
and is a property of nondeterministic programs. However, its weakness is that
it prohibits upward information flow from low-level inputs to high-level outputs,
making it unsuitable tbr some applications. An important research direction is to
identify an appropriate set of security properties for remote evaluation languages.

2. PROOF SYSTEMS FOR SECURITY PROPERTIES

It should be possible to enforce a set of desired security properties through a proof
system for the language. Of course, whether the properties are enforced by the
proof system must be shown through a soundness theorem which is stated with
respect to the language's semantics. The theorem guarantees tha t all programs
that have proofs in the system have the desired security property. For instance,
a proof system has been designed to enibrce Noninterference in a deterministic,
block-structured language and has been proved sound [15]. The proof system is
tbrmulated as a type system so that well-typed programs have the Noninterterence
property. Depending on the security model and programming language, getting a
provable tbrmulation of soundness can be tricky. For example, Ban~tre et al. give
an inibrmation flow logic tbr a nondeterministic language [1]. However, in order

118

Secure Languages for Remote Evaluation 61

for their tbrmulation of soundness (Proposition 1, pg. 58) to be t rue , the flow logic
must be changed [13]. There are also algorithmic issues surrounding such proof
systems. Is a particular proof system decidable? If so, can it be decided ehIiciently?

The tuture of Internet computing and extensible systems holds great promise.
A key to its success is security, and provably-secure programming language design
will have a major role.

REFERENCES

[1] Ban~tre, J., Bryce, C. and Le M~tayer, D., Compile-time Detection of Information f:low in
Sequential Programs, Prvc. 3rd EurvpeaT~ Symposium ou Research "in Comp~ter' Security,
pp. 55-73, 1994.

[2] Borenstein, N., Email with a Mind of its Own: The Safe-Tel Language for Enabled Mail,
Available at £tp : / / i c s . uci . e d u / m r o s e / s a f e - t c l / s a [e - t c l , t a r . Z, 1994.

[3] Cardelli, L. A Language with Distributed Scope, Proc. 22rid A(JM Syraposi~Lm o71. P~inci?)les
of Programming Languages, pp. 286-297, 1995.

[4] Cejtin, H. Jagaunathan, S. and Kelsey, R., ttigher-order Distributed Objects, A C M %"ares.
on Pr'ogrammin 9 Languages and Systems, 17(5), pp. 704 739, 1995.

[5] Flanagan, D., Java in a Nutshell, O'R.eilly and Associates, In(:.
[6] Goguen, J. and Meseguer, J., Security Policies and Security Models, Proc. 1982 IEEE Sym-

posium on Research in Security and Privacy, pp. 11-20, 1982.
[7] Halls, D., Bates, J. and Bacon, J., Flexible Distributed Programming using Mo-

bile Code, Proceedings of the 1996 S I G O P S European Workshop on Systems Sup-
port for Worldwide Applications, Connemara, Ireland, September 1996, Available at
h t tp : / /mosqui t onet. stem:ford, edu/sigops96/papers.

[8] MeCullough, D., Specifications for Multi-level Security and a Hook-Up Property, Prvc. 1987
IEEE Symposium on Research in Security and Privacy, pp. 161-166, 1987.

[9] McLean, J., The Specification and Modeling of Computer Security, [EEE CominLter', 23(1),
pp. 9-16, 1990.

[10] McLean, J., Security Models and Intormation Flow, Proc. 1990 IEEE S~]mposium or~ t~e-
search in Secur'ity and Pr~ivacy, pp. 180-187, 1990.

[11] McLean, J., A General Theory of Composition for Trace Sets Closed Under Selective Inter-
leaving Functions, Proc. 1994 IEEE Symposium on Research in Security and Privacy,
pp. 79-93, 1994.

[12] Stamos, J. and Gifford, D., Remote Evaluation, A C M Trans. on Programming Languages
and Systems, 12(4), pp. 537-565, 1990.

[13] Volpano, D., Smith, G. and Irvine, C., A Sound Type System for Secure Flow Analysis,
JouT~nal off Computer Security, 4(3), pp. 1-21, 1996.

[14] White, J., Telescript Technology: The Foundation tor the Electronic Marketplace, ~Ikechnical
Report, (lenerM Magic, Inc., 1994.

119

&,_

