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ABSTRACT 

Provable Data Possession (PDP) is a cryptographic tool for auditing big data on a storage 

server or in the cloud. The goal of PDP is to efficiently verify that the server is storing the 

data. PDP provides probabilistic guarantees that the server is storing the information, and 

it will be available when needed, without accessing the entire file.  

In this work, we have developed a PDP module for the Charm cryptographic 

framework. We wrote an application programmer interface (API) for generic PDP 

schemes. We implemented the simple MAC-PDP scheme with efficient subroutines for 

sub-linear sampling. We hope that this work will encourage further study in the rapid 

prototyping and evaluation of new PDP schemes in the Charm framework. 
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I. INTRODUCTION 

Provable Data Possession (PDP) is a cryptographic tool for auditing remote data, 

held on a storage server or in the cloud. The goal of PDP is to allow a client to efficiently 

verify the data on the server, without retrieving the entire file (as required for traditional 

integrity mechanisms, like digital signatures). This ability makes PDP audits particularly 

efficient for verifying the integrity of big data, for which accessing the entire file is 

expensive in terms of bandwidth and time. PDP provides a probabilistic (rather than 

absolute) guarantee that the server is storing the information and it will be accessible 

when needed. The U.S. Federal Cloud Computing Strategy recommends vendors be held 

accountable for service failures, using active Service Level Agreement (SLA) compliance 

monitoring [1]. Likewise, the U.S. Federal Risk and Authorization Management Program 

(FedRAMP) mandates continuous, active monitoring of services [2]. PDP protocols 

provide such a mechanism for actively auditing outsourced storage. This is particularly 

relevant to the Intelligence Community and Department of Defense, both of which face 

big data management problems. For example, the National Geospatial-Intelligence 

Agency anticipates collecting on the order of four petabytes, annually [3]. We believe 

PDP can be a “game changing” technology for securing big data in the context of cloud 

technologies. 

Efficiency is integral to PDP audits; however, an in-depth cost comparison of 

PDP schemes is largely absent from the literature. Existing cost analyses consist of 

asymptotic costs measuring communication and round complexity, and small-scale 

experimental validation using proof-of-concept code (which varies from study to study 

and is unpublished). Our work is preparatory, allowing others to provide a more thorough 

analysis and to contribute to a shared “ecosystem” of experimental PDP implementations. 

We implemented a PDP module for the Charm cryptographic framework, a Python-based 

library for rapid cryptographic prototyping and benchmarking. We have developed a PDP 

application programmer interface (API) with documentation, implemented the simple 

Message Authentication Code PDP (MAC-PDP) scheme with unit tests, and provided 

efficient subroutines for sub-linear sampling in a cryptographic setting based on Floyd’s 
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algorithm. We hope these tools will facilitate further study in PDP performance 

experimentation and allow the rapid prototyping and evaluation of novel PDP schemes in 

Charm.  
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II. BACKGROUND 

The objective of this research is to develop a set of tools for the CHARM 

framework that enable studying PDP, a cryptographic tool for auditing big data. Our 

initial work implements the MAC-PDP scheme, a simple PDP scheme based on message 

authentication codes (MACs) to which many novel PDP schemes have been compared 

[4]. Here, we provide an overview of PDP schemes, the MAC-PDP scheme and the 

CHARM cryptographic framework. 

A. PDP 

PDP is a cryptographic protocol that enables a client to audit data on a remote 

location without accessing the whole file. When verifying the authenticity of the 

information stored on the server, strategies based on replication incur high cost and 

provide low integrity in the face of adversaries. Cryptographic signatures provide suitable 

integrity guarantees, but require the entire file be retrieved. With PDP we are able to get a 

probabilistic guarantee for integrity, at significant cost savings. Most PDP schemes have 

the property that its audit’s probabilistic guarantee can be exponentially amplified 

through repetition. Juels and Kaliski [4] and Naor and Rothblum [5] were the first to 

define these type of protocols. They describe different but related approaches to verify 

the authenticity of remote data: Provable Data Possession (PDP) and Proof of 

Retrievability (POR). Both approaches pre-process a file by splitting it into blocks, store 

the file remotely and then verify the file’s integrity using an interactive challenge-

response protocol. POR schemes have the additional property that this challenge-

response protocol admits an “extractor,” so that an efficient algorithm can be used to 

reconstruct the original file (i.e., if a server can consistently pass POR audits then the 

original file, in its entirety, can be recovered by the client). Their POR scheme uses 

special blocks called sentinels, hidden between other blocks in the data [6]. A number of 

PDP and POR schemes have since been proposed in the literature [6]–[13]. We focus on 

PDP schemes in this work but note the deep connections between PDP and POR 

schemes. 
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In general, a PDP scheme can be constructed in a few phases: (a) secret 

generation, (b) pre-processing or tagging and (c) an interactive proof phase. In the 

tagging phase the user pre-processes the file, generating some tag data and transmits this 

to the server with the file. The server stores the file and tag data, while the user stores 

only the key. In the proof phase, the user generates and sends a challenge to the server, 

the server responds to the challenge with a short proof, and the user verifies this proof.  

B. MAC-PDP 

MAC-PDP is a simple PDP scheme based on symmetric key cryptography. The 

idea is to break a file into blocks, create a short tag for each block using a message 

authentication code (MAC), and send both to the remote server. Then, a client can 

randomly sample blocks and their corresponding tags, verifying the integrity of each block. 

If this audit is passed then, with a high probability, portions of the file have not been lost, 

corrupted or tampered. We describe the phases and arguments for MAC-PDP, next. 

Protocol Phases. In the key generation phase of MAC-PDP, one chooses a 

random secret key, , that will be used to MAC each file block. In the pre-

processing phase, we split up the file M into n data blocks, each of length s. We choose a 

unique file name  for the file M. For each block b, we generate a MAC tag 

. We can store all of this data—unique filename, blocks and 

their tags—on the remote server. In the interactive proof phase, the client selects c 

random block indices and sends this to the server as a challenge. The server returns the c 

blocks and tags corresponding to those indices, as a proof. Finally, the client uses its 

secret key to verify the proof, re-computing each MAC and comparing to the stored tag. 

For a secure MAC, it is computationally infeasible for a malicious server to forge valid 

tag data, i.e., by inventing a new tag for an existing block or for totally inventing a new 

block/tag pair. We direct the interested reader to the security proof provided by Shacham 

and Waters for the MAC-PDP scheme, for details on these arguments [14]. 
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Complexity. The communication complexity for the client during the interactive 

proof phase is ( )( )logO c n . The communication complexity for the server during the 

interactive proof phase is , where σ is the length of the MAC digest.  

Parameter Selection. MAC-PDP gives a probabilistic guarantee that the remote 

server is storing authentic data. Let be the probability of the event that t blocks have 

deleted or corrupted, and that an audit of c random blocks detects one or more of these 

blocks. Ateniese et al. observe this probability is bound by:  

 11 1
1

c c

X
n c n c tP

n n c
− − + −   − ≤ ≤ −   − +   

 

Further, they observe that if t is more than 1% of the total number of blocks, this 

can be detected (with a probability of 99%) if the client challenges 460 data blocks [7].  

C. CHARM FRAMEWORK 

Charm is a framework for rapidly prototyping and benchmarking experimental 

cryptosystems. Charm is based on the Python programming language and it was designed 

to reduce code complexity by promoting reuse of cryptographic components within the 

framework [15]. Charm contains four “Base Modules” that implement various core 

cryptographic routines, written in C and optimized for efficiency: the crypto module 

(blockciphers), benchmark module, math module (big numbers, elliptic curve operations, 

pairing-based operations), and utilities module (base64 encoding and hash functions). 

Charm also contains a “Toolbox Module” that contains Python APIs exposing some of 

these cryptographic primitives, and a “Scheme Module” for various cryptographic 

schemes (e.g, Schnorr’s zero-knowledge proof system, and various public key signature 

schemes). It is important to note that Charm is not a library providing advanced 

cryptographic functions for production-ready systems: it ignores issues like standards 

compliance, secure coding practices and appropriate key management. It is a tool for 

cryptographic research and study. 

  

XP
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III. DESIGN 

We designed a generic PDP API for Charm by developing those interfaces any 

future PDP scheme would instantiate. Charm already supports a generic interactive 

protocol class, which our PDP base class extends. We were able to reuse many of the 

components already provided by Charm’s protocol engine: the client/server logic to 

establish the connection between the PDP challenger and the PDP prover, data 

serialization logic, and the logic defining protocol states and how to perform state 

transitions. We provide an overview of the PDP class interfaces, and the generic PDP 

protocol transitions. We refer to the local client that stores the file data as the 

“Challenger” and the remote data server which responds to audits as the “Prover.” Of 

course, some PDP schemes allow public audits in which the Challenger does not need to 

be the same party that initially stores the file. Without loss of generality, it is appropriate 

to assume these parties are the same for the purposes of rapid prototyping and 

measurement in Charm. Any production library for a PDP scheme offering public 

verifiability would likely make alternative design choices. 

A. PDP INTERFACES 

The PDP base scheme API consists of the following five interfaces:  

keyGen: Generates keys for use in the scheme.  

tag: Generates tag data to be stored with the Prover and tag data to be stored by 

the Challenger. Returns tag data related to the filename. 

generateChallenge: Generates a challenge that can be sent to a Prover. 

generateProof: Generates a proof, responding to a challenge. 

verifyProof: Checks to see if a proof is valid relative to its challenge. 

B. PDP PROTOCOL STATE TRANSITIONS 

Our PDP base class includes a generic three-round challenge-response protocol 

making use of the previous interfaces. We acknowledge that some PDP protocols may 
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have a different round structure. For those schemes, instead of inheriting the PDP base 

class protocol logic, an implementer would over-ride these routines in the child class. 

However, most existing PDP schemes are three-round interactive proofs, and will be able 

to inherit and re-use this protocol structure directly. The details of each of these states 

(see Figure 1) are outlined below. 

Challenger State 1:  This is the initial state for the Challenger. 

• Input: None 

• Processing: Generate public and private key data; pre-process the local file 
to create the tag data; sends the file and tag data to the remote server. 

• Sends M1: The file and its tag data. 

• Stores: Public and private key data and, if applicable, any private file-
specific data (used during verification). 

Prover State 2: The Prover enters this state upon receiving the message from 

State 1.  

• Input: Data from the Challenger, to be stored. 

• Processing: Store data and send acknowledgement. 

• Sends M2: An acknowledgement of success. 

• Stores: The file and its tag data. 
Challenger State 3: The Challenger issues a challenge to the Prover.  

• Input: Acknowledgement that the Prover is ready for an audit. 

• Processing: A challenge is generated and sent to the Prover.  

• Sends M3: A challenge. 

• Stores: The challenge, to be used during the verification stage. 

Prover State 4: The Prover generates a proof and sends it to the Challenger.  

• Input: A challenge. 

• Processing: The Prover generates a proof. 

• Sends M4: A proof. 

• Stores: None. 

Challenger State 5: The Challenger verifies the proof.  

• Input: A proof. 
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• Processing: The Challenger checks if the proof is valid. If the verification 
fails, go to the Fail state; if success and the maximum number of 
challenges have been issued, go to the Success state; otherwise, return to 
the state to issue another challenge. 

• Sends: The result of the audit. 

• Stores: The number of successful or failed audits. 

Prover State 6: The Prover receives the result from the Challenger.  

• Input: A status message indicating the result. 

• Processing: If the proof was verified and the maximum number of 
challenges has not been issued, return to respond to a new challenge; if the 
proof failed verification, go to the Fail state; otherwise, go to the Success 
state. 

• Sends: None. 

• Stores: None. 

Challenger State 7:  This is the Challenger Fail state.  

• Input: None. 

• Processing: None. The Challenger reaches this state after a proof fails an 
audit. 

• Sends: None. 

• Stores: None. 

Prover State 8: This is the Prover Fail state.  

• Input: None. 

• Processing: None. If the Prover reaches this state after any proof fails the 
audit. 

• Sends: None. 

• Stores: None. 

Challenger State 9: This is the Challenger Success state.  

• Input: None. 

• Processing: None. The Challenger reaches this state after all proofs pass 
the audit. 

• Sends: None. 

• Stores: None. 

Prover State 10: This is the Prover Success state.  
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• Input: None. 

• Processing: None. The Prover reaches this state after all proofs pass the 
audit. 

• Sends: None. 

• Stores: None. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Data Flow Diagram 

C. CONCLUSION 

We have described the core interfaces provided by the PDP base class, which our 

MAC-PDP scheme implements. Next, we describe the MAC-PDP scheme 

implementation and some notable changes and support functions developed for this task. 
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IV. IMPLEMENTATION 

We discuss our implementation of the MAC-PDP scheme, which is a concrete 

instantiation of the previous interfaces. 

A. MAC-PDP 

MAC-PDP is a simple PDP scheme based on symmetric key cryptography. We 

implemented the following interfaces for the MAC-PDP scheme. 

keygen: Generates a symmetric key used to MAC blocks. 

• Input: None 

• Processing: Generate a private key using the randomBits function, 
provided by Charm’s integer module. 

• Output: The private key sk. The public key pk is empty. 

tag: Generates the tag data to be sent to the storage server.  

• Input: The name of the file to tag, and the key pair (sk, pk). 

• Processing: It breaks the file into blocks. It creates a unique filename, by 
appending a unique index to the filename. It creates a plaintext message 
by concatenating the unique filename, the block-number, and the block of 
data. A MAC for the plaintext is generated using Charm’s 
MessageAuthenticator class. 

• Output: The remotedata is a list of tags. The localdata is the number of 
blocks tagged. 

generateChallenge: Generates a list of m indices chosen randomly in the range 

[0, r), where r is the number of blocks, a value stored in localdata. The value m is a 

system parameter, set during the initialization routine. 

• Input: The localdata, holds the parameter r. 

• Processing: We select m indices in the range [0, r) without replacement, 
using Floyd’s Algorithm. 

• Output: The list of challenge indices. 

generateProof: This function returns the tags and blocks associated with the 

indices in the challenge. 

• Input: The challenge, remotedata and public key pk (empty). 
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• Processing: In this implementation, the tag data and file blocks are held in 
memory, in an array. Selecting the challenged blocks and tags is an array 
lookup. This implementation is not appropriate files that are too large to 
be held in-memory. 

• Output: The proof, an array of blocks and tags, in the order requested by 
the challenge. 

verifyProof: This algorithm verifies the proof sent in response to our challenge. 

• Input: The proof, challenge, and key pair (sk, pk). 

• Processing: We use the verify function of the MessageAuthenticator class 
to re-compute the MAC for each block, and compare with the 
corresponding tag. 

• Stores: True, if passed verification, False otherwise. 

B. IMPLEMENTATION DECISIONS  

Charm is a framework for prototyping cryptosystems and benchmarking 

individual cryptographic operations. We do not implement persistent storage and logic 

for handling files too large to be held in memory. Additionally, we do not implement 

logic for secure key storage or data serialization. We consider these tasks appropriate for 

production-worthy libraries, which is not the goal of Charm or in the scope of our work. 

In Charm, The Protocol class implements send and receive logic using a fixed-

size buffer. Even for our relatively small files, this buffer was too small to transfer the 

data during our tag phase. We modified the class to transmit data too large for the 

existing fixed size buffer. 

C. RANDOM SUBLINEAR SAMPLING 

When generating a challenge, we select a random subset of the block indices. This 

logic is implemented using Floyd’s algorithm to select random numbers without 

replacement. Floyd’s is an efficient algorithm and relatively simple to implement [16], 

yet no (or few) cryptographic libraries provide an interface for this functionality. The 

statistical software SAS provides the Simple Random Sampling algorithm, implemented 

using Floyd’s algorithm [17]. The software Clustal Omega—a program for aligning 
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protein sequences, developed by the Conway Institute UCD Dublin and founded by the 

Science Foundation Ireland—also implements1 Floyd’s algorithm [18].  

An alternative to Floyd’s algorithm is Knuth’s Algorithm S. Algorithm S is 

simpler in design, and it is easier to understand its correctness; it operates according to 

following: to select n elements from the set [0, M] we randomly select a number less than 

M and add this to our output if it has not previously been selected [16]. This algorithm is 

not as efficient as Floyd’s algorithm: in Floyd’s, we add a number to our list on every 

iteration.  

Another alternative to selecting n random numbers from a set M without 

replacement is the Knuth Shuffle, also known as the Fisher-Yates Shuffle. This method 

permutes the elements from the set [0, M] and chooses the first n numbers from the 

shuffled set. A proposed block-cipher mode for Datatype-Preserving Encryption (DTP) 

uses the Knuth Shuffle in one of its steps [19]. It may be advantageous to consider more 

efficient shuffling algorithms, like Floyd’s, in these applications. 

D. UNIT TESTING  

We developed unit tests using Python’s existing framework for automated testing. 

These tests run without user input, to implement a set of regression tests that can be used 

to ensure no library functionality becomes broken in the future. 

  

1 Floyd’s is implemented as the function RandomUniqueIntArray, found in src/clustal/util.c. 
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V. FUTURE WORK 

The Charm framework does not implement benchmarking for symmetric key 

crypto schemes. MAC-PDP is a scheme based on symmetric key cryptography. In order 

to measure the cost of MAC-PDP, benchmarking for symmetric key cryptography needs 

to be integrated into the charm framework. 

We developed a PDP interface and implemented MAC-PDP scheme as part of the 

Charm framework. Follow-on work might implement other PDP schemes described in 

the literature [6]–[13] in the Charm framework. 
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VI. CONCLUSION 

PDP is a cryptographic tool for auditing big data in the cloud. In this work we have 

developed a PDP module for the Charm cryptographic framework. We wrote an API for 

PDP schemes we believe is generic enough to describe all known PDP schemes. We 

implemented the simple MAC-PDP scheme with efficient subroutines for sub-linear 

sampling. We hope that this work will enable the rapid prototyping and evaluation of new 

PDP schemes in the Charm framework. 
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APPENDIX A. PDPBASE 

Author: Krisztina 
Date: 05/04/2013 
PDP is a cryptographic process that enables a client to audit data on a remote location 
without accessing the whole file. 
 
class PDPBase.PDPBase(common_input=None)  

Bases: charm.core.engine.protocol.Protocol 
challenger_state1() 
This is the initial state for the Challenger. 

• Input: None 
• Processing: Generate public and private key data; pre-process the local file 

to create the tag data; sends the file and tag data to the remote server. 
• Message, M1: The file and its tag data. 
• Stores: Public and private key data and, if applicable, any private file-

specific data (used during verification). 

challenger_state3(input)  
The Challenger issues a challenge to the Prover. 

• Input: Acknowledgement that the Prover is ready for an audit. 
• Processing: A challenge is generated and sent to the Prover. 
• Message, M3: A challenge. 
• Stores: The challenge, to be used during the verification stage. 

challenger_state5(input)  
The Challenger verified the proof. 

• Input: A proof. 
• Processing: The Challenger checks if the proof if valid. If the verification 

failed, go to the Fail state; if success and the maximum number of 
challenges has been issued, go to the Success state; otherwise, return to the 
state to issue another challenge. 

• Message: The result of the audit. 
• Stores: The number of successful or failed audits. 

challenger_state7(input)  
This is the Challenger Fail state. 

• Input: None. 
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• Processing: None. The Challenger reaches this state after a proof fails an 
audit. 

• Message: None. 
• Stores: None. 

challenger_state9(input)  
This is the Challenger Success state. 

• Input: None. 
• Processing: None. The Challenger reaches this state after all proofs pass 

the audit. 
• Message: None. 
• Stores: None. 

generateChallenge(filestate, pk, sk) 
Generates a challenge c, that can be sent to a Prover. 
 
generateProof(challenge, pk)  
Generates a proof p, based on responding to a challenge. 
 
keygen() 
Generates keys for use in the scheme. 
 
prover_state10(input)  
This is the prover Success state. 

• Input: None. 
• Processing: None. The Prover reaches this state after all proofs pass the 

audit. 
• Message: None. 
• Stores: None. 

prover_state2(input)  
The prover enters this state upon receiving the message from State 1. 

• Input: Data from the Challenger, to be stored. 
• Processing: Store data and send acknowledgement. 
• Message, M2: An acknowledgement of success. 
• Stores: The file and its tag data. 

prover_state4(input)  
The prover generates a proof and sends it to the Challenger. 

• Input: A challenge. 
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• Processing: The Prover generates a proof. 
• Message, M4: A proof. 
• Stores: None. 

prover_state6(input)  
The prover receives the result from the Challenger. 

• Input: A status message indicating the result. 
• Processing: If the proof was verified and the maximum number of 

challenges has not been issued, return to respond to a new challenge; if the 
proof failed verification, go to the Fail state; otherwise, go to the Success 
state. 

• Message: None. 
• Stores: None. 

prover_state8(input)  
This is the Prover Fail state. 

• Input: None. 
• Processing: None. If the Prover reaches this state after any proof fails the 

audit. 
• Message: None. 
• Stores: None. 

set_attributes(**kwargs)  
Optional: sets various non-default properties for the PDP scheme. 
 
start_service(options)  
Sets up scheme, to act as either a Challenger or Prover service. 
 
tag(filename, pk, sk)  
Generates tag data to be stored with the file, (remote-data) and tag data to be 
stored by the Prover (local-data). Returns tagdata related to the filename. 
 
verifyProof(proof, challenge, pk, sk)  
Checks to see if a proof is valid relative to a challenge. 
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APPENDIX B.  MACPDPSCHEME 

Author: Krisztina 
Date: 05/04/2013 
MAC-PDP is a simple PDP scheme based on symmetric key cryptography. We 
implemented the following interfaces for the MAC-PDP scheme. 
class macpdpscheme.macpdpscheme(common_input=None)  

Bases: charm.toolbox.PDPBase.PDPBase 
generateChallenge(localdata, pk, sk)  
Generates a list of m indices chosen randomly in the range [0, r), where r is the 
number of blocks in localdata. The value m is a system parameter, set during the 
initialization routine. 

• Input: The localdata, holding the parameter r. 
• Processing: We select m indices in the range [0, r) without replacement, 

using Floyd’s Algorithm. 
• Output: The list of challenge indices. 

generateProof(challenge, pk, remotedata)  
This function returns the tags and blocks associated with the indices in the 
challenge. 

• Input: The challenge, remotedata and public key pk (empty). 
• Processing: In this implementation, the tag data and file blocks are held in 

memory, in an array. Selecting the challenged blocks and tags is an array 
lookup. This implementation is not appropriate files that are too large to 
be held in-memory. 

• Output: The proof, an array of blocks and tags, in the order requested by 
the challenge. 

keygen() 
Generates a symmetric key used to MAC blocks. 

• Input: None 
• Processing: Generate a private key using the randomBits function, 

provided by Charm’s integer module. 
• Output: The private key sk. The public key pk is empty. 

set_attributes(**kwargs)  
Sets optional attributes chosen by the user. Such attributes are: 

• key length 
• block size 
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• number of challenges 

tag(filename, pk, sk)  
Generates the tag data to be sent to the storage server. 

• Input: The name of the file to tag, and the key pair (sk, pk). 
• Processing: It breaks the file into blocks. It creates a unique filename, by 

appending a unique index to the filename. It creates a plaintext message 
by concatenating the unique filename, the block-number, and the block of 
data. A MAC for the plaintext is generated using Charm’s 
MessageAuthenticator class. 

• Output: The remotedata is a list of tags. The localdata is the number of 
blocks tagged. 

verifyProof(proof, challenge, pk, sk)  
This algorithm verifies the proof sent in response to our challenge. 

• Input: The proof, challenge, and key pair (sk, pk). 
• Processing: We use the verify function of the MessageAuthenticator class 

to re-compute the MAC for each block, and compare with the 
corresponding tag. 

• Stores: True, if passed verification, False otherwise. 
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