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Abstract 

Bi-orthogonality relationships an~ establislwd for a vertically lwterogeneous porous 
media in contact with a fluid, a solid, a sr~cond porous medium, and a free surface. 
Fraser's bi-orthogonality relation for propagation of Rayleigh-Lamb modes in a plate 
with traction free surfaces is shown to b e a special case of the bi-orthogonality relations 
derived herein in which the medium can be thought of as a porous slab with z:ero 
porosity. 
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Introduction 

Straightforward solutions to complicated problems can sometimes be found by employing 
bi-orthogonality relatimrnhips. These relationships can be vie1vcd as generaliz.ations of the 
orthogonality relations used in classical eigenfunction expansion techniques. Problems solved 
in this manner arc useful for verifying numerical codes and for determining baseline charac
teristics of idealized problems. Bi-orthogonality methods have appeared in the literature in 
st.a.tic plate bending, elastodynamics, and Stoke's fiow problems. 

Fraser[l] is often credited with establishing the bi-orthogonality relationship for elastic 
media., but in his work he credits Fama [2], who in turn credits Pa.pkovich [3] for the es
tablishment and use of bi-orthogonal "modes··. Gregory [4] macle the important observation 
that many bi-orthogonality relationships arc derivable from a combination of more basic 
reciprocity identities and symmetries inherent in the mechanical system under considera
tion. The reciprocity identities arc often credited to Betti [5], and arc referred to as Bctfrs 
theorem (sec, for example, Love's [G] treatise'). However, according to Lamb 's paper [7] enti
tled "On Reciprocal Theorems in Dyna.mies", credit should perhaps ultimately be given to 
La.grange, 1vho in his Mecanique Analytique, published in 1809, gave a very generalized form 
of the reciprocity relationship. 

The purpose of this paper is to extend the applicability of bi-orthogonality relationships 
to porous, porous / elastic, and porous / fluid type layered media by applying ideas used by 
Gregory in [4]. In particular , the reciprocity identity for porous media given recently by 
Kargl and Lim [8], is used in combination with the symmetry of a layered medium to derive 
a bi-orthogonality relationship satisfied by waves propagating at the free surface or along 
the interface of two media, one of 1vhich is porous. 

The special cases considered in this 1vork a.re all two dimensional. and involve a porous 
half-space (a) 1vith a. free surface, or in contact with (b) a fiuid half-space. (c) an elastic 
half-space, or ( d ) a dissimilar porous half-space. Extensions to finite media arc considered 
in the final section of the paper. 

Formulation 

Biot [9] gave the following equations of motion for a porous medium comprised of a solid 
matrix ·with displacement field u, and an interstitial liquid \vi th displacement field U: 

.N\72u + V[ (D + N)\7 · u + Q\7 · U] = a~, [P1 i u + P12U] + r1(w) D (u - U) 
· Dt"' at · · 

(1) 

82 D . . 
V[QV · u + R\7 · U] = -. [P12u + P22U] - r1(w)-(u - U) 

[}t2 Ot' . 

In (1), D, ;_V , Q, and R arc positive, constant, elastic moduli: p 12, p 11 , and p22 arc effective 
densi tics: and r1( w) is a frequency dependent dissi pat.ion function. 

A similar set of equations for a vertically heterogeneous porous medium (i.e., one vdicrc 
the elastic moduli. effective densities , and porosity depend on the depth coordinate .:: ) can 
be obtained by \\Titing (1) in the form: 
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(2) 

D2 D 
\1 · S = -, [p12u + PnU] - r7(w)-(u - U) 

Dt'2 Dt 

where a and S a.re the respective stress tensors in the solid and fiuid components of the 
porous medium. If the elastic moduli and effective densities a.re made depth dependent, the 
stress tensors become: 

uii = [D(z)uk,k + (J(z)Uu]Sii + ;_V(.?)(ui.i + ui,i) 

(3) 

In (3), 3(.?) is the porosity of the medium, and pis the pressure in the interstitial fiuid. 
Insertion of (3) into (2'), yields the follmving equations of motion for a vertically hctcro

gcneom; porous medium: 

N\12u + (D + ;_\')\1\1 · u + Q\1\1 · U + 

r/T\'[ Du .~ ] +- 2-
8 
.. + e .: x \1 x u 

d.~· . -~ 

~ [r/Q (J\1\1 · u + R\1\1 · U + e., -\1 · u + 
dz 

r!R\J. U] = 
dz 
D2 D 

[)· . . 2 [P12u + (J22U] - 11 (w)-
8 

(u - U) t ' , t ' 

(4) 

>rote that for Q = 0, D = ,.\(,:), and 1V = 11(z), the divergence of the stress tensor a for 
the matrix (solid) in (4) is equivalent to that found in Bcn-IVIcnahcm and Singh [10] for a 
vertically heterogeneous solid. 

The gcneraliY:ation of the clastodynamic reciprocal identity for time harmonic waves [11] 
(the Betti-Rayleigh theorem) to displacements in saturated porous media is given by the 
identity [8]: 

(3) 

where the superscripts A, fl refer to two distinct unique solutions to (4). The terms aA. and 
St arc the stresses resulting from displacements U'1 and u·t respectively in ('.3): and n is the 
outward normal to the surface S. 

In the next section, several cases arc discussed \vhich involve propagation of a surface 
or interface wave along the boundary of: or interface het\vcen: a porous medium and some 
other medium. \Ve shall assume that the propagating waves are hvo dimensional so that 
fluid and solid displacements: ( 1) have no y dependence, (2) propagate in the ±:.r direction, 
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(3) at a. prescribed frequency w, and (4) ha.ve the proper decay as:: ---+ ±x. The first case 
considered involves a porous half-space with a free surface at .:: = 0. The remaining cases 
include: a porous half-space loaded by a fluid half-space \Vith interface at .:: = O. a porous 
half-space overlying an elastic half-space at z = 0. and tvm disparate porous half-spaces \vith 
interface at .:: = 0. 

Bi-orthogonality relations 

Case I: A porous half-space with a free surface 

Rcfor to fig. la which designates the surface over which the reciprocity identity (5) is applied. 
Assumed forms of the displacement vectors arc 

UR= uR(.?)e-i..vl+i/;:B:r' Vii= Uli(;:)e-iwl+iA'B" 

Since all displacements tend to zero as z---+ -·XJ, (5) implies: 

+ei ( k1+kHlx2 ;·
0 

[/TA 'llLI +/TA ·1113 - /TLI ·11A - /TlJ ·11A + .·.A['lJ - PlJ[rA]rl": 
v xx ';r v x:?' -,z v ;r;r ·x v x :r .z S ' ;r .:> - x /., 

. -:X· 

('i(A·A+kB):r 1"2 

+ [/T",1 ·11R +er'' ··11R rrR ·11'1 rrR··11'1 + '(1[;R .. B[;.1ll ) - () .( . . . ) vx· 7 ·x· . . . 7 - . ·r· ··r - . . . 7 •. ,. •. - .~ ,. •. J. -l k4+kn .. . ... ·· ···' ...... ., ., :=0 
~ LJ ;:i: 1 

( 6) 

(7) 

(8) 

The free surface (.? = 0) of the porous medium is stress free, making the boundary 
conditions there: 

(9) 

Hence, the third term in (8) is '-·<To, and because .r: 1 cf::. .r2 in general. it mmit be true that 
each of the remaining integrals in (8) is identically zero. Therefore:, every line integral along 
constant .r: of the following form is zero: 

(10) 

To derive a bi-orthogonality rclatiorL 1ve shall use an argument due to Gregory [4]. Con

sider the eigenvalue k.~n). a.nd the eigenfunction pa.ir 

u(~n) = ( u:(;z.) ) e-icol+iA·~"'l,, 
11 ~4.(::) 

with corresponding stresses 

1 •1 :. . ·1..(ml .. s' = .<( ( .~)e-•~1+1 .. ' .r. 
· (m.) · (n1) • 

(11) 

(12) 
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and suppose the displacements and stresses in ( 11 ) a.nd ( 12) satisfy the equations of motion 
( 4 ): free ~mrfacc boundary conditions: and decay to '-·<To as .z --+ - (X >. \Ve claim that a 
second "set:: of displacements and stresses, similar to (11 ) and (12) except for a change in 
· f' 1 ,, (m ) 1 1 f" l S 'fi 11 . l' ·.· · . ". . f' sign o tie '"A can a so w ounc . pec1 ca. y, smce any me ";r = constant is an axis o 

symmetry, (clue to the mecli um 's vertical heterogeneit.Y), a. second eigenfunction pair \Vi th 

wavenumber -k.~n) exists, with corresponding displacements and s tresses given by: 

C--li,,•) -I ~A ;r 

) 

· t ' k ( m) 
C A 

) 
. 
-iu.:t- ik.(m )X 

(13) 

and 

4. .1 · . k(m) 
'( - .J l ( · · ) .,- i-;.!t -1 · ,1 x 
·- (m) - .')(m) /• f, 

( 

a""". (z ) 0 -a, z (::) ) 
4. ' ' k(m.) " 0 0 0 e-1u.:t-1 '.1 x 

a (m) = 
-a,z(z ) 0 azz (z ) 

(14) 

Substitution of this second eigenfunction set into the reciprocity relationship (llY) yields 

(13) 

Adding (10 ) and (15) then gives the desired bi-orthogonality relationship 

(16) 

For the special case of zero porosity (/3 ( z ) = Cl ): \Ve have w) = -/3 ( z ) 1r) = Cl, and the 
bi-orthogonality relationship in (16 ) reduces to Fraser's bi-orthogonality relation for elastic 
media.. 

Case II: A fluid-loaded porous half-space 

Sec fig. 1 b for a schematic of the problem. In addition to the reciprocity relation for porous 
media. (eq. (5)), the reciprocity relation for a fiuicl is [12]: 

(17) 

In standard form the U's a.re velocities, but since this paper only addresses the time harmonic 
problem, it ·will be assumed tha.t. the U's are displacements, and the -iw factor has been 
dropped. As before, the assumed forms of the pressure and fiuid displacements are given by: 

( 
' - i..;l+ib: 

p = p z )c 
) 

- i..;l+ilu: c (18) 

Taking the surface integral a.round the strip bet:\veen .r1 ::; .r ::; .r2 for ;; 2 0, and neglecting 
the integra.l as .? --+ x yields: 
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e-2i'""''{ ei(l.:A +l.:B)J:1 rx;, [-p'1 U,R + pR[I;:\]d.: 
Jo 

+e'V"A+A'B! ' ~ [p·1u:; - pR[,~~1]d.? + -.----. . 1·oc ('i(A·A+A·B):r IJ:2 

. 0 t(kA + kv) J:i 

[-1r4U!_1 + pvU~4JI 1 = 0 
·• ·• .z=O J 

(19) 

The difference of (8) and (19) produces a term resulting from the integration a.long the 
interface (z = 0) given by: 

(20) 

The appropriate interface boundary conditions arc [1'.3]: 

(} tz (0) = 0 [(1 - ;J(O) )uz (0) + J(O)Uz(O)]poro11s = U c (0) lluid 

[a::(O) + s(O)]porous = -p(O)fluicl p(O)fluicl = p(O)porous (21) 

The second equation in (21) actua.lly involves fiuid velocities, but with time harmonic vari
ation assumed, the common factor of -iw drops out. The elimination of (Tu(O) in favor of 
-(1 - /](0) )p(Ol: and equality of fluid premmres at the interface, implies that the expression 
in (20) is identically zero for boundary conditions given by (21). 

Applying the same argument ll8ed for the porous half-space medim1L the remaining 
integrals from the difference of (8) and (19) yield an identity which corresponds to that 
given by (10): 

(22) 

which is true a.long a.ny line in the medium on which x is constant. A straightforward sym
metry argument (as used in the ha.lf-spa.ce problem) supposes a.n eigenvalue/eigenfunction 
pairing, with a. second eigenvalue (the negative of the first) and corresponding eigenfunction 
related to the first by appropriate sign changes in the shear stresses and displacements in 
the ±:r directions. 

Adding this second reciprocity equation to the first (eq. (22)') yields a bi-orthogonality 
relationship for a fluid-loaded porous half-space: 

(23) 

If we define the porosity of the fluid medium to be equal to 1 for values of .? > 0. then the 
fluid pressure for z > 0 is simply -s and (23) can he written 

(24) 
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Cases III & IV: A porous-loaded elastic half-space & joined porous 
half-spaces 

The development of these two case8 follow lines Himilar to the previ0118 two. FigH. le and 
ld diHplay the geometry of each problem. In each ca,sc, the reciprocity intcgral8 ((10) and 
(22)) are first found, and then symmetry arguments are used to reduce the number of terms 
in them. The intermediate step in each case applies the appropriate boundary conditions 
between the t:wo media to eliminate the interface term resulting from the surface integrations 
along ;., = 0. The appropriate boundary conditions [13] for an elastic/porous interface are: 

(T x .z (())porous 

[<Tzz(O) + s(O)Jporous 

ll: (())porous 

'll:r,(O)poro11s 

[ . "] Uz (0) - 'll z (0) poro11s 

V,r : (())solid 

(T zz( O)solid 

u: (OL01i<l 

U,, (O)solid 

0 

(23) 

The resulting bi-orthogonality condition for a por0118 half Hpace over an elastic half-space is 

(26) 

Again, noting that for z -<:::: Cl we have /](z) = 0, (26) can be expressed as a single integral for 
a "composite porous'' mediun1: 

(27) 

\Vhcn t1vo di8paratc porous medium arc in contact along the z = Cl axis, the appropriate 

boundary conditions [13] are: 

<T J: z ( (l) med i urn 1 

[rr .. (0) + s(O)] 1. 1 - ,., ,.., - n1e( nun 

Uz(O)mcdiurn 1 

llx(O)medium 1 

p (Cl)mcd iurn 1 - p (Cl)mcdi urn 2 

<T:rc z (0) rncdi11111 2 

[vzz(O) + s(O)Jmedium 2 

U z (CJ)mcdiurn 2 

lix(O)medium 2 

--~W {:J ( 0) [Uz (Cl) - Uz (Cl)]} ""'di 11111 I 
Ks 

{i'J(CJ)[Uz( ()') - 'llz(O)]}mcdiurn 2· 

(28) 

where /{ 8 has the dimensions of hydraulic permeability per unit length (inverse of the coef
ficient of resistance used in [13]) and is a measure of the permeability (or alignment of the 
pores) bct1vecn the hvo por0118 media. 

The resulting bi-orthogonality relationship can be \Vrittcn: 

/
·O [ A. LI 1J A.+ _A.['lJ]J· + 1·oc[ A. 1J 1J. A+ A.[rll] f· () 

CT:r:r ll:r -(Txz 11 z 8 ':r . . ? (Txx 11x-CT:r :ll: 8 'x (/.:= 
·-00 .o 

(29) 
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or, as the single integral 

(:30) 

where it is nndcn;tood that the material propertic8 of the two por0118 media arc discontinu0118 

across the interface at z = 0. 

Layers of finite thickness 

The aforementioned bi-orthogonality rdationship8 have been written for infinite or Hcmi
infinite media, but the cxte118ion to finite media iH straightforward. For example, in the 
case of a. slab of porous media. of depth H, the bi-orthogonality relation ( eq 16) is merely 
amended by the substitution of -H for -x. so tha.t. 

(:31) 
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FIGURE CAPTIONS 

Figure la. Geometry of the problem in which a. porous half-space is in contact with a. free 
surface. 

Figure lb. Geometry of the problem in \vhich a. porous half-space is in contact with a fiuicl 
half-space. 

Figure le. Geometry of the problem in \Vhich a porous half-space is in cont.a.ct with a.n 
underlying solid ha.lf-spa.ce. 

Figure ld. Geometry of the problem in \vhich hvo porous half-spaces are in contact. 
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