
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2013-06

Developing a library for proofs of data possession in Charm

Riebel-Charity, Krisztina C.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/34728

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36727344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DEVELOPING A LIBRARY FOR PROOFS OF DATA
POSSESSION IN CHARM

by

Krisztina C. Riebel-Charity

June 2013

Thesis Advisor: Mark Gondree
Co-Advisor: Zachary Peterson

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
DEVELOPING A LIBRARY FOR PROOFS OF DATA POSSESSION IN CHARM

5. FUNDING NUMBERS

6. AUTHOR(S) Krisztina C. Riebel-Charity
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Provable Data Possession (PDP) is a cryptographic tool for auditing big data on a storage server or in the cloud. The
goal of PDP is to efficiently verify that the server is storing the data. PDP provides probabilistic guarantees that the
server is storing the information, and it will be available when needed, without accessing the entire file.

In this work, we have developed a PDP module for the Charm cryptographic framework. We wrote an
application programmer interface (API) for generic PDP schemes. We implemented the simple MAC-PDP scheme
with efficient subroutines for sub-linear sampling. We hope that this work will encourage further study in the rapid
prototyping and evaluation of new PDP schemes in the Charm framework.

14. SUBJECT TERMS API, Charm, MAC-PDPD, PDP, POR 15. NUMBER OF
PAGES

43
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

DEVELOPING A LIBRARY FOR PROOFS OF DATA POSSESSION IN CHARM

Krisztina C. Riebel-Charity
Civilian, Department of the Navy

B.S., Babes-Bolyai University, Cluj-Napoca, Romania, July 2010

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2013

Author: Krisztina C. Riebel-Charity

Approved by: Mark Gondree
Thesis Advisor

Zachary Peterson
Thesis Co-Advisor

Peter Denning
Chair, Department of Computer Science

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

Provable Data Possession (PDP) is a cryptographic tool for auditing big data on a storage

server or in the cloud. The goal of PDP is to efficiently verify that the server is storing the

data. PDP provides probabilistic guarantees that the server is storing the information, and

it will be available when needed, without accessing the entire file.

In this work, we have developed a PDP module for the Charm cryptographic

framework. We wrote an application programmer interface (API) for generic PDP

schemes. We implemented the simple MAC-PDP scheme with efficient subroutines for

sub-linear sampling. We hope that this work will encourage further study in the rapid

prototyping and evaluation of new PDP schemes in the Charm framework.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BACKGROUND ..3
A. PDP ..3
B. MAC-PDP ...4
C. CHARM FRAMEWORK ...5

III. DESIGN ..7
A. PDP INTERFACES ...7
B. PDP PROTOCOL STATE TRANSITIONS ...7
C. CONCLUSION ..10

IV. IMPLEMENTATION ...11
A. MAC-PDP ...11
B. IMPLEMENTATION DECISIONS ..12
C. RANDOM SUBLINEAR SAMPLING ..12
D. UNIT TESTING ...13

V. FUTURE WORK ...15

VI. CONCLUSION ..17

APPENDIX A. PDPBASE ...19

APPENDIX B. MACPDPSCHEME ...23

LIST OF REFERENCES ..25

INITIAL DISTRIBUTION LIST ...27

 vii

THIS PAGE INTENTIONALLY LEFT BLANK

 viii

LIST OF FIGURES

Figure 1. Data Flow Diagram ..10

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF ACRONYMS AND ABBREVIATIONS

API Application Programmer Interface

DTP Datatype-preserving Encryption

FedRAMP U.S. Federal Risk and Authorization Management Program

MAC Message Authentication Code

MAC-PDP Message Authentication Code PDP

PDP Provable Data Possession

POR Proof of Retrievability

SLA Service Level Agreement

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACKNOWLEDGMENTS

Partial support for this work was provided by the National Science Foundation's

CyberCorps: Scholarship for Service (SFS) program under Award No. 0912048. Any

opinions, findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the National Science

Foundation.

I would like to express my gratitude and appreciation to my advisor, Professor

Mark Gondree, for his direction and guidance in helping me to develop and write my

thesis. Without Professor Gondree’s tireless support, I would not have been able to

complete this work. I would also like to thank Mrs. Diana Chung for her encouragement

and reassurance throughout the process of writing my thesis.

Finally, I would like to thank my husband, Bart, for his support and understanding

throughout this process.

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

I. INTRODUCTION

Provable Data Possession (PDP) is a cryptographic tool for auditing remote data,

held on a storage server or in the cloud. The goal of PDP is to allow a client to efficiently

verify the data on the server, without retrieving the entire file (as required for traditional

integrity mechanisms, like digital signatures). This ability makes PDP audits particularly

efficient for verifying the integrity of big data, for which accessing the entire file is

expensive in terms of bandwidth and time. PDP provides a probabilistic (rather than

absolute) guarantee that the server is storing the information and it will be accessible

when needed. The U.S. Federal Cloud Computing Strategy recommends vendors be held

accountable for service failures, using active Service Level Agreement (SLA) compliance

monitoring [1]. Likewise, the U.S. Federal Risk and Authorization Management Program

(FedRAMP) mandates continuous, active monitoring of services [2]. PDP protocols

provide such a mechanism for actively auditing outsourced storage. This is particularly

relevant to the Intelligence Community and Department of Defense, both of which face

big data management problems. For example, the National Geospatial-Intelligence

Agency anticipates collecting on the order of four petabytes, annually [3]. We believe

PDP can be a “game changing” technology for securing big data in the context of cloud

technologies.

Efficiency is integral to PDP audits; however, an in-depth cost comparison of

PDP schemes is largely absent from the literature. Existing cost analyses consist of

asymptotic costs measuring communication and round complexity, and small-scale

experimental validation using proof-of-concept code (which varies from study to study

and is unpublished). Our work is preparatory, allowing others to provide a more thorough

analysis and to contribute to a shared “ecosystem” of experimental PDP implementations.

We implemented a PDP module for the Charm cryptographic framework, a Python-based

library for rapid cryptographic prototyping and benchmarking. We have developed a PDP

application programmer interface (API) with documentation, implemented the simple

Message Authentication Code PDP (MAC-PDP) scheme with unit tests, and provided

efficient subroutines for sub-linear sampling in a cryptographic setting based on Floyd’s

 1

algorithm. We hope these tools will facilitate further study in PDP performance

experimentation and allow the rapid prototyping and evaluation of novel PDP schemes in

Charm.

 2

II. BACKGROUND

The objective of this research is to develop a set of tools for the CHARM

framework that enable studying PDP, a cryptographic tool for auditing big data. Our

initial work implements the MAC-PDP scheme, a simple PDP scheme based on message

authentication codes (MACs) to which many novel PDP schemes have been compared

[4]. Here, we provide an overview of PDP schemes, the MAC-PDP scheme and the

CHARM cryptographic framework.

A. PDP

PDP is a cryptographic protocol that enables a client to audit data on a remote

location without accessing the whole file. When verifying the authenticity of the

information stored on the server, strategies based on replication incur high cost and

provide low integrity in the face of adversaries. Cryptographic signatures provide suitable

integrity guarantees, but require the entire file be retrieved. With PDP we are able to get a

probabilistic guarantee for integrity, at significant cost savings. Most PDP schemes have

the property that its audit’s probabilistic guarantee can be exponentially amplified

through repetition. Juels and Kaliski [4] and Naor and Rothblum [5] were the first to

define these type of protocols. They describe different but related approaches to verify

the authenticity of remote data: Provable Data Possession (PDP) and Proof of

Retrievability (POR). Both approaches pre-process a file by splitting it into blocks, store

the file remotely and then verify the file’s integrity using an interactive challenge-

response protocol. POR schemes have the additional property that this challenge-

response protocol admits an “extractor,” so that an efficient algorithm can be used to

reconstruct the original file (i.e., if a server can consistently pass POR audits then the

original file, in its entirety, can be recovered by the client). Their POR scheme uses

special blocks called sentinels, hidden between other blocks in the data [6]. A number of

PDP and POR schemes have since been proposed in the literature [6]–[13]. We focus on

PDP schemes in this work but note the deep connections between PDP and POR

schemes.

 3

In general, a PDP scheme can be constructed in a few phases: (a) secret

generation, (b) pre-processing or tagging and (c) an interactive proof phase. In the

tagging phase the user pre-processes the file, generating some tag data and transmits this

to the server with the file. The server stores the file and tag data, while the user stores

only the key. In the proof phase, the user generates and sends a challenge to the server,

the server responds to the challenge with a short proof, and the user verifies this proof.

B. MAC-PDP

MAC-PDP is a simple PDP scheme based on symmetric key cryptography. The

idea is to break a file into blocks, create a short tag for each block using a message

authentication code (MAC), and send both to the remote server. Then, a client can

randomly sample blocks and their corresponding tags, verifying the integrity of each block.

If this audit is passed then, with a high probability, portions of the file have not been lost,

corrupted or tampered. We describe the phases and arguments for MAC-PDP, next.

Protocol Phases. In the key generation phase of MAC-PDP, one chooses a

random secret key, , that will be used to MAC each file block. In the pre-

processing phase, we split up the file M into n data blocks, each of length s. We choose a

unique file name for the file M. For each block b, we generate a MAC tag

. We can store all of this data—unique filename, blocks and

their tags—on the remote server. In the interactive proof phase, the client selects c

random block indices and sends this to the server as a challenge. The server returns the c

blocks and tags corresponding to those indices, as a proof. Finally, the client uses its

secret key to verify the proof, re-computing each MAC and comparing to the stored tag.

For a secure MAC, it is computationally infeasible for a malicious server to forge valid

tag data, i.e., by inventing a new tag for an existing block or for totally inventing a new

block/tag pair. We direct the interested reader to the security proof provided by Shacham

and Waters for the MAC-PDP scheme, for details on these arguments [14].

 4

Complexity. The communication complexity for the client during the interactive

proof phase is ()()logO c n . The communication complexity for the server during the

interactive proof phase is , where σ is the length of the MAC digest.

Parameter Selection. MAC-PDP gives a probabilistic guarantee that the remote

server is storing authentic data. Let be the probability of the event that t blocks have

deleted or corrupted, and that an audit of c random blocks detects one or more of these

blocks. Ateniese et al. observe this probability is bound by:

 11 1
1

c c

X
n c n c tP

n n c
− − + − − ≤ ≤ − − +

Further, they observe that if t is more than 1% of the total number of blocks, this

can be detected (with a probability of 99%) if the client challenges 460 data blocks [7].

C. CHARM FRAMEWORK

Charm is a framework for rapidly prototyping and benchmarking experimental

cryptosystems. Charm is based on the Python programming language and it was designed

to reduce code complexity by promoting reuse of cryptographic components within the

framework [15]. Charm contains four “Base Modules” that implement various core

cryptographic routines, written in C and optimized for efficiency: the crypto module

(blockciphers), benchmark module, math module (big numbers, elliptic curve operations,

pairing-based operations), and utilities module (base64 encoding and hash functions).

Charm also contains a “Toolbox Module” that contains Python APIs exposing some of

these cryptographic primitives, and a “Scheme Module” for various cryptographic

schemes (e.g, Schnorr’s zero-knowledge proof system, and various public key signature

schemes). It is important to note that Charm is not a library providing advanced

cryptographic functions for production-ready systems: it ignores issues like standards

compliance, secure coding practices and appropriate key management. It is a tool for

cryptographic research and study.

XP

 5

THIS PAGE INTENTIONALLY LEFT BLANK

 6

III. DESIGN

We designed a generic PDP API for Charm by developing those interfaces any

future PDP scheme would instantiate. Charm already supports a generic interactive

protocol class, which our PDP base class extends. We were able to reuse many of the

components already provided by Charm’s protocol engine: the client/server logic to

establish the connection between the PDP challenger and the PDP prover, data

serialization logic, and the logic defining protocol states and how to perform state

transitions. We provide an overview of the PDP class interfaces, and the generic PDP

protocol transitions. We refer to the local client that stores the file data as the

“Challenger” and the remote data server which responds to audits as the “Prover.” Of

course, some PDP schemes allow public audits in which the Challenger does not need to

be the same party that initially stores the file. Without loss of generality, it is appropriate

to assume these parties are the same for the purposes of rapid prototyping and

measurement in Charm. Any production library for a PDP scheme offering public

verifiability would likely make alternative design choices.

A. PDP INTERFACES

The PDP base scheme API consists of the following five interfaces:

keyGen: Generates keys for use in the scheme.

tag: Generates tag data to be stored with the Prover and tag data to be stored by

the Challenger. Returns tag data related to the filename.

generateChallenge: Generates a challenge that can be sent to a Prover.

generateProof: Generates a proof, responding to a challenge.

verifyProof: Checks to see if a proof is valid relative to its challenge.

B. PDP PROTOCOL STATE TRANSITIONS

Our PDP base class includes a generic three-round challenge-response protocol

making use of the previous interfaces. We acknowledge that some PDP protocols may

 7

have a different round structure. For those schemes, instead of inheriting the PDP base

class protocol logic, an implementer would over-ride these routines in the child class.

However, most existing PDP schemes are three-round interactive proofs, and will be able

to inherit and re-use this protocol structure directly. The details of each of these states

(see Figure 1) are outlined below.

Challenger State 1: This is the initial state for the Challenger.

• Input: None

• Processing: Generate public and private key data; pre-process the local file
to create the tag data; sends the file and tag data to the remote server.

• Sends M1: The file and its tag data.

• Stores: Public and private key data and, if applicable, any private file-
specific data (used during verification).

Prover State 2: The Prover enters this state upon receiving the message from

State 1.

• Input: Data from the Challenger, to be stored.

• Processing: Store data and send acknowledgement.

• Sends M2: An acknowledgement of success.

• Stores: The file and its tag data.
Challenger State 3: The Challenger issues a challenge to the Prover.

• Input: Acknowledgement that the Prover is ready for an audit.

• Processing: A challenge is generated and sent to the Prover.

• Sends M3: A challenge.

• Stores: The challenge, to be used during the verification stage.

Prover State 4: The Prover generates a proof and sends it to the Challenger.

• Input: A challenge.

• Processing: The Prover generates a proof.

• Sends M4: A proof.

• Stores: None.

Challenger State 5: The Challenger verifies the proof.

• Input: A proof.

 8

• Processing: The Challenger checks if the proof is valid. If the verification
fails, go to the Fail state; if success and the maximum number of
challenges have been issued, go to the Success state; otherwise, return to
the state to issue another challenge.

• Sends: The result of the audit.

• Stores: The number of successful or failed audits.

Prover State 6: The Prover receives the result from the Challenger.

• Input: A status message indicating the result.

• Processing: If the proof was verified and the maximum number of
challenges has not been issued, return to respond to a new challenge; if the
proof failed verification, go to the Fail state; otherwise, go to the Success
state.

• Sends: None.

• Stores: None.

Challenger State 7: This is the Challenger Fail state.

• Input: None.

• Processing: None. The Challenger reaches this state after a proof fails an
audit.

• Sends: None.

• Stores: None.

Prover State 8: This is the Prover Fail state.

• Input: None.

• Processing: None. If the Prover reaches this state after any proof fails the
audit.

• Sends: None.

• Stores: None.

Challenger State 9: This is the Challenger Success state.

• Input: None.

• Processing: None. The Challenger reaches this state after all proofs pass
the audit.

• Sends: None.

• Stores: None.

Prover State 10: This is the Prover Success state.

 9

• Input: None.

• Processing: None. The Prover reaches this state after all proofs pass the
audit.

• Sends: None.

• Stores: None.

Figure 1. Data Flow Diagram

C. CONCLUSION

We have described the core interfaces provided by the PDP base class, which our

MAC-PDP scheme implements. Next, we describe the MAC-PDP scheme

implementation and some notable changes and support functions developed for this task.

Challenger
State 7

Reach
Max

Reach
Max

M2

M3

M4

M5

Yes Yes

Yes

Prover
State 10

Yes

No No

No

Prover
State 8

No

Pass
Audit

Challenger
State 3

Challenger
State 1

Prover
State 2

Challenger
State 5

Prover
State 6

Prover
State 4

Pass
Audit

Challenger
State 9

M1

 10

IV. IMPLEMENTATION

We discuss our implementation of the MAC-PDP scheme, which is a concrete

instantiation of the previous interfaces.

A. MAC-PDP

MAC-PDP is a simple PDP scheme based on symmetric key cryptography. We

implemented the following interfaces for the MAC-PDP scheme.

keygen: Generates a symmetric key used to MAC blocks.

• Input: None

• Processing: Generate a private key using the randomBits function,
provided by Charm’s integer module.

• Output: The private key sk. The public key pk is empty.

tag: Generates the tag data to be sent to the storage server.

• Input: The name of the file to tag, and the key pair (sk, pk).

• Processing: It breaks the file into blocks. It creates a unique filename, by
appending a unique index to the filename. It creates a plaintext message
by concatenating the unique filename, the block-number, and the block of
data. A MAC for the plaintext is generated using Charm’s
MessageAuthenticator class.

• Output: The remotedata is a list of tags. The localdata is the number of
blocks tagged.

generateChallenge: Generates a list of m indices chosen randomly in the range

[0, r), where r is the number of blocks, a value stored in localdata. The value m is a

system parameter, set during the initialization routine.

• Input: The localdata, holds the parameter r.

• Processing: We select m indices in the range [0, r) without replacement,
using Floyd’s Algorithm.

• Output: The list of challenge indices.

generateProof: This function returns the tags and blocks associated with the

indices in the challenge.

• Input: The challenge, remotedata and public key pk (empty).

 11

• Processing: In this implementation, the tag data and file blocks are held in
memory, in an array. Selecting the challenged blocks and tags is an array
lookup. This implementation is not appropriate files that are too large to
be held in-memory.

• Output: The proof, an array of blocks and tags, in the order requested by
the challenge.

verifyProof: This algorithm verifies the proof sent in response to our challenge.

• Input: The proof, challenge, and key pair (sk, pk).

• Processing: We use the verify function of the MessageAuthenticator class
to re-compute the MAC for each block, and compare with the
corresponding tag.

• Stores: True, if passed verification, False otherwise.

B. IMPLEMENTATION DECISIONS

Charm is a framework for prototyping cryptosystems and benchmarking

individual cryptographic operations. We do not implement persistent storage and logic

for handling files too large to be held in memory. Additionally, we do not implement

logic for secure key storage or data serialization. We consider these tasks appropriate for

production-worthy libraries, which is not the goal of Charm or in the scope of our work.

In Charm, The Protocol class implements send and receive logic using a fixed-

size buffer. Even for our relatively small files, this buffer was too small to transfer the

data during our tag phase. We modified the class to transmit data too large for the

existing fixed size buffer.

C. RANDOM SUBLINEAR SAMPLING

When generating a challenge, we select a random subset of the block indices. This

logic is implemented using Floyd’s algorithm to select random numbers without

replacement. Floyd’s is an efficient algorithm and relatively simple to implement [16],

yet no (or few) cryptographic libraries provide an interface for this functionality. The

statistical software SAS provides the Simple Random Sampling algorithm, implemented

using Floyd’s algorithm [17]. The software Clustal Omega—a program for aligning

 12

protein sequences, developed by the Conway Institute UCD Dublin and founded by the

Science Foundation Ireland—also implements1 Floyd’s algorithm [18].

An alternative to Floyd’s algorithm is Knuth’s Algorithm S. Algorithm S is

simpler in design, and it is easier to understand its correctness; it operates according to

following: to select n elements from the set [0, M] we randomly select a number less than

M and add this to our output if it has not previously been selected [16]. This algorithm is

not as efficient as Floyd’s algorithm: in Floyd’s, we add a number to our list on every

iteration.

Another alternative to selecting n random numbers from a set M without

replacement is the Knuth Shuffle, also known as the Fisher-Yates Shuffle. This method

permutes the elements from the set [0, M] and chooses the first n numbers from the

shuffled set. A proposed block-cipher mode for Datatype-Preserving Encryption (DTP)

uses the Knuth Shuffle in one of its steps [19]. It may be advantageous to consider more

efficient shuffling algorithms, like Floyd’s, in these applications.

D. UNIT TESTING

We developed unit tests using Python’s existing framework for automated testing.

These tests run without user input, to implement a set of regression tests that can be used

to ensure no library functionality becomes broken in the future.

1 Floyd’s is implemented as the function RandomUniqueIntArray, found in src/clustal/util.c.

 13

THIS PAGE INTENTIONALLY LEFT BLANK

 14

V. FUTURE WORK

The Charm framework does not implement benchmarking for symmetric key

crypto schemes. MAC-PDP is a scheme based on symmetric key cryptography. In order

to measure the cost of MAC-PDP, benchmarking for symmetric key cryptography needs

to be integrated into the charm framework.

We developed a PDP interface and implemented MAC-PDP scheme as part of the

Charm framework. Follow-on work might implement other PDP schemes described in

the literature [6]–[13] in the Charm framework.

 15

THIS PAGE INTENTIONALLY LEFT BLANK

 16

VI. CONCLUSION

PDP is a cryptographic tool for auditing big data in the cloud. In this work we have

developed a PDP module for the Charm cryptographic framework. We wrote an API for

PDP schemes we believe is generic enough to describe all known PDP schemes. We

implemented the simple MAC-PDP scheme with efficient subroutines for sub-linear

sampling. We hope that this work will enable the rapid prototyping and evaluation of new

PDP schemes in the Charm framework.

 17

THIS PAGE INTENTIONALLY LEFT BLANK

 18

APPENDIX A. PDPBASE

Author: Krisztina
Date: 05/04/2013
PDP is a cryptographic process that enables a client to audit data on a remote location
without accessing the whole file.

class PDPBase.PDPBase(common_input=None)

Bases: charm.core.engine.protocol.Protocol
challenger_state1()
This is the initial state for the Challenger.

• Input: None
• Processing: Generate public and private key data; pre-process the local file

to create the tag data; sends the file and tag data to the remote server.
• Message, M1: The file and its tag data.
• Stores: Public and private key data and, if applicable, any private file-

specific data (used during verification).

challenger_state3(input)
The Challenger issues a challenge to the Prover.

• Input: Acknowledgement that the Prover is ready for an audit.
• Processing: A challenge is generated and sent to the Prover.
• Message, M3: A challenge.
• Stores: The challenge, to be used during the verification stage.

challenger_state5(input)
The Challenger verified the proof.

• Input: A proof.
• Processing: The Challenger checks if the proof if valid. If the verification

failed, go to the Fail state; if success and the maximum number of
challenges has been issued, go to the Success state; otherwise, return to the
state to issue another challenge.

• Message: The result of the audit.
• Stores: The number of successful or failed audits.

challenger_state7(input)
This is the Challenger Fail state.

• Input: None.

 19

• Processing: None. The Challenger reaches this state after a proof fails an
audit.

• Message: None.
• Stores: None.

challenger_state9(input)
This is the Challenger Success state.

• Input: None.
• Processing: None. The Challenger reaches this state after all proofs pass

the audit.
• Message: None.
• Stores: None.

generateChallenge(filestate, pk, sk)
Generates a challenge c, that can be sent to a Prover.

generateProof(challenge, pk)
Generates a proof p, based on responding to a challenge.

keygen()
Generates keys for use in the scheme.

prover_state10(input)
This is the prover Success state.

• Input: None.
• Processing: None. The Prover reaches this state after all proofs pass the

audit.
• Message: None.
• Stores: None.

prover_state2(input)
The prover enters this state upon receiving the message from State 1.

• Input: Data from the Challenger, to be stored.
• Processing: Store data and send acknowledgement.
• Message, M2: An acknowledgement of success.
• Stores: The file and its tag data.

prover_state4(input)
The prover generates a proof and sends it to the Challenger.

• Input: A challenge.

 20

• Processing: The Prover generates a proof.
• Message, M4: A proof.
• Stores: None.

prover_state6(input)
The prover receives the result from the Challenger.

• Input: A status message indicating the result.
• Processing: If the proof was verified and the maximum number of

challenges has not been issued, return to respond to a new challenge; if the
proof failed verification, go to the Fail state; otherwise, go to the Success
state.

• Message: None.
• Stores: None.

prover_state8(input)
This is the Prover Fail state.

• Input: None.
• Processing: None. If the Prover reaches this state after any proof fails the

audit.
• Message: None.
• Stores: None.

set_attributes(**kwargs)
Optional: sets various non-default properties for the PDP scheme.

start_service(options)
Sets up scheme, to act as either a Challenger or Prover service.

tag(filename, pk, sk)
Generates tag data to be stored with the file, (remote-data) and tag data to be
stored by the Prover (local-data). Returns tagdata related to the filename.

verifyProof(proof, challenge, pk, sk)
Checks to see if a proof is valid relative to a challenge.

 21

THIS PAGE INTENTIONALLY LEFT BLANK

 22

APPENDIX B. MACPDPSCHEME

Author: Krisztina
Date: 05/04/2013
MAC-PDP is a simple PDP scheme based on symmetric key cryptography. We
implemented the following interfaces for the MAC-PDP scheme.
class macpdpscheme.macpdpscheme(common_input=None)

Bases: charm.toolbox.PDPBase.PDPBase
generateChallenge(localdata, pk, sk)
Generates a list of m indices chosen randomly in the range [0, r), where r is the
number of blocks in localdata. The value m is a system parameter, set during the
initialization routine.

• Input: The localdata, holding the parameter r.
• Processing: We select m indices in the range [0, r) without replacement,

using Floyd’s Algorithm.
• Output: The list of challenge indices.

generateProof(challenge, pk, remotedata)
This function returns the tags and blocks associated with the indices in the
challenge.

• Input: The challenge, remotedata and public key pk (empty).
• Processing: In this implementation, the tag data and file blocks are held in

memory, in an array. Selecting the challenged blocks and tags is an array
lookup. This implementation is not appropriate files that are too large to
be held in-memory.

• Output: The proof, an array of blocks and tags, in the order requested by
the challenge.

keygen()
Generates a symmetric key used to MAC blocks.

• Input: None
• Processing: Generate a private key using the randomBits function,

provided by Charm’s integer module.
• Output: The private key sk. The public key pk is empty.

set_attributes(**kwargs)
Sets optional attributes chosen by the user. Such attributes are:

• key length
• block size

 23

• number of challenges

tag(filename, pk, sk)
Generates the tag data to be sent to the storage server.

• Input: The name of the file to tag, and the key pair (sk, pk).
• Processing: It breaks the file into blocks. It creates a unique filename, by

appending a unique index to the filename. It creates a plaintext message
by concatenating the unique filename, the block-number, and the block of
data. A MAC for the plaintext is generated using Charm’s
MessageAuthenticator class.

• Output: The remotedata is a list of tags. The localdata is the number of
blocks tagged.

verifyProof(proof, challenge, pk, sk)
This algorithm verifies the proof sent in response to our challenge.

• Input: The proof, challenge, and key pair (sk, pk).
• Processing: We use the verify function of the MessageAuthenticator class

to re-compute the MAC for each block, and compare with the
corresponding tag.

• Stores: True, if passed verification, False otherwise.

 24

LIST OF REFERENCES

[1] V. Kundra, “Federal cloud computing strategy,” 2011. Available:
http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/vivek-
kundra-federal-cloud-computing-strategy-02142011.pdf

[2] C. Council, “Proposed security assessment & authorization for U.S. government
cloud computing,” 2010. Available: http://educationnewyork.com/files/Proposed-
Security-Assessment-and-Authorization-for-Cloud-Computing.pdf

[3] P. Buxbaum, “GEOIN’s big data challenge,” Geospatial Intelligence Forum: The
Magazine of the National Intelligence Community, vol. 10, no. 3, pp.4–7,
April 2012. Available: http://goo.gl/sbYch

[4] A. Juels and B. S. Kaliski Jr, “PORs: Proofs of retrievability for large files,” in
Proc. of the 14th ACM Conf. on Comput. and Commun. Security, Alexandria, VA,
2007, pp. 584–597.

[5] M. Naor and G. N. Rothblum, “The complexity of online memory checking,”in
Found. of Comput. Sci., 2005. FOCS 2005. 46th Annu. IEEE Symp., Pittsburg,
PA, 2005, pp. 573–582.

[6] G. Ateniese, R. Di Pietro, L. V. Mancini and G. Tsudik, “Scalable and efficient
provable data possession,” in Proc. of the 4th Int. Conf. on Security and Privacy
in Commun. Networks, Istanbul, Turkey, 2008, p. 9.

[7] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson and D.
Song, “Provable data possession at untrusted stores,” in Proc. of the 14th ACM
Conf. on Comput. and Commun. Security, Alexandria, VA, 2007, pp. 598–609.

[8] C. Wang, Q. Wang, K. Ren and W. Lou, “Privacy-preserving public auditing for
data storage security in cloud computing,” in INFOCOM, 2010 Proc. IEEE, San
Diego, CA, 2010, pp. 1–9.

[9] Y. Zhu, H. Wang, Z. Hu, G. Ahn, H. Hu and S. S. Yau, “Efficient provable data
possession for hybrid clouds,” in Proc. of the 17th ACM Conf. on Comput. and
Commun. Security, Chicago, IL, 2010, pp. 756–758.

[10] C. Erway, A. Küpçü, C. Papamanthou and R. Tamassia, “Dynamic provable data
possession,” in Proc. of the 17th ACM Conf. on Comput. and Commun. Security,
Beijing, China, 2009, pp. 213–222.

[11] B. Chen and R. Curtmola, “Robust dynamic provable data possession,” in
Distributed Comput. Syst. Workshops (ICDCSW), 32nd Int. Conf., Macau, China,
2012, pp. 515–525.

 25

http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/vivek-kundra-federal-cloud-computing-strategy-02142011.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/vivek-kundra-federal-cloud-computing-strategy-02142011.pdf
http://educationnewyork.com/files/Proposed-Security-Assessment-and-Authorization-for-Cloud-Computing.pdf
http://educationnewyork.com/files/Proposed-Security-Assessment-and-Authorization-for-Cloud-Computing.pdf

[12] R. Curtmola, O. Khan, R. Burns and G. Ateniese, “MR-PDP: Multiple-replica
provable data possession,” in Distributed Computing Syst. (ICDCS), 28th Int.
Conf., Beijing, China, 2008, pp. 411–420.

[13] B. Purushothama and B. Amberker, “Publicly auditable provable data possession
scheme for outsourced data in the public cloud using polynomial interpolation,” in
Recent Trends in Comput. Networks and Distributed Syst. Security Springer,
2012, pp. 11–22.

[14] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Advances in
Cryptology-ASIACRYPT 2008. NY:Springer, 2008, pp. 90–107.

[15] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M. Green and
A. D. Rubin, “Charm: A framework for rapidly prototyping cryptosystems,” J. of
Cryptographic Eng., pp. 1–18, 2011.

[16] J. Bentley and B. Floyd, “Programming pearls: a sample of brilliance,” Commun.
ACM, vol. 30, pp. 754–757, 1987.

[17] SAS Institute Inc., “The SURVEYSELECT Procedure.” in SAS/STAT 9.2 User’s
Guide, Cary, NC: SAS Publishing, 2008, p 376.

[18] src/clustal/util.c File Reference. Aug. 31, 2012. Available:
http://www.clustal.org/omega/clustalo-api/util_8c.html.

 [19] U. T. Mattsson, “Format-controlling encryption using datatype-preserving
encryption.” Available: http://
csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/fcem/fcem-
spec.pdf.

 26

http://www.clustal.org/omega/clustalo-api/util_8c.html

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

 27

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	II. Background
	A. PDP
	B. MAC-PDP
	C. Charm Framework

	III. Design
	A. PDP Interfaces
	B. PDP Protocol State Transitions
	C. Conclusion

	IV. Implementation
	A. MAC-PDP
	B. implementation Decisions
	C. Random sublinear sampling
	D. Unit testing

	V. Future Work
	VI. Conclusion
	appendix A. PDPBase
	Appendix B. macpdpscheme
	List of References
	Initial Distribution List

