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ABSTRACT

The purpose of this work is to determine the necessity of a near real time ocean
modeling capability such as the Naval Oceanographic Office’s (NAVOCEANO)
Modular Ocean Data Assimilation System (MODAS) model in shallow water (such as
the Yellow Sea) mine hunting applications using the Navy’s Comprehensive Acoustic
Simulation System/Gaussian Ray Bundle (CASS/GRAB) model. Sound speed profiles
inputted into the CASS/GRAB were calculated from observational (MOODS) and
climatological (GDEM) data sets for different seasons and regions of four different
bottom types (sand, gravel, mud, and rock). The CASS/GRAB model outputs were
compared to the outputs from corresponding MODAS data sets. The results of the
comparisons demonstrated in many cases a significant acoustic difference between the
alternate profiles. These results demonstrated that there is a need for a predictive
modeling capability such as MODAS to address the Mine Warfare (MIW) needs in the
Yellow Sea region. There were some weaknesses detected in the profiles the MODAS
model produces in‘ the Yellow Sea, which must be resolved before it can reliably address

the MIW needs in that region.
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I. INTRODUCTION

During the “Cold War” the United States Navy focused most of its research and
development efforts on weapon systems, sensors, and counter measures that were
extremely effective in destroying and countering the Soviet Navy in “blue water” (deep
water regions beginning at the 100 m mark and greater) conflicts. After the Cold War the
United States did not realize how unprepared its forces were to operate in the “littoral”
(shallow waters defined as beginning at the 100 meter mark and below) until its was
forced to gradually increase its operations in the Persian Gulf, since the Gulf War.
Unfortunately, the U.S. Navy suffered three major ship casualties as a 1_'esu1t of mines
before significant funding went into the research and development for weapon systems,

sensors, and countermeasures that are effective in the littoral.

The sensors on ships and weapons torpedoes during the Cold War were designed
for the acoustically range independent environments characteristic of “Blue Water”
regions. These sensors are highly capable of long-range detections in deep waters but are
virtually blind even at short-range scenarios. These sensors are not designed for the
acoustically range dependent environment of the littoral. The source of interfering noise

for acoustic sensors in the littoral is reverberation from the sea surface and sea bottom.

The major threats in the littoral are diesel submarines and sea mines. The
combination of improvements in noise reducing technology and the development of Air
Independent Propulsion (AIP) technology have made diesel submarines very difficult to

detect in both the littoral and blue waters. After a weapon platform has detected its




targets, the sensors on torpedoes designed for blue water operations are not designed to

acquire a target in a reverberation-crippling environment.

Even though sea mines are not as sophisticated a weapons system as torpedoes,
they have been number one cause of U.S. Naval casualties since the end of World War II.
Sea mines are a relatively cheap weapons system that can be easily obtained by any
nation in mass quantities. In addition, Sea mines do not require an expensive and
sophisticated weapons platform for deployment; they can be easily deployed by small
watercraft. There are several types of mines, which are classified by their mode of
activation and their placement in the water column. The simplest of sea mines are
floating contact mines. These mines are usually detected visually and cleared by
minesweepers and Explosive Ordnance Disposal (EOD) units. A more complex type of
mines are influence mines. These mines have different mechanisms for activation, such
as magnetic and acoustic actuators. Influence mines are much more difficult to counter
since they are either tethered to the sea bottom at various depths or lie on the sea bottom.
Since these types of mines are situated below the sea surface, mine hunting sonars are
required for detection. The problems that are related to sonar detection of a target in the
littoral are compounded when the target is a sea mine due to the low target strengths of
Sea mines. The low target strengths of sea mines require the use of sensors with
frequencies higher than those sonars used for submarine detection. Bottom mines create
a much more difficult detection problem for the mine hunter. Operators of mine hunting
systems must perforfn the timely process of classifying all objects that closely fit the
dimensions of a Bottom mine and later evaluate these objects in closer detail with higher

resolution sensors.



In recent years, the U.S. Navy has focused much of its research and development
efforts in designing high frequency sensors and corresponding acoustic models to
overcome the threat in the littoral. The Comprehensive Acoustic Simulation System
(CASS) using the Gaussian Ray Bundle (GRAB) model is an acoustic model approved
by the U.S. Navy to predict the performance of active ocean acoustic systems that operate
in the 600 Hz to 100 kHz frequency range. Developed in 1993 by the Naval Undersea
Warfare Center Division Newport, this model is capable of modeling all the components
of passive and bistatic signal excess in range-dependent environments. The
CASS/GRAB has successfully modeled torpedo acoustic performance in shallow water
experiments off the coast of Southern California and Cape Cod, and is currently being

developed to simulate mine warfare systems performance in the fleet (Aidala et al. 1998).

The CASS/GRAB model is valuable tool for the AN/SQQ-32 mine hunting
detection and classification sonar. The performance of this model, as in all models, is
determined by the accuracy of its inputs such as sea surface conditions, bathymetry,

bottom type, and sound speed profiles.

The AN/SQQ-32 (Figure 1) is a variable depth mine hunting detection and
classification sonar for the Avenger (MCM-1) and Osprey (MHC-51) Surface Mine
Countermeasures (SMCM) ships. The AN/SQQ-32’s main components are a multi-
channel detection sonar assembly and near-photographic resolution classification sonar
assembly. The system has multiple operating frequencies and obtains acoustic data from
two independent acoustic search and classification arrays that maximize volumetric
coverage. Its multiple-ping processor enables it to detect mine-like objects in the high
reverberation environment of the littoral. Additionally, its multiple operating frequency

3




capability allows it to operate in both deep and shallow waters. The lower operating
frequencies allow the system to detect mine-like objects at longer ranges in shallow
waters. The classification sonar system’s near-photograph resolution and the systems
computer aided target classification system decreases the time required for mine

searching operations by reducing false target reporting.

Figure 1. The AN/SQQ-32 Mine Hunting Sonar System (From Raytheon Electronic
Systems Naval & Maritime Integrated Systems 2000).
NAVOCEANO constructs various environmental databases for Mine Warfare

(MIW) applications; these databases are used by the MIW Environmental Decision
4




Library (MEDAL). One of these databases is the “Provinced” (user derived) profiles.
This climatological database consists of spatial provinces that define an average of
several alternate temperature, salinity, and sound profiles for a shallow water region on a

monthly basis. Provinced profiles are derived from the MOODS database using the

. Naval Interactive Data Analysis System (NIDAS) software. It has been found that the

Generalized Digital Environmental Model (GDEM) climatology (consisting of an
average profile at grid point) is often inadequate to define the vertical features of shallow
water profiles for MIW applications. Also, due to the high temporal variability in
shallow water, the average profile seldom occurs, thus a better depiction is to include
“alternate proﬁl,es”‘ which can occur as often as the average. NAVOCEANO has
developed the Modular Ocean Data Assimilation System (MODAS) model to meet these
needs.

To determine if the MODAS model meets the MIW needs in shallow water
regions, a comparison with historical observational (MOODS) and climatological
(GDEM) profiles in an acoustic model is required. If there is a significant acoustic
difference of CASS/GRAB outputs between using MOODS and MODAS or using
GDEM and MODAS, then there is a need for a predictive modeling capability such as
MODAS. If there is no significant difference, then MODAS is not required to address
the MIW needs in these regions and the NAVOCEANO province profile products
derived from MOODS are sufficient.

In this thesis, an input file that simulates the parameters of the AN/SQQ-32 mine

hunting sonar was used to generate acoustic data. The input file was created by Ruth E.




Keenan of the Science Applications International Corporation and was created replacing
any sensitive parameters of the AN/SQQ-32 sonar with generalized sonar parameters.

The outline of this thesis is as follows: A description of the Yellow Sea geological
and oceanographic environments is given in Chapter II. A depiction of the
oceanographic data sets used for the study and the Navy’s Interactive Data Analysis
System (NIDAS) are given in Chapters III and IV. The CASS/GRAB model is described
in Chapter V. Seasbnal variability of acoustic transmission and the severe weather
effects on the acoustic transmission are investigated in Chapters VI and VII. The
sensitivity study on the hydrographic data input (MOODS, GDEM, and MODAS) is
given in Chapter VIII. The comparison is given during four seasons and four regions of
different bottom types (rock, gravel, sand, and mud). The uncertainty propagation from
the hydrographic input data into the CASS/GRAB model out put is discussed in Chapter

IX. In Chapter X, the conclusions are presented.




IL. ENVIRONMENT OF THE YELLOW SEA

A. GEOLOGY AND STRUCTURE

The Yellow Sea is a semi-enclosed basin situated between China and the Korean
peninsula with the Bohai Sea to the northwest and the East China Sea to the south. The
Yellow Sea is a large shallow water basin covering an area of approximately 295,000
km®. The water depth over most of the area is less than 50 m (Figure 2). Four major
fresh water run-offs flow into the Yellow Sea: the Yangtze River to the southwest, the
Yellow River and Liao River to the north, and the Han River to the east (Chu et al.

1997a).

Due to large tidal ranges and heavy sedimentation from river outflows, most of
the coasts surrounding the Yellow Sea contain numerous shoals and troughs extending .
from the shores. The bottom sediment types are finer along the coast of China and much
coarser along the shelf and the coast of the Korean peninsula. The bottom sediment of
the central and western regions of the Yellow Sea consists primarily of mud and the
eastern region is primarily sand. The mud sedimentation in the central and northwestern
regions of the Yellow Sea is due to the runoff from the great rivers of China (Shepard

1973).

Four regions with different bottom types were selected for the acoustic model
runs in this study (Figure 3). The first region consists of a Rock Bottom type and is
located in the north-central Yellow Sea at 37°-37.5°N, 123°-123.8°E. The second region
consists of a Gravel Bottom type and is located in the northern Yellow Sea at 38.4°-39°
N, 122°-123° E. The third region consists of a Sand Bottom type and is located in the

southeastern Yellow Sea at 35.5°-36.5° N, 124.5°-126.2° E. The fourth region consists of
7




a Mud Bottom type and is located in the south-central Yellow Sea at 35°-36.5° N, 123°-

124.5°E. The bottom sediment composition parameters are listed in Table 1.
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Figure 2. Bottom Topography of the Yellow Sea and the surrounding regions. The data
was obtained from the U.S. Naval Oceanographic Office DBDBS world bathymetry
database. Depths are in meters. (From Chu et al. 1997a).
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Yellow Sea Bottom sediment chart (From Ninno and Emery 1961).
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Bottom Sediment | Bulk Grain Long (32 Char) Density | Sound Speed Wave
Composition Size Index Name gm/cm’ Ratio Number
Ratio
BOULDER -9 Rough Rock 2.5 2.5 0.0137
ROCK -7 Rock 2.5 2.5 0.0137
GRAVEL -3 Gravel, Cobble or Pebble 25 1.8 0.0137
-1 Sandy Gravel 2.492 1.337 0.01705
-0.5 Very Coarse Sand 2.401 1.3067 0.01667
0.0 Muddy Sandy Gravel 2314 1.2778 0.01630
0.5 Coarse Sand 2.231 1.2503 0.01638
1.0 Gravelly Muddy Sand 2.151 1.2241 0.01645
SAND 1.5 Sand or Medium Sand 1.845 1.1782 0.01624
2.0 Muddy Gravel 1.615 1.1396 0.01610
2.5 Silty Sand or Fine Sand | 1451 1.1073 0.01602
3.0 Muddy Sand 1.339 1.0800 0.01728
3.5 Very Fine Sand 1.268 1.0568 0.01875
4.0 Clayey Sand 1.224 1.0364 0.02019
4.5 Coarse Silt 1.195 1.0179 0.02158
5.0 Sandy Silt 1.169 0.9999 0.01261
5.5 Medium Silt 1.149 0.9885 0.00676
SILT 6.0 Silt 1.149 0.9873 0.00386
6.5 Fine Silt 1.148 0.9861 0.00306
MUD 7.0 Sandy Clay 1.147 0.9849 0.00242
7.5 Very Fine Silt 1.147 0.9837 0.00194
8.0 Silty Clay 1.146 0.9824 0.00163
CLAY 9.0 Clay 1.145 0.9800 0.00148
10.0 1.145 0.9800 0.00148

Table 1. APL/UW TR9407 Geo-acoustic parameters associated with bulk grain size
index used by the CASS/GRAB model. Sand is the default value for CASS/GRAB
(From NAVOCEANO 1999).

B. OCEANOGRAPHY

The four seasons in the Yellow Sea are defined as follows: the winter months run
from January through March; the spring months run from April through June; the
summer months run from July through September; and the fall months run from October
through December.
season brings very cold northwest winds through the Yellow Sea region. During this
period, the jet stream is located south of the Yellow Sea and the polar front is located
north of the Philippines. At the beginning of the winter season the mean wind speed is 6

m/s and the sea air temperature (SAT) falls in the range of 0° to 8° C, whereas the sea

The Siberian high-pressure system during the winter monsoon
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surface temperature (SST) is usually 2° to 6° C warmer causing the Yellow Sea to lose
heat to the atmosphere during this time period. The winter monsoon winds peak with a
maximum of 35 m/s in the central Yellow Sea, and 28 m/s mean through out the entire
region (Chu et al. 1997a). These winds cause the formation of a southward sea level
gradient that force bottom water to flow northward. These cold/strong winter monsoon
winds cause mechanical forcing due to the strong wind stress and thermal forcing
resulting from the upward buoyaﬁcy flux at the air-ocean interface caused by the cold
SAT. The combined action of the mechanical and thermal forcing causes the mixed layer

to drop to its deepest point during the winter season.

The transition into the spring season begins in late March when air temperatures
are an average of 5° C warmer than the previous month due to a rapid weakening of the
Siberian high that progress through out the months of March and April. By the end of the
first month of spring, the atmospheric polar front has transited northward into Korea
followed by warm and humid air masses into the Yellow Sea region. This transition
brings about an average increase in the SST of 10° C during the spring. Spring in the
Yellow Sea is also characterized by highly variable winds, cloud cover, and precipitation
due to a numerous number of front driven events transiting through the region (Chu et al.

1997a).

The transition into the summer season begins in late May and early June where
an atmospheric low-pressure system, generated north of the Yellow Sea, called the
Manchurian Low moves west over Manchuria in late June. The movement of this low-
pressure system sets up circulation of the southwest monsoon in the Yellow Sea during
the summer months. During this period, the jet stream is located south of Korea and the

11




polar front is located south of the Japanese Islands of Kyushu and Shikoku. In July, the
atmospheric low-pressure system in the north, in conjunction with an atmospheric high-
pressure system located in the southeast called the Bonin High, generates warm and
humid southerly winds over the Yellow Sea region. The warm air from these southerly
winds increases the SAT over the Yellow Sea during the summer months to a range of
24° to 26° C, approximately 1.5° to 2° C warmer than the SST. Although there is a high
weather activity in the Yellow Sea during the summer monsoon season, the mean wind
speed throughout the region only ranges from 3 to 4 m/s. During the summer months,
there is also a stronger downward net radiation and this effect, combined with the warmer
air, causes a downward heat flux that reduces the depth of the mixed layer (Chu et al.
1997a, b). The summer season is also usually characterized by Tropical Cyclones that
transit through the region, moving in a northwest direction from the East China Sea into
the southern Yellow Sea and into China. Occasionally, a tropical cyclone will transit in a

northerly direction from the East China Sea and throughout the Yellow Sea.

October marks the beginning of the fall season in the Yellow Sea. In October, the
warm southerly winds of the summer monsoon begin to subside in the region and the

SAT and SST begin to gradually transition to those of the winter season.

The two main characteristic temperature profiles of the Yellow Sea are during the
winter and the summer months. In the winter months, the temperature profiles
throughout the region are characterized as isothermal (Figure 4a). In the summer months,
the temperature profiles throughout the region are characterized by a multi-layer profile

consisting of 2 mixed layer, a thermocline, and a deep layer (Figure 4b).
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III. OCEANOGRAPHIC DATA SETS

A. MASTER OCEANOGRAPHIC OBSERVATIONAL DATA SET (MOODS)

Master Oceanographic Observation Data Set (MOODS) is the observational
database of the Navy and contains all available oceanographic profile data. MOODS
currently contains over 5.8 million observations worldwide dating back to 1920
(NAVOCEANO 2000). MOODS is a collection of ocean data observed worldwide
consisting of temperature-only profiles, temperature and salinity profiles, sound speed
profiles, and surface temperature data. The biggest limitation of MOODS is its irregular
distribution over time and space. Since observational data is collected from numerous
sources during times of opportunity, the locations and times these observations are made
vary greatly. Thus, the density of observations made in common shipping lanes is much
greater than those made outside of the shipping lanes. In the case of the Yellow Sea, -
there are a very limited number of observations made off the coast of China. In addition,
the number of observations are much more sparse during the fall and winter months as
compared with the spring and summer months. Another limitation is the high variability
of the data’s vertical resolution and quality due to the numerous types of instruments used
for sampling as well as the level of expertise of the sampler.

Due to the numerous sources and the tremendous quantity of samples that are
incorporated into MOODS by NAVOCEANO, the data must be systematically evaluated
to remove erroneous profiles. The errors usually contained in MOODS are profiles with
observations obviously misplaced by location or season, duplicate profiles, and profiles
with large peaks (temperatures higher than 35° C and lower than —2° C do not match the

characteristics of surrounding profiles) (Chu et al. 1997b). The Naval Interactive Data
15




Analysis System (NIDAS) computer software was used to simplify the task of removing
erroneous profiles and creating MOODS data sets for evaluation by the CASS/GRAB

model.

B. GENERALIZED DIGITAL ENVIRONMENT MODEL (GDEM)

The Generalized Digital Environmental Model (GDEM) is climatology data that
has been generated by the Naval Oceanographic Office since 1975. Climatological data
is data that has been obtained from taking the mean of data of temperature and salinity
profiles from a period of many decades. GDEM is created from all available sources of
temperature and salinity profile data available globally, with MOODS being the primary

input. Before incorporating MOODS into GDEM, erroneous profiles are removed as

described earlier.

GDEM is gridded data in the form of a four dimensional digital model (latitude,
longitude, depth, and time). The gridded data is generated in three resolutions; 30°, 20°,
and 10’ latitude-longitude grids and 3, 6, and 12-month time intervals. The Global
GDEM data set, which covers much of the globe, is generated with a 30 resolution.
Regions that are operationally important to the United States Navy are generated with
higher horizontal resolutions of 20’ and 10°. These regions predominantly consist of
shallow water regions like the Mediterranean, the Yellow Sea, and the Persian Gulf
(Figure 3). NAVOCEANO has combined all these different types of resolution GDEM
into a single database called GDEM V (GDEM Variable resolution) to allow for the
highest resolution and most updated GDEM data sets to be available to the fleet.

The higher 10-minute horizontal resolution GDEM also contains a higher vertical

resolution. This GDEM is created using a separate process based more on water mass
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called the Shallow Water Data Models (SWDMs) that produces the Shallow Water Data
Base (SWDB) climatology. In addition, GDEM does not extend beyond 100 meters in
depth whereas SWDMs extends out to 50 meters. For shallow water depths (< 200 m),
the SWDB climatology is used and in depths greater than 500 m, Global GDEM is used.
~ The complete 10-minute horizontal resolution GDEM climatology is formed by blending
Global GDEM and the SWDB with a weighted average between 200 and 500 m. This
GDEM is blended into adjacent GDEM of 20 and 30-minute resolution to produce a

seamless transition of gridded data (NAVOCEANO 2000).

GDEMYV 2.5 coverage

9()° i L T L T
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® 10-arcminute = 20-arcminute - 30-arcminute
Figure 5. GDEM Coverage and Horizontal Resolutions (From NAVOCEANO 2000).

The gridded GDEM data is created by fitting each MOODS profile to a
determined set of analytical curves that represent the mean vertical distributions of

temperature and salinity for grid squares. These analytical curves are generated by
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averaging the coefficients of the mathematical expressions for the curves found for
individual profiles. There are different set of analytical curves that correspond to
shallow, mid-depth and deep-depths regions. Each of the corresponding sets of analytical
curves is chosen to minimize the number of parameters required to generate a smooth
mean profile over the range. Discontinuities in the profiles’ vertical gradients are
prevented by choosing conditions that match through the depth range transitions. This
process results in a climatological data set that is both horizontally and vertically
continuous. In addition, temperature and salinity profiles are generated separately to
allow the data to be checked for stable densities and to enable the utilization of the large

database from expendable bathythermographs (XBT) observations (Teague et al. 1990).

C. MODULAR OCEAN DATA ASSIMILATION SYSTEM (MODAS)

MODAS, recently developed at the Naval Research Laboratory (NRL), uses a
modular approach to generate three-dimensional gridded fields of temperature and
salinity. Its data assimilation capabilities may be applied to a wide range of input data,
including randomly located in-situ, satellite, and climatological data.  Available
measurements from any or all of these sources are incorporated into a three-dimensional,

smoothly gridded output field of temperature and salinity.

MODAS’ primary outputs are temperature and salinity fields that may be used to
calculate three-dimensional sound speed fields. The sound speed field, in turn, may be
used to drive acoustic performance prediction scenarios, including simulations, tactical
decision aids, and other capabilities. Other derived fields, which may be generated and
examined by the user, include two-dimensional and three-dimensional quantities such as

geostrophic currents, mixed layer depths, sonic layer depth, deep sound channel axis
18



depth, depth excess, and critical depth. These are employed in a wide variety of naval

applications and TDAs.

The most current version of MODAS in use is MODAS 2.1, (which has so far and
will continued to be referred as MODAS in this paper) a second generation MODAS.
The first generation MODAS was MODAS 1.0 which was accepted in the Navy’s OAML
in November 1995. MODAS 1.0 was initially designed to perform deep-water analyses
that produced outputs that supportéd deep-water anti-submarine warfare operations.
However, MODAS 1.0 was constrained by depth because its climatological data was the
original NAVOCEANO GDEM, which did not extend beyond depths of less than 100
meters. The capabilities of MODAS 1.0 were increased when GDEM was initially
augmented with SWDB, but at the time, SWDB was limited to the northern hemisphere.
The Levitus global database, which has less horizontal resolution than GDEM, was used
as a second source for the first guess field in MODAS 1.0, but its horizontal resolution
was not sufficient for an accurate application in MODAS 1.0. In addition to a lack of
vertical resolution, GDEM and Levitus lacked some of the statistical descriptors that
made them inadequate for the optimum interpolation analysis of observations like XBT

profiles and satellite Multi-Channel Sea Surface Temperature Sensor (MCSSTS) data.

Second generation MODAS (MODAS 2.0) was created to overcome the
limitations of MODAS 1.0. One of the major implementations was the development of
MODAS internal ocean climatology (Static MODAS climatology) for both deep and
shallow-depths. Static MODAS climatology is produced using MOODS as in GDEM but
with some improvements. Static MODAS climatology covers the ocean globally to a
minimum depth of 5 meters and has variable-horizontal resolution from 7.5-minute to 60-
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minute resolution. Static MODAS climatology also contains important statistical
descriptors required for optimum analysis of observations that include bi-monthly means
of temperature, coefficients for calculation of salinity from temperature, standard
deviations of temperature and salinity, and coefficients for several models relating
. temperature and mixed layer depth to surface temperature and steric height anomaly. In
addition, in MODAS 1.0 some of the algorithms for processing and for performing
interpolations designed for speed and efficiency in deep waters with the cost of making
some weak assumptions about the topography. This shortcut method extended all
observational profiles to a common depth, even if the depth was well below the ocean
bottom depth, by splicing onto climatology. The error introduced using this shortcut
method is amplified when this method is applied to shallow water regions. MODAS 2.0
does not use this shortcut method; instead it performs optimum interpolation analysis for
each depth above the ocean bottom separately. The optimum interpolation algorithms
used in MODAS 2.0 increases speed of the analysis by using a method commonly used in
meteorological systems called the “volume’ technique. The capability to use satellite
altimetry was another function implemented into MODAS 2.0. Using optimum
interpolation algorithms, these SSHs are gridded and used with gridded SST and
climatological algorithms and databases to produce three-dimensional temperature and

salinity grids (Fox et al. 2000).

MODAS 2.0 was updated to version 2.1 with changes implemented to correct
specific problems identified during several fleet exercises. One of the major

implementations was the redevelopment of the global database to incorporate higher
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resolutions in near shore regions to produce outputs that are more realistic (Fox et al.

2000).

MODAS has two modes of usage; Static MODAS and Dynamic MODAS. As
discussed earlier, Static MODAS climatology is an internal climatology used as
MODAS’ first guess field. The other mode is referred to as Dynamic MODAS
climatology, in which MODAS combines locally observed and remqte se_:nsed ocean data
with climatological information to produce a near real time gridded three-dimensional
analysis field of the ocean temperature and salinity structure as an output. Grids of
MODAS climatological statistics range from 30-minute resolution in the open ocean to
l.S-minute resolution in shallow waters and 7.5-minute resolution near the coasts in
shallow water regions.

The MODAS model operates in the following manner; the MODAS two-'
dimensional SST field uses the analysis from previous days field as the first guess, while
the MODAS’ two-dimensional SSH field uses a large-scale weighted average of 35 days
of altimeter data as a first guess. The deviations calculated from the first guess field and
the new observations are interpolated to produce a field of deviations from the first guess.
Next, a final two-dimensional analysis is calculated by adding the field of deviations
from the first guess to the first guess field. When the model performs an optimum
interpolation for the first time it uses the Static MODAS climatology for the SST first
guess field and zero for the SSH first guess field. Every data after the first optimum
interpolation it uses previous day’s first guess field for SST and a large-scale weighted
average is used for SSH. Synthetic profiles are generated at each location based on the

last observation made at that location. If the remotely obtained SST and SSH for a
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location do not differ from the climatological data for that location, then climatology is
used for that profile. Likewise, if the remotely obtained SST and SSH for a location
differ from the climatological data for that location then the deviation at each depth are
estimated. Adding these estimated deviations to the climatology produces the synthetic
temperature profile. Finally, the synthetic temperature profile is used to produce a
synthetic salinity profile by using the climatological temperature and salinity relationship

at that location (Fox et al. 2000a).

In shallow water regions, it was found that generally the altimetry is not accurate
enough to use, due to additional problems with orbit error and other corrections that
increased the error level near land. NAVOCEANO's initial solution was to produce a file
that was a highly smoothed version of the bathymetry with specified parameters to use in
controlling the use of the altimetry. This solution turned out to be insufficient, based on
comparisons to all the MOODS profiles that hav¢ been acquired since January 1, 1993, so
a simple graphic was produced that NAVOCEANO can use to determine when to turn on

or off altimetry.

Studies have shown that MODAS performs well when observational SSH (i.e.
data from XBTSs) is used and when the 'raw' altimeter data (the data right under a track
before it's been turned into a complete grid of data) is used. In water depths less than 150
meters, altimetry is turned off and the synthetics are based solely on the SST grid.
Deeper than 400 meters, the synthetics are computed using both SST and SSH. In
between those two depths, two synthetics are produced, one using SST only and one
using SST plus SSH. Then those two estimates of the synthetics are averaged together

using weights based on the water depth. At 150 meters, the 'temperature-only-synthetic’
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is weighted 1.0 and the 'SST + SSH synthetic' is weighted 0.0. At 500 meters, the 'SST
only' synthetic gets a 0.0 weight and the 'SST + SSH' synthetic gets a 1.0 weight. At 325
meters (the midpoint between 150 and 400 meters), the two synthetics are each weighted
0.5 each. So there is the linearly tapered weighting that estimates the synthetic based on

the 'SST synthetic' and the 'SST + SSH synthetic' (Fox, Personnel Communication).

In the Yellow Sea, the MODAS model is operated in the degraded mode of SST
and MODAS climatology only mode. The correction of altimetry for use in shallow

water regions will be the best improvement to MODAS so far.
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IV. NAVAL INTERACTIVE DATA ANALYSIS SYSTEM
(NIDAS)

A. MODEL DESCRIPTION

The NIDAS software provides NAVOCEANO with an interactive capability for
several types of oceanographic, metrological, and satellite defined data to create three-
dimensional gridded fields of temperature, salinity, and sound speed profiles constructed
from a combination of provinced data and gridded data. NAVOCEANO uses NIDAS to
construct the environmental database called Provinced Profiles, which is used by
MEDAL. Province Profiles is a climatological database derived from the MOODS
database that consists of spatial provinces that define an average and several alternate
temperature, salinity, and sound speed profiles for a shallow water region on a monthly

basis (Mississippi State Center of Air Sea Technology 1997).

The original NIDAS software is a UNIX based software requiring the use of
graphics license, thus its use was limited to facilities with UNIX systems that had the
proper graphic license. In an effort to expand and facilitate the use of the NIDAS
software, a JAVA based version of NIDAS was created for Windows NT operating
systems in August of 2000. This version was NIDAS 5.1 developed by Clifton Abbot at
Mississippi State Center of Air Sea Technology, Stennis Space Center. NIDAS 5.1a was
used in this thesis and the release of version 51.b is expected sometime this year. NIDAS
5.1b will fix some of the bugs contained in the earlier versions and will have increased

capabilities, such as a printing function.
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B. CREATING AND COMPARING REGIONAL AND SEASONAL MODAS,
MOODS, AND GDEM DATA SETS USING NIDAS

All data sets used in this thesis are unclassified. The unclassified MODAS data
sets used were obtained from Mr. Dan Fox of NAVOCEANO via a public fip site. The
MODAS data sets were obtained in a NIDAS compatible binary format called “Master
format’. The MOODS and GDEM data sets were also obtained from NAVOCEANO on
CD-ROM. The MOODS and GDEM data sets were not in the Master format and were

converted into the Master format using a FORTRAN code.

The NIDAS software allows all desired data sets for a predefined project area to
be displayed all at once by overlaying the various profiles in different colors in the same
analysis window. The user can select to view plots of salinity versus depth, temperature
versus depth, sound speed versus depth, etc., for all the profiles in a data set in the
analysis window. The analysis window allows the user to view all the data available
from a data set for a project area as points-on a two-dimensional geographical map. This
function is especially useful in analyzing MOODS data sets since it is non-gridded
observational data, thus was the limiting factor of the three data sets in selecting regions
of different bottom types. The two-dimensional geographical map in the analysis was
used to help select regions with sufficient MOODS observational profiles for comparison

with the MODAS data sets.

The analysis window in NIDAS also has a function known as the “polygon
function” that allows the user to select a region within the two-dimensional geographical
map of the project area for analysis by drawing a polygon around the desired region.

After a polygon has been created for a region, the profiles for that region are
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automatically highlighted for analysis in all of the plots in the analysis window. The user
can then choose to view and edit the data for all the profiles in the polygon to create a
user defined data set. This created data set can then be saved as an export file in three
different formats, “Master”, “CASTAR”, and “Text”, for use with oceanographic and

acoustic models.

In this study, the polygon function was used to visually analyze and create data
sets of different regions that were defined by bottom type. The three data sets were
overlaid in the analysis window using different colors and their salinity, temperature, and
sound speed profiles were visually analyzed for each month at the four different regions
selected for this study. The data sets for MODAS, MOODS, and GDEM for the four
different months (February, May, August, and November, which represent mid-season
for the four seasons) and for the selected regions wére created using the polygon

function.

The results of all the visual comparisons made for the MODAS, MOODS, and
GDEM profiles for all four seasons were for the most part similar. This comes to no
surprise since the MODAS climatology data and GDEM are derived directly from
MOODS. The main differences were that the MODAS and GDEM profiles had smooth
transitions, while MOODS had sharp transitions from the mixed layers to the thermocline
and from the thermocline to the sub layer. This tended to weaken the gradient of the
thermocline and surface ducts when they were present. The differences in transitions are
due to the higher vertical resolutions contained in both MODAS AND GDEM and the
averaging involved in the development of the MODAS climatology and GDEM from the
MOODS observations. Another difference was found in the temperature and speed
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profiles during the winter mainly between MODAS and MOODS. The difference is
evident near the bottom: Many MODAS profiles in February show the increase of
temperature with depth (downward positive gradient), however, all the MOODS profiles
(observational) show the isothermal pattern. The profiles with such a difference were
most found in the shelf of the southern Yellow Sea and northern East China Sea. This
location falls in the southern portion of the mud region used in this study. This difference
may be due to a lack of observational data in that region when the MODAS climatology
was created, but it cannot be determined with certainty without a study of the MODAS
climatology which was not available during this study. During the winter months, the
near bottom positive gradient was also present in some of the GDEM profiles but the
gradients were not as strong as those found in MODAS. In addition, the near bottom
gradients were not isolated to just one region; they were also found in the other regions

used in this study.

The data sets for MODAS and GDEM were created using the polygon function
without editing. The MOODS data sets were also created using the polygon function but
were edited to remove erroneous profiles as described earlier. All the data sets were
saved as export files in the “CASTAR” format. The CASTAR format. was chosen
because most of the data for each profile can viewed as text and this format is easier to

manipulate with MATLAB to create input files for the CASS/GRAB model.
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V. COMPREHENSIVE ACOUSTIC SIMULATION SYSTEM/
GAUSSIAN RAY BUNDLE (CASS/GRAB)

A. MODEL DESCRIPTION

CASS/GRAB is an active and passive range dependent propagation,
- reverberation, and signal excess acoustic model that has been accepted as the Navy’s
standard model. The GRAB model’s main function is to calculate eigenrays in range-
dependent environments in the frequency band 600 Hz to 100 kHz and to use the
eigenrays to calculate propagation loss. The CASS model is the range dependent
improvement of the Generic Sonar model (GSM). CASS performs range independent
monostatic and bistatic active signal excess calculations. The CASS model incorporates
the GRAB eigenray model as a subset (Figure 4). CASS uses a driver that calls the
GRAB eigenray model to compute eigenrays and propagation loss (Keenan 1998).

In the GRAB model, the travel time, source angle, target angle, and phase of the
ray bundles are equal to those values for the classic ray path. The main difference
between the GRAB model and a classic ray path is that the amplitude of the Gaussian ray
bundles is global, affecting all depths to some degree, whereas classic ray path
amplitudes are local. GRAB calculates amplitude globally by distributing the amplitudes

according to the Gaussian equation

T 2
¥, = Eﬁv—;—ﬁexp{— 03-z,)/0,T},

where the I, represents losses due to volume attenuation and boundary interaction, 6, =
(0.5)(max(Az,4wA)) defines the effective standard deviation of the Gaussian width, and
By is a factor that depends only on the source and is chosen so that the energy within a
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Graphic Displays
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Figure 6. CASS/GRAB Overview (From Keenan et al. 1999).

geometric-acoustic ray tube equals the energy within a Gaussian ray bundle. The

variable z, is the depth along the V* test ray at range 7, z is the target depth, p: is the

horizontal slowness, Az is the change in ray depth at constant range due to a change in
source angle, and A is the wavelength. The 'sélection of the effective standard deviation
Oy is the weakest cOmpénent in providing a firm theoretical Basis for the GRAB model.
The closer the test ray is to the target, the larger the contribﬁtion it has to the final power

weighted eigenray. These test rays are called ray bundles since they distribute some
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energy to each depth. GRAB classifies each ray group into a ray family. GRAB version
1.0 defines a ray family as ray groups that have a similar number of surface and bottom
bounces. Under caustic conditions there will be ray bundles with surface and bottom
depth differences greater than and less than zero within each ray family and GRAB
computes an eigenray for each group. Thus, GRAB computes up to two weighted
averaged ray groups for each ray family. GRAB does not store all the eigenrays it
calculates; instead, it performs a user accessible eigenray tolerance test to determine if
eigenrays are too weak to be stored in the eigenray file. GRAB then computes the
random or coherent propagation loss from the eigenrays stored in the eigenray file and

stores in them in separate pressure files (Aidala et al. 1998).

CASS computes range dependent reverberation for monostatic and bistatic
transmitter to target and target to receiver scenarios. Reverberation is calculated in the
time domain centered at the receiver. It accounts for all possible combinations of signal
eigenray paths, sums them all up at a given range, and selects the peak signal to noise/
reverberation level to determine signal excess (Keenan 1998).

B. MINE WARFARE SCENARIOS

The high environmental variability and strong multi-path interactions encountered
in the littoral make acoustic modeling very difficult. In these shallow water regions,
accurate arrival structure information is required to model the performance of high
frequency acoustic systems. Other Navy range-dependent acoustic models such as the
Navy’s PE (Parabolic Equation) model are inadequate because they become
computationally intensive above several kilohertz. The GRAB eigenray model produces

the required arrival structure needed for systems applications in the littoral zone. This
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capability makes the CASS/GRAB a very effective tool for modeling the performance
high frequency acoustic systems in the littoral. In addition, the CASS/GRAB model has
successfully modeled torpedo reverberation data in 1994 in shallow water, range
dependent environments at the NUWC Southemn California (SOCAL) and Cape Cod

- torpedo exercise areas.
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VI. SEASONAL VARIABILITY OF ACOUSTIC TRANSMISSION

A. GDEM SEASONAL VARIABILITY FOR SOUND SPEED PROFILES

The annual mean for the GDEM sound speed profiles for the four regions selected
for this study were calculated and plotted against each of the monthly profiles to examine
seasonal variability of the GDEM sound speed profiles. One specific location

representing one sound speed profile was selected for each region.

The first location is a small region with a Rock Bottom type located in the mid-
eastern Yellow Sea (Region 1). The sound speed profile for the annual mean at this
lpcation has a negative sound speed gradient from the surface to the bottom, thus having
the characteristic of a thermocline that extends through the water column (Figures 7 and
8). The winter months of January through March contain sound speed profiles that are
relatively isothermal with a slight positive gradient. In the first month of spring, April,
the sound speed gradient begins to become negative and take the form of a thermocline
very similar to the annual mean by the month of May. The sound speed gradient
continues to become more negative from June to the summer month of August. Then in
September, the sound speed gradient becomes less negative. In the fall month of
November, a mixed layer with a surface duct is generated and by December, the sound

speed profile has returned to the isothermal conditions of winter.

The second location is a small region with a Gravel Bottom type located in the
northeastern Yellow Sea (Region 2). The sound speed profiles for the annual mean and
for each of the 12 months closely reflect those at the first location (Figure 9). The most
significant difference between the two locations is that the isothermal layer during the
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winter months in Region 2 falls below 1460 m/s and the isothermal layer in Region 1

does not fall below 1465 m/s. The difference is accounted for the fact that Region 2 is

located further north in the Yellow Sea.

Sound Speed (m/s)
1460 1500 1540

Surface 7*
\ duct
\ profile

| < Main thermocline
1000 ©  polar
region . Deep sound channel axis
i \
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E ; \
< §
S 2000 -
o ;
O
Deep isothermal layer
3000
4000 -

Figure 7. Generic sound speed profiles (From Jensen et al. 2000).

34



Sound Speed versus Depth (Rock Bottom) Sound Speed versus Depth (Rock Bottom) Sound Speed versus Depth (Rock Bottom)
0

-0 — Monthly ° \ . '
E —e— Annual Mean | ' I ! '
£ 20k - T .- - o7 = - L ot e - - o P T
A T g T g
a | , w ! , , = , , . \ \
= A40F)- 2T 40t>- - - - - - i SR 40 - - - - -t gl
g 0 ' + ' 0 ’ ' v \ il ' v v . .
1470 1475 1480 1485 1490 1495 1470 1480 1490 1470 1475 1480 1485 1490 1495
- 0 [} 0
8 20, . . . . F) 20 - . . g 20 ; . .
S - . . . . = d \ . , = . . )
i S S I S AOp ¢
<
1475 1480 1485 1490 1495 1480 1485 1490 1495 1480 1490 1500
1] 0 0
E . . . i 0 . ) 0 '
£ 20F - - o 20f A T o 20
) ; . . . g , ) ) . . S
a . . . . < 4 . . ) . @
1Y S G e ek aobge oot s 40t
= : ' ' * 0 ' ' 0 0
3 Jd
1490 1500 1510 1520 1480 1500 1510 1520 1530 1490 1500 1510 1520
o 0 0
E 1 . [ ) .
£ 20} - 20} - - T e o 20f - - - | - T - - -
3 3 . , . g . .
o = . . . . e i . .
3 40 40r - - - -0 R Aot - - - - -
1490 1500 1510 1485 1490 1495 1500 1485 1490 1495
SPEED (m/s) SPEED (m/s) SPEED {m/s)

Figure 8. Monthly and annual mean sound speed comparison for Rock Bottom for all 12
months.
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Figure 9. Monthly and annual mean sound speed comparison for Gravel Bottom for all
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The third location is a region with a Sand Bottom type, (the predominant bottom
type for most of the western coast of the Korean peninsula) located in the southeastern
Yellow Sea (Region 3). Again, the sound speed profiles for the annual mean and for each

of the 12 months closely reflect those in Region 1 (Figure 10).

The fourth location is a region with a Mud Bottom type, (the predominant bottom
type for most of the central and eastern Yellow Sea) located in the south-central Yellow
Sea (Region 4). The sound speed profiles for the annual mean and thé wiﬁter, spring, and
summer months are very similar to those of Region 1 (Figure 11). During the fall months
in this region, a mixed layer is present that extends to a depth of approximately 30
meters. A surface duct is present in the mixed layer of the November and December
pl;oﬁles. In addition, a deep isothermal layer is present at a depth of approximately 50

meters in the October and November profiles.
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B. GDEM SEASONAL VARIABILITY FOR SIGNAL EXCESS

As described earlier, the environmental effects on the performance of the
AN/SQQ-32 mine hunting sonar system is being simulated by the CASS/GRAB model.
This system is a variable depth high frequency sonar system, which allows the user to
place the sonar at various positions in the water column to optimize the detection of
either Moored or Bottom mines (Figure 10). In complimenting the AN/SQQ-32 mine
hunting sonar system concept, two source depths were chosen for this study. The first
source depth chosen was a depth of 25 feet, which places the source at the depth of a
moored mine positioned for the hull depth of a large war ship. This depth also places the

source within the mixed layer or surface duct to increase detection range if either are

present.

Figure 12. AN/SQQ-32 Concept.

38




The second source depth chosen was 125 feet for bottom depths greater than 135
feet, 75 feet for bottom depths between 135 feet and 85 feet, 50 feet for bottom depths
between 85 and 55 feet, and no second source depth was chosen if the bottom depth was
less than 55 feet. These depths usually place the source within or below the thermocline
in order to optimize detection ranges. In addition, a moderate wind speed of 5 knots and
an intermediate receiver tilt angle of 8 ° were used as inputs for all of the CASS/GRAB

model runs in this study.

The maximum detection ranges were determined at both source depths for each
month at the four different bottom type locations. In a range dependent environment
such as the shallow waters of the Yellow Sea, the detection threshold is reverberation
limited. Reverberation from a Rock Bottom is the highest of the four bottom types,
followed by a Gravel Bottom, Sand Bottom, and Mud Bottom. Therefore, maximum

detection ranges are very dependent on bottom type and bottom depths.

The maximum detection ranges for Region 1 were relatively short due to the high
level of bottom reverberation generated by the Rock Bottom (Figure 13). The maximum
detection ranges for a source depth of 25 feet and a target at a depth of 26 feet were
approximately 160 yards for the months of January, February, March, and December, and
were approximately 120 yards for the remaining months. The reduction in the detection
ranges can be attributed to the shifting of sound propagation tbwards the sea bottom by
the thermocline present during those months, thus causing a decrease in the sound
propagating in the upper water column and an increase in reverberation from the sea

bottom. There were no detections for any of the months for a target located on the
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bottom due to the high level of reverberation and possibly the relatively large distance

between the source and the ocean bottom (Figure 14 and 15).

Monthly Maximum Detection Ranges (Rock Bottom/ Source Depth = 25 ft)
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Figure 13. Monthly maximum detection ranges for a Rock Bottom at two source and
target depths.

There were no detections for any of the months for a target at a depth of 26 feet
and a source depth of 125 feet. This is due to placing the source further away from a
target in the upper water column and placing it closer to the sea floor thus generating a
higher level of bottom reverberation. The maximum detection ranges for a target on the
bottom and a source depth of 125 feet were approximately 55 yards for the months of
January, February, March, April, and December, and approximately 35 yards for the
remaining months. The decrease in the detection ranges from May through November is
due to the source situated under the main thermocline, causing the sound propagation to
be trapped between the main thermocline and the bottom, thus generating a high level of

reverberation from the sea floor (Figure 16-17).
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The maximum detection ranges for Region 2 were also relatively short due to the
high level of bottom reverberation generated by the Gravel Bottom (Figure 20). The
maximum detection ranges for a source depth of 25 feet and a target depth of 26 feet
were approximately 250 yards for the months of January, February, March, October,
November, and December, approximately 150 yards for the months of April, May, and
June, and approximately 225 yards for the months of August and September. An
interesting feature can be seen for the month of July, which has a detection range of over
1000 yards. This dramatic increase in the detection range can be attributed to the large
negative gradient of the thermocline which focuses the sound propagation towards a point
in the sea bottom producing a Bottom Bounce that forms a caustic at the convergence
zone (Figure 18-20). As before, the decreases in detection ranges during some of the
spring and summer months are attributed to the thermocline. Again, there were no
detections for any of the months for a target located on the bottom due to the high level of
reverberation and the relatively large distance between the source and the ocean bottom
(Figure 21 and 22). The maximum detection ranges for a target at a depth of 26 feet and
a source depth of 125 feet were approximately 80 yards for the months of January,
February, March, and December, and approximately 120 yards for the remaining months.
Again, these very small detection ranges can be contributed to the higher level of
reverberation the receiver is exposed to by lowering it closer to the bottom ocean bottom.
In this scenario, the increase in the detection ranges for the months of April through
November may be attributed to the thermocline shifting sound propagation into the sea
bottom and generating a bottom bounce, thus directing sound propagation towards the

target in the upper water column. There were no detections for a target at the bottom for

45




source depth of 125 feet. This may be due to the water depth at this location being

deeper than in Region 1 by 20 meters, thus causing the receiver to be to far away from a

bottom target to detect through the strong bottom reverberation (Figure 23 and 24).
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Figure 18. Monthly maximum detection ranges for a Gravel Bottom at two source depths
and target depths.
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The maximum detection ranges for Region 3 were much larger overall than the
first and second regions due to the lower levels of reverberation produced by a Sand
Bottom (Figure 25). The maximum detection ranges for a target at 26 feet and a source
depth of 25 feet were approximately 150-175 yards for the months of January through
May and August through December and over 1000 yards for the months of June and July.
The strong thermocline present in the month of June and July generated a convergence
zone, which contributed to the largé increase in detection ranges (Figure 26). There were
no detections for any of the months for a Bottom mine at this source depth due to the
combined effect of bottom reverberation and the relatively large distance between the

source and the sea floor (Figure 27 and 28).

Monthly Maximum Detection Ranges (Sand Bottom/ Source Depth = 25 ft)
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Figure 25. Monthly maximum detection ranges for a Sand Bottom at two source depths
and target depths.
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The maximum detection ranges for a target at 26 feet and a source depth of 125
feet were over 1000 yards for the month of May, approximately 450 yards for June and
July, and no detection for the remaining months. The large detection ranges in these
cases can be contributed to the large thermocline gradient, which in turns creates caustics

_from down bending of sound speed propagation. The maximum detection ranges for a
target at the bottom and a source depth of 125 feet were 800 yards for the month of
January, approximately 450 yards for February through May and September through
November, over 1000 yards for June, apprbximately 650 yards for July, and
approximately 900 yards for August and December (Figures 29-32). The large detection
ranges for a Bottom mine in January and December were due to near bottom positive
gradient that caused up bending of sound propagation that just grazes the bottom thus
reducing bottom reverberation and increasing detection range. The large detection ranges

for June, July, and August can be attributed to the effects of a large thermocline gradient.
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The maximum detection ranges for Region 4 were also much larger overall than
the first and second regions (Figure 33). The maximum detection ranges for a target at
26 feet and a source depth of 25 feet were approximately 200-225 yards for the months of
January through July, September, and October, 900 yards for August, and over 1000
yards for November. The increase in Detection range was due to the caustic produced by
a strong thermocline gradient. The increase in Detection range in November was
produced by a Surface duct. The maximum detection range for a Bottom mine with a
source depth of 25 feet was over 1000 yards for March and no detection for all other
months (Figure 34-36). The increase in Detection range in March was due to a positive
gradient throughout the entire sound speed profile. This produced up bending, which
caused sound speed propagation to just graze the bottom, which in turn decreased bottom
reverberation and increased the Detection range of Bottom mines. The months of
January, February, and April also had positive gradients, but they were not strong enough

to limit bottom reverberation.

Monthly Maximum Detection Ranges (Mud Bottom/ Source Depth = 25 ft)
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Figure 33. Monthly maximum detection ranges for a Mud Bottom at two source depths
and target depths.
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The maximum detection ranges for a target at 26 feet and a source depth of 125
feet was approximately 100 yards for each month. The maximum detection ranges for a
Bottom mine and a source depth of 125 feet ranged from 925 yards to over 1000 yards.
for the months of January through April. Detection ranges were approximately 100 yards
for May, October, November, and December, and were between 550 to 750 yards for
June through September (Figure 37 and 38). The increased detection ranges for the
months of January through April were due to a positive gradient that was present in the
structure of their sound speed profiles, which caused up bending of the sound speed
propagation, resulting in a decrease in bottom reverberation, which in turn increased the
detection ranges of Bottom mines. The increased detection ranges for June through

September were due to effects of a strong thermocline gradient.

In this study, the seasonal variation in acoustic transmission in the Yellow Sea for
all regions was mainly due to the isothermal sound speed structure of the fall and winter |
months and the multi-layer sound speed structure of the spring and summer months.
Another factor in the variation was the presence of a surface duct in some of the profiles
during the fall months. The positive near bottom gradient found in some of the profiles
during the winter months may be due more to an error in the GDEM climatology than a
seasonal factor. The error may be due to a lack of historical observational data in the

region.
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VII. ACOUSTIC TRANSMISSION UNDER SEVERE WEATHER
EVENTS

A. EFFECTS ON ACOUSTIC TRANSMISSION BY A TROPICAL
DEPRESSION

In this part of the study, the ability of the MODAS model to capture the
environmental effects on acoustic transmission of a severe weather event transiting
through the Yellow Sea was studied. The severe weather event was chosen from the
1999 and 2000 archives of the Naval Research Laboratory (NRL) Monterey Marine
Meteorology Division (Code 7500) Tropical Cyclone Web Page. The tropical depression
Kai-Tak (July 10 and 11, 2000) was chosen for this study because its track had the best

coverage of the Yellow Sea of all the weather events in the NRL 1999 and 2000 archive

(Figures 39 and 40).
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Figure 39. Track of Tropical Depression Kai-Tak over the Yellow Sea for 10-11 July
2000 (From Naval Research Laboratory 2000).
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Figure 40. Satellite Images of Tropical Depression Kai-Tak for July 8-11, 2000
respectively (From Naval Research Laboratory 2000).
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NIDAS was used to visually analyze the MODAS temperature, salinity, and
sound speed profiles before, during, and after (July 1-15, 2000) the transit of the tropical
depression through the Yellow Sea. The temperature and sound speed fields when
viewed in NIDAS demonstrated very little or no differences between the days being
analyzed. Since mud and sand bottom regions were the least limited by bottom
reverberation, they were chosen for this part of the study. The mud region was located
closet to the center of Kai-Tak track while the sand region was located to the east of the
track. Four profiles for each region, for the days of July 7 (prior to event), 10 (during the
event), and 15 (after the event), and at source depths of 25 feet and 125 feet were
evaluated using the CASS/GRAB model. The differences in sound speed and detection
ranges throughout the water column between July 10 minus July 7 and July 15 minus
July 10 were plotted to study the distribution of the differences in sound speed and
detection ranges (Figures 41 and 42).

The differences in the mud region ranged from 0 to 7.5 m/s for sound speed and 0
to 850 yards for detection range. The greater differences were between July 10 and 15.
Location 2 (Lat 35.6 N Lon 124.0 E) and Location 4 (Lat 36.0 N Lon 124.0) were the
only two of the four locations that had significant differences in detection ranges at the
two target depths being analyzed in this study (26 feet and the bottom). The differences
in the sand region ranged from 0 to 7.5 m/s for sound speed, and 0 to 905 yards for
detection range. The greater differences again were between July 10 and 15. In the sand
region, there were no significant differences in detection ranges for the two target depths

at any of the four locations.
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Figure 41. Sound Speed and Maximum Detection Range Differences for July 10 minus
July 7 and July 15 minus July 10 for a Mud Bottom region and Source Depths of a. 25 ft

and b. 125 ft.
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Figure 42. Sound Speed and Maximum Detection Range Differences for July 10 minus

July 7 and July 15 minus July 10 for a Sand Bottom region and Source Depths of a. 25
feet and b. 125 feet.
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The differences between the detection ranges were analyzed to determine if there
were significant acoustic differences between the profiles generated by MODAS for the
three days being analyzed. A significant acoustic difference between sound speed
profiles as operationally defined by NAVOCEANO is as follows: (1) If both of the
detection ranges are less than 600 yards form the source and if the difference between the
detection ranges is greater than 100 yards, there exists a significant acoustic difference
between the two profiles, and (2) If either of the detection ranges is greater than 600
yards from the source, and if the difference between the detection ranges is greater than
200 yards, there exists a significant difference between the two profiles (Table 2).

The only significant acoustic difference observed for a source depth of 25 feet and
target depth of 26 feet was at Location 4 of the mud region (Figure 43 and 44). The
difference in detection ranges was 490 yards for both July 10, 2000 minus July 7, 2000,
and July 10, 2000 minus July 15, 2000._ The difference can be attributed to a slightly
negative gradient in the mixed layer on July 10 that was not present on July 7 or July 15.
This negative gradient produced stronger down bending of the sound propagation, which
in turn increased the focusing of sound propagation at convergence zones. The slightly
negative gradient in the mixed layer may due to the effect of the weather event and the
stabilizing of the mixed layer afterwards on July 15 as the effects of the weather event
weakened (Figure 45 and 46). There were no significant acoustic differences for a source
depth of 25 feet and a target at the bottom for either of the regions.

There were no significant acoustic differences for a source depth of 125 feet and a
target depth of 26 feet for either of the regions. The only significant acoustic difference

observed for a source depth of 125 feet and a target at the bottom was at Location 4 of the
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mud region (Figure 47 and 48). The significant acoustic differences in this case were 790
yards for July 10 minus July 7, and —810 yards for July 10 minus July 15. Thus, there
was a decrease in detection range during the weather event. The decrease can be
attributed to the slightly stronger gradient of thermocline on July 10 that causes stronger
down bending, which shifts the shadow zone closer to the source thus decreasing the
detection range of a bottom target.

Figures 45 and 46 were created to analyze in more detail, the effects of the
tropical depression on SST and sound speed at Location 4 of the mud region. There was
only a decrease of 0.4° C in the SST between July 7 and July 10; which may have been
due to the unavailability of remote SST data due to heavy cloud coverage on July 10.
The first significant decrease in SST was observed on July 11 where the SST decreased
1.7° C between July 7 and July 10. This may have been due to the availability of remote
SST data on July 11. The SST continued to decrease until July 13 to the minimum
temperature of 22.0° C, a difference of 2.50° C. Afterwards, the SST began to increase as
observed on July 15 due to the weakening effects of the tropical depression in the Yellow
Sea. The sound speed profiles also followed this pattern with a maximum difference of
5.2 m/s between July 7 and July 13.

Although the MODAS model captured the effects on the SST temperature by the
tropical depression, a significant acoustic difference was only observed in Location 4 of
the mud region. As demonstrated for the sand region in Figure 42, overall there were
smaller differences in sound speeds and detection ranges as compared to the mud region
in Figure 41. This is because the sand region was located further east of the tropical

cyclone tracks than the mud region. The MODAS’ entire temperature and sound speed
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profiles were shifted to the left with a decrease in temperature. Acoustic transmission is
not significantly effected by the shifting of the entire profile. The significant changes in
acoustic transmission are due to a change in the gradients of the sound speed profiles that
may be caused by the change in the mixed layer depth, presence of a surface duct, the
gradient of the thermocline, etc. This was the case for the Location 4 in the mud region,
where a slight change in the gradient of the mixed layer and the thermocline produced
significant acoustic differences bétween the corresponding profiles. With the cold air
mass and strong winds that are characteristic of a tropical depression, there should have
been some occurrence of a change in the mixed layer depth and significant changes in the
sound speed gradients. Since the MODAS model operates without remote SSH data in
shallow water, the model may not be able to capture the effect severe weather has on the
upper water column, thus under predicting the effects of severe weather events in. a

shallow water region.
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A SIGNIFICANT ACOUSTIC DIFFERENCE IN DETECTION RANGES AS
DEFINED OPERATIONALLY FOR THIS STUDY:

POSITION OF DETECTION A SIGNIFICANT ACOUSTIC
RANGES OF MINE RELATIVE TO | DIFFERENCE EXISTS IF:

SOURCE

IF BOTH DETECTION RANGES

ARE LESS THAN 600 YARDS ADETECTION RANGES >100 YARDS

IF EITHER OF THE DETECTION
RANGES ARE GREATER THAN OR

ADETECTION RANGES >200 YARDS

EQUAL TO 600 YARDS
Table 2. Significant Acoustic Differences in Detection Ranges as Defined Operationally
for this study.
SOURCE DEPTH = 25 FT.
Target Mud Sand
Depth ™ 7,1570— July 7] July 15— July 10| July 10—July 7 | July 15 — July 10
y uly uly uly uly uly uly uly
26 ft | Lat 36.0N Lon 124.0E[ Lat 36.0N Lon 124.0E None None
490 yd ' 490 yd
(Figure 43 and 44) | (Figure 43 and 44)
Bottom None None None None
a.
SOURCE DEPTH = 125 FT.
Target Mud Sand
Depth ~ = ~ —
July 10 — July 7 July 15— July 10 | July 10— July 7 | July 15— July 10
26 ft None None None None
Bottom | Lat 36.0N Lon 124.0E | Lat 36.0N Lon 124.0E None None
790 yd 810 yd
(Figure 45 and 46) (Figure 45 and 46)

b.

Table 3. Maximum Significant Acoustic Differences in Detection Ranges between
MODAS Profiles before and after a Tropical Depression for Mud and Sand Bottom
regions at a. Source Depth of 25 ft, b. Source Depth of 125 ft.
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Temperature versus Depth (Lat 36.0 N 124.0 E/ Mud Bottom)
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Figure 45. Temperature Profile Comparisons for July 7, 10, 11, 13, and 15.

Sound Speed versus Depth (Lat 36.0 N 124.0 E/ Mud Bottom)
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Figure 46. Sound Speed Profile Comparisons for July 7, 10, 11, 13, and 15.
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B. EFFECTS ON ACOUSTIC TRANSMISSION IN THE WINTER BY A
STRONG COLD FRONT

In this part of the study the effects on acoustic transmission by a cold front
moving through the Yellow Sea was analyzed using MODAS sound speed profiles in the
CASS/GRAB model. The dates for the cold front were obtained from
NAVPACMETOCCEN Yokosuka Japan Operational Support Web Site. The cold front
chosen passed through the Yellow Sea on January 31, 2001 (Figure 49). The
temperature, salinity, and sound speed profiles for the dates of January 28 through
February 2, 2001 were first analyzed visually using NIDAS. Again, the structures of the
profiles demonstrated very little to no difference between the dates being analyzed.
MCSST color composite maps were obtained from NAVOCEANO Yellow Sea
Oceanographic Features Analysis Color Composite web site to confirm the SSTs the '
MODAS profiles contained. The two MCSST color composite maps obtained for
January 29 and February 2 (Figure 50) complimented the small changes in SST that were

observed in the MODAS profiles.
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Figure 49. Weather Maps of Cold Front moving through Yellow Sea: a. January 30,
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Mud and sand bottom regions were again chosen for this part of the study,
however, at the mud region, there was a problem with near bottom positive gradients in
the temperature profiles at the locations chosen earlier for the tropical depression study so
profiles further north were chosen. There were no significant acoustic differences
produced by the CASS/GRAB model for any of the scenarios for the profiles in either
region (Table 4). There was, however, a significant acoustic difference observed for a
source depth of 25 feet and target depth of 21 feet in the mud regioh for the sound speed
profiles at latitude 36.0 N longitude 123.0 E, and latitude 37.0 N longitude 124.0 E. The
detection ranges for January 29 for both profiles had detection ranges for a 21 feet target
of over 1000 yards. The detection ranges for January 31 and February 2 were 160 yards
at latitude 36.0 N longitude 123.0 E, and 260 yards at latitude 37.0 N longitude 124.0 E.
The reason for the large difference in detection ranges on January 29 was that both
locations had sound speed profiles that contained surface ducts, which were not present in
the profiles of the other days. These sound speed profiles also contained deeper mixed

layers than the sound speed profiles of January 31 and February 2.
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SOURCE DEPTH =25 FT.
Target Mud Sand
Depth January 31- January 29 | January 31— February 2 January 31— January 29 | January 31- February 2
26 ft None None None None
Bottom None None None None
a.
SOURCE DEPTH = 125 FT.
Target Mud Sand
Depth January 31- January 29 | January 31— February 2 January 31- January 29| January 31— February 2
26 ft None None None None
Bottom None None None None
b.

Table 4. Maximum Significant Acoustic Differences in Detection Ranges b?tween
MODAS Profiles before and after a Cold Front for Mud and Sand Bottom regions at a.
Source Depth of 25 ft, b. Source Depth of 125 ft.

In order to analyze the effects of the cold front in more detail, the plots of
temperature and sound speed profiles for the days of January 29 through February 2,
2001 were generated for the mud region location at latitude 36.0 N longitude 123.0 E
latitude (Figures 51 and 52). The decrease in SST during the period was 0.6° C with a
temperature of 9.3 ° C on January 29 and remaining steady at 8.7 ° C for the days of
January 31 through February 2. The sound speed profiles show a mixed layer with a
surface duct that extends to a depth of a little over 20 ft. on January 29, but shoals to a
depth of 10 ft. from January 30 through February 2. This may be due to SSH data being
left out of the MODAS model, since the mixed layer would not be expected to shoal with
the type of winds generated by a strong cold front. Again, the conclusion is that MODAS

may have under predicted the effects of a weather event because SSH data was absent

from the model.
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Temperature versus Depth (Lat 36.5 N 123.0 E/ Mud Bottom)

0
‘ f L f | f — January 31, 2001
5 ~ —— January 29, 2001
; | —e— January 30, 2001
S S ‘ _______ - February 1, 2001 ||
& T - Febnary 2, 2001
L ' |
D S e !
| |
] T T Fo T -----------------
' ' |
g f '
sn'so """""""" e R S
[}
a 5 .
T
) »*
-120'— --------------- e
| T
S -
A0 - - - - - d e e o o e et e e o e
. . . . .
e R ST R R SR S T N I AR
8.2 8.4 8.6 8.8 9.2 9.4 9.6 9.8

Temperature (Degrees C}

Figure 51. Temperature Profile Comparisons for January 29 through February 2.

Sound Speed versus Depth (L.at 36.5 N 123.0 E/ Mud Bottom)
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Figure 52. Sound Speed Profile Comparisons for January 29 through February 2.
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VIIL. SENSITIVITY STUDIES ON HYDROGRAPHIC INPUT DATA
A. COMPARISON BETWEEN MODAS AND MOODS

In this part of the study, corresponding pairs of CASS/GRAB MODAS and
MOODS outputs for different scenarios were examined to determine if the two different
hydrographic data sets produced detection ranges with significant acoustic differences.
As described earlier, data sets for MODAS and MOODS were created using NIDAS.
The data set pairs that were created were for four regions of mud, sand, gravel, and rock
bottom type region and for the four seasons of winter (February), spring (MAY), summer
(August), and fall (November). MODAS data sets for 1999 and 2000 were created for
comparison with MOODS in this study. The bottom depths for all of the corresponding
data set pairs were made equal using an interpolation code in MATLAB. These data set
pairs were entered into the CASS/GRAB model for source depths of 25 feet and,
depending on water depths, 50, 75 or 125 feet as described earlier in the seasonal
variability chapter. Maximum detection range data for a 26 feet and a bottom target were
obtained from CASS/GRAB signal excess calculations. The absolute difference in these
detection ranges for each of the corresponding pairs of data sets for each scenario was
calculated. The maximum difference in detection ranges that had a significant acoustic

difference for each scenario was entered into Tables 5 and 6.

The scenario that generated the largest number of significant acoustic differences
was a source depth of 25 feet and a target depth of 26 feet, for all four seasons in the mud
and sand regions. The scenario that generated the least number of significant acoustic
differences was a source depth of 25 feet and a bottom target, for all four seasons and for

all four regions. Overall, the most significant acoustic differences were for the mud and
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SOURCE DEPTH =25 FT.

;ar%lelt Month Mud Sand
(4
= o8 it 1999 2000 1999 2000
February | Lt35.0NLn123.5E | Lt35.0N Ln 123.5E| Lt35.9N Ln 125.8E| Lt35.9N Ln 125.8E
760 yd 760 vd 840 vd 840 vd
May Lt35.0N Ln 123.0E | Lt35.0N Ln 123.0E| Lt35.9N Ln 126.0E| Lt35.9N Ln 126.0E
795 yd 780 yd 795 yd 810 vd
August Lt35.9N Ln 1244E | Lt35.9N Ln 124.4E| Lt35.9N Ln 124.8E| Lt35.9N Ln 124.8E
545 yd 535 yd 820 yd 815 yd
November | Lt36.5N Ln 123.0E | Lt36.5N La 123.0E| Lt 35.9N Ln 125.8E| Lt 35.9N Ln 125.8E
840 yd 840 vd 765 vd 765 yd
Target SOURCE DEPTH =25 FT.
gzlt’t?l: Month Mud Sand
1999 2000 1999 2000
February Lt35.0N Ln 123.5E | Lt35.0N Ln 123.5E None None
900 yd 890 yd
May None None None None
August None None None None
November None None None None
Target SOURCE DEPTH =50/ 75/ 125 FT.
1999 2000 1999 2000
February | Lt35.0NLn123.5E | Lt35.0N Ln 123.5E None None
495 yd 510 yd
May Lt36.3N Ln 125.0E | Lt36.3N Ln 125.0E NA NA
620 yd 620 vd
August None None Lt35.9N Ln 124.6E| Lt 359N Ln 124.6E
545 yd 545 yd
November| Lt 35.0N Ln 123.0E | Lt35.0N Ln 123.0E| Lt 36.0N Ln 124.8E| Lt 36.0N Ln 124.8E
445 vd 445 yd 495 vd 495 yd
Target SOURCE DEPTH = 50/ 75/ 125 FT.
Borom | Month Mud Sand
1999 2000 1999 2000
February | Lt36.4NLn1244E[ Lt36.4N Ln 124.4E None None
1000 yd 1000 yd
May Lt36.3N Ln 125.0E{ Lt 36.3N Ln 125.0E NA NA
225yd 315 yd
August None None Lt35.9N Ln 125.8E| Lt 359N Ln 125.8E
265 vd 225 vd
November None None Lt359N Ln 124.6E| Lt 359N Ln 124.6E
205 yd 205 vd

Table 5. Maximum Differences in Detection Ranges with a Significant Acoustic
Difference: for MODAS versus MOODS for Mud and Sand Bottoms.
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Target SOURCE DEPTH = 25 FT.
lze;’;“ft Month Gravel Rock
- 1999 2000 1999 2000
February None None None None
May Lt38.9NLn 122.5E | Lt38.9NLn 122.5E None None
800 yd 800 vd
August None None None None
November None None None None
Target SOURCE DEPTH = 25 FT.
gﬁ{’g‘m: Month Gravel Rock
1999 2000 1999 2000
February None None None None
May None None None None
August None None None None
November None None None None
Target SOURCE DEPTH = 50/ 75/ 125 FT.
]_);%t}‘t Month Gravel Rock
- 1999 2000 1999 2000
February None None None None
May None None None None
August None None Lt374NLn123.1E | Lt37.4NLn 123.1E
210 yd 210 yd
November None None None None
Target SOURCE DEPTH = 50/ 75/ 125 FT.
g:lt’;:‘l: Month Gravel Rock
1999 2000 1999 2000
February None None None None
May Lt39.0N Ln 122.8E | Lt39.0N Ln 122.8E | Lt37.5N Ln 123.0E | Lt 37.5N Ln 123.0E
655 yd 655 yd 190 yd 185y
August Lt 38-91‘222 1?-25 None None None
November | Lt384N Ln {22.113 Lt38.4N Ln 122.1E | Lt37.5N Ln 123.4E | Lt37.5N Ln 123.4E
220 yd 225 yd 960 yd 960 vd

Table 6. Maximum Differences in Detection Ranges with a Significant Acoustic
Difference for MODAS versus MOODS for Gravel and Rock Bottoms.

91




sand regions. In the gravel and rock regions, acoustic transmission was so limited by
bottom reverberation, that only one scenario (Source Depth = 50/75/125 ft and a bottom

target) generated a significant number of significant acoustic differences.

The oceanographic differences between differences between MODAS and
MOODS varied between the colder fall and winter months and the warmer spring and
summer months. The differences that occurred during the fall and winter months were
due to surface ducts, and differences in thermocline gradients and differences in mixed
layer depths. The differences that occurred during the spring and summer months were
due to differences in thermocline gradients, differences in mixed layer depths, and the

presence of a sub-layer.

In the fall and winter months, the differences due to surface ducts were that the
MOODS profiles contained surface ducts and the MODAS profiles did not, or the |
MOODS profiles contained stronger surface ducts than the MODAS profiles. The
differences resulting from the differences in the thermocline gradients were that in all the
cases, the MOODS profiles gradients were always greater than the gradients in the
MODAS profiles. The differences resulting from the differences in the mixed layer
depths were that in all cases, the MOODS profiles contained mixed layer depths that
were deeper than those of the MODAS profiles. In most cases, the weaker surface ducts,
the weaker thermoclines, and the shallower mixed layer, may be due to the effects of
averaging historical observational data in creating the MODAS climatological data.
Without the input of SSH data into the MODAS model the characteristics of the surface
ducts, thermocline, and mixed layer are possibly the same as the MODAS climatology. It

must be noted that this possible problem cannot be determined with certainty to be a
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problem with the MODAS climatology without studying the actual MODAS climatology.

The MODAS climatological data was not available for this study.

One of the differences observed was a near bottom positive gradient that was
sometimes present in the isothermal structure of both of the MODAS temperature and
sound speed profiles during the winter months in the mud region. This near bottom
positive gradient was not observed in the any of the MOODS profiles that were used in
this study. This type of profile structure is very unlikely because a water column
structure containing a large cold-water layer above a small layer of warm water would be
very unstable. The absence of this structure in the MOODS profiles and the very
unstable nature of the profile structure indicates that this structure is due to a discrepancy
in the MODAS climatology during the winter months in the mud region. The
discrepancy is most likely a result to a lack of observational data in the region during the
winter months. The region where this problem existed was along a shelf in the southern
Yellow Sea near the northern East China Sea this region consisted of approximately 15 %

of the Yellow Sea.

In the spring and summer months, the differences due to the differences in the
thermocline gradients were that in all the cases, the MOODS profiles gradients were
always greater than the gradients in the MODAS profiles. The differences due to the
differences in the mixed layer depths were that in all cases, the MOODS profiles
contained mixed layer depths that were deeper than those of the MODAS profiles. The
differences due to a sub-layer in the multi-layer structure of the sound speed profiles of
the spring and the summer months varied in that the sub-layer was present or absent in
either the MODAS or MOODS profile. In most cases, as stated previously, the weaker
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thermoclines, and the shallower mixed layer may be due to the effects of averaging
historical observational data in creating the MODAS climatological data. Without the
input of SSH data into the MODAS model, the characteristics of the surface ducts,
thermocline, and mixed layer, are possibly the same as the MODAS climatology. It must
-be noted that this possible problem cannot be determined with certainty to be a problem
with the MODAS climatology without studying the actual MODAS climatology. The

MODAS climatological data was not available for this study.

Tables 8 through 15 were created to facilitate for the reader the description of the
oceanographic differences between the MODAS and the MOODS profiles of Tables 5
and 6 and their effects on the acoustic model. The ray traces with detection ranges for
each of the corresponding MODAS and MOODS profiles of Tables 5 and 6 can be found

in Appendix A.
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MODAS versus MOODS

February /Mud Bottom

1. Oceanographic Difference between
MODAS and MOODS

Differences were due to a near Bottom positive
gradient in the MODAS profile that was not present
in the MOODS profile.

2. How this affected the Acoustic Model

This near Bottom positive gradient produced up
bending near the bottom. When the Source was at
hull depth, both moored and Bottom mines
detection ranges were over predicted. When the
Source was at 125 ft, moored mines detection
ranges were over predicted and Bottom mines
detection ranges were under predicted.

3. Prevalence of Problems, if any, in the
Yellow Sea or North East China Sea

This may be a problem in the MODAS climatology.
The problem was present in approximately 15 % of
the MODAS profiles in the Yellow Sea.

a’

MODAS versus MOODS

May/ Mud Bottom

1. Oceanographic Difference between
MODAS and MOODS

1. At a source depth of 25 ft., the difference was
due to the presence of a mixed layer in the
MOODS profile that was not present in the
MODAS profiles. ‘
2. At a source depth of 125 ft., the difference was
due to a presence of sub-layer in the MODAS
profile that was not present in the MOODS profile.

2. How this affected the Acoustic Model

1. The mixed layer in the MOODS profile
produced allowed sound propagation above the
thermocline, thus increasing the detection range of
a moored mine. The thermoclines in both types of
data sets were too weak to produce significant
caustics.

2. The sub-layer in the MODAS profile trapped
sound propagation under the thermocline, thus
decreasing the detection ranges for moored mines
and increasing the detection ranges of bottom
mines.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

1. Possible problem since the mixed layers in most
of the MODAS profiles were always shallower than
the MOODS profiles were.

2. Not a prevalent problem.

b.

Table 7. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and MOODS Profiles in a Mud Bottom region in a. February, and b. May.
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MODAS versus MOODS

August/ Mud Bottom

1. Oceanographic Difference between
MODAS and MOODS

At a source depth of 25 ft., the difference was due
to the MOODS profile having a much deeper
mixed layer depth.

2. How this affected the Acoustic Model

The negative gradient in the deeper mixed layer of
the MOODS profile where the source was located
produced less down bending than the negative
gradient of the thermoclines of the MODAS
profiles, thus forming weaker caustics and
decreasing the detection range of moored mines.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

Possible problem since the mixed layers in most of
the MODAS profiles were always shallower than
the MOODS profiles were.

a.

MODAS versus MOODS

November/ Mud Bottom

1. Oceanographic Difference between
MODAS and MOODS

1. The first difference was due to a surface duct

that was present in the MOODS profile and not in

the MODAS profile when source depth was at 25

ft.

2. When the source depth was at 125 fi., the

difference was due to a weaker thermocline
dient in the MODAS profile.

2. How this affected the Acoustic Model

1. The surface ducts trapped sound propagation in
a subsurface layer that produced greater detection
ranges for moored mines.

2. The source depth was within the thermocline;
the weaker thermocline gradients produced by
MODAS caused less down bending of sound
propagation. This produced weaker caustics due to
less focusing of sound propagation, which in turn
causes an under prediction of moored mines.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

1. When there was a surface duct in both profiles, it
was much stronger in the MOODS profile for most
cases. The weaker surface ducts found in the
MODAS profiles cannot be determined to be a
problem without performing a study of the
MODAS climatology.

2. The weaker MODAS thermocline gradients were
observed in almost all of the MODAS profiles used
in this study.

b.

Table 8. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and MOODS Profiles in a Mud Bottom region in a. August, and b. November.
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MODAS versus MOODS

February/ Sand Bottom

1. Oceanographic Difference between
MODAS and MOODS

The difference was due to a surface duct that was
present in the MOODS profile and not in the
MODAS profile when source depth was at 25 ft.

2. How this affected the Acoustic Model

The surface duct trapped sound propagation in a
subsurface layer that produced greater detection
ranges for moored mines.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

When there was a surface duct in both profiles, it
was much stronger in the MOODS profile for most
cases.

a.
MODAS versus MOODS
May/ Sand Bottom

1. Oceanographic Difference between At a source depth of 25 ft., the difference was due

MODAS and MOODS to a presence of sub-layer in the MOODS profile
that was not present in the MODAS profiles.

2. How this affected the Acoustic Model The sub-layer weakened the effect of thermocline
gradient, which caused less down bending of sound
propagation. This produced weaker caustics due to
less focusing of sound propagation, which in turn

. causes an under prediction of moored mines.

3. Prevalence of Problems, if any, in the | Nota prevalent problem.

Yellow Sea or the North East China Sea

b.

Table 9. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and MOODS Profiles in a Sand Bottom region in a. February, and b. May.
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MODAS versus MOODS

August/ Sand Bottom

1. Oceanographic Difference between
MODAS and MOODS

1. At a source depth of 25 ft., the difference was
due to the MODAS profiles having a much
shallower mixed layer depth and a negative
gradient within the mixed layer of the MOODS
profile.

2. At a source depth of 125 ft., the first difference
was due to a presence of sub-layer in the MODAS
profiles that was not present in the MOODS profile.
3. At a source depth of 125 ft., the second
difference was due the source being located within
a sub-layer that was present in the MOODS profiles
but was not present in the MODAS profile.

2. How this affected the Acoustic Model

1. The negative gradient in the deeper mixed layer
of the MOODS profile where the source was
located produced less down bending than the
stronger negative gradient of the thermoclines of
the MODAS profiles.

2. Although the source was located above the sub-
layer, it weakened the effect of thermocline
gradient, which caused less down bending of sound
propagation. This produced weaker caustics due to
less focusing of sound propagation, which in turn
caused an under prediction of moored mines.

3. The sub-layer trapped all sound propagation
under the thermocline, thus making sound
propagation very limited by bottom reverberation.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

1. Possible problem since the mixed layers in most
of the MODAS profiles were usually shallower
than the MOODS profiles were.

2. Not a prevalent problem.

3. Not a prevalent problem.

Table 10. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and MOODS Profiles in a Sand Bottom region in August.
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MODAS versus MOODS

November/ Sand Bottom

1. Oceanographic Difference between
MODAS and MOODS

1. When source depth was at 25 ft., the difference
was due to a stronger surface duct that was present
in the MOODS profile

2. When the source depth was at 125 ft., the first
difference was due to a weaker thermocline
gradient in the MODAS profile.

3. When the source depth was at 125 ft., the

second difference was due to the MOODS profile
having a much deeper mixed layer depth.

2. How this affected the Acoustic Model

1. The stronger surface duct in the MOODS profile
more effectively trapped sound propagation in a
subsurface layer, thus producing greater detection
ranges for moored mines.

2. The source depth was within the thermocline;
the weaker thermocline gradients produced by
MODAS caused less down bending of sound
propagation. This produced weaker caustics due to
less focusing of sound propagation, which in turn
caused an under prediction of moored mines.

3. The negative gradient in the deeper mixed layer
of the MOODS profile where the source was
located produced less down bending than the
negative gradient of the thermoclines of the
MODAS profiles, thus forming weaker caustics and
decreasing the detection range of a bottom mine.

3. Prevalence of Problems, if any, in the

Yellow Sea or the North East China Sea

1. When there was a surface duct in both profiles,
it was much stronger in the MOODS profile for
most cases. The weaker surface ducts found in the
MODAS profiles cannot be determined to be a
problem without performing a study of the
MODAS climatology.

2. The weaker MODAS thermocline gradients
were observed in almost all of the MODAS profiles
used in this study.

3. Possible problem since the mixed layers in most
of the MODAS profiles were always shallower than
the MOODS profiles were.

Table 11. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and MOODS Profiles in a Sand Bottom region in November.
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MODAS versus MOODS

February/ Gravel Bottom
1. Oceanographic Difference between None
MODAS and MOODS
2. How this affected the Acoustic Model NA
3. Prevalence of Problems, if any, in the NA

Yellow Sea or the North East China Sea

MODAS versus MOODS

May/ Gravel Bottom

1. Oceanographic Difference between
MODAS and MOODS

When the source depth was at 25 ft. and 75 ft., the
difference was due to a weaker thermocline
gradient in the MODAS profile.

2. How this affected the Acoustic Model

The source depth was within the thermocline; the
weaker thermocline gradients produced by
MODAS caused less down bending of sound
propagation. This produced weaker caustics due to
less focusing of sound propagation, which in turn
causes a decreased detection ranges of both moored
and bottom mines.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

The weaker MODAS thermocline gradients were
observed in almost all of the MODAS profiles used
in this study.

b.

Table 12. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and MOODS Profiles in a Gravel Bottom region in a. February, and b. May.
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MODAS versus MOODS

August/ Gravel Bottom

1. Oceanographic Difference between
MODAS and MOODS

For a source depth of 50 ft., the difference was due
to a thermocline that was present in the MODAS
profiles and an isothermal structure of the MOODS
profile.

2. How this affected the Acoustic Model

The source was located within the thermocline, and
the negative gradient of the thermocline caused
down bending of sound propagation, which
produced caustics that increased the detection range
of bottom mines.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

Not a prevalent problem.

a.

MODAS versus MOODS

November/ Gravel Bottom

1. Oceanographic Difference between
MODAS and MOODS

For a source depth of 125 ft., the difference was
due to a thermocline that was present in the GDEM
profiles and an isothermal structure of the MODAS
profiles.

2. How this affected the Acoustic Model

In this scenario, the source was very close to the
bottom. The down bending caused by the
thermocline in the GDEM profile caused sound
propagation to become very limited by bottom
reverberation, thus decreasing the detection range
of a bottom mine.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

Not a prevalent problem.

b.

Table 13. Description of Significant Acoustic Differences in Detection Ranges between

MODAS and MOODS Profiles in a Gravel
November.

Bottom region in a. August, and b.
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MODAS versus MOODS
February/ Rock Bottom
1. Oceanographic Difference between None
MODAS and MOODS
2. How this affected the Acoustic Model NA
3. Prevalence of Problems, if any, in the NA
Yellow Sea or the North East China Sea

MODAS versus MOODS

May for Rock Bottom Type

1. Oceanographic Difference between
MODAS and MOODS

For a source depth of 125 ft., the difference was
due to a stronger thermocline in the GDEM profile.

2. How this affected the Acoustic Model

In this scenario, the source was very close to the
bottom. The down bending caused by the
thermocline in the GDEM profile caused sound
propagation to become very limited by bottom
reverberation, thus decreasing the detection range
of a bottom mine.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

Not a prevalent problem.

b.

Table 14. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and MOODS Profiles in a Rock Bottom region in a. February, and b. May.
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MODAS versus MOODS

August/ Rock Bottom

1. Oceanographic Difference between
MODAS and MOODS

For a source depth of 125 ft., the difference was
due to a sub-layer that was present in the MOODS
profile and not in the MODAS profiles.

2. How this affected the Acoustic Model

The source was in the sub-layer for the MOODS
profile and in the thermocline for the MODAS
profiles. In this scenario, the source was very close
to the bottom. The down bending caused by
thermocline in the MODAS profiles caused sound
propagation to become very limited by bottom
reverberation, thus decreasing the detection range
of a bottom mine.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

Not a prevalent problem.

a.

MODAS versus MOODS

November/ Rock Bottom

1. Oceanographic Difference between
MODAS and MOODS

For a source depth of 125 ft., the difference was
due to a weaker thermocline gradient in the
MODAS profiles.

2. How this affected the Acoustic Model

The source depth was within the thermocline; the
weaker thermocline gradients produced by
MODAS caused less down bending of sound
propagation. This produced weaker caustics due to
less focusing of sound propagation, which in turn
causes a decreased detection ranges of both moored
and bottom mines.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

The weaker MODAS thermocline gradients were .
observed in almost all of the MODAS profiles used
in this study.

b.

Table 15. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and MOODS Profiles in a Rock Bottom region in a. August, and b. November.
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B. COMPARISON BETWEEN MODAS AND GDEM

In this part of the study, corresponding pairs of CASS/GRAB MODAS and
GDEM outputs for different scenarios were examined to determine if the two different
hydrographic data sets produced detection ranges with significant acoustic differences.
As described earlier, data sets for MODAS and GDEM were created using NIDAS. The
data set pairs that were created were for four bottom type regions of mud, sand, gravel,
and rock, and for the four seasons of winter (February), spring (MAY), summer (August),
and fall (November). The bottom depths for all of the corresponding data set pairs were
made equal using an interpolation code in MATLAB. These data set pairs were entered
into the CASS/GRAB model for source depths of 25 feet and, depending on water depths,
50, 75 or 125 feet as described earlier in the seasonal variability chapter. Maximum
detection range data for a source depth of 26 feet and a bottom target were obtained from |
CASS/GRAB signal excess calculations. The absolute difference in these detection
ranges for each of the corresponding pairs of data sets for each scenario was calculated.
The maximum difference in detection ranges that had a significant acoustic difference for

each scenario was entered into Tables 7 and 8.

The scenario that generated the largest number of significant acoustic differences
was a source depth of 25 feet and a target depth of 26 feet for all four seasons in the mud
region. The scenario that generated the least number of significant acoustic differences
was a source depth of 25 feet and a bottom target for all four seasons in the sand, gravel,
and rock regions. Overall, most the significant acoustic differences were for the mud and

sand regions. In the gravel and rock regions, acoustic transmission was so limited by
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bottom reverberation, that only one scenario (Source Depth = 50/75/125 ft and a bottom

target) generated a significant number of significant acoustic differences.

SOURCE DEPTH =25 FT.

]T)argle‘t Month Mud Sand
€] -
o 1999 2000 1999 2000
February | L[t35.0NLn123.5E| Lt35.0NLn 123.5E None None
755 yd 755 yd
May Lt35.0N Ln 123.0E | Lt35.0N Ln 123.0E | Lt35.9NLn 125.2E| Lt35.9N Ln 125.2E
795 yvd 780 vd 860 yd 860 yd
August Lt35.9N Ln 1244E | Lt35.9N Ln 1244E | Lt35.9N Ln 124.8E} Lt35.9N Ln 124.8E
545 yd 535vyd 390 yd 385 yd
November Lt36.5N Ln 123.0E | Lt36.5N Ln 123.0E None None
840 yd 840 yd
Target SOURCE DEPTH =25 FT.
g"ffhm: Month Mud Sand
otto 1999 2000 1999 2000
February | Lt35.0NLn123.5E | Lt35.0NLn123.5E None None
900 vd 890 vd
May Lt36.3N Ln 125.0E | Lt36.3N Ln 125.0E None None
655 vd 655 yd
August None "None None None
November None None None None
Target SOURCE DEPTH =50/ 75/ 125 FT.
ggpftth = Month Mud ' Sand
1999 2000 1999 2000
February Lt35.0N Ln 123.5E Lt35.0N Ln 123.5E None None
495 yd 510 yd
May None None NA NA
August None None Lt359N Ln 124.6E | Lt35.9N Ln 124.6E
525 yd 525 vd ’
November| Lt36.5N Ln 123.0E | Lt36.5N Ln 123.0E None Lt35.9N Ln 124.6E
525 yd 510 vd 535 yd
Target SOURCE DEPTH =50/ 75/ 125 FT.
geg?: Month Mud Sand
° 1999 2000 1999 2000
February | Lt35.0NLn123.5E | Lt35.0N Ln 123.5E None None
340 vd 355 yd
May Lt35.0N Ln 123.5E | Lt35.0N Ln 123.5E NA NA
895 yd 895 vd
August None None Lt359N Ln 124.6E | Lt35.9N Ln 124.6E
385vd 360 vd
November | Lt 36.5N Ln 123.0E | Lt36.5N Ln 123.0E None None
250 yd 235 vd

Table 16. Maximum Differences in Detection Ranges with a Significant Acoustic
Difference: for MODAS versus GDEM for Mud and Sand Bottoms.
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Target SOURCE DEPTH = 25 FT.
]2)6"11,’:" = | Month Gravel Rock
1999 2000 1999 2000
February None None None None
May None Lt39.0N Ln 122.8E None None
775 vd
August Lt 38.6N Ln 122.0E Lt38.6N Ln 122.0E None None
850 vd 850 vd
Novembe None None None None
Target SOURCE DEPTH =25 FT.
g:lt’tth =| Month Gravel Rock
om 1999 2000 1999 2000
February None None None None
May None None None None
August None None None None
November None None None None
Target SOURCE DEPTH = 50/ 75/ 125 FT.
?6"1‘;:" =| Month Gravel Rock
1999 2000 1999 2000
February None None None None
May None None None None
August None None None None
November None None None None
Target SOURCE DEPTH =50/ 75/ 125 FT.
geftﬂ' =| Month Gravel Rock
ottom 1999 2000 1999 2000
February None None None None
May ) None None Lt37.4N Ln 123.1E |} Lt37.4N Ln 123.1E
190 yd 185 yd
August Lt38.6N Ln 122.0E | Lt38.6N Ln 122.0E None None
955 yd 955 yd
November Li38.4NLn 122.1E | Lt384N Ln 122.1E None None
220 yd 225vyd

Table 17. Maximum Differences in Detection Ranges with a Significant Acoustic
Difference: for MODAS versus GDEM for Gravel and Rock Bottoms.
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The oceanographic differences between differences between MODAS and GDEM
varied between the colder fall and winter months and the warmer spring and summer
months. The differences that occurred during the fall and winter months were due to
surface ducts, and differences in thermocline gradients, and differences in mixed layer
depths. The differences that occurred during the spring and summer months were due to
differences in thermocline gradients, differences in mixed layer depths, and the presence

of a sub-layer.

In the fall and winter months, the differences due to surface ducts were that the
GDEM profiles contained surface ducts and the MODAS profiles did not, or the GDEM
proﬁles contained stronger surface ducts than the MODAS profiles. The differences due
to the differences in the thermocline gradients were that either the MODAS or the GDEM
profiles thermocline gradient was stronger than the other. The differences due to thel
differences in the mixed layer depths were that either the MODAS or the GDEM profiles
mixed layer depths were deeper than the other. In most cases, the weaker surface ducts,
the weaker thermoclines, and the shallower mixed layer, may be due to the effects of
(averaging historical observational data in creating the GDEM and MODAS
climatological data. Without the input of SSH data into the MODAS model, the
characteristics of the surface ducts, thermocline, and mixed layer are possibly the same as
the MODAS climatology. Again, it must be noted that this possible problem cannot be
determined with certainty to be a problem with the MODAS climatology without

studying the actual MODAS climatology.

One of the differences observed was a near bottom positive gradient that was
sometimes present in the isothermal structure of both of the MODAS temperature and
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sound speed profiles during the winter months in the mud region. The near bottom
positive gradient was also observed in many of the GDEM profiles during the winter
months, although they were located through the entire Yellow Sea. As described earlier,
this type of profile structure is a very unlikely because a water column structure
containing a large cold-water layer above a small layer of warm water would be very
unstable. The absence of this structure in the MOODS profiles, and the very unstable
nature of the profile structure, indicates this structure is due to a discrepancy in GDEM
and the MODAS climatology during the winter months. The discrepancy is most likely a
result of a lack of observational data during the winter months in the mud region for

MODAS and throughout the Yellow Sea for GDEM.

In the spring and summer months, the differences due to the differences in the
thermocline gradients were that either the MODAS or the GDEM profiles thermocline
gradient was stronger than the other. The differences due to the differences in the mixed
layer depths were that either the MODAS or the GDEM profiles mixed layer depths were
deeper than the other. In most cases, the weaker surface ducts, the weaker thermoclines,
and the shallower mixed layer may be due to the effects of averaging historical
observational data in creating the GDEM and MODAS climatological data. The
differences due to the differences in the mixed layer depths were that in all cases, the
GDEM profiles contained mixed layer depths were deeper than those of the MODAS
profiles. The differences due to a sub-layer in the multi-layer structure of the sound
speed profiles of the spring and the summer months varied in that the sub-layer was
present or absent in either the MODAS or GDEM profile. In most cases, as stated

previously, the weaker thermoclines and the shallower mixed layer may be due to the
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effects of averaging historical observational data in creating the GDEM and MODAS
climatological data. Without the input of SSH data into the MODAS model, the
characteristics of the surface ducts, thermocline, and mixed layer are possibly the same as
the MODAS climatology. Again, it must be noted that this possible problem cannot be
determined with certainty to be a problem with the MODAS climatology without
studying the actual MODAS climatology.

Tables 18 through 24 were created to facilitate for the reader the description of the
oceanographic differences between the MODAS and the GDEM profiles of Tables 16
and 17 and their effects on the acoustic model. The ray traces with detection ranges for
each of the corresponding MODAS and MOODS profiles of Tables 16 and 17 can be
found in Appendix B.

In Appendix C, histograms for all the scenarios were created to show the
distributions of differences in detection ranges for MODAS minus GDEM and MODAS
minus GDEM throughout the water column at five feet increments. The biggest
differences in detection ranges were found in spring and summer for both mud and sand
regions. The smallest differences in detection ranges were during the fall and winter
months for both gravel and rock regions. As mentioned earlier, sound propagation

becomes very limited by bottom reverberation in regions of gravel and rock bottom types.
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MODAS versus GDEM

February /Mud Bottom

1. Oceanographic Difference between
MODAS and MOODS

Differences are due to a near Bottom positive
gradient in the MODAS profile that was not present
in the GDEM profile.

2. How this affected the Acoustic Model

This near Bottom positive gradient produced up
bending near the bottom. When the Source was at
hull depth, both moored and Bottom mines
detection ranges were over predicted. When the
Source was at 125 ft, moored mines detection
ranges were over predicted and Bottom mines
detection ranges were under predicted.

3. Prevalence of Problems, if any, in the
Yellow Sea or North East China Sea

-This may be a problem in the MODAS
climatology. The problem was present in
approximately 15 % of the MODAS profiles in the
Yellow Sea.

-This problem was more prevalent in GDEM
throughout the entire Yellow Sea.

MODAS versus GDEM

May/ Mud Bottom

1. Oceanographic Difference between
MODAS and MOODS

1. At a source depth of 25 ft.,, the difference was -
due to the presence of a mixed layer in the GDEM
profile that was not present in the MODAS profiles
2. At source depths of 25 and 125 ft., the difference
was due to a presence of sub-layer in the MODAS
_profile that was not present in the GDEM profile.

2. How this affected the Acoustic Model

1. The mixed layer in the GDEM profile produced
allowed sound propagation above the thermocline,
thus increasing the detection range of a moored
mine. The thermoclines in both types of data sets
were too weak to produce significant caustics.

2. At a source depth of 25 ft., the sub-layer in the
MODAS profiles weakened down bending thus
weakening any caustics that would increase the
detection range of a bottom mine. At a source
depth of 125 ft., the sub-layer in the MODAS
profiles weakened down thus weakened bottom
reverberation, which increased the detection range
of bottom mines.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

1. Possible probiem since the mixed layers in most
of the MODAS profiles were always shallower than
the GDEM profiles were.

2. Not a prevalent problem.

b.

Table 18. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and GDEM Profiles in a Mud Bottom region in a. February, b. May.
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MODAS versus GDEM

August/ Mud Bottom

1. Oceanographic Difference between
MODAS and MOODS

At a source depth of 25 ft., the difference was due
to the GDEM profile having a much deeper mixed
layer depth.

2. How this affected the Acoustic Model

The negative gradient in the deeper mixed layer of
the GDEM profile where the source was located
produced less down bending than the negative
gradient of the thermoclines of the MODAS
profiles, thus forming weaker caustics and
decreasing the detection range of moored mines.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

Not a prevalent problem.

a.

MODAS versus GDEM

November/ Mud Bottom -

1. Oceanographic Difference between
MODAS and MOODS

1. The first difference was due to a surface duct
that was present in the GDEM profile and not in the
MODAS profile when source depth was at 25 ft.

2. At a source depth of 125 ft., the difference was
due to a weaker thermocline gradient in the GDEM
profile.

2. How this affected the Acoustic Model

1. The surface ducts trapped sound propagation in
a subsurface layer that produced greater detection
ranges for moored mines. :

2. The source depth was within the thermocline;
the weaker thermocline gradients produced by the
GDEM profile caused less down bending of sound
propagation. This produced weaker caustics due to
less focusing of sound propagation, which in turn
causes an under prediction of moored mines.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

1. When there was a surface duct in both profiles, it
was much stronger in the GDEM profile for most
cases.

2. The weaker thermocline gradients were observed
in almost all of the GDEM and MODAS profiles
used in this study.

b.

Table 19. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and GDEM Profiles in a Mud Bottom region in a. August, and b. November.
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MODAS versus GDEM

February/ Sand Bottom
1. Oceanographic Difference between NONE
MODAS and GDEM
2. How this affected the Acoustic Model NA
3. Prevalence of Problems, if any, in the NA

Yellow Sea or the North East China Sea

MODAS versus GDEM

May/ Sand Bottom

1. Oceanographic Difference between
MODAS and GDEM

At a source depth of 25 ft., the difference was due
to a weaker thermocline gradient in the GDEM
profile.

2. How this affected the Acoustic Model

The source depth was within the thermocline; the
weaker thermocline gradients produced by the
GDEM profile caused less down bending of sound
propagation. These produced weaker caustics due
to less focusing of sound propagation, which in turn
causes a decreased in detection range for a moored
mine.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

The weak thermocline gradients were observed in
almost all of the GDEM and MODAS profiles used
in this study.

b.

Table 20. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and GDEM Profiles in a Sand Bottom region in a. February, and b. May.
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MODAS versus GDEM

August/ Sand Bottom

1. Oceanographic Difference between
MODAS and MOODS

1. At a source depth of 25 fi., the difference was
due to the MODAS profiles having a much
shallower mixed layer depth and a negative
gradient within the mixed layer of the GDEM
profile.

2. At a source depth of 125 ft., the first difference
was due to a presence of sub-layer in the MODAS
profiles that was not present in the GDEM profile.
3. At a source depth of 125 ft., the second
difference was due the source being located within
a sub-layer that was present in the GDEM profiles
but was not present in the MODAS profile.

2. How this affected the Acoustic Model

1. The negative gradient in the deeper mixed layer
of the GDEM profile where the source was located
produced less down bending than the stronger
negative gradient of the thermoclines of the
MODAS profiles.

2. Although the source was located above the sub-
layer, it weakened the effect of thermocline
gradient, which caused less down bending of sound
propagation. This produced weaker caustics due to
less focusing of sound propagation, which in tumn
caused an under prediction of moored mines.

3. The sub-layer trapped all sound propagation
under the thermocline thus making sound
propagation very limited by bottom reverberation.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

1. Possible problem since the mixed layers in most
of the MODAS profiles were usually shallower
than the GDEM profiles were.

2. Not a prevalent problem.

3. Not a prevalent problem.

a.

MODAS versus GDEM

November/ Sand Bottom

1. Oceanographic Difference between
MODAS and GDEM

At a source depth of 125 ft., the difference was
due to a weaker thermocline gradient in the
MODAS profile.

2. How this affected the Acoustic Model

The source depth was within the thermocline; the
weaker thermocline gradients produced by the
MODAS profile caused less down bending of
sound propagation. These produced weaker
caustics due to less focusing of sound propagation,
which in turn causes a decreased in detection
range for a moored mine.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

The weaker thermocline gradients were observed
in almost all of the GDEM and MODAS profiles

used in this study.

b.

Table 21. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and GDEM Profiles in a Sand Bottom region in a. August, and b. November.
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MODAS versus GDEM

February/ Gravel Bottom
1. Oceanographic Difference between None
MODAS and GDEM
2. How this affected the Acoustic Model NA
3. Prevalence of Problems, if any, in the NA

Yellow Sea or the North East China Sea

a.

MODAS versus GDEM

May/ Gravel Bottom

1. Oceanographic Difference between
MODAS and GDEM

At a source depth of 25 ft., the difference was due
to a weaker thermocline gradient in the MODAS
profile.

2. How this affected the Acoustic Model

The source depth was within the thermocline; the
weaker thermocline gradients produced by the
MODAS profile caused less down bending of
sound propagation. This produced weaker
caustics due to less focusing of sound propagation,
which in turn causes a decreased in detection
range for 2 moored mine.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

The weaker thermocline gradients were observed
in almost all of the MODAS and GDEM profiles
used in this study.

b.

Table 22. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and GDEM Profiles in a Gravel Bottom region in a. February, and b. May.
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MODAS versus GDEM

August/ Gravel Bottom

1. Oceanographic Difference between
MODAS and GDEM

1. At a source depth of 25 ft., the difference was
due to a mixed layer that was present in the
MODAS profile and not in the GDEM Profile.
2. At a source depth of 75 ft., the difference was
due to a weaker thermocline gradient in the
GDEM profile.

2. How this affected the Acoustic Model

1. The source depth was within the mixed layer;
this caused less down bending of sound
propagation. This produced weaker caustics due
to less focusing of sound propagation, which in
turn causes a decreased in detection range for a
moored mine.

2. . In this scenario, the source was very close to
the bottom. The down bending caused by stronger
thermocline in the MODAS profiles caused sound
propagation to become very limited by bottom
reverberation, thus decreasing the detection range
of a bottom mine.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

1. Not a prevalent problem.

2. The weaker thermocline gradients were
observed in almost all of the GDEM and MODAS

profiles used in this study.

a.

MODAS versus GDEM

November/ Gravel Bottom

1. Oceanographic Difference between
MODAS and MOODS

At a source, depth of 125 ft., the difference was due
to a thermocline that was present in the GDEM
profiles and an isothermal structure of the MODAS
profiles.

2. How this affected the Acoustic Model

In this scenario, the source was very close to the
bottom. The down bending caused by the
thermocline in the GDEM profile caused sound
propagation to become very limited by bottom
reverberation, thus decreasing the detection range
of a bottom mine.

3. Prevalence of Problems, if any, in the
Yellow Sea or the North East China Sea

Not a prevalent problem.

b.

Table 23. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and GDEM Profiles in a Gravel Bottom region in a. August, and b. November.
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MODAS versus GDEM

February/ Rock Bottom
1. Oceanographic Difference between None
MODAS and GDEM
2. How this affected the Acoustic Model NA
3. Prevalence of Problems, if any, in the NA
Yellow Sea or the North East China Sea

a.
MODAS versus GDEM
May for Rock Bottom Type

1. Oceanographic Difference between At a source depth of 125 ft., the difference was due
MODAS and MOODS to a stronger thermocline in the GDEM profile.

2. How this affected the Acoustic Model | In this scenario, the source was very close to the
bottom. The down bending caused by the
thermocline in the GDEM profile caused sound
propagation to become very limited by bottom
reverberation, thus decreasing the detection range
of a bottom mine.

3. Prevalence of Problems, if any, in the The weaker thermocline gradients were observed in
Yellow Sea or the North East China Sea almost all of the GDEM and MODAS profiles used

in this study.
b.
MODAS versus GDEM
August/ Rock Bottom
1. Oceanographic Difference between None
MODAS and GDEM
2. How this affected the Acoustic Model NA
3. Prevalence of Problems, if any, in the NA
Yellow Sea or the North East China Sea
c.
MODAS versus GDEM
November/ Rock Bottom
1. Oceanographic Difference between None
MODAS and GDEM
2. How this affected the Acoustic Model NA
3. Prevalence of Problems, if any, in the NA
Yellow Sea or the North East China Sea
d.

Table 24. Description of Significant Acoustic Differences in Detection Ranges between
MODAS and GDEM Profiles in a Rock Bottom region in a. February, b. May, c. August,
and d. November.
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IX. ACOUSTIC UNCERTAINTY CAUSED BY HYDROGRAPHIC
DATA UNCERTAINTY

A. GAUSSIAN-TYPE ERRORS IN SOUND SPEED DATA

In this final study, the sensitivity of the CASS/GRAM model to uncertainty by
| hydrographical uncertainty was analyzed. The uncertainty in the hydrographic data is in
the form of small or large errors that may be present in the sound speed profiles possibly
due to the accuracy of the instruments used to obtain the data, the expertise of the person
obtaining the data, and in the case of MODAS, the accuracy of the algorithms in the

model.

To simulate hydrographic data uncertainty, a MATLAB code was used to
randomly enter a various range gaussian-type error into the MODAS sound speed
profiles. The MATLAB code was written to allow the user to enter the desired size of the
error to be entered into the sound speed profiles to be studied. For this study three sizes
of errors, 1, 5, and 10 meters per second, were entered into the sound speed profiles and
then inputted into the CASS/GRAB model. The regions selected for this study were mud
and sand. The seasons chosen for this study were winter (February) and summer
(August) to capture the effects of the error on the two main sound speed profile structures

of the Yellow Sea.

B. CORRESPONDING ERRORS IN SIGNAL EXCESS
The CASS/GRAB model was run uéing the MODAS profiles with the three level

of errors. The runs were performed for a source of 25 feet and 125 feet. The maximum

detection ranges derived from the signal excess (SE) calculations of the model were
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compared to those of the MODAS sound speed profile runs without error by taking the
absolute deference of MODAS profiles without error and the corresponding MODAS
profiles with error to determine if a significant acoustic difference existed. The results
were that a significant acoustic difference was observed in all of the scenarios for both
bottom types, with the exception of the scenarios of a 25 feet source depth and bottom
target, and a 125 feet source depth and a 26 feet target depth in the mud region duﬁng the

sumimer.

The winter scenarios for both regions had the most cases of significant acoustic
differences and the largest significant acoustic differences. Histograms of all the
scenarios were generated to show the distribution of the differences in detection ranges
throughout the entire water column (Appendix D). The distribution of the differences in
detection ranges in the histograms demonstrated that differences in detection ranges were
much larger during winter than summer (Figures 53 and 54). This indicates that the
isothermal structure of the winter profiles is much more susceptible to errors in sound

speed.

There was no pattern of the significant acoustic differences increasing with an
increased amount of gaussian-error entered into the profiles. The differences depend on
where the random error is situated in the water column in relation to the position of the
source. For a specific profile, if an error of 1 m/s is positioned within approximately 5
feet of the source depth and an error of 10 m/s is positioned greater than the 5 feet of the
source depth, the 1 m/s error will have a much greater effect on the acoustic transmission.

If the error near the source is positive, the gradient that is formed in the sound speed
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Target FEBRUARY /SOURCE DEPTH = 25 FT.
Depth Mud Sand
Error (m/s) Error (m/s)
1 5 10 1 5 10
26 ft |LB354N Lni1244E [L35.4N Lni24 4E[ LB5.4N Lai24.4E |L36.3N Ln125.0F |Lt36.3N Ln125.0E | Li36.3N Ln125.0E
735 yd 735 vd 735 yvd 845 yd 845 yvd 845 vd
Bottom None Lt35.4N Lnl124.4E| Lt35.0N Ln123.5E None NOIIC Lt35.9NLn124.6E
1000 yd 990 yd 665 yd
a.
Target FEBRUARY /SOURCE DEPTH = 125 FT.
Dep th Mud Sand
Error (m/s) Error (m/s)
1 5 10 1 5 10
26 ft Lt35. ON Lnl123.5E| Lt36.4N Ln124.4E] Lt35.9N Lnl124.4E NOI'IC Lt35.9N Ln125.9E[Lt35.9N Ln124.6E
390 yd 885 vd 88S vd 390 yd 565 yd
BOttOﬂ' Lt36.4N Ln124.4E | Lt35.1N Ln124.3E| Lt35.4N Ln124.4E| Lt36.4N Ln124.6E| Lt 5.9N Ln125.9E [Lt36.4N Ln124.6E
1000 yd 875 yd 1000 yd 115 yd 320 yd 210 yd
b.
Target AUGUST /SOURCE DEPTH = 25 FT.
Depth Mud Sand
Error (m/s) Error (m/s)
1 5 10 1 5 10
26 ft Lt35.4N Ln124.4H Lt354N Lnl124.48 Lt354N Ln 24.4E| Lt36.4N Ln125.9E | Lt36.4N Ln125.9E None
550 yd 560 yd 600 yd 810 yd 785 yd
Bottom None None None None | L135.9N Lnl24.6E None
590 yd
c.
Target AUGUST /SOURCE DEPTH = 125 FT.
Depth Mud Sand
Error (m/s) Error (m/s)
1 5 10 1 5 10
26 ft NOIIC NOIIC None L136.4N Ln124.4HF Lt36.4N Ln124.6§ Lt36.4N Ln124 4E
530 vd 440 vd 380 vd
Bottom None | LB64N Ln1244R None | L364N Ln124.6F L36.4N Ln124.6] Li36.4N Ln124.6E
595 yd 340 yd 375yd 755 yd

d.

Table 25. Maximum Significant Acoustic Differences in Detection Ranges for MODAS
versus MODAS with Gaussian Error in Sound Speed for Mud and Sand Bottom in a.
February/ Source Depth = 25 feet, b. February/ Source Depth = 125 feet, c. August /
Source Depth = 25 feet, d. August/ Source Depth = 125 feet.
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Figure 53. Histograms of the Acoustic Difference Distribution throughout the Water

Column for February 15, 2000, Mud Bottom and 125 ft source depth. a. MODAS minus
MODAS with 1 m/s error, b. MODAS minus MODAS with 5 m/s error, c. MODAS

minus MODAS with 10 m/s error.
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Figure 54. Histograms of the Acoustic Difference Distribution throughout the Water
Column for August 15, 2000, Mud Bottom and 125 ft source depth. a. MODAS minus
MODAS with 1 m/s error, b. MODAS minus MODAS with 5 m/s error, c. MODAS

minus MODAS with 10 m/s error.
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profile will decrease detection ranges. If the error is negative, the gradient that is

formed in the sound speed profile will increase detection ranges.

The results of the CASS/GRAB model with isothermal sound speed profiles
demonstrated that the model was sensitive to decreases in the sound speed profile near
the source depth, as small 0.1 m/s in some cases. In Table 22, a decrease in the MODAS
sound speed profile of 0.2 m/s between 0 and 8.2 ft and 0.1 m/s between 24.6 and 57.4 ft
created a small gradient that was not present in a corresponding MOODS sound speed
profile. The CASS/GRAB model’s response to this gradient was the generation of a
weak sound channel (Figure 55) that was significant enough to create a large acoustic

difference between the two data sets.

In order to further illustrate the sensitivity of the CASS/GRAB model to smalll
sound speed errors near the source, +/- 1 m/s errors were manually entered into the
MODAS sound speed profile of Table 22 at the source depths of 25 ft. and 125 ft. When
a +1 m/s error was entered at both source depths, a shadow zone was formed in front of
the source that significantly decreased the detection ranges at that depth, and when a
~1m/s error was entered at both source depths, a strong sound channel formed that

dramatically increased detection ranges at that depth (Figures 55-60).

In conclusion, the CASS/GRAB sensitivity to error in sound speed profiles was
very dependent on the location of that error in relation to the source. In addition,
CASS/GRAB is more sensitive to errors in the isothermal structure of the sound speed
profiles characteristic of the winter months. This sensitivity was due to the introduction
of either a positive or negative sound speed gradient by the error to a linear sound speed

structure.
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MODAS FEBRUARY 15, 1999, LAT 36.4 N LON 124.4 E, MUD BOTTOM

SOUND SPEED TABLE
Depth (Feet) M/S

0.00 1479.90
8.20 1479.70
24.60 1479.80
41.00 1479.80
57.40 1480.00
82.00 1480.00
106.60 1480.10
131.20 1480.30
164.00 1480.50
205.00 1480.40
246.00 1480.40

MOODS FEBRUARY 23,1970, LAT 36.4 N LON

124.4 E, MUD BOTTOM

SOUND SPEED TABLE
Depth (M) M/S

0.00 1468.50
32.80 1468.70
65.60 1468.80
98.40 1469.00
164.00 1469.40
246.00 1470.10

b.

Table 26. Comparison of MODAS and MOODS Sound Speed Tables. The small
difference in Sound Speed Gradient is labeled in red. a. MODAS Sound Speed Table, b.

MOODS Sound Speed Table.
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Figure 58. MODAS with -1 m/s Sound Speed error at Source Depth for February 15,
2000, 36.4 N 124.4 E, Mud Bottom, and Source Depth =25 fi. a. Ray Trace, b. Signal
Excess Contour Plot (Max Detection Range at Source Depth >1000 vd, A Max

Detection Range at Source Depth >740 yd).
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Figure 59. MODAS with +1 m/s Sound Speed error at Source Depth for February 13,
2000, 36.4 N 124.4 E, Mud Bottom, and Source Depth =125 fi. a. Ray Trace, b. Signal
Excess Contour Plot (Max Detection Range at Source Depth = 150 yvd, A Max Detection

Range at Source Depth = 5 yd).
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Figure 60. MODAS with -1 m/s Scund Speed error at Source Depth for February 15,
2000, 36.4 N 124.4 E, Mud Bottom, and Source Depth =125 ft. a. Ray Trace, b. Signal
Excess Contour Plot (Max Detection Range at Source Depth >1000 vd, A Max
Detection Range at Source Depth >855 vd).
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X. CONCLUSION

In this study, the seasonal variation in acoustic transmission in the Yellow Sea for
all regions was mainly due to the isothermal structure in the winter and a multi-layer
thermal structure in the summer. The acoustic transmission in the winter is shorter due to
the effect of the isothermal structure of the sound speed profile, thus detection ranges are
shorter. The acoustic transmission in the summer is significantly longer due to the down
bending effects of the multi-layer structure of the sound speed profiles, which produce
convergence zone and caustics.

Although the MODAS model captured the effects on the SST temperature by the
tropical depression in July and the cold front in January, a significant acoustic difference
was only observed in one of the profiles in July and none in none of the profiles for
January weather evént. The entire MODAS temperature and sound speed profiles were
shifted to the left with a decrease in temperature. This did not affect acoustic
transmission since acoustic transmission is not significantly effected by the positive or
negative shifting of the entire profile. The significant changes in acoustic transmission
arise when a change in the gradients of the sound speed profiles occur, which may be
caused by the change in the mixed layer depth, presence of a surface duct, the gradient of
the thermocline, etc. With the cold air mass and strong winds that are characteristic of a
tropical depression and to a less extent a strong cold front, there should have been some
occurrences where there was change in the mixed layer depth thermocline gradient.
Since the MODAS model operates without remote SSH data in shallow water, the model

may not be able to capture the effects weather has on the mixed layer depth or the
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thermocline gradient, which in turn cause the under prediction of the effects of weather
events in a shallow water region.
When MODAS profile outputs form the CASS/GRAB model was compared with
those of MOODS and GDEM there was many cases of significant acoustic difference
- between the two pairs of data sets especially during the spring and summer months in the
regions of sand and mud bottoms. In both cases, there were cases where differences
could have occurred due to weather events reflected by MODAS, but in the comparisons
with MOODS, there were cases that differences may have occurred due to limitations of
the MODAS climatology. Since both MODAS and the GDEM profiles both
demonstrated some of the same limitations like the weakening thermocline gradients,

most of the differences appeared to be weather events reflected by the MODAS model.

Since there is a significant effect to acoustic transmission by environmental
factors as demonstrated by the seasonal variability and the hydrographical data set
comparisons, the conclusion is that there is a need for a predictive modeling capability
such as MODAS to address the MIW needs in the Yellow Sea region. Although
MODAS is the best model available at this time to meet the MIW needs, the model
demonstrated some limitations in the Yellow Sea. In many cases the MODAS profile did
a good job in producing profiles that reflected changes in the climate, but for the reasons
stated earlier it sometimes under predicted the effects of the changes in the climate.
There were also problems with inaccurate profiles that rela;ced to the limitations of the

MODAS climatology.

The most signiﬁéant problem with the climatology that generated an acoustic
difference was detected in the winter months in the southern region of the Yellow Sea.
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Many of the MODAS temperature and sound speed profiles had near bottom positive
gradients below an isothermal layer, which was not observed in NIDAS for any of the
MOODS profiles in the Yellow Sea regions studied. This downward positive gradient in
MODAS caused an under prediction in detection ranges for Bottom mines due to the up
bending of sound propagation near the sea bottom. In the case of a near surface volume
mine (moored mine), this up bending produced less bottom reverberation, thus causing an
over prediction of the detection ranges of these mines. Since this néar bbttom downward
positive gradient was present in both the 1999 and 2000 MODAS profiles used, the cause
may be due to the sparseness of observational data along the shelf located between the
southern Yellow Sea and the northern East China Sea for use in developing the MODAS
ciimatology. Since the MODAS climatology data sets were not available for analysis

during this study, this conclusion is speculation.

Another problem that was a major source of significant acoustic difference was
observed in the summer months. Although MODAS profiles did capture surface ducts in
the mixed layer, they were much weaker than expected, and much weaker than those
observed in most of the MOODS profiles. The weaker surface duct caused an under
prediction of moored mines when the source was at hull depth. In many cases, MODAS
tended to weaken the thermocline gradient found in many of the MOODS profiles during
the summer months. This weakening of the thermocline gradient produces less down
bending of sound propagation. This in turn produces less focusing of sound propagation,

which translates into the under prediction of detection ranges.

The CASS/GRAB sensitivity to error in sound speed profiles was very dependent

on the location of that error in relation to the source. In addition, CASS/GRAB is more
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sensitive to errors in the isothermal structure of the sound speed profiles characteristic of
the winter months. This sensitivity was due to the introduction of either a positive or

negative sound speed gradient by the error to a linear sound speed structure.

NAVOCEANO has been WOrking with numerical ocean models to fix the
problems with MODAS altimeter SSH data input in shallow water region. They hope to
implement this SSH correction into the MODAS within the next couple of years. In
addition, NAVOCEANO is developing a new MODAS climatology that will correct
some of the problems in climatology that were mentioned earlier. These new
improvements into the MODAS model will show a significant improvement to the
models performance in shallow waters regions thus increasing the utility of the model for

MIW applications in shallow water.

Suggested future work in studying the environmental effects on mine hunting in
the Yellow Sea using the CASS/GRAB model are as follows: 1. Comparing the MODAS
climatological profiles (Static MODAS) with the cofresponding synthetic MODAS
profiles (Dynamic MODAS), 2. Comparing recent XBTs with corresponding synthetic
MODAS profiles, and 3. Performing various studies with Bathymetry data entered into

the CASS/GRAB model.
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APPENDIX A. MODAS AND MOODS RAY TRACES

Mud Bottom/ February/ 35.0 N 123.5 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000, c.
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25 ft/ a. MODAS 1999, b. MODAS 2000, c.
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Mud Bottom/ August/ 35.9 N 124.4 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000, c.
MOODS
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Mud Bottom/ November/ 36.5 N 123.0 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000, c.
MOODS '
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Sand Bottom/ February/ 35.9 N 125.8 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000, c.
MOODS
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Sand Bottom/ May/ 35.9 N 126.0 E/ Source Depth =25 ft/ a. MODAS 1999, b. MODAS 2000, c.
MOODS

Py Treoe «/-6 decress by 1 decres

BOUND SFESD (KMB)
1 4AD 1. 4851 .4D01.85151.540 0.00

TIITTIOTTT

1o ! e
/

a8 : a8
i

oo i ec

os f s

110 110

-~ 128 -~ 198

F -

L t1ec 4 180

~ 3

I vres I aes

= -

L =210 L =10

w &

Q zas 0 aas
a2e0 aso
zeo a28s
a0 210
aas EEL]
aeo oeo
aes aes
-0 L RE-]

a. Maximum Detection Range (DR) for a 26 ft. Target Depth = 880 yd, ADR =795 yd

Ruy Trave +/-8 depross vy | dupree

BOUND BPEED (KMB) RanaE (Vo>
1. 44017 40681 4901 .878.8400.00 Q.. .80 o.7s 1.00
wo [ 5 TS, T3 = -
i
as H s
oo J" oo
oo ' -s
+
110 110 3
- 198 PURE T
I~ I
u veo L 1m0
=g >
I 1es I vem
F -
Lt =240 4 =z-+o0
w u
Q zos Q aas
2e0 zeo
288 z2es
>0 1O
EE T EE T
»00 aee
ses ass Hi.
40 410 &

b. Maximum Detection Range (DR) for a 26 ft. Target Depth = 895 yd, ADR =810 yd

Ruy Trese +/-8 degrees by 1 degree

BOUND SPEED (KM/S) RANGE (KYD)
14401. 4881 4001.67189.58400.00 o.as o.80 o.7s 1.00
P Ty o = s
as 'i as
oo ! oo
{
es E es
110 T1e
- 195 -~ 1908
- "
L teoc L 180
< >
I o= I 1es
[ <
L =240 L =210
u u
Q =2a3s 0 =zas
200 200 §
205 zas §
210 L RA-]
238 EY 1
aoo a0
ses aes
-1 410 =

¢. Maximum Detection Range (DR) for a 26 ft. Target Depth = 85 yd

140



Sand Bottom/ August/ 35.9 N 124.8 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000, c.
MOODS
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Sand Bottom/ November/ 35.9 N 125.8 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000,
¢. MOODS
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Mud Bottom/ February/ 35.0 N 123.5 E/ Source Depth =25 ft/ a. MODAS 1999, b. MODAS 2000, c.
MOODS
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¢. Maximum Detection Range (DR) for a Bottom Target Depth = 100 yd
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Mud Bottom/ February/ 35.0 N 123.5 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000,
¢. MOODS
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth = 595 yd, ADR =495 yd
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth =610 yd, ADR =510 yd
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¢. Maximum Detection Range (DR) for a 26 ft. Target Depth = 100 yd
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Mud Bottom/ May/ 36.3 N 125.0 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000, c.

MOODS
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Mud Bottom/ November/ 35.0 N 123.0 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000,
¢. MOODS
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth = 85 yd, ADR =445 yd
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth =85 yd, ADR =445 yd
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Sand Bettom/ November/ 36.0 N 124.8 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000,
¢. MOODS
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth =95 yd, ADR =495 yd
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth =95 yd, ADR =495 yd
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Mud Bottom/ February/ 36.3 N 124.4 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000,
¢. MOODS
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a. Maximum Detection Range (DR) for a Bottom Target Depth =0 yd, ADR > 1000 yd
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b. Maximum Detection Range (DR) for a Bottom Target Depth =0 yd, ADR > 1000 yd
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¢. Maximum Detection Range (DR) for a Bottom Target Depth > 1000 yd
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Mud Bettom/ May/ 36.3 N 125.0 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000, c.
MOODS
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a. Maximum Detection Range (DR) for a Bottom Target Depth =910 yd, ADR =225 yd
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b. Maximum Detection Range (DR) for a Bottom Target Depth > 1000 yd, ADR > 315 yd
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c¢. Maximum Detection Range (DR) for a Bottom Target Depth = 610 yd
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Sand Bottom/ August/ 35.9 N 125.8 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000, c.
MOODS
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a. Maximum Detection Range (DR) for a Bottom Target Depth = 875 yd, ADR =265 yd
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b. Maximum Detection Range (DR) for a Bottom Target Depth = 835 yd, ADR =225 yd
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¢. Maximum Detection Range (DR) for a Bottom Target Depth = 610 yd

151




Sand Bottom/ November/ 35.9 N 124.6 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS
2000, c. MOODS

Rey Trocw +/-5 degrees by 1 degres

BOUND SPZED (KMWEa) oM G (YD)
14401 405 1.4901.5151.5400.00 [-B-7] o.80 0.78 1.00

1o [JTTITTTTIRTIRT T T
a8
oo

19= /

§
160
185

210 {

DEPTH (FT)
DEPTH (FT)

o
2985 ! N

2e0
205

ERT-]

- - é{ I

EY Y] ELT -

WL

a. Maximum Detection Range (DR) for a Bottom Target =310 yd, ADR =205 yd
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b. Maximum Detection Range (DR) for a Bottom Target = 310 yd, ADR =205 yd
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¢. Maximum Detection Range (DR) for a Bottom Target = 105 yd
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Gravel Bottom/ May/ 38.9 N 122.5 E/ Source Depth =25 ft/ a. MODAS 1999, b. MODAS 2000, c.
MOODS
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth =90 yd, ADR = 800 yd
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth =90 yd, ADR =800 yd
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¢. Maximum Detection Range (DR) for a 26 ft. Target Depth = 890 yd
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Rock Bottom/ August/ 38.9 N 122.2 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000, c.
MOODS

Ruy Trmaw <45 deprees by 1 degres

BOUND BPEED (KMWS) RANGE (KVD)
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth =0 yd, ADR =210 yd

Ray Treae +/-8 degrees by 1 Ywores

BOUND BPEED (KM/R> RANGE (IKVD)
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth =0 yd, ADR =210 yd

Roy Troee «/-6 depreoss by 1 degres

BOUND SEEED KMM/a) mAaNGE (VD)
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¢. Maximum Detection Range (DR) for a 26 ft. Target Depth =210 yd
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Gravel Bottom/ May/ 39.0 N 122.8 E/ Source Depth = 75 ft/ a. MODAS 1999, b. MODAS 2000, c.
MOODS

Rmy Treee +/5 degrews by 1 deares

BOUND SPERD (KMSR) RANGE YD)
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a. Maximum Detection Range (DR) for a Bottom Target Depth =35 yd, ADR = 655 yd

Rwy Troce «/-0 degraens by 1 deores

BOUND BFEED (KMAR) RANGE (VD)
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b. Maximum Detection Range (DR) for a Bottom Target Depth =35 yd, ADR = 655 yd

Ruy Tranw +/-0 degrees by | dogres

BOUND SPEESD (KM/E) RAaMNaE (KvD)

1.4401.4061.49501.8151.8400.00 o.28 o.s0 o.rs 1.00
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¢. Maximum Detection Range (DR) for a Bottom Target Depth = 690 yd
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DEPTH (FT)

Gravel Bottom/ August/ 38.9 N 122.2 E/ Source Depth = 50 ft/ a. MODAS 1999, b. MOODS

Rmy Trmoe +/-5 degrees by 1 degrews

SOUND SFPEED (KM/S) RANGE (KYD)
1.4407. 4859 . 4901.5151.85400.00 o.25 o.S0 o.7rs 1.00
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a. Maximum Detection Range (DR) for a Bottom Target Depth = 445 yd, ADR =425 yd
Ray Trace +/-5 degree=s by 1 degree
SOUND SPEED (KM/S) RANGE (KYD)
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b. Maximum Detection Range (DR) for a Bottom Target Depth = 20 yd
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Gravel Bottom/ November/ 38.4 N 122.1 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000,
¢. MOODS

Rmy Treoe +/-8 degrees by 1 degres

BOUND SPEED (KMWB) RANGE (VD)
144014051 . 4901.8151.0400.00 o.26 o.60 o.7e 1.00
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a. Maximum Detection Range (DR) for a Bottom Target Depth = 245 yd, ADR =220 yd

My Temaw +/-5 degrees by 1 degres

DOUND RFRED (KM/B)> AN GE (PCYD)
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b. Maximum Detection Range (DR) for a Bottom Target Depth =250 yd, ADR =225 yd

Ruy Traoe «</A5 degrees by 1 degrwwe

BOUND SPEED (KMWE) ROANGE (KVD)
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¢. Maximum Detection Range (DR) for a Bottom Target Depth = 25 yd
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Rock Bottom/ May/ 37.5 N 123.0 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000, c.
MOODS

Muy Trace +/-8 degrees by 1 degrew

BOULND BPEED (KMS) RANGE (IKYD)>
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a. Maximum Detection Range (DR) for a Bottom Target Depth =215 yd, ADR =190 yd

Ray Trooe «/0 dworews by 1 depres

BOUND SPEED (KM/S)> RoNaGE (VYD)
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b. Maximum Detection Range (DR) for a Bottom Target Depth =210 yd, ADR =185 yd

Rey Trees /-8 degrens By 1 degres

BOUND BEFEKD (KM/B) AN (VD)
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¢. Maximum Detection Range (DR) for a Bottom Target Depth = 25 yd
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=125 ft/ a. MODAS 1999, b. MODAS 2000,

Rock Bottom/ November/ 37.5 N 123.4 E/ Source Depth

¢. MOODS

Ruy Trees +/-5 degresw by 1 depres

VBOUND SPEED (KMWS)
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b. Maximum Detection Range (DR) for a Bottom Target Depth
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Maximum Detection Range (DR) for a Bottom Target Depth > 1000 yd

c.
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APPENDIX B. MODAS AND GDEM RAY TRACES

Mud Bottom/ February/ 35.0 N 123.5 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

MODAS! FEBS9S 35.0 N 123.5 E/ MUD BOTTOM/ SOURCE DEPTH =26 FT

Py Trmwe </ depraes by 1 dapr—-

EL u'

Maximum Detection Range (DR) for a 26 ft. Target Depth >1000 yd ADR >755 yd

=25 FY

MODASY FEBRUARY/ 85.0 N 123.5 E/ MUD BOTTOM/ SOURCE DEPTH

My Trmee «/-0 deprees by 1 Segrwe

DEPTH (FT)
4 a4

+ wew——

Mmy Treee « s dearmen by
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VMAO T ABE T AN .8181.6400.00

—— /,

L

Maximum Detection Range for a 26 ft. Target Depth = 245 yd
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Mud Bottom/ May/ 35.0 N 123.0 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000, c.

GDEM

BOUND BPEED (KMWS)
1440 1. 488 1.4D01.8161.540 0.00

Ruy Truee «/-0 deprees by 1 degres

RANGE (KXY D)
o.26 o.80 ©.768 .00
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth =205 yd ADR >795 yd

BOUND SPERD (WM/G)
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth =220 yd, ADR >780 yd

DEPTHIFT)
4
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BOUND SFEED (IKMWE)
14401486 1.4004.5151.8400.00

Ruy Trace «/-5 degrees by 1 depree

RANGE (KYD)
o.80

DEPTH (FT)

]
a
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¢. Maximum Detection Range (DR) for a 26 ft. Target Depth >1000 yd
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Mud Bottom/ August/ 35.9 N 124.4 E/ Source Depth =25 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

Ry Treae /-8 degress By 1 Yesres

BOUND SPEED (KM% RANGE G<YD)
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth = 765 yd, ADR =545 yd

Moy Trees «/-0 degreen by 1 depres
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth = 755 yd, ADR =535 yd
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Pay Treoe +/-S depgress by 1 degrew
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¢ Maximum Detection Range (DR) for a 26 ft. Target Depth =220 yd
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Mud Bottom/ November/ 36.5 N 123.0 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

Ruy Treow +/-5 degrees by 1 dearee

BOUND SPEED (KMWR) RANGE (KYE)
1. 4401.4857.4901.5151.8400.00 o.28 .80 o.7s 1.00
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth =160 yd, ADR >840 yd

Mmy Treow «/-5 deprews by 7 degrew

VOUND ISEED (KIME) FLON GE (YD)
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth =160 yd, ADR >840 yd

Ruy Treae /-8 degrees by 1 degres

BOUND BPEED (KMB) RANGE (KYD)
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¢. Maximum Detection Range (DR) for a 26 ft. Target Depth > 1000 yd
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Sand Bottom/ May/ 35.9 N 125.2 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

Ry Trawe +/5 dogresa vy 1 dogree

SOUND SPEED (KM/S) RANGE (KYD)
1.4401.4681.4901.5159.640 0.0¢ o.2s a.s0 o.rs ‘.00
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth > 1000 yd, ADR >860 yd

Ray Traen +/-5 degress by 1 degres

BOUND SPEED (KM/a) RANGE (YD) .
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth > 1000 yd, ADR >860 yd

Rey Trase +/6 degrows by 1 Begres

BOUND SPEED (KMBS) RANGE (VDY
14401 . 4881 4901.8187.640 0.0 o.a8 o.sc a.7s “1.00
10 [ T e B ggmw—xa}\r:r:rrv T l-'N‘IJ—O—""‘!—Ij
/ N T
EY S K a5 \\\}Q\\ \ \\\} /7}-'
oo I eo N ~. \ . = P
/ - \\\:b\ ~ \\ 7
s { - \~ NN
! = U .
1v0 ] 110 E \\\\\,‘\\\ e
i = NINNIN P
- 128 - 133 NN,
= | = = NN
% tec 1 L 1% -,
& L =
I vas I ses B |
r I3 Bl i
A =z+10 o =10 B i
ui I B i
0 zas 0 =2as & i i
aeo 2e0 =

HITY

U1 108 FE

i
i
|
{

¢. Maximum Detection Range (DR) for a 26 ft. Target Depth = 140 yd
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Sand Bottom/ August/ 35.9 N 124.8 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

Rny Trame «/-5 degrews by 1 degree

BOUND BPEED (Kaa) AN GE (VD)

THAO T AOE 1 ARNOT.B181.8400D.00 o.25 .50 a.rs 1.00
1o ) ﬂ LI TRy "113-‘-\{:-‘—11’ ST 1117:22*;/‘\"%‘:.::_"‘
ae - T =S T, A e
> Y, . . e Py
o E e . s NG
L . A p o
T1o //
TS
[ R 1-] : /,
& L
I vTes I
[ -
& 210 &
0 zas 7] {
EL-1-1

2es
310
>as
aeo

>2es

!
a. Maximum Detection Range (DR) for a 26 ft. Target Depth > 1000 yd, ADR > 39Q yd

Rumy Troce w3 degreen by | deoree
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth =995 yd, ADR = 385 yd

Ray Trece +/-8 degrees by 1 degres

BOUND IPEED (KM/S) RANGE (KYED)
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¢. Maximum Detection Range (DR) for a 26 ft. Target Depth = 610 yd
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Mud Bottom/ February/ 35.0 N 123.5 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

Ray Treee «/-5 doproos by 3 dogres

BOUND SPEED (KM/S) oM QK (KYD)>
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a. Maximum Detection Range (DR) for a Bottom Target > 1000 yd, ADR > 900 yd

Ray Trase +«/-8 degrees by 1 degres
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b. Maximum Detection Range (DR) for a Bottom Target =990 yd, ADR =100 yd

Ray Traae +/@ dvegreus oy 1 Jopras
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¢. Maximum Detection Range (DR) for a Bottom Target =100 yd
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Mud Bottom/ May/ 36.3 N 125.0 E/ Source Depth = 25 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

Rey Trose +/-5 degroen by 1 depros

VDOUND BFEED (KOV/ER) ROMNGE (KYD)
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a. Maximum Detection Range (DR) for a Bottom Target Depth =0 yd, ADR =655 yd

Ry Trace +/-5 deprees by 1 degree

SOUND SPREED (KMo RANGE (KV)
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b. Maximum Detection Range (DR) for a Bottom Target Depth =0 yd, ADR =655 yd

By Trese «/-8 degrees by 1 deprow

BOUND SPEED (FKrM/E)> RANGE (CYD)
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¢. Maximum Detection Range (DR) for a Bottom Target Depth = 655 yd
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Mud Botton/ February/ 35.0 N 123.5 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000,
¢. GDEM

Ruy Trace «/-8 degrews by 1 degres

BOUND GPERD (KMWSR) AaNaR KVD)
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth =595 yd, ADR =495 yd

Ruy Treee +/-8 deprees by 5 vepree

BOUND SPEED (IKM/S) RANGE (KYD)
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth =610 yd, ADR =510 yd
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Ruey Trace «/5 degrews by 1 degree

BOUND BFELD (KMWS) AN G (YD)
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¢. Maximum Detection Range (DR) for a 26 ft. Target Depth =100 yd
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Mud Botton/ November/ 36.5 N 123.0 E/ Source Depth =125 ft/ a. MODAS 1999, b. MODAS 2000,
c¢. GDEM

Ray Trece +/58 degrees by 1 degree

BOUND BPERED (KMG) RANGE (VD)
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth =495 yd, ADR =495 yd

Ay Traae +/-6 degrees by 1 degres
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth =510 yd, ADR =510 yd

Ray Trowe ~18 degprees by 1 degres

TOUND SPEED (KMWB) RAnGE (KYD)
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¢. Maximum Detection Range (DR) for a 26 ft. Target Depth =0 yd

170




Sand Bottom/ August/ 35.9 N 124.6 E/ Source Depth =125 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

Ray Trase +/-6 degrows by 7 depreoe

BMOLUND SPEED (KoM MANGE (YD)
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth =90 yd, ADR =525 yd

My Trose «/-8 doproow By 1 dugres

BOUND BPEED (KMRB) BRANGE (YD)
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth =90 yd, ADR =525 yd

Ray Trece «/-5 degrees by 1 depres

BOUND SPEED (KMEB) RANGE (KYD>
1.4407.4081.4001.8181.5400.00 o.as o.80 o.7s 1.00
-0 il T YT L S S B 2 M G T T
a6 |}l as
eo i eo
.S /’/ .5

110 s 110

A 198 S a 138 BES "~

3 s - 3 o~

§ Tee It L Ve N - \)‘._/29/{)/’/ 4 _"

I 1ee ! I as NN ‘\:;“5} AT

E 210 { E 210 RN e )’.,}‘5//»/

h NN S

Baef | 8 T
200 ze0 f’ . ‘
208 208 E
10 310 ;Z {
ass ass & I
200 s00 = i
YT aes Eg " !
410 <10 ' l - I 3

¢. Maximum Detection Range (DR) for a 26 ft. Target Depth =615 yd
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Sand Bottormn/ November/ 35.9 N 124.6 E/ Source Depth = 125 ft/ a. MODAS 2000, b. GDEM

DEPTH (FT)

DEPTH (FT)

Ray Trace +/-5 degreos by 1 depgroee

SOUND SPEED (KM/S) RANGE (KYD)
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth =110 yd, ADR =535 yd

Ray Trace +/-f5 degrees by 1 degres

SOUND SPERD (KM/S) RANGER (KYD)
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth = 645 yd
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Mud Bottom/ February/ 35.0 N 123.5 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000,
c¢. GDEM

Ray Trmas +/-8 degrees by 1 dugrew

COUND SPEED (W) RANGE (KYD)
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a. Maximum Detection Range (DR) for a Bottom Target = 660 yd, ADR = 340 yd

Ay Trese «/-8 deprees by 7 deprow

BOUND BPEED (KAM/B) RANGE (KYD)>
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b. Maximum Detection Range (DR) for a Bottom Target = 645 yd, ADR > 355 yd

BOUND SFEED (KMES) MANGE (FCVD)
14401 4881 .4001.81517.8400.00 o.25 o.m0 .78 1.00
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¢. Maximum Detection Range (DR) for a Bottom Target > 1000 yd
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Mud Bottom/ May/ 35.0 N 123.5 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

Ray Treee +/- degrees oy 1 degree

BOUND BPEED (MS) RANGRE (KYD)
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a. Maximum Detection Range (DR) for a Bottom Target > 1000 yd, ADR > 895 yd

Ray Trace +/-5 degrews by 1 degres

BOUND SPEED (KMWS) RANGE (KYD)
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b. Maximum Detection Range (DR) for a Bottom Target > 1000 yd, ADR > 895 yd

VOUND SPECD (KM/R) RANGE (VD)
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¢. Maximum Detection Range (DR) for a Bottom Target =105 yd
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Mud Bottom/ November/ 36.5 N 123.0 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000,
¢. GDEM

Ray Treee +/- degrees by 1 degres

BOUND BFEED (KM/S) PANGE (KYD)
1.4401.40871.4901.51657.6400.00 o.z2s o.50 o.78 1.00
Linn S B B I TN G I S T S Bt N BN B A SO B S B B S P LA S S S S e i e

s | TS,
s as
.o e
s : as
110 i 110
¢
- 1235 A ~ 1238
r I3 r
W 180 E g 180
< i
I e I 1es
- [
L =z+0 L =z10
w u
0 zas G =as
200 200
zes z2ne
a1o 210
EE 1. 328
seo seo
aea ao8
410 410

a. Maximum Detection Range (DR) for a Bottom Target =670 yd, ADR =250 yd

Ray Trace /-5 degress by 1 degres

BOUND SPEED (KM/S) RANGE (KVD)
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b. Maximum Detection Range (DR) for a Bottom Target = 655 yd, ADR =235 yd

Mumy Trmee «/-6 doprees by 1 Snproaw
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¢. Maximum Detection Range (DR) for a Bottom Target = 420 yd
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Sand Bottom/ August/ 35.9 N 124.6 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

Rey Troee +/-8 degroes by 1 degres

SOUND SPEED (KR ) RANGE (YD)
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a. Maximum Detection Range (DR) for a Bottom Target = 885 yd, ADR =385 yd

BOUND BPFEKD (KMA) PANGIE (YO
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b. Maximum Detection Range (DR) for a Bottom Target =860 yd, ADR =360 yd

Ry Troee «/-8 dopresa by 1 deproe
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¢. Maximum Detection Range (DR) for a Bottom Target = 500 yd
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Gravel Bottom/ May/ 39.0 N 122.8 E/ Source Depth =25 ft/ a. MODAS 2000, b. GDEM

DEPTH (FT)

DEPTH (FT)

Ray Trmce +/-5 degrees by 1 degree

SOUND SPEED (KMW/S) RANGE (KYD)
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth = 80 yd, ADR =775 yd
Ray Trace +/-5 degrees by 1 degree
SOUND SPEED (KM/S) RANGE (KYD)
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth = 855 yd
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Gravel Bottom/ August/ 38.6 N 122.0 E/ Source Depth =25 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

Ruy Trece +/-5 degrews by 7 degres

BOUND SPEED (KMDB) RANGE (YD)
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a. Maximum Detection Range (DR) for a 26 ft. Target Depth = 100 yd, ADR =850 yd

BOUND BPFEED (KIWE) AN QE (VD)
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b. Maximum Detection Range (DR) for a 26 ft. Target Depth =100 yd, ADR = 850 yd

mey Treee «/-0 dogronn By 1 Yepres
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¢. Maximum Detection Range (DR) for a 26 ft. Target Depth =950 yd
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Gravel Bottom/ August/ 38.6 N 122.0 E/ Source Depth = 75 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

Ray Trose +/-5 degrass by 1 doprow

BOUND APEERD (KMWBD) mANGE (YD)
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a. Maximum Detection Range (DR) for 2 Bottom Target = 0 yd, ADR =955 yd

ey Traow «/ 0 degrees by 1 degres

BOUND SPEED (KM/S) RANGE (KVYD)
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b. Maximum Detection Range (DR) for a Bottom Target =0 yd, ADR =955 yd

May Trawe +/-8 degrees by 1 degpres

BOUND APEED (KM/E) mANGE (VYD)
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¢. Maximum Detection Range (DR) for a Bottom Target = 955 yd
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Gravel Bottom/ November/ 38.4 N 122.1 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000,
¢. GDEM

Ray Trece +/-8 degrees by 1 degres

i BOULND SPEED (KM/R) RAMNGE (KVYD)
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a. Maximum Detection Range (DR) for a Bottom Target Depth =245 yd, ADR =220 yd

Mmy Trmow «/5 deorees by 3 dwores
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b. Maximum Detection Range (DR) for a Bottom Target Depth = 250 yd, ADR =225 yd
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¢. Maximum Detection Range (DR) for a Bottom Target Depth =25 yd
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Rock Bottom/ May/ 37.5 N 123.0 E/ Source Depth = 125 ft/ a. MODAS 1999, b. MODAS 2000, c.
GDEM

Rmy Trace +«/-3 degrees by 1 degres
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a. Maximum Detection Range (DR) for a Bottom Target Depth =215 yd, ADR =190 yd
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b. Maximum Detection Range (DR) for a Bettom Target Depth =210 yd, ADR =185 yd
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¢. Maximum Detection Range (DR) for a Bottom Target Depth = 25 yd
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APPENDIX C. HISTOGRAMS FOR HYDROGRAPHIC DATA
COMPARISONS

HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 2000/ MUD BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 1999/ MUD BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 1999/ MUD BOTTOM/ SOURCE DEPTH =125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXTMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 2000/ MUD BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 2000/ MUD BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 1999/ MUD BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 1999/ MUD BOTTOM/ SOURCE DEPTH =125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 2000/ MUD BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 2000/ MUD BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 1999/ MUD BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 1999/ MUD BOTTOM/ SOURCE DEPTH = 125 FT.

Frequency

Frequency

MODAS - MOODS

100

$ (%) ] o
() o Q
T T T

N
Q
all

I ¥ 1

|

-0.5 | 0 05 1
Range Difference (KYD)

MODAS - GDEM

120

100

o+ ()] oo
(=] o o
Y T 7

N
(=
i

T T L

-0.5 0 0.5 1
Range Difference (KYD)

193




HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 2000/ MUD BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 2000/ MUD BOTTOM/ SOURCE DEPTH =125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 1999/ MUD BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIF FERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 1999/ MUD BOTTOM/ SOURCE DEPTH =125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 2000/ SAND BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 2000/ SAND BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 1999/ SAND BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 1999/ SAND BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 2000/ SAND BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 1999/ SAND BOTTOM/ SOURCE DEPTH =25 FT.

MODAS - MOODS
40 . . .

-t
Q
T

)

Range Difference (KYD)

| MODAS - GDEM
70 ] ] 1 1 1 1

<N
Q
T
1

Frequency
N (&) F N
o Q o

-
Q
L)

L

0 [} H 1 J_
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Range Difference (KYD)

203




HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 2000/ SAND BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 2000/ SAND BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 1999/ SAND BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 1999/ SAND BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 2000/ SAND BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 2000/ SAND BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 1999/ SAND BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 1999/ SAND BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 2000/ MUD BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 2000/ GRAVEL BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 2000/ GRAVEL BOTTOM/ SOURCE DEPTH =125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 1999/ GRAVEL BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 1999/ GRAVEL BOTTOM/ SOURCE DEPTH =125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 2000/ GRAVEL BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 2000/ GRAVEL BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 1999/ GRAVEL BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXTMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 1999/ GRAVEL BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 2000/ GRAVEL BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 2000/ GRAVEL BOTTOM/ SOURCE DEPTH =125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 1999/ GRAVEL BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 1999/ GRAVEL BOTTOM/ SOURCE DEPTH =125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 2000/ GRAVEL BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 2000/ GRAVEL BOTTOM/ SOURCE DEPTH=125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXTIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 1999/ GRAVEL BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 1999/ GRAVEL BOTTOM/ SOURCE DEPTH=125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 2000/ ROCK BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 2000/ ROCK BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 1999/ ROCK BOTTOM/ SOURCE DEPTH =25 FT.

MODAS - MOODS

100

80

60 -

40

Frequency

20+

-

1 1 k3 T

0
-0.05

-0.04

-0.03 -0.02 -0.01 0 0.01
Range Difference (KYD)

MODAS - GDEM

70

-
Q
T

1
(=
L]

Frequency

N
o
T

10

0
-0.2

-0.15

-0.1 -0.05 0 0.05
Range Difference (KYD)

231




HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 1999/ ROCK BOTTOM/ SOURCE DEPTH =125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 2000/ ROCK BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 2000/ ROCK BOTTOM/ SOURCE DEPTH =125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 1999/ ROCK BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ MAY 1999/ ROCK BOTTOM/ SOURCE DEPTH =125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 2000/ ROCK BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 2000/ ROCK BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 1999/ ROCK BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 1999/ ROCK BOTTOM/ SOURCE DEPTH =125 FT.

MODAS - MOODS
70 — . r

Frequency
(& o 8] (27
o Q (o] (=)

N
Q

10

0 _
-1 -0.5 0 0.5 1
Range Difference (KYD)

MODAS - GDEM
70 ) 1 L

W O O
o O O O

Frequency

N
o

10

0 |
-1 -0.5 0 0.5 1
Range Difference (KYD)

240




HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 2000/ ROCK BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 2000/ ROCK BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 1999/ ROCK BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ NOVEMBER 1999/ ROCK BOTTOM/ SOURCE DEPTH =125 FT.
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APPENDIX D. HISTOGRAMS FOR ACOUSTIC UNCERTAINTY

HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 2000/ MUD BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS F

OR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL

TARGET DEPTHS/ FEBRUARY 2000/ MUD BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 2000/ MUD BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 2000/ MUD BOTTOM/ SOURCE DEPTH =125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 2000/ SAND BOTTOM/ SOURCE DEPTH = 25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ FEBRUARY 2000/ SAND BOTTOM/ SOURCE DEPTH = 125 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES FOR ALL
TARGET DEPTHS/ AUGUST 2000/ SAND BOTTOM/ SOURCE DEPTH =25 FT.
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HISTOGRAMS FOR DIFFERENCES IN MAXIMUM DETECTION RANGES F OR ALL
TARGET DEPTHS/ AUGUST 2000/ SAND BOTTOM/ SOURCE DEPTH = 125 FT.
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APPENDIX E. CASS/GRAB MODEL INPUT CARD

X OFFSET = 0.05 IN
BACKGROUND COLOR = WHITE
FOREGROUND COLOR = BLUE
PLOT DEVICE = VISUAL
PLOT LIBRARY = CASS
.ERROR STATUS = CONTINUE
FOREGROUND COLOR = BLUE
BACKGROUND COLOR = WHITE
EIGENRAY MODEL = GRAB
OUTPUT FILE = SAV

RESET OUTPUT DEVICE
RESET PLOT DEVICE

EIGENRAY MODEL = GRAB

FREQUENCY MINIMUM = XXXXX HZ
FREQUENCY MAXIMUM = XXXXX HZ
FREQUENCY INCREMENT = 1 HZ
VERTICAL ANGLE UNIT = DEG
VERTICAL ANGLE MINIMUM = 0 DEG
VERTICAL ANGLE MAXTMUM = 90 DEG
VERTICAL ANGLE INCREMENT = 1 DEG
VERTICAL ANGLE AXIS LENGTH = 7 IN
VERTICAL ANGLE AXIS MINIMUM = 0 DEG
VERTICAL ANGLE AXIS MAXIMUM = 90 DEG
VERTICAL ANGLE AXIS INCREMENT = 10 DEG
FUNCTION UNIT = DB
FUNCTION AXIS LENGTH = 5 IN
FUNCTION AXIS MINIMUM =-20 DB
FUNCTION AXIS MAXIMUM = 0 DB
FUNCTION AXIS INCREMENT = 5 DB
DEPTH UNIT = FT
DEPTH AXIS MINIMUM = 0 FT
DEPTH AXIS MAXIMUM = 410 FT
DEPTH AXTS INCREMENT = 25 FT

DEPTH AXIS LENGTH = 5 IN

LEVEL AXIS MINIMUM = -50 DB
LEVEL AXIS MAXIMUM = -20 DB
LEVEL AXIS INCREMENT = 10 DB
LEVEL AXIS LENGTH = 5 IN
RANGE UNIT = KYD
RANGE AXIS LENGTH = 7 IN
RANGE AXIS MINIMUM = 0 KYD
RANGE AXIS MAXIMUM = 1.0 KYD
RANGE AXIS INCREMENT = 0.25 KYD
TIME AXIS LENGTH = 7 IN
TIME AXIS MINIMUM = 0S8

TIME AXIS MAXIMUM = 1.50 S

TIME AXIS INCREMENT = 0.1 s

SPEED AXIS LENGTH = 1.75 IN

SPEED AXTIS MINIMUM = 1440.0 M/S

SPEED AXIS MAXIMUM = 1550.0 M/S

SPEED AXIS INCREMENT = 25 M/S
BOTTOM REFLECTION COEFFICIENT MODEL = RAYLEIGH
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SURFACE REFLECTION COEFFICIENT MODEL

BOTTOM SCATTERING STRENGTH MODEL
SURFACE SCATTERING STRENGTH MODEL
VOLUME SCATTERING STRENGTH MODEL
VOLUME SCATTERING STRENGTH TABLE
INPUT FILE

ADD INPUT FILE

INPUT FILE

ADD INPUT FILE

FUNCTION SYMBOL =
FUNCTION SYMBOL =
FUNCTION AXIS MINIMUM =
FUNCTION SYMBOL =
FUNCTION AXIS MINIMUM =
FUNCTION SYMBOL =
FUNCTION AXIS MINIMUM =
INPUT FILE

ADD INPUT FILE

INPUT FILE

ADD INPUT FILE

DEPTH MINIMUM = 0M

INPUT FILE

ADD INPUT FILE

RANGE MINIMUM 0
RANGE MAXIMUM 1.00
RANGE INCREMENT = 5
INPUT FILE

ADD INPUT FILE

INPUT FILE

ADD INPUT FILE

VERTICAL ANGLE MINIMUM
VERTICAL ANGLE MAXIMUM
VERTICAL ANGLE INCREMENT
PLOT OPTION

TITLE TABLE

EOT

PLOT SOUND SPEED

X OFFSET

-5 DEG
5 DEG
1 DEG

i

]

BTM_
BTM_

- 80

SRF_

- 10

SRF__

- 80

KYD
XYD
YD

CONTINUE

2.0 IN

RANGE AXIS LENGTH = 5 IN

PL.OT OPTION
RAY MODEL
TITLE TABLE
Ray Trace +/-5 degrees by 1 degree
EOT

PLOT OPTION =

FOREGROUND COLOR = BLUE
PLOT RAYS

FUNCTION SYMBOL = VLM_ATN
FUNCTION UNITS = DB/KM
DEPTH MINIMUM = 0 FT
INPUT FILE ‘

ADD INPUT FILE

DEPTH INCREMENT = 25 FT

PRINT FUNCTION VS DEPTH
COMMENT TABLE

APL/UW
APL/UW
APL/UW
DEPTH TABLE
-80 DB
WINSPD

BTMTYP

RFL
STR
DB
RFL
DB
STR
DB
BTMDP

sSvp

DEPMAX

SUCDP

TRNSDP

TWO-DIMENSION

DEPMAX

the bandwidth only affects the noise level
more bandwidth more noise =10log(bandwidth)
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EOT

BANDWIDTH TABLE = XXXX Hz
SOURCE LEVEL MODEL = TABLE
SOURCE LEVEL TABLE = XXX DB

PULSE LENGTH = XXX MS

COMMENT TABLE

the time increment must be < 1/2 pulse length
EOT

TIME MINIMUM 0 s

TIME MAXTMUM 1.50 S

TIME INCREMENT = 0.16 MS

RECEIVER HORIZONTAL BEAMWIDTH TABLE = XXX DEG
INPUT FILE = BIZONAL
ADD INPUT FILE
TRANSMITTER TILT ANGLE
FUNCTION SYMBOL

TITLE TABLE

TRANSMITTER BEAM PATTERN
EOT

INPUT FILE = RECTA
ADD INPUT FILE
FUNCTION SYMBOL

TITLE TABLE

RECEIVER BEAM PATTERN
EOT

VERTICAL ANGLE MINIMUM -40.0 DEG
VERTICAL ANGLE MAXIMUM = 40.0 DEG
VERTICAL ANGLE INCREMENT = 0.1 DEG
AMBIENT NOISE SPECTRUM MODEL = TABLE
AMBIENT NOISE SPECTRUM TABLE

0 DEG
TRN_BMP

RCV_BMP

1}

HZ DB//HZ
XXXXX XX
EOT

COMMENT TABLE

the bearing is set such that the reverberation

will be calculated using the horizontal beamwidth table

and the single set of eigenrays

the bearing increment command overrides the horizontal beamwidth
and integrates the reverberation over the bearing increments
horizontal beamwidth is used to integrate reverberation

if rcv beamwidth < projector beamwidth then small beamwidth is

applicable

EOT

TRUE TARGET BEARING = 0 DEG
BEARING MINIMUM 0 DEG
BEARING MAXIMUM = 0 DEG
BEARING INCREMENT = 1.5 DEG
HORIZONTAL BEAMWIDTH TABLE = 3.8 DEG

REVERBERATION FILE = REV004
RESET REVERBERATION
TARGET DEPTH
EIGENRAY FILE
COMPUTE EIGENRAYS
COMPUTE BOTTOM REVERBERATION
TARGET DEPTH = SURFACE
EIGENRAY FILE = SRF004
COMPUTE EIGENRAYS

BOTTOM
BOT004
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COMPUTE SURFACE REVERBERATION
INPUT FILE

ADD INPUT FILE

INPUT FILE

ADD INPUT FILE

EIGENRAY FILE = VOL004
COMPUTE EIGENRAYS

COMPUTE VOLUME REVERBERATION

X OFFSET = 0 IN
RANGE AXIS LENGTH = 5 IN
- LEVEL AXIS MAXIMUM = 200 DB
LEVEL AXIS MINIMUM = 0 DB

PRINT REVERBERATION VS TIME
PLOT OPTION =

FOREGROUND COLOR = BLUE

PLOT REVERBERATION + NOISE VS TIME
DEPTH MINIMUM = 1 FT

INPUT FILE =
ADD INPUT FILE

DEPTH INCREMENT = 5 FT

EIGENRAY FILE
COMPUTE EIGENRAYS
COMMENT TABLE

TRGE004

MTDP

SCATDP

DEPMAX

the detection threshold is the difference between signal excess
and signal to noise ratio so if we are ambient limited we set
the noise threshold and if we are reverb limited we set the noise

threshold to the same thing
EOT

AMBIENT NOISE THRESHOLD MODEL = TABLE
AMBIENT NOISE THRESHOLD TABLE = XX DB
REVERBERATION THRESHOLD MODEL = TABLE

REVERBERATION THRESHOLD TABLE = XX DB

TARGET STRENGTH MODEL = FREQUENCY
TARGET STRENGTH TABLE = XX DB
SIGNAL EXCESS FILE = EX004
COMPUTE ACTIVE SIGNAL EXCESS

LEVEL AXIS MAXIMUM = 80 DB

LEVEL AXIS MINIMUM = -20 DB

PRINT SIGNAL EXCESS VS RANGE

PLOT OPTION = CONTINUE
TITLE TABLE

EOT

PLOT OPTION =
FOREGROUND COLOR
CONTOUR SIGNAL EXCESS

BLUE

i
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