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Abstract

Bi-orthogonality relationships are established for a vertically heterogencous porous
media in contact with a fluid, a solid, a sccond porous medium, and a free surface.
Frasei’s bi-orthogonality relation for propagation of Rayleigh-Lamb modes in a plate
with traction free surfaces is shown to be a special case of the bi-orthogonality velations
derived herein in which the medium can be thought of as a porous slab with zero
porosity.



Introduction

straightforward solutions to complicated problems can sometimes be found by emploving
bi-orthogonality relationships. These relationships can be viewed as generalizations of the
orthogonality relations used in classical cigentfunction expansion technigues. Problems solved
in this manner arc uscful for verifving numerical codes and for determining bascline charac-
teristics of idealized problems. Bi-orthogonality methods have appeared in the literature in
static plate bending, elastodynamics, and Stoke’s low problems.

Fraser[1] is often credited with establishing the bi-orthogonality relationship for elastic
media, but in his work he credits Fama [2]|, who in turn credits Papkovich [3] for the es-
tablishment and use of hi-orthogonal “modes”. Gregory [1] made the important observation
that many bi-orthogonality relationships are derivable from a combination of more basic
reciprocity identitics and symmetries inherent in the mechanieal system under considera-
tion. The reciprocity identitics are often credited to Betti [5], and are referred to as Betti's
theoremn (see, for example, Love’s [6] treatise). However, according to Lamb’s paper [7] enti-
tled “On Reciprocal Theorems in Dynamics”, credit should perhaps ultimately be given to
Lagrange, who in his Mécanique Analytique, published in 1809, gave a very generalized form
of the reciprocity relationship.

The purposce of this paper is to extend the applicability of bi-orthogonality relationships
to porons, porons/clastic, and porons/fluid type layered media by applying ideas used by

Gregory in [4]. In particular, the reciprocity identity for porous media given recently by
Kargl aud Lim [8], is used iu combination with the symmetry of a layered medium to derive
a bi-orthogonality relationship satisfied by waves propagating at the free surface or along
the interface of two media, one of which is porous.

The special cases considered in this work are all two dimensional, and involve a porous
half-space {a) with a free surface, or in contact with (b) a fluid half-space, (¢} an elastic
half-space, or {d) a dissimilar porous half-space. Extensions to finite media are considered
in the final section of the paper.

Formulation

Biot [9] gave the following equatious of motion for a porous medinm comprised of a solid
matrix with displaccment ficld u, and an interstitial liquid with displacement ficld U:
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In (1). D, N. @, and R arc positive. constant. clastic moduli; pio, pi1, and pes are effective
densities; and n(w) is a frequency dependent dissipation function.

A similar set of equations for a vertically heterogencons porous medinm (i.c.. one where
the elastic moduli, effective densities, and porosity depend on the depth coordinate z) can
he ohtained by writing (1} in the form:
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where o and § are the respective stress tensors in the solid and fluid components of the
porous medium. If the elastic moduli and effective densities are made depth dependent, the
stress tensors become:
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In {3}, 5(z) is the porosity of the mediwm, and p is the pressure in the interstitial fluid.
Insertion of (3) iuto (2), viclds the following cquations of motion for a vertically hetero-
geleous porous medinm:
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Note that for @ = 0. D = A{z), and N = p(z), the divergence of the stress tensor o for
the matrix (solid) in {4) is equivalent to that found in Ben-Menahem and Singh [10] for a
vertically heterogencons solid.

The generalization of the clastodynamic reciprocal identity for time harmonic waves [11]
(the Betti-Rayleigh theorem) to displacements in saturated porous media is given by the
identity [8]:
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where the superscripts A, I3 refer to two distinct, unique solutions to (4). The terms o and
8" are the stresses resulting from displacements u and U™ respeetively in (3). and n is the
outward normal to the surface S.

In the next scetion, several cases are diseussed which involve propagation of a surface
or interface wave along the boundary of. or interface between, a porous medium and some
other medium. We shall assume that the propagating waves are two dimensional so that

fluid and solid displacements: (1) have no y dependence, {(2) propagate in the +a direction,



(3) at a prescribed frequency w, and (4) have the proper decay as z — +o¢. The first case
cousidered involves a porous half-space with a free surface at z = 0. The remaining cases
include: a porous half-space loaded by a fluid half-space with interface at z = 0, a porous
half-space overlying an clastic half-space at z = 0, and two disparate porous half-spaces with
interface at z = (.

Bi-orthogonality relations

Case I: A porous half-space with a free surface

Refer to fig. 1a which designates the surface over which the reciprocity identity (3) is applicd.
Agsumed forms of the displacement veetors are
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Since all displacements tend to zero as z — —oo, (5) implies:
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The free surface (z = 0) of the porous medium is stress free, making the boundary
conditions there:
02(0) = 02,(0) = 0,1(0) = 07, (0) = 57{0) = s5(0) = 0 (9)

Henee, the third term in (8) is zero, and beecause 2; # @ in general, it must be true that
cach of the remaining integrals in (8) is 1(1(.11T-1(_.(L11}-' zero. Therefore, every line integral along
coustant x of the following form is zero:
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To derive a bi-orthogonality relation, we shall use an argument due to Gregory [4]. Con-
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and suppose the displacements and stresses in (11) and {12) satisfv the equations of motion
(4), free surface boundary conditions, and decay to zero as @ — —oc. We claim that a
sccond “set” of displacements and stresses, similar to (11) and (12} except for a change in
sign of the k&") can algso be found. Specifically, since any line “r = constant” 1s an axis of
svinmetry, (due to the medium’s vertical heterogeneity). a second eigenfunction pair with
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wavenumber —k  exists, with corresponding displacements and stresses given by:
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Substitution of this sccond cigenfunction set into the reciprocity relationship (10} yields
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Adding (10) and (15) then gives the desired bi-orthogonality relationship
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For the special case of zero porosity (3(z) = 0). we have s = —3(z)p* = 0, and the
bi-orthogonality relationship in (16) reduces to Fraser’s bi-orthogonality relation for clastic
media.

Case II: A fluid-loaded porous half-space

Sce fig. 1D for a schematic of the problem. In addition to the reciprocity relation for porons
media (eq. (3)), the reciprocity relation for a fluid is [12]:
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In standard form the U’s are velocities. but since this paper only addresses the time harmonic
problem. it will be assumed that the U's are displacements, and the —u factor has been
dropped. As before, the assumed forms of the pressure and fluid displacements are given by:

U,(2)
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Taking the surface integral around the strip between &y < 2 < 2y for z > 0, and neglecting
the integral as z — oc vields:
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The ditference of (8) and (19) produces a term 1‘esulting from the integration along the
interface (z = 0) given by:
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The appropriate interface boundary conditions are [13]:
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The second equation in (21) actually involves fluid velocities, but with time harmonic vari-
ation assumed. the common factor of —iw drops out. The elimination of o..(0} in favor of
—(1 — 3(0))p(0), and cquality of fluid pressures at the interface, implies that the expression
in (20} is identically zero for boundary conditious given by (21).

Applving the same argument used for the porous half-space medinm, the remaining
integrals from the difference of (8) and (19) yield an identity which corresponds to that
given hy (10):
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which is true along anyv line in the medium on which = is constant. A straightforward svm-
metry argument (as used in the half-space problem) supposes an eigenvalue/eigenfunction
pairing, with a second eigenvalue (the negative of the first) and corresponding eigenfunction
related to the first by appropriate sign changes in the shear stresses and displacements in
the L directions.

Adding this second reciprocity equation to the first (eq. (22)) vields a bi-orthogonality
relationship for a fluid-loaded porous half-space:
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If we define the porosity of the fluid medium to be equal to 1 for values of z > 0, then the
fluid pressure for z > 0 is simply —s and (23) can be written
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Cases III & IV: A porous-loaded elastic half-space & joined porous
half-spaces

The development of these two cases follow lines similar to the previous two. Figs. Te and
1d display the geometry of cach problem. In cach case, the reciprocity integrals ((10) and
(22)) are first found, and then symmetry arguments are used to reduce the number of terms
in them. The intermediate step in each case applies the appropriate houndary conditions
between the two media to eliminate the interface term resulting from the surface integrations
along z = 0. The appropriate houndary conditions [13] for an elastic/porous interface are:
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The resulting bi-orthogonality condition for a porous half space over an clastic half-space is
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Again, noting that f()l < 0 we have 3(z) = 0. (26) can be expressed as a single integral for
a “composite porous” rmedium:
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When two disparate porous medinm are in coutact along the z = 0 axis, the appropriate
houndary conditions [13] are:
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where #; has the dimensions of hydraulic permeability per unit length (inverse of the coef-
ficient of resistance used in [13]) and is a measure of the permeability {or alignment of the
pores) between the two porous media.

The resulting bi-orthogonality relationship can be written:
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or, as the single integral

o0
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where it s understood that the material properties of the two porons media are discontinuous
across the interface at 2 = 0.

Layers of finite thickness

The aforcmentioned bi-orthogonality relationships have been written for infinite or semi-
infinite media, but the extension to finite media is straightforward. For example, in the
case of a slab of porous media of depth H, the bi-orthogonality relation (eq 16) is merely
amended by the substitution of —H for —o¢, so that
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FIGURE CAPTIONS

Figure la. Geometry of the problem in which a porous half-space is in contact with a free
surface.

Figure 1b. Geometry of the problem in which a porous half-space is in contact with a fluid
half-space.

Figure lc. Geometry of the problem in which a porous half-space is in contact with an
underlying solid half-space.

Figure 1d. Geometry of the problem in which two porous half-spaces are in contact.



