
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

2010-05-12

An information-theoretic approach to

software test-retest problems

Karl D. Pfeiffer

http://hdl.handle.net/10945/33535

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36726221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An information-theoretic approach to
software test-retest problems

Karl D. Pfeiffer
Valery A. Kanevsky

Thomas J. Housel

May 13, 2010

2

Overview

• Open architectures (OA) and reusable software
components offer the promise of more rapid fielding
of increments in systems development

• Testing and re-testing these components requires a
significant level of effort as new systems are
developed and old systems are upgraded

• How much testing is enough? When can we stop
testing?

3

Motivation

High

High
Low

Low

Knowledge of
or confidence in
system operation
under load

Cost of testing in
budget and schedule

Good testing strategies offer the
most information per unit cost

Poor strategies return
less information for the
investment in testing

Even good strategies
may reach a point where
continued testing yields
no new information

4

Model fundamentals

• We can identify good testing strategies by constructing a simple
model of the system, its components, and its attendant test suite

• This model requires
– Estimates of a prior probability of failure for modules within the system
– Estimates of the coverage for each test in the suite over these modules

• These estimates need not be precise to make the model useful
– Monte Carlo simulation can be used to sample around the estimates as

means, offering some insight into model sensitivity

5

Model fundamentals

• This model should help answer questions like:

– Given a desired level of confidence in system operation, how much
testing should we accomplish? How much will this cost?

– Given a fixed budget for testing, how much confidence in system
performance can we achieve through testing?

– Given a particular test suite, how much information is attainable given
infinite resources?

6

Model fundamentals

• A module Mi is modeled as a
unit circle with probability
of being defective bi

• Test Tx exercises region Aix
in module Mi

• In general we assume that Tx
may exercise several regions
across several modules

• A test has two possible outcomes:
‒ PASS indicates that the test did not detect a defect in any of the

exercised regions within the modules tested
‒ FAIL indicates that at least one module exercised is defective,

though we may not know which one

7

Model fundamentals

• These ambiguities offer a rich framework for modeling realistic
system testing scenarios
– We need not execute (and pay for) Tx to forecast information returned
– Within this language of expression we can formulate a quantitative

assessment of the information returned by a test sequence

• Across the system of modules Mi we can measure the
information returned by a test using the classic residual entropy
for a distribution of probabilities:

2 2log (1) log (1)i i i i i
ii

b b bh bH = − − − −=∑ ∑

8

Model fundamentals
At maximum entropy we have a 50/50 chance that our
module is good or bad—we might as well flip a coin

Testing increases the displacement
from maximum entropy at h(bi=1/2)
by nudging bi closer to 0 or 1, and
this means increased certainty in the
state of module Mi

• From entropy, we derive the forecast measure:

• Let cx be the cost of executing test Tx in appropriate units of
time or money (or both) A good strategy will sequence the
suite of tests such that:

• These ratios represent information per unit cost

9

Model fundamentals

[1] [2] []

[1] [2] []

))(()(m

m

Q T Q T Q T
c c c

≥ ≥L

()max(,1) (fails) + max(,1) (passes)() fail fail
x i i x i

pass pa
x

i

ss
ib b P T b b PQ TT = − −∑

• Within the decision aid, for simple
investigations, a fully randomized
system can be created with only a few
user specified constraints

• If the user has a few system details but
only vague insight about others, these
aspects can be augmented with
randomized parameters (e.g. sizes and
number of coverages)

• A system with well-documented
interdependencies can be completely
specified by the user in terms of
modules, tests and coverages

10

Model implementation

11

Model implementation

12

Model implementation

13

Model implementation

14

Model implementation

15

Model implementation

16

Model implementation

17

Model implementation

18

Model implementation

19

Model implementation

20

Model implementation

But, what does it all mean?

• Effective, cost-efficient testing is critical to the long-term
success of open architecture programs

• This model and prototype decision aid provide a rigorous yet
tractable way ahead to improve system testing

• Using this framework we can build the tools to:
– Lower the testing costs for a given level of system reliability
– Improve the use of existing suites for a given budget or schedule
– Design better, more targeted test suites to minimize redundancy
– Provide insight into the power or sensitivity of current test suites

21

