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Abstract 

In the acquisition or management of complex systems, testing is the means 

by which we trade budget or schedule for information about the likelihood our 

system will work correctly under operational load.  Branch paths in hardware and 

software increase as a function of the number of components and interconnections, 

leading to exponential growth in the number of test cases required for exhaustive 

examination, or perfect knowledge, of a complex system.  In practice, the typical 

cost for testing in schedule or in budget means that only a small fraction of these 

paths are investigated.  In this work, we develop an abstract model to describe 

system testing and the information return (or reduction in risk) for the attendant cost 

in time and mondey.  This model is supported by a mathematical analysis suitable 

for Monte Carlo simulation.  The long-term goal of this modeling work is to construct 

a decision-support tool for the Navy Program Executive Office Integrated Warfare 

Systems (PEO IWS) offering quantitative information about cost versus diagnostic 

certainty in system testing.  

Keywords: diagnostic testing, regression testing, automated testing, Monte 

Carlo simulation, sequential Bayesian inference 
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1. Overview 

There were three primary goals for this research: 

1. Complete an analysis of current testing strategies within the Integrated 
Warfare System (IWS) program offices for balancing risk with cost.  

2. Develop new testing protocols that include risk parameters that will reduce 
the cycle-time and cost for IWS system tests. 

3. Embed these algorithms in a demonstration-level prototype decision-
support system (DSS) to provide a simple tool for the IWS leadership to 
use in developing a useful requirements analysis. 

In the course of this research, we found that some of the preliminary approaches 

we presumed would help address these basic goals did not pan out. For example, the 

use of a real options/integrated risk management framework did not provide the level of 

detail and types of algorithms required to produce a practical, reliable and theoretically 

defensible approach to the problem. Similarly, a review of general decision support 

system tools did not provide a ready candidate to address this highly complex problem.  

These initial explorations led us to develop a truly innovative approach to address the 

goals of this study. 

Because our unique approach required a deep level of abstraction, we needed 

access to subject-matter experts (SMEs) in the integrated warfare system community to 

ensure the fidelity and usability of the final model.  This access and the required data 

concerning component structure and test protocols proved to be an enormous 

challenge, greatly extending our development time.  The incremental nature of this work 

in a model-test-model approach required real-world data for evaluation before moving 

much beyond the prototype spiral.  Although lack of access to SMEs slowed down 

progress beyond this spiral, we used this time to improve the mathematical rigor and 

model fundamentals within this work.   

In early stages of our review of the problem space, we believed that real-options 

portfolio management would provide a useful framework for evaluating the trade-offs 
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between system testing and cost. Real-options portfolio management allows for the 

comparisons of various options—in this case, testing options—in terms of the returns on 

investment such options would provide. After considerable debate among the 

researchers, we decided that while this approach initially seemed promising, it was not 

specific enough to enable selection of the most promising testing methods—methods 

that would reduce the attendant risks of neglecting problems in the systems.  

There were two features of the distributed test environment (DTE) that made 

application of the real-options (RO) portfolio optimization approach problematic: 

1. RO-based analysis assumes that choice of an option determines the state 
of a system and, therefore, allows assessment of the risk/loss/benefit of 
selected options.   In the DTE, it was not possible to accurately select an 
option because the test(s) generally would not identify faulty entities and 
would only change posterior probabilities of the system entity’s states. The 
difference, therefore, was irremovable uncertainty in the DTE. 

The second issue was purely computational:  

2. RO required, either explicitly or implicitly, that the number of options be 
tractable so all relevant risk/value/cost could be evaluated and compared 
for all options. In the DTE, the number of options is very large, typically 
many billions. So, heuristics were needed to eliminate most of them and to 
prove that the remaining ones contained options sufficiently close to 
optimal.  

For these two reasons, the focus was on developing algorithms for option 

selection rather than for option analysis (as was the case in RO).    

We reviewed a variety of existing decision support system (DSS) tools in hopes 

of finding one that would address the needs of the problem the way we had structured it 

after some preliminary research. We assumed we would have access to large 

databases of historical test results. As such, we assumed that a variety of DSS tools 

might be useful in categorizing and refining our test-versus-risk analysis. 
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Decision support systems can be categorized as data-driven, model-driven, 

knowledge-driven and collaboration-driven (Power, 2004).  Key technologies in data-

driven decision support include data warehouses, on-line application processing 

(OLAP), and data mining.  Data warehouses are databases designed to support 

managerial decision-making by integrating data from multiple legacy databases.  OLAP 

tools allow users to examine the warehouse data in a cross-tabs format, which allows 

“drill-down” and “roll-up” operations across user-specified dimensions (Dolk, 2000). Data 

mining is the application of statistical techniques, such as decision trees and neural 

networks, to warehouse data to identify spatio-temporal patterns in that data. 

Model-driven DSS technologies encompass a wide range of analytical models 

from operations research and management science disciplines (Kottemann & Dolk, 

1993). These include optimization, regression, decision analysis (e.g., analytical 

hierarchy process), and various forms of simulation—such as Monte Carlo risk analysis, 

discrete event simulation, system dynamics and agent-based simulation.  Prescriptive 

models such as optimization and decision analysis tell us “what should be done”; 

descriptive models such as Monte Carlo tell us “what is”; predictive models such as 

multiple regression tell us “what will be,” and constructive models such as agent-based 

simulation tell us “what could be.” 

Knowledge-driven decision technologies support the flow of knowledge within 

and across organizations.  One example of a knowledge flow technology is the expert 

system, which captures rules from one or more experts in a specific domain (e.g., 

acquisition procedures) in a way that lets the non-expert benefit from this knowledge.  

Another example is the use of computational organizations for testing the relative 

performance of different organizational designs (Nissen & Buettner, 2004). 

We assumed that we would be able to use these various DSS tool suites to 

develop appealing and practical user interfaces for analyzing the test-risk-based data. 

However, it became apparent after an extensive review that such tool suites were not 

aligned with the unique requirements of the problem and, therefore, could not be used 

without the aid of the rudimentary tool created in this preliminary study (see Appendix A. 
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for the coding for the preliminary test-risk DSS tool developed for this research).  It is 

quite likely that some of the tool suites reviewed may prove useful in the next steps of 

this research as historical test-risk data becomes available. 

In this research, we have established the ground work for a decision-support tool 

for the Navy Program Executive Office Integrated Warfare Systems (PEO IWS).  This 

tool can provide quantitative information about trade-offs among cost, risk, and the 

degree of system testing conducted.  Initially, we sought to answer the question: given a 

failure in an operational system, what is the best test-risk-cost strategy to locate the 

failed unit of replacement?  Further development of this model will investigate the 

question: given an engineering upgrade to a module, how much regression testing must 

we accomplish on the system for a given level of risk?  

The scientific contribution of this work lies in a novel, information-driven approach 

to testing.  Having characterized our system in terms of probabilities of failure of 

individual components, we can assess at any time the information entropy associated 

with that knowledge and assess the change in entropy possible by applying particular 

tests from our diagnostic inventory. We can then more readily assess quantitatively the 

information returned for the cost incurred by a test or battery of tests.  

We expect the practical results of this work will be useful throughout the system 

lifecycle, from acquisition to fielding and maintenance. The decision-support prototype 

tools delivered should, for example, yield significant insight for decision-makers 

designing test suites for new weapons systems and improving the use of existing suites 

in current systems, such as the AEGIS combat system. This work should also be useful 

for optimizing decisions within the corrective maintenance (courses of action) module 

within the condition-based maintenance (CBM) and distance support (DS) systems for 

the Surface Warfare Enterprise.  
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2. Background  

Testing of complex systems is a fundamentally difficult task, whether locating 

faults (diagnostic testing) or implementing upgrades (regression testing).  The 

number of branch paths through the system typically grows in proportion to the 

number of components and interconnections, leading to near-exponential growth in 

test cases for an exhaustive examination.  This study examines optimal system 

testing using classic fault diagnosis scenarios as the basis from which to develop a 

mathematical model flexible enough to extend to regression testing cases.   

Mathematical models of component and system reliability have roots in the 

work of von Neumann (1952) and Moore and Shannon (1956a; 1956b), as well as 

the seminal text by Barlow and Proschan (1965). The focus of these early works is 

generally on assessing the overall system reliability—particularly with regard to the 

economics of preventative vice reactive maintenance (see, for example, Bovaird, 

1961). In the present work, the focus is on efficiently identifying a defective-by-

design or failed component in a complex system.  

This fault diagnosis is sometimes referred to as the test-sequencing problem 

and has also been well studied (see, for example, Sobel & Groll, 1966; Garey, 1972; 

Fishman, 1990; Barford, Kanevsky & Kamas, 2004). In general, these investigators 

start with a system in a known failed state with the goal of finding the most cost-

effective sequence of diagnostics to locate the failed component (or components) 

under a given set of assumptions.  

In contrast to fault diagnosis, the general case of regression testing appears 

to have received less attention in the open literature, with more specific cases 

examined in the realm of software engineering (see, for example, Weyuker, 1998; 

White, 1992; Tsai, 2001; Mao & Lu, 2005; Leung, 1991; Rothermel, 2001). These 

studies typically start with a fully functioning system undergoing component 
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modification or upgrade, with the task of establishing that component modifications 

have not introduced new defects into the system.  

In the present study, we treat testing as a unified activity, with risk and cost as 

the common tension regulating the degree of testing required. From a fault-diagnosis 

perspective, we consider both the cost of module replacement and the cost of 

testing. We want to replace the fewest number of components as quickly as possible 

while ensuring the system is restored to perfect functionality. From a regression 

testing perspective—particularly with the open architectures employed within the 

Integrated Warfare System—we need to conduct sufficient testing following a 

component upgrade to verify that the system remains in perfect function. The 

element of risk is that costs incurred for perfect knowledge may rapidly approach 

infinity.  From an operational perspective, then, we must accept with some level of 

confidence (e.g., 99%, 95%) that our diagnosis or prognosis is correct.  
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3. Model Formulation 

The growing use of commercial-off-the-shelf technologies in current weapons 

systems (Caruso, 1995; Dalcher, 2000), coupled with the complexity of end-to-end 

systems (Athans, 1987), suggests that we may never have enough information to 

fully specify our system as a white box—with all software, hardware and 

communication interfaces perfectly characterized.  We thus construct our model with 

broad parameters that can be constrained as narrowly as available information 

permits.  

We characterize the model system as a collection of modules comprising the 

system and as a collection of tests used to interrogate the system.  When the 

system is down, we assume that one or modules has failed.  We examine the 

system through this test suite to locate the correct module or modules to replace.  

We assume that tests return ambiguous information about the state of modules 

within the system, and that some sequence of tests must typically be applied to 

arrive at a correct diagnosis.  Stochastic simulation of the model system provides a 

framework in which different strategies may be applied and measured for further 

insight.  Using this Monte Carlo approach, we may also test the bounds of our initial 

assumptions with additional simulation.  

3.1. System and Module Objects 
We form the model system S as a collection of modules, or units of 

replacement.  Each module Mi represents the smallest diagnostic unit, which does 

not necessarily correspond to a single physical component in the modeled system.  

We consider, for example, a computer server comprised of motherboard, hard drive 

and power supply, each of which may cause the computer server to fail.  This would 

be modeled as a single module labeled Server if the standard corrective 

maintenance action is to replace the entire unit.  A fundamental assumption in this 

abstraction is that the physical system is decomposable into these units of 
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replacement.  We note that even in this example, a separate diagnostic model could 

be applied to the server, treating each of its subcomponents (motherboard, hard 

drive, power supply) as replaceable units.  

We assume S is always in one of two states: fully functioning (UP) or 

inoperable (DOWN).  Each module is similarly assessed as GOOD or BAD.  We 

take S as UP if and only if every Mi is GOOD.  In practice, this means that if we find 

S inoperable, we may assume that one or more modules have failed.  In this event, 

we seek to replace the fewest number of modules with the least testing and in the 

shortest time. 

Each Mi is modeled as the unit circle Ai.  Defects, when present, are assumed 

uniformly distributed on this circle.  We assume that while multiple modules may be 

defective, only one defect exists per module.  A defect in Mi is modeled as a random 

point on Ai or, equivalently, a random point on the interval [0, 1].  

Fundamental to this aspect of the model is a source of failure rate data for the 

system components.  These failure rates become the a priori data in the larger 

probability model, and so do not necessarily need to be precise to add value to 

simulation results.  The relative rates among the modeled components (e.g., the 

Server module fails about five times as often as the Router module) should be close 

to the observed data in the physical system to provide the most realistic 

convergence in testing to a correct diagnosis. 

3.2. Test Objects 
Tests are modeled as system objects which, when executed, provide an 

ambiguous assessment of one or more modules within S. This ambiguity stems from 

two essential elements that map the tractable model to physical reality.   

The first aspect is that any given test likely exercises only a portion of the 

functionality within a module.  Although the module is the unit of replacement, we 
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parameterize the sub-module details by treating them as a continuous space 

covered, in part, by a given test.   

 

Figure 1.  The simple coverage of test Tj on module Mi indicated by the solid arc Aij.  
The measure of this coverage λ(Aij) = αij represents the fraction of Mi exercised by Tj. 

 

We model the coverage of test Tj on module Mi as the arc Aij (Figure 1).  

When Tj is executed, or applied to the model system, the arc Aij on Mi is inspected 

for a defect.  Given the assumption that defects appear uniformly on this unit circle, 

the probability that a defect in Mi will be detected by Tj is the measure of this arc or 

λ(Aij) = αij.   The scalar probability of detection by a test is precisely the user-

specified functionality exercised by the test.  This element of our language of 

description permits some ambiguity in characterizing the physical system (e.g., built-

in self-test 3 exercises about 45% of the functionality of the graphics processing unit) 

without loss of rigor in modeling these tests and modules.  In practice, given a 

sufficient number of real-world cases from the physical system, this estimate for Aij 

could be refined through analysis of simulation results. 

The second ambiguous aspect is that any given test likely covers multiple 

modules, such that any test result must be interpreted as applying to all modules 

covered by that test (Figure 2).  For example, a positive result (FAIL) from a 

diagnostic test that covers the modules Carburetor, Distributor Cap, and Spark Plug 

Wiring indicates that at least one of these modules contains a defect (has failed), 

though additional testing would be required to identify which of these modules is the 
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culprit.  Because we expect that a given test exercises multiple modules in the 

system, we speak more generally of the coverage of Tj on S (Figure 2). 

 

 

Figure 2.  Notional depiction of the coverage of Tj on S, with multiple modules 
exercised upon execution of this test.  A FAIL result from Tj indicates that at least one of 
the subset {Mx, My, Mz} has failed.  

Within the model, a test when executed assumes one of two values: PASS or 

FAIL.  A PASS result for a given test Tj indicates that no region covered by this test 

contains a defect.  A FAIL result indicates that at least one of the modules covered 

by Tj contains a defect, or is BAD in the model definition.  While a FAIL result should 

reduce the set of modules that may need to be replaced, a perfect result—replacing 

only those modules that have failed—will typically require some sequence of tests.  

Indeed, for a particular configuration of tests and modules, this perfect result may 

not be achievable.  Analysis of simulation results should help to identify those cases 

in which further testing will yield no new information.   

The use of vector arcs to model the coverage relationship between tests and 

modules enables precision when specifying the coverage by multiple tests on a 

single replaceable unit (Figure 3).  Although several tests in the system suite may 

exercise a given module, it is likely in the physical system that these tests overlap 
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significantly.   This language of description, then, permits a user specification of the 

physical system in broad terms (e.g., the Remote Control test and Obstacle 

Detection test both exercise about 70% of the Garage Door Motor module, with 

about 20% overlap between the two tests).  Even if these data are estimated from 

the physical system, existing case data and simulation results could be used to 

provide better specification of these joint coverages. 

 

Figure 3.  Overlapping coverage between tests Tj and Tk are characterized with the 
arcs Aij and Aik.  The joint coverage is computable as the intersection of these arcs. 

3.3. Summary 
This conceptual model captures the essential elements of a system with 

respect to diagnostic testing and module repair or replacement.  The physical 

system is specified in terms of modules, tests, and coverages, with model elements 

constructed in such a way that imperfect information can still be used as an initial 

state.  Although the model requires that the physical system be decomposable into 

discrete units of replacement, this does not limit the usefulness of this approach.   

The fundamental diagnostic techniques could easily be applied at the sub-module 

level by treating a given module as a system, with sub-components then modeled as 

modules.  In the present study, we limit our investigation to a single-layer model, 

though future work could investigate multiple diagnostic levels across a complex 
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system.  We next formalize these model elements in mathematical language to 

construct a suitable computer simulation to investigate these testing strategies. 
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4. Mathematical Fundamentals 

Our goal in system testing is to maximize certainty at minimum cost.   In 

developing a probability framework to model this process, we first form simple 

objective measures to characterize knowledge of the system state.  We next 

examine a simple, step-wise strategy to predict a test sequence that will maximize or 

minimize these measures.  We then extend these simple strategies by considering a 

variable cost per test to examine diagnosis under limited resources.   

4.1. Objective Measures of the System State 
Let Bi be the event that module Mi is BAD, with probability P(Bi) = bi.  Given a 

system S comprised of m modules, we can characterize our knowledge of the 

system state as a vector of these probabilities:  

 { }1
t t t

mb b= …K  
(4.1) 

The index t is time-like, indicating the number of tests that have been applied 

to the system.  At t = 0, no tests have been applied, and all bi are set to their initial 

failure rates.  Fundamental to our conceptual model is a source of failure rate data, 

or an a priori probability that a particular replaceable unit is defective.   

We desire a diagnosis in which the components of K are only zero or one, 

meaning that we know with absolute certainty that a particular module is GOOD or 

BAD.  In practice, this ideal diagnosis may be too costly or simply impossible to 

determine (see, for example, Cover & Thomas, 1991, Ch. 7).   Instead, we take a 

step-wise approach in which we apply tests from our suite of diagnostics to 

incrementally improve our knowledge of S.  

One intuitive measure of Kt is the information entropy (Shannon, 1948).   For 

a single module, we compute the entropy hi as:  
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 2 2log (1 ) log (1 )i i i i ib bh b b= − − − −  (4.2) 

We see that as bi tends to zero or one, hi is minimized (Figure 4).   By 

applying tests from our diagnostic suite, we should become more certain about the 

state of a module (GOOD or BAD).  We measure this improvement in certainty as a 

reduction in the individual module entropy.  Across the system, we take the 

aggregate measure as:  

 
1 1

2 2
1 1

log (1 ) log (1 )
m m

i i i i
t t

im m
i i

t t t th b b b bH
= =

= = − − − −∑ ∑
 

(4.3) 

 

Using this measure, we seek an ordering of k tests such that: 

 
0 1 kH HH ≥ ≥…≥  

That is, each test applied should act to modify some subset of module bi to 

reduce the entropy of Kt.  An optimal step-wise strategy, then, would seek to 

maximize ∆H = Ht – Ht+1 for each test applied to the system under diagnosis. 

 

Figure 4.  Module entropy h(bi), with notional module probability bi indicated.  Note that 
by symmetry, h(bi) = h(1 – bi), with distance 2δ between these states. 
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Entropy is computationally attractive, though hi may be less intuitive to 

analysts and diagnosticians when deciding which modules to replace.  The 

probability bi offers some insight into the likelihood that the module Mi should be 

replaced, such that a reasonable decision criterion Di would be: 

 min( ,1 )
REPLACE if 
KEE

max( ,
P 

1
i

)
f i i i

i
i i i

b
D

b b
b b b
= −

=
= −

⎧
⎨
⎩

 

(4.4) 

 

In effect, if the probability that Mi is BAD is above ½, we should replace it; if 

the probability is below ½, we should keep it.  If, for example, a particular module 

has a bi = 0.70, we replace it knowing that this informed guess should be correct 

70% of the time; 30% of the time we will unnecessarily replace a GOOD module.  

Our number of correct guesses across the system will increase as each bi is 

adjusted by testing away from ½ towards either zero or one (Figure 4).  Thus, 

minimizing system entropy H in a step-wise process is equivalent to maximizing the 

number of correct replacement decisions, or correct diagnoses. 

4.2. Simple Step-wise Testing 
We seek to minimize the entropy of the probability vector K (Equation 4.1) by 

applying tests in step-wise fashion to update the component probabilities.  For each 

candidate Tj in our diagnostic suite, we can compute a candidate ∆H, and then 

choose the test that causes the maximum reduction in entropy (largest ∆H).    

In forming these predicted ∆H, we must account for both possible test 

outcomes.  Let the event Pj represent the execution of test Tj with a PASS result.  

Similarly, let Fj represent the event of a FAIL result.  To estimate the reduction in 

entropy possible by execution of test Tj at some point t in testing, we use the 

weighted sum: 

 
 

( ) ( ) | ) ) | )( ( (t
j j i j

i i
j i jH T H P P Ph B P h FF BΔ = −− ∑ ∑

 
(4.5) 
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The entropy of the Bayesian result from either outcome is computed with: 

 2 2

2 2

( | ) ( | ) log ( | ) ( | ) log ( | )

( | ) ( | ) log ( | ) ( | ) log ( | )

i j i j i j i j i j

i j i j i j i j i j

h

h

B P P B P P B P P G P P G P

B F P B F P B F P G F P G F

− −

−

=

= −

(4.6) 

We first consider those probabilities that describe whether a test will likely 

PASS or FAIL.  If Tj only covers one module, the simple probability that this test will 

PASS becomes: 

 ) is GOOD) is BAD but undetected)
)

( (  (  
1 )( (1

1

j i i

i ij i

i ij

P P P M P M
b b

b
α

α

=
= −
= −

+ −
U

 

 

We note that if Tj has no coverage on Mi, then αij = 0, and this test will always 

PASS.    

The complement to this probability is:  

 ) is BAD and detect( e( ) dj i

ij i

P F P
b

M
α

=
=

 

 

We note that if Tj has perfect coverage on Mi (αij = 1), then the probability that 

this test will pass reduces to the probability that the covered module is BAD. 

In practice, we expect a given Tj will cover multiple modules, requiring that for 

a PASS event all modules are either GOOD, or BAD but undetected.   

 

1

( (1) )j i i

m

i
jbP P α

=

= −∏
 

(4.7) 

 

We can then compute a FAIL event for Tj as the complement of a PASS, thus: 
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=

= − −∏
 

(4.8) 

 

Even though these products (Equation 4.7, 4.8) are computed over all 

modules in the system, we note that for those modules with no coverage by Tj, αij 

reduces to zero, and the product is unaffected.  

The Bayesian results required for Equation 4.6 can be computed with: 
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(4.9) 

 

Individual terms are computed as:  
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We note that in the case of P(Fj|Gi) and P(Pj|Gi), we must examine all other 

modules covered by test Tj to compute these probabilities. 

This analysis provides a tractable, one-step method for sequencing tests by 

maximum reduction in entropy—though the computation grows approximately as the 

product of the number of modules, m, and number of tests, p.  Additional insight may 
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be possible if we consider in our prediction the next best two tests (or perhaps n 

tests) in reducing entropy, though the computational cost grows as mpn.  

We have assumed implicitly in this analysis that all tests carry the same cost 

in some unified measure of time and money.  We next discuss briefly the analysis 

with variable cost per test. 

4.3. Variable Cost per Test 
We can estimate the information gain possible with any test in our model 

system (Equation 4.5).  With the inclusion of information about the cost per test 

C(Tj), we can modify our objective function to compute, in effect, a cost per bit, or:  

 ( )
( )

( )
j

j
j

TH
T

C T
Δ

Φ =

 

(4.10) 

 

Our step-wise strategy, then, is to choose not the largest ∆H but the largest 

Φ.  Although the analysis in Section 4.2 does not change, this additional model 

element permits a broader range of investigation in computational scenarios. 

For example, with this extension of the present analysis (Equation 4.10), we 

could examine a scenario in which the diagnostic resources were limited by some 

finite purse (in terms of C) that, when exhausted, required the operators to make a 

replacement decision.  In this case, a simple step-wise scenario would likely be less 

effective.  Indeed, this particular example is more similar to the classic knapsack 

problem (see, for example, Corman, Leiserson & Rivest, 1990). 

Given data on both test and module cost, we could also examine, at every 

iteration, whether the next best test (or next best n tests) cost more than simply 

replacing the current “best” candidates in the system of modules.  Stochastic 

simulation of this scenario, given approximate real-world data, should yield 

significant insight into the physical systems under maintenance.  
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4.4. Summary 
We have presented a mathematical framework to support the conceptual 

model of testing described in Section 3.  Upon finding our system is down (or BAD), 

our notional diagnostic algorithm is: 

1. Form the initial vector K0 from the given module failure rates. 

2. From our diagnostic test suite, choose that Tj which maximizes ∆H. 

3. After performing the selected test, update Kt to Kt+1. 

4. If we have not reached our stopping criteria, return to (2).  In practice, 

stopping criteria might include: 

a. System entropy is very close to zero. 

b. Time or resources have expired. 

c. Cost of the next test exceeds cost of replacing candidate 

modules. 

d. Actual change in entropy on this cycle is very close to zero. 

If we use entropy reduction as an objective measure, a simple analysis 

demonstrates the general utility of this approach, while additional physical data (e.g., 

cost per test) could easily be incorporated into the computation.  We next discuss 

the implementation of these ideas in a computer simulation, then review results from 

idealized scenarios.   
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5. Simulation Results and Analysis 

To demonstrate the feasibility of the ideas developed in this study, a 

simulation was developed suitable for desktop computing.  Because no physical 

system data were immediately available, distributions of modules and test coverages 

were constructed randomly subject to certain design constraints.  While these 

scenarios provide some insight into this approach to systems testing, sufficient 

flexibility exists in the computer code to extend the model easily to real-world 

systems.  

5.1. Model Details 
A Java development environment was selected based on the strong 

numerical facilities available under most implementations and the widely portable 

nature of most Java code.  Simulations were run primarily on a Windows Vista (x64) 

workstation, while portability tests were run on both Ubuntu Linux 8.04 and Mac OS 

X 10.5 (Leopard) machines.  The simulation source code appears in Appendix A. 

The code implements object models of Tests and Modules, collected under a 

System object.  In most scenarios, 30 modules and 60 tests were constructed within 

the system, with test coverages spread randomly by test over some number of 

modules, nominally no fewer than 2, no more than five.  That is, for each test Tj, a 

random integer q was chosen from {2, 3, 4, 5}, and then q modules were randomly 

selected from the system set and connected to Tj with random coverages.  Initial 

failure rates were assigned to modules from a uniform distribution on the interval 

(0,1).  While the code is quickly reconfigurable for more robust or physically realistic 

scenarios, these parameters were fixed for an initial comparison among simple test 

strategies. 

The best-next test strategy, based on reduction of entropy, was described in 

Section 4.  To make at least initial comparisons with the simulation code, a worst-

next test strategy was implemented within the software to explore a pathological 
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case in which every test selected maximized entropy, or equivalently, increased 

uncertainty.  As a baseline scenario, a random test strategy was implemented as 

well, with tests selected at random from the system suite.    

Prior to the start of a set of trials, a failure deck was created based on the 

relative failure rates of modules within the system.  Similar to a deck of playing 

cards, modules appear in the failure deck based on their standing relative to the 

minimum failure rate in the system; thus, if the minimum failure rate across the 

system is 0.2, a module with a failure rate of 0.6 will appear three times within this 

failure deck.  The same deck is employed across all trials to simulate the relative 

appearance of failures in a physical system. 

Prior to the start of a simulation, a test deck with one entry for each test is 

created (copied) from the system configuration.  Strategies that compute the next 

best (or next worst) test operate on this deck.  As a test is executed, it is removed 

from the deck, insuring that no test in our system will be executed more than once 

per trial.  This also reduces the search space for the next test.  A new test deck must 

be generated with each trial. 

A single trial is processed in the following manner: 

1. All module bi are initialized from failure-rate data. 

2. A module is selected from the failure deck, and a defect is planted in 

this module. 

3. A test is chosen based on a simple strategy (best, random, worst). 

4. The test is applied to the system object. 

5. All affected bi are updated based on the outcome of (4). 

6. If we still have a test in the test deck, we return to (3). 

Using a 2 GHz Intel processor, a simulation of 1000 trials required on average 

about 2.5 minutes for a randomized configuration with 60 tests and 30 modules.  For 

a larger system configuration with 100 tests and 50 modules, run-time averaged 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 23 - 
k^s^i=mlpqdo^ar^qb=p`elli=

about 5 minutes for 1000 trials.   In general, a ratio of 2:1 between tests and 

modules appeared to guarantee a correct diagnosis was obtainable, with the random 

configuration of coverages between tests and modules constrained to no fewer than 

2 and no more than 5 modules per test. 

5.2. Results from Initial Experiments 
Over some number of trials (nominally 100 to 1000), the module traces for 

each strategy were aggregated.   In these initial experiments, no stopping criteria 

were applied, and with the idealized scenario, the best-next strategy showed little 

improvement after 40 tests (of 60) were executed (Figure 5).    

Entropy variance (Figure 6) for the best-next strategy shows a peak at about 

Test 19, with the caveat that Test 19 would be a different system object for each of 

the trials.  This peak is consistent with the reduction in steepness of descent in the 

best-next mean entropy trace (Figure 5) and the increase of the maximum 

probability function to greater than 90%.   
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Figure 5.  Mean diagnostic traces from 100 trials using best, random, and worst next-test 
strategies.  Both system entropy (bottom traces) and maximum probability (top traces) are 
depicted, with all 60 tests applied—though in practice, we would likely stop sooner.  
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Figure 6.  Diagnostic trace of variance in entropy from 100 trials using best, random, and 
worst next-test strategies, with all 60 tests applied.  This set of trials matches the mean data 
depicted in Figure 7. 

The distribution of model probabilities from one of the best-next trials shows 

the evolution of a correct diagnosis (Figures 7-10) as system testing unfolds.  

Although solid lines are used to highlight this dynamic in these figures, the module 

probabilities are, in fact, discrete.  Early in testing, about Test 5, the module 

probabilities seem unremarkable compared to the true state (Figure 7). The best-

next strategy strongly identifies Module 2 as the defective candidate, though several 

other modules still keep the aggregate entropy relatively high (H = 0.40, Figure 7).   

By Test 25, however, Module 2 shows a relatively large bi = 0.84 with an overall 

aggregate entropy (H=0.25, Figure 8).  Additional testing refines the individual 

module probabilities, so that by Test 30, a correct diagnosis appears evident (Figure 
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8).    This slow down in reduction of entropy is evident in the mean curves (Figure 5) 

as testing proceeds past the t=25. 

 

Figure 7.  From a best-next test trial, module probabilities (bi, in green) are shown 
versus the true state (in red) after test 5; from the system log, system entropy at this 
state is H=0.64.  
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6. Summary and Future Work 

In this study, we have developed a simple but effective framework to examine 

the testing of complex systems.  The idealized numerical experiments conducted in 

this study support the use of entropy reduction as an effective means to guide 

diagnostic testing, though these initial simulations can provide only simple insights.  

Real-world failure rates and coverages are needed to further investigate the 

usefulness of this approach for diagnosing physical systems. 

We are confident that in the future, additional avenues of research will open 

up with more realistic scenarios—scenarios with which to exercise and develop this 

model.  For example, simulation studies could inform the design of test suites for 

new weapons systems.  By using available cost data for both tests and replaceable 

units, further research could help to develop or refine a diagnostic strategy to 

balance the cost of expensive, granular testing against the cost of routine 

maintenance.  When modeling a fielded system, decision-makers could use real-

time failure rate data to update the simulation and further improve fidelity. 
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Figure 8.  As in Figure 7, module probabilities after test 19, with H=0.40.    
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Figure 9.  As in Figure 7, module probabilities after test 25, with H=0.25. 

 

Using the flexible but precise language of our conceptual model, we can 

investigate the underlying probabilistic relationships of existing, complex systems.  

Although the original motivation for this work was the diagnostic testing of 

mechanical and electronic systems, with little modification, we were able to model 

classic regression testing scenarios in simulation code to estimate the degree and 

cost of testing following system upgrades.  

Over the life of any complex system, particularly a weapon system, the initial 

costs for development are typically dwarfed by the long-term support and 

maintenance of the system.  In this research we have made significant progress in 

understanding how we might better control this cost using a disciplined approach to 

diagnostic and regression testing, balancing our acceptable risk against available 

budget in dollars and time.  Further research will expand and improve this rigorous 
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framework by investigating operational scenarios using real-world component and 

test structure information. 

 

Figure 10.  As in Figure 7, module probabilities after test 30, with H=0.16. 
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Appendix A. Simulation Source Code 

The simulation code developed in this study, although research quality, is 

reasonably modular, with separate software objects for Modules, Tests, and 

Coverages gathered under a System object.  An intermediate software object, the 

Probe, was developed to capture the relationship between a Test and a Module, 

though this was not explicitly modeled in Section 3.  Additional code used to drive 

the simulation and provide I/O support is also documented here. 
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A.1 Main.java 
Main.java

// 
//  ===================================================================== 
//  Project: Risk-based Testing Simulation 
//           Pfeiffer, Kanevsky, Housel 
//           Department of Information Sciences 
//           Naval Postgraduate School 
// 
//  Date:    1 Oct 2008 
//  ===================================================================== 
// 
import java.util.Random; 
import java.util.ArrayList; 
import java.io.*; 
// 
//  package: Main.java 
//  ------------------ 
// 
//    This is the default class containing the public main() function 
//    that drives the simulation. 
// 
// 
public class Main { 
    // 
    //  Global attributes available to all simulation objects 
    // 
    //  ... log messages from the simulation go to a standard location 
    // 
    private static Logger logger = new Logger("simulation.log"); 
    // 
    //  ... one random number generator is used for the simulation  
    //      all random number requests are made to this object 
    // 
    private static Random Generator = new Random(); 
    // 
    //  ... the FailureDeck for deciding which modules receive 
    //      defects at the start of a trial 
    //  
    private static ArrayList<Module> FailureDeck = new ArrayList<Module>(); 
 
    // 
    //  ... method build() constructs an "empty" system with 
    //      the required number of modules but no coverages 
    //      connecting the two objects 
    // 
    static void build(SystemObject s, int nModule, int nTest) { 
 
 for (int i = 0; i < nModule; i++) { 
     String name = String.format("M%03d",i); 
     double frate = 0.5 * Generator.nextDouble(); 
     Module m = new Module(name,frate); 
     s.addModule(m); 
 } 
 
        for (int i = 0; i < nTest; i++) { 
     String name = String.format("T%03d",i); 
     double frate = Generator.nextDouble(); 
            // double cost  = Generator.nextDouble(); 
            double cost  = 1.0; 
     Test t = new Test(name); 
            t.setCost(cost); 
     s.addTest(t); 
        } 
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    } 
 
    // 
    //  ... method configure() constructs an "empty" system with 
    //      the required number of modules but no coverages 
    //      connecting the two objects 
    // 
    static void configure(SystemObject s) { 
 
        int[] ModuleDeck = generateRandomList(s.getModuleCount()); 
 
        int[] TestDeck   = generateRandomList(s.getTestCount()); 
 
        int nModule = s.getModuleCount(); 
 
        int nTest   = s.getTestCount(); 
 
 // 
 //  ... per module connect to npeak tests where 
 //      npeak is a random integer on [2,5] 
 // 
 for (int i = 0; i < ModuleDeck.length; i++) { 
            Module md = s.getModule(ModuleDeck[i]); 
            int npeak = 2 + Generator.nextInt(3); 
     for (int j = 0; j < npeak; j++) { 
                int q = Generator.nextInt(TestDeck.length); 
                Test t = s.getTest(TestDeck[q]);  
                if ( t.getCoverageOn(md) == 0.0 ) { 
                  double cp = Generator.nextDouble(); 
                  double fr = Generator.nextDouble(); 
                  t.addProbe(md,cp,fr);   
                } 
     } 
 } 
 // 
 //  ... per test, connect to npeak modules where 
 //      npeak is a random integer on [2,5] 
 // 
        for (int i = 0; i < TestDeck.length; i++) { 
            Test t = s.getTest(TestDeck[i]); 
            int npeak = 2 + Generator.nextInt(3); 
            for (int j = 0; j < npeak; j++) { 
                int q = Generator.nextInt(ModuleDeck.length); 
                Module md = s.getModule(ModuleDeck[q]);  
                if ( t.getCoverageOn(md) == 0.0 ) { 
                  double cp = Generator.nextDouble(); 
                  double fr = Generator.nextDouble(); 
                  t.addProbe(md,cp,fr);   
                } 
            } 
        }  
 
    } 
 
 
    // 
    //  ... utility method, generate a random list of nSize elements 
    // 
    static int[] generateRandomList ( int nSize ) { 
      int [] result = new int[nSize]; 
      for (int i = 0; i < nSize; i++)  
        result[i] = i; 
      for (int i = 0; i < nSize; i++) { 
        int p = Generator.nextInt(nSize); 
        int q = Generator.nextInt(nSize); 
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        int r = result[p]; 
        result[p] = result[q]; 
        result[q] = r; 
      } 
      return result; 
    } 
 
    // 
    //  ... method: create Failure Deck used in deciding in which 
    //              modules the simulation will plant defects 
    // 
    static void createFailureDeck(SystemObject s, int nTrial) { 
        //  
        //  ... find the min and max  
        //      of component reliabilities 
        // 
 int nModule = s.getModuleCount(); 
 double min = 1.0; 
 double max = 0.0; 
        double sum = 0.0; 
 for (int i = 0; i < nModule; i++) { 
     Module md = s.getModule(i); 
            sum += md.getFailureRate(); 
     if ( md.getFailureRate() > max )  
  max = md.getFailureRate(); 
     if ( md.getFailureRate() < min ) 
  min = md.getFailureRate();  
 } 
        // 
        //  ... populate the deck ... 
        // 
 for (int i = 0; i < nModule; i++) { 
     Module md = s.getModule(i); 
     int factor =  
               (int) ((md.getFailureRate() / sum) * nTrial + 0.5); 
            logger.write(".. Failure Deck: %s(%e) appears %5d times", 
              md.getName(), md.getFailureRate(), factor); 
     for (int j = 0; j < factor; j++) { 
  FailureDeck.add(md); 
     } 
 } 
        // 
        //  ... shuffle the deck ... 
        // 
 int nDeck = FailureDeck.size(); 
        logger.write(".. Failure Deck has %5d entries ..",nDeck); 
 for (int i = 0; i < nDeck; i++) { 
     int p = Generator.nextInt(nDeck); 
     int q = Generator.nextInt(nDeck); 
     Module mx = FailureDeck.get(p); 
     Module my = FailureDeck.get(q); 
     FailureDeck.set(p,my); 
     FailureDeck.set(q,mx); 
 } 
        // 
        //  ... done ... 
        // 
    } 
 
    // 
    //  ... method: select next test at random 
    // 
    static Test getRandomNextTest(ArrayList<Test> tlist) { 
      int q = Generator.nextInt(tlist.size()); 
      Test t = tlist.get(q); 
      tlist.remove(q); 
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      return t; 
    } 
 
    // 
    //  ... method: select next best test based on  
    //              forecast entropy reduction 
    // 
    static Test getBestNextTest(SystemObject s, ArrayList<Test> tlist) { 
      double dmax = -9999.0; 
      int imax = 0; 
      for (int i=0; i < tlist.size(); i++) { 
        Test t = tlist.get(i); 
        double dh = s.deltaEntropy(t); 
        double dc = t.getCost(); 
        double df = dh / dc; 
        if ( df > dmax ) { 
          dmax = df; 
          imax = i; 
        } 
      } 
      Test tmax = tlist.get(imax); 
      tlist.remove(imax); 
      return tmax; 
    } 
 
    // 
    //  ... method: select worst next test based on 
    //              increase in entropy 
    // 
    static Test getWorstNextTest(SystemObject s, ArrayList<Test> tlist) { 
      double dmin = 9999.0; 
      int imin = 0; 
      for (int i=0; i < tlist.size(); i++) { 
        Test t = tlist.get(i); 
        double dh = s.deltaEntropy(t); 
        double dc = t.getCost(); 
        double df = dh / dc; 
        if ( df < dmin ) { 
          dmin = df; 
          imin = i; 
        } 
      } 
      Test tmin = tlist.get(imin); 
      tlist.remove(imin); 
      return tmin; 
    } 
 
    // 
    //  ... method: plant defect in module selected at random 
    //              from Failure Deck, at a point selected at 
    //              random on the interval [0,1] 
    // 
    static int plantDefect(SystemObject s, int nTrial) { 
  
 if ( FailureDeck.size() == 0 )  
     createFailureDeck(s,nTrial); 
  
 Module mi = FailureDeck.get(0); 
 FailureDeck.remove(0); 
 
 double defect = Generator.nextDouble(); 
 
 mi.setDefectAt(defect); 
 
        int imod = s.getModuleIndex(mi); 
 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 38 - 
k^s^i=mlpqdo^ar^qb=p`elli=

Main.java
 logger.write("... Setting defect at %f in module %s", 
     defect, mi.getName()); 
 
        return imod; 
  
    } 
 
    // 
    //  ... method: execute test on the system object, update  
    //              module probabilities based on PASS or FAIL 
    // 
    static void updateOnTest(SystemObject s, Test t) { 
 
 Test.Result result = t.applyTest(); 
 
 String sResult = "PASS"; 
 if ( result == Test.Result.FAIL )  
     sResult = "FAIL"; 
 logger.write("%s %s", t.getName(), sResult); 
 
        ArrayList<Module> mlist = t.getModulesProbed(); 
        int nModule = mlist.size(); 
        for (int i=0; i < nModule; i++) { 
          Module md = mlist.get(i); 
          double bi = md.getBad(); 
          if ( result == Test.Result.FAIL ) { 
            bi = md.computeBadGivenFail(t); 
            logger.write("%s P(Bi|Fj) = %f", md.getName(), bi); 
          } 
          else { 
            bi = md.computeBadGivenPass(t); 
            logger.write("%s P(Bi|Pj) = %f", md.getName(), bi); 
          } 
          md.setBad(bi); 
        } 
    } 
 
 
    // 
    //  ... method: utility routine to compute mean by trial 
    //              in the 2D matrix generated by a simulation 
    // 
    static double[] computeMeanByTrial(double[][] data) { 
   
      int nTrial = data.length; 
      int nTest  = data[0].length;    
 
      double[] mean = new double[nTest]; 
 
      for (int i=0; i < nTest;  i++) {  
        for (int j=0; j < nTrial; j++) {  
          mean[i] += data[j][i]; 
        } 
        mean[i] /= nTrial; 
      } 
 
      return mean; 
 
    }  
 
    // 
    //  ... method: utility routine to compute variance by trial 
    //              in the 2D matrix generated by a simulation 
    // 
    static double[] computeVarianceByTrial(double[][] data) { 
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      double[] mean = computeMeanByTrial(data); 
 
      int nTrial = data.length; 
      int nTest  = data[0].length; 
 
      double[] var  = new double[nTest]; 
 
      for (int i=0; i < nTest;  i++) {  
        for (int j=0; j < nTrial; j++) {  
          var[i] += (mean[i] - data[j][i])*(mean[i] - data[j][i]); 
        } 
        var[i] /= (nTrial - 1); 
      } 
      return var; 
    } 
 
    // 
    //  ... method: main call to execute simulation 
    // 
    static void doSimulation() { 
  
 // long seed = 271828; 
 // long seed = 314159; 
 // Generator.setSeed(seed); 
 int nModule = 30; 
 int nTest   = 60; 
 int nTrial  = 100; 
 
        logger.write("================"); 
        logger.write("... Starting ..."); 
        logger.write("================"); 
 
 SystemObject s = new SystemObject(logger); 
  
        build(s,nModule,nTest); 
  
        configure(s); 
 
 s.describeModules(); 
 
 s.describeTests(); 
  
 logger.write("System entropy = %f, distance = %f", 
          s.Entropy(),s.Distance()); 
 
        s.dumpStateToFile("output/test000.dat"); 
 
 double[][] entropyRandom = new double[nTrial][nTest + 1]; 
        double[][] entropyBest   = new double[nTrial][nTest + 1]; 
 double[][] entropyWorst  = new double[nTrial][nTest + 1]; 
        double[][] maxpRandom    = new double[nTrial][nTest + 1]; 
        double[][] maxpBest      = new double[nTrial][nTest + 1]; 
        double[][] maxpWorst     = new double[nTrial][nTest + 1]; 
 
 double h0    = s.Entropy(); 
        double maxp  = s.MaxProbability(); 
 for (int i=0; i < nTrial; i++) { 
     entropyRandom[i][0] = h0; 
     entropyBest[i][0]   = h0; 
     entropyWorst[i][0]  = h0; 
            maxpRandom[i][0]    = maxp; 
            maxpBest[i][0]      = maxp; 
            maxpWorst[i][0]     = maxp; 
 } 
 
 ArrayList<Test> TestList; 
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        for (int j=0; j < nTrial; j++) { 
 
            logger.write("## TRIAL %03d ##",j); 
            int i; 
 
            int imod = plantDefect(s,nTrial); 
            s.dumpTrueStateToFile("output/true.dat"); 
 
     TestList = s.copyTestList(); 
     i = 0; 
     while ( TestList.size() > 0 ) { 
  Test t = getRandomNextTest(TestList); 
  logger.write("RANDOM Test=%s delta H = %f", 
      t.getName(),  
      s.deltaEntropy(t)); 
  updateOnTest(s,t); 
  double h = s.Entropy(); 
  logger.write("... Entropy = %f, Distance = %f", 
      h,s.Distance()); 
  i++; 
  entropyRandom[j][i] = h; 
                maxpRandom[j][i] = s.MaxProbability(); 
  // s.dumpStateToFile(String.format("output/test%03d.dat",i)); 
     } 
     s.ResetBadValues(); 
 
     TestList = s.copyTestList(); 
     i = 0; 
     while ( TestList.size() > 0 ) { 
  Test t = getBestNextTest(s,TestList); 
  logger.write("BEST Test=%s delta H = %f", 
      t.getName(),  
      s.deltaEntropy(t)); 
  updateOnTest(s,t); 
  double h = s.Entropy(); 
  logger.write("... Entropy = %f, Distance = %f", 
      h,s.Distance()); 
  i++; 
  entropyBest[j][i] = h; 
                maxpBest[j][i] = s.MaxProbability(); 
  s.dumpStateToFile(String.format("output/test%03d.dat",i)); 
     } 
     s.ResetBadValues(); 
      
     TestList = s.copyTestList(); 
     i = 0; 
     while ( TestList.size() > 0 ) { 
  Test t = getWorstNextTest(s,TestList); 
  logger.write("WORST Test=%s delta H = %f", 
      t.getName(),  
      s.deltaEntropy(t)); 
  updateOnTest(s,t); 
   
  double h = s.Entropy(); 
  logger.write("... Entropy = %f, Distance = %f", 
      h,s.Distance()); 
  i++; 
  entropyWorst[j][i] = h; 
                maxpWorst[j][i] = s.MaxProbability(); 
  // s.dumpStateToFile(String.format("output/test%03d.dat",i)); 
     } 
     s.Reset(); 
 
        } // end for(j) 
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 double[] meanBest   = computeMeanByTrial(entropyBest); 
 double[] meanWorst  = computeMeanByTrial(entropyWorst); 
 double[] meanRandom = computeMeanByTrial(entropyRandom); 
 
        double[] varBest = computeVarianceByTrial(entropyBest); 
        double[] varWorst = computeVarianceByTrial(entropyWorst); 
        double[] varRandom = computeVarianceByTrial(entropyRandom); 
 
        double[] meanBestMaxP   = computeMeanByTrial(maxpBest); 
        double[] meanWorstMaxP  = computeMeanByTrial(maxpWorst); 
        double[] meanRandomMaxP = computeMeanByTrial(maxpRandom); 
 
 Utility.dumpArrayToFile(meanRandom, "entropy-random.dat"); 
 Utility.dumpArrayToFile(meanBest, "entropy-best.dat"); 
 Utility.dumpArrayToFile(meanWorst, "entropy-worst.dat"); 
 
        Utility.dumpArrayToFile(meanRandomMaxP, "maxp-random.dat"); 
        Utility.dumpArrayToFile(meanBestMaxP, "maxp-best.dat"); 
        Utility.dumpArrayToFile(meanWorstMaxP, "maxp-worst.dat"); 
 
        Utility.dumpArrayToFile(varBest,"entropy-var-best.dat"); 
        Utility.dumpArrayToFile(varWorst,"entropy-var-worst.dat"); 
        Utility.dumpArrayToFile(varRandom,"entropy-var-random.dat"); 
 
        logger.write("Observed Failures ...");  
        s.sortModulesByFailureRate(); 
        for (int i=0; i < nModule; i++) { 
          Module md = s.getModule(i); 
          logger.write("... %s (%e) failed %5d times", 
             md.getName(), md.getFailureRate(), md.getFailureCount()); 
        } 
 
        logger.write("============"); 
        logger.write("... DONE ..."); 
        logger.write("============"); 
 
    } // end doSimulation() 
 
 
    // 
    //  ... standard main() ... 
    // 
    public static void main(String args[]) { 
 
 doSimulation(); 
 
    } 
 
}  
// 
//  ================ 
//  end package Main 
//  ================ 
// 
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A.2 SystemObject.java 
SystemObject.java

// 
//  ===================================================================== 
//  Project: Risk-based Testing Simulation 
//           Pfeiffer, Kanevsky, Housel 
//           Department of Information Sciences 
//           Naval Postgraduate School 
// 
//  Date:    1 Oct 2008 
//  ===================================================================== 
// 
import java.util.ArrayList; 
import java.util.Collections; 
import java.util.Comparator; 
import java.io.*; 
// 
//  package: SystemObject.java 
//  -------------------------- 
// 
//    The SystemObject is the model for the system and container 
//    for Module and Test objects. 
// 
//    This theoretical System is comprised of a collection of 
//    Modules with known (or estimated) failure rates, and a 
//    collection of Tests, each of which exercises one or more 
//    Modules within the system. 
// 
public class SystemObject { 
     
    // 
    //  ... attributes ... 
    // 
    ArrayList<Module> ModuleList = new ArrayList<Module>(); 
    ArrayList<Test> TestList     = new ArrayList<Test>(); 
    Logger Log; 
 
    // 
    //  ... methods ... 
    // 
    SystemObject() { 
      this.Log = new Logger("systemobject.log"); 
    }  
 
    SystemObject(Logger log) { 
      this.Log = log; 
    }  
 
    void addModule(Module m) { 
 this.ModuleList.add(m);   
    } 
 
    void addModuleList(Module[] mlist) { 
      for (int i=0; i < mlist.length; i++) { 
        this.ModuleList.add(mlist[i]); 
      } 
    } 
     
    Module getModule(int q) { 
 return this.ModuleList.get(q); 
    } 
 
    int getModuleCount() { 
        return this.ModuleList.size();  
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    } 
 
    Module getModuleByName(String name) { 
      for (int i = 0; i < this.ModuleList.size(); i++) { 
        Module m = this.ModuleList.get(i); 
        String current = m.getName(); 
        if ( current.equals(name) ) return m; 
      } 
      return null; 
    } 
     
    int getModuleIndex(Module m) { 
 int i; 
 for (i = 0; i < this.ModuleList.size(); i++) { 
     if ( this.ModuleList.get(i) == m ) return i;  
 } 
 return -1; 
    } 
 
    void addTest(Test t) { 
 this.TestList.add(t); 
    } 
 
    void addTestList(Test[] tlist) { 
      for (int i=0; i < tlist.length; i++) { 
        this.TestList.add(tlist[i]); 
      } 
    } 
     
    Test getTest(int q) { 
 return this.TestList.get(q); 
    }  
 
    int getTestCount() { 
        return this.TestList.size(); 
    } 
 
    ArrayList<Test> copyTestList() { 
      ArrayList<Test> tlist = new ArrayList<Test>(); 
      ArrayList<Test> olist = this.TestList; 
      for (int i=0; i < olist.size(); i++)  
        tlist.add(olist.get(i)); 
      return tlist; 
    } 
 
    double MaxProbability() { 
      double maxp = 0.0; 
      int nModule = this.ModuleList.size(); 
      for (int i=0; i < nModule; i++) { 
        double p = this.getModule(i).getBad(); 
        maxp += Math.max(p, 1-p); 
      } 
      maxp /= this.ModuleList.size(); 
      return maxp; 
    } 
 
    double Entropy() { 
      double esum = 0.0; 
      int nModule = this.ModuleList.size(); 
      for (int i = 0; i < nModule; i++) { 
        esum += this.ModuleList.get(i).Entropy();  
      } 
      esum /= nModule; 
      return esum; 
    } 
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    double deltaEntropy(Test t) { 
        int nModule = this.getModuleCount(); 
 double delta = 0.0; 
 for (int i = 0; i  < nModule; i++)  
     delta += this.getModule(i).deltaEntropy(t); 
 return delta; 
    } 
 
    double[] getTrueStateVector() { 
      int nModule = this.getModuleCount(); 
      double[] trueState = new double[nModule]; 
      for (int i=0; i < nModule; i++) { 
        trueState[i] = 0.0; 
        if ( this.getModule(i).hasDefect() )  
          trueState[i] = 1.0; 
      } 
      return trueState;  
    } 
 
    double Distance() { 
      int nModule = this.getModuleCount(); 
      double[] trueState = this.getTrueStateVector(); 
      double sum = 0.0; 
      for (int i=0; i < nModule; i++) { 
        double dx = trueState[i] - this.getModule(i).getBad(); 
        sum += dx*dx; 
      } 
      return Math.sqrt(sum); 
    } 
 
    void describeTests() { 
  
 int nTest = this.TestList.size(); 
 int i,j; 
 for (i = 0; i < nTest; i++) { 
     Test t = this.TestList.get(i); 
     this.Log.write("Test %s, Cost(%f) Pj(%f)", 
              t.getName(),t.getCost(),t.probabilityPass()); 
     int nProbe = t.ProbeList.size(); 
     for (j = 0; j < nProbe; j++) { 
  Probe p = t.ProbeList.get(j); 
  Module m = p.getModule(); 
  this.Log.write("   Module %s, coverage = %f", 
      m.getName(), p.getFraction()); 
     } 
 } 
    } 
 
    void describeModules() { 
 int nModule = this.ModuleList.size(); 
 int nTest = this.TestList.size(); 
 int i,j,k; 
 for (i = 0; i < nModule; i++) { 
     Module m = this.ModuleList.get(i); 
     this.Log.write("Module %s: Failure rate(%8.2e) H(%8.2e)",  
         m.getName(),m.getFailureRate(),m.Entropy());  
            int nProbe = m.getProbeCount(); 
     for (j = 0; j < nProbe; j++) { 
                Probe pb = m.getProbe(j); 
  Test t = pb.getTest(); 
  int nGraphic = 30; 
  this.Log.write("  Test %s (%5.2f) %s", 
      t.getName(),  
      pb.getFraction(),  
      pb.getCoverageGraphic(nGraphic)); 
     } // end for(j) 
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 } // end for(i)   
    } // end describeModules() 
 
 
    void dumpTrueStateToFile(String outfile) { 
      try { 
        PrintWriter output =  
          new PrintWriter(new FileWriter(new File(outfile))); 
        double[] trueState = this.getTrueStateVector(); 
        for (int i = 0; i < trueState.length; i++) { 
          output.printf("%f\n",trueState[i]); 
        } 
        output.close(); 
      } 
      catch(IOException ioException) { 
        System.out.println("Error writing file"); 
        System.exit(0); 
      } 
    } 
 
    void dumpStateToFile(String outfile) { 
      try { 
        PrintWriter output =  
          new PrintWriter(new FileWriter(new File(outfile))); 
        int nModule = this.getModuleCount(); 
        for (int i = 0; i < nModule; i++) { 
          output.printf("%f\n",this.getModule(i).getBad()); 
        } 
        output.close(); 
      } 
      catch(IOException ioException) { 
        System.out.println("Error writing file"); 
        System.exit(0); 
      } 
    } 
 
 
    void Reset() { 
        int nModule = this.ModuleList.size(); 
        for (int i = 0; i < nModule; i++) { 
     Module md = this.ModuleList.get(i); 
     md.Reset(); 
 } 
    }  
 
    void ResetBadValues() { 
        int nModule = this.ModuleList.size(); 
        for (int i = 0; i < nModule; i++) { 
     Module md = this.ModuleList.get(i); 
     md.ResetBadValue(); 
 } 
    } 
 
    void sortModulesByFailureRate() { 
      Collections.sort(this.ModuleList, new byFailureRate()); 
    } 
 
  class byFailureRate implements java.util.Comparator<Module> { 
  public int compare(Module x, Module y) { 
    int result = 0;  
    if ( x.getFailureRate() > y.getFailureRate() ) 
      result = 1; 
    else  
      result = -1;  
    return result; 
    } 
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  } // end class byFailureRate 
} 
//  
//  ====================== 
//  end class SystemObject 
//  ====================== 
// 

 

A.3 Module.java 
Module.java

// 
//  ===================================================================== 
//  Project: Risk-based Testing Simulation 
//           Pfeiffer, Kanevsky, Housel 
//           Department of Information Sciences 
//           Naval Postgraduate School 
// 
//  Date:    1 Oct 2008 
//  ===================================================================== 
// 
import java.util.ArrayList; 
// 
//  package: Module.java 
//  -------------------- 
// 
//    The Module represents the smallest replaceable unit within 
//    the System.  We assume only a simple failure rate to describe 
//    the reliability of the Module. 
//   
public class Module { 
    // 
    //  constant NO_DEFECT is used to indicate 
    //  that our device is working correctly 
    //  
    public static final double NO_DEFECT = 9999.0; 
 
    // 
    //  ... attributes ... 
     
    String Name; 
    double FailureRate; 
    double Bad; 
    double Defect; 
    double Cost; 
    int    FailureCount; 
    ArrayList<Probe> ProbeList; 
 
    // 
    //  ... methods ... 
    //  
 
    // 
    //  ... initialize a Module ... 
    // 
    Module(String name, double frate) { 
 // 
 //  ... user supplied a Name and FailureRate 
 // 
        Name = name; 
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        FailureRate = frate; 
 Bad = frate; 
 Cost = 1.0; 
 Defect = NO_DEFECT; 
        FailureCount = 0; 
        ProbeList = new ArrayList<Probe>(); 
    } 
 
    String getName() { 
      return this.Name;   
    } 
     
    void setName(String name) { 
 this.Name = name; 
    } 
 
    double getFailureRate() { 
 return this.FailureRate; 
    } 
     
    void setFailureRate(double frate) { 
 this.FailureRate = frate; 
    } 
 
    double getBad() { 
      return this.Bad; 
    } 
 
    void setBad(double bad) { 
      this.Bad = bad; 
    } 
 
    double Entropy() { 
      double p = this.Bad;  
      double e = Utility.entropy(p); 
      return e; 
    } 
 
 
    double deltaEntropy(Test t) { 
 double h = this.Entropy(); 
 double pj = t.probabilityPass(); 
 double fj = 1.0 - pj; 
 double bifj = this.computeBadGivenFail(t); 
 double bipj = this.computeBadGivenPass(t); 
 double hfail = Utility.entropy(bifj);  
 double hpass = Utility.entropy(bipj);  
 double result = h - hpass*pj - hfail*fj; 
 return result; 
    } 
 
 
    void addProbe(Probe p) { 
      this.ProbeList.add(p); 
    } 
 
    Probe getProbe(int i) { 
      return this.ProbeList.get(i); 
    } 
 
    int getProbeCount() { 
      return this.ProbeList.size(); 
    } 
 
    // 
    //  ... plant a defect ... 
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    // 
    void setDefectAt(double p) { 
 this.Defect = p; 
        FailureCount++; 
    } 
 
    int getFailureCount() { 
      return this.FailureCount; 
    } 
 
    // 
    //  ... remove the defect ... 
    // 
    void Reset() { 
 this.Defect = NO_DEFECT; 
        this.Bad = this.FailureRate; 
    } 
 
    void ResetBadValue() { 
        this.Bad = this.FailureRate; 
    } 
 
 
    boolean hasDefect() { 
        if ( this.Defect == NO_DEFECT )   
          return false; 
        else 
          return true; 
    } 
     
    // 
    //  ... test our Module within a specified arc 
    //      about a specified center point 
    //   
    //      return TRUE if Module is defective 
    // 
    //      return FALSE if Module appears to be 
    //        functioning normally 
    // 
    boolean containsDefect(Coverage coverage) { 
 // 
 //  ... apply the test by "looking" within the  
 //      user-specified arc for any defect 
 //      returning TRUE if we are BAD and 
 //      FALSE if we are GOOD or UNKNOWN 
 // 
        if ( coverage.containsPoint(this.Defect) ) { 
     return true; 
        } 
        else 
     return false; 
  
    } // end containsDefect() 
     
 
    // 
    //  computeBadGivenFail 
    //  ------------------- 
    // 
    //    Compute the probability that given test Tj = FAIL 
    //    our module is BAD 
    // 
    //    P(Bi|Fj) =               P(Fj|Bi)P(Bi) 
    //                     ------------------------------ 
    //                      P(Fj|Bi)P(Bi) + P(Fj|Gi)P(Gi)  
    // 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 49 - 
k^s^i=mlpqdo^ar^qb=p`elli=

Module.java
    // 
    //    where: 
    //  
    //      P(Bi) = current probability Mi is BAD 
    // 
    //      P(Gi) = 1 - P(Bi) 
    // 
    //      P(Fj|Bi) = probability of detecting failure, or 
    //                 the coverage alpha_ij  
    //  
    //      P(Fj|Gi) = probability that even though Mi is good 
    //                 some other module failed and was detected  
    //                 by Tj 
    // 
    double computeBadGivenFail(Test t) { 
 double alpha = t.getCoverageOn(this); 
 if ( alpha == 0.0 ) return this.Bad; 
 double bi = this.Bad; 
 double gi = 1.0 - bi; 
 double fjbi = alpha; 
        int nProbe = t.getProbeCount(); 
 double prod = 1.0; 
 for (int i=0; i < nProbe; i++) { 
     Probe pb = t.getProbe(i); 
     Module md = pb.getModule(); 
     if ( md != this )  
  prod = prod*(1.0 - t.getCoverageOn(md)*md.getBad()); 
 } 
 double fjgi = 1 - prod; 
 double result = (fjbi*bi) / (fjbi*bi + fjgi*gi); 
 return result; 
    } 
     
    // 
    //  computeBadGivenPass 
    //  ------------------- 
    // 
    //    Compute the probability that given test Tj = PASS 
    //    our module is BAD 
    // 
    //    P(Bi|Pj) =               P(Pj|Bi)P(Bi) 
    //                     ------------------------------ 
    //                      P(Pj|Bi)P(Bi) + P(Pj|Gi)P(Gi)  
    // 
    // 
    //    where: 
    //  
    //      P(Bi) = current probability Mi is BAD 
    // 
    //      P(Gi) = 1 - P(Bi) 
    // 
    //      P(Pj|Bi) = probability of non-detect of failure 
    //                 or 1 - alpha_ij  
    //  
    //      P(Pj|Gi) = probability some other module failed 
    //                 in the set of modules covered by Tj 
    // 
    double computeBadGivenPass(Test t) { 
 double alpha = t.getCoverageOn(this);  
        if ( alpha == 0.0 ) return this.Bad; 
 double bi = this.Bad; 
 double gi = 1.0 - bi; 
 double pjbi = 1.0 - alpha; 
        int nProbe = t.getProbeCount(); 
 double prod = 1.0; 
 for (int i=0; i < nProbe; i++) { 
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     Probe pb = t.getProbe(i); 
     Module md = pb.getModule(); 
     if ( md != this )  
  prod = prod*(1.0 - t.getCoverageOn(md)*md.getBad()); 
 } 
 double pjgi = prod; 
 double result = (pjbi*bi) / (pjbi*bi + pjgi*gi); 
 return result; 
    } 
     
     
     
}  
// 
//  =================== 
//  end package: Module 
//  =================== 
// 

A.4 Test.java 
Test.java

// 
//  ===================================================================== 
//  Project: Risk-based Testing Simulation 
//           Pfeiffer, Kanevsky, Housel 
//           Department of Information Sciences 
//           Naval Postgraduate School 
// 
//  Date:    1 Oct 2008 
//  ===================================================================== 
// 
import java.util.ArrayList; 
// 
//  package: Test.java 
//  ------------------ 
// 
//  A Test is the smallest diagnostic executable within the System. 
//   
//  We treat a Test as a collection of Probes on Modules, with each 
//  Probe testing some fraction on the interval [0,1) over a  
//  specific Module. 
// 
//  When a Test is executed, only one result is returned. 
//  The convention is 
// 
//    PASS: No faulty devices indicated 
// 
//    FAIL: At least one faulty device indicated 
// 
//  This result is the aggregation of all Probes applied 
//  so that, for example, if a Test covers five Modules and the 
//  Test returns TRUE, we know at least one of those five devices 
//  is faulty. 
// 
public class Test { 
 
    public enum Result { PASS, FAIL } 
     
    // 
    //  ... attributes ... 
    // 
    String Name; 
    double Cost; 
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    ArrayList<Probe> ProbeList; 
     
    // 
    //  ... methods ... 
    // 
    Test(String name) { 
 this.ProbeList = new ArrayList<Probe>(); 
 this.setName(name); 
        this.setCost(1.0); 
    } 
     
    void setName(String name) { 
 this.Name = name; 
    } 
     
    String getName() { 
 return this.Name; 
    } 
 
    void setCost(double c) { 
        this.Cost = c; 
    } 
 
    double getCost() { 
        return this.Cost; 
    } 
     
    void addProbe(Module m, double cp, double cov) { 
 Probe pb = new Probe(this,m,cp,cov); 
        boolean Inserted = false; 
        for (int i = 0; i < this.ProbeList.size(); i++) { 
          Probe pbi = this.ProbeList.get(i); 
          if (m == pbi.getModule()) {  
            // System.out.printf("debug: replacing probe on %s\n", 
            //    m.getName()); 
            this.ProbeList.set(i,pb); 
            Inserted = true; 
          } 
        } 
        if ( !Inserted ) { 
          this.ProbeList.add(pb); 
          m.addProbe(pb); 
        } 
    } 
 
    Probe getProbe(int i) { 
      return this.ProbeList.get(i); 
    } 
 
    int getProbeCount() { 
      return this.ProbeList.size(); 
    } 
 
    Test.Result applyTest() { 
 Test.Result result = Test.Result.PASS; 
 int i; 
 int n = this.ProbeList.size(); 
 for (i = 0; i < n; i++) { 
     Probe pb = this.ProbeList.get(i); 
     Probe.Result pbres = pb.applyProbe(); 
     if ( pbres == Probe.Result.FAIL )  
  result = Test.Result.FAIL; 
 } 
 return result; 
    } 
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    ArrayList<Module> getModulesProbed() { 
 ArrayList<Module> dlist = new ArrayList<Module>(); 
 int nProbe = this.ProbeList.size(); 
 int i; 
 for (i = 0; i < nProbe; i++) { 
     Probe p = this.ProbeList.get(i); 
     Module d = p.getModule(); 
     dlist.add(d); 
 } 
 return dlist; 
    } 
 
    double getCoverageOn(Module m) { 
 int nProbe = this.ProbeList.size(); 
 double result = 0.0; 
 for (int i=0; i < nProbe; i++) { 
     Probe pb = this.ProbeList.get(i); 
     if ( m == pb.getModule() )  
  result = pb.getFraction(); 
 }  
        if ( result > 1.0 ) { 
          System.out.printf("WARNING: coverage on module %s = %f\n", 
            m.getName(), result);  
        } 
 return result; 
    } 
 
    // 
    //  probabilityPass() 
    //  ----------------- 
    //   
    //    Return the probability that a test will pass 
    //    based on the coverage of the test and the  
    //    a priori probability the covered modules are bad 
    // 
    double probabilityPass() { 
 double result = 1.0; 
 ArrayList<Probe> pblist = this.ProbeList; 
 for (int i=0; i < pblist.size(); i++) { 
     Probe pb = pblist.get(i); 
     double b = pb.getModule().getBad(); 
     double a = pb.getFraction(); 
     result = result * ( 1.0 - a*b );  
 } 
 return result; 
    } 
     
} 
// 
//  ================= 
//  end package: Test 
//  ================= 
// 
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A.5 Probe.java 
Probe.java

// 
//  ===================================================================== 
//  Project: Risk-based Testing Simulation 
//           Pfeiffer, Kanevsky, Housel 
//           Department of Information Sciences 
//           Naval Postgraduate School 
// 
//  Date:    1 Oct 2008 
//  ===================================================================== 
// 
//  package Probe.java 
//  ------------------ 
//   
//    Each Probe describes the coverage of a Test on a specific  
//    Module, using a center point and fraction (or arc length)  
//    to describe the portion of the Module exercised when a  
//    specific Test is applied. 
// 
//    A Test is a collection (ArrayList) of Probes. 
// 
public class Probe { 
     
    public enum Result { PASS, FAIL } 
    // 
    //  ... attributes ... 
    // 
    Module module; 
    Test test; 
    Coverage coverage; 
    // 
    //  ... methods ... 
    // 
    Probe (Test t, Module m, double cp, double f) { 
        test = t; 
        module = m; 
        coverage = new Coverage(cp, f); 
    } 
 
    Probe.Result applyProbe() { 
 if ( this.module.containsDefect(this.coverage) )  
     return Probe.Result.FAIL; 
 else 
     return Probe.Result.PASS; 
    } 
 
    Module getModule() { return this.module; } 
 
    Test getTest() { return this.test; } 
 
    double getFraction() { 
        return this.coverage.measure(); 
    } 
     
    String getCoverageGraphic(int nGraphic) { 
        String result = coverage.getCoverageGraphic(nGraphic);  
 return result; 
    } 
}  
// 
//  ================== 
//  end package: Probe 
//  ================== 
// 
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A.6 Coverage.java 
Coverage.java

// 
//  ===================================================================== 
//  Project: Risk-based Testing Simulation 
//           Pfeiffer, Kanevsky, Housel 
//           Department of Information Sciences 
//           Naval Postgraduate School 
// 
//  Date:    1 Oct 2008 
//  ===================================================================== 
// 
import java.util.ArrayList; 
// 
//  package: Coverage.java 
//  ---------------------- 
// 
//    The Coverage class is used to model the relationship between 
//    the System objects Test and Module. 
// 
//    The Coverage object represents an arc in which a module may 
//    be inspected by a test. 
// 
public class Coverage { 
    // 
    //  ----------------------- 
    //  private class: Interval 
    //  ----------------------- 
    // 
    private class Interval { 
  
 double Left; 
 double Right; 
 
 Interval(double left, double right) { 
     this.Left = left; 
     this.Right = right; 
 } 
 
        void set(double left, double right) { 
     this.Left = left; 
     this.Right = right; 
        } 
 
 double measure() { 
     double result = (this.Right - this.Left); 
     return result; 
 } 
 
 boolean containsPoint(double p) { 
     if ( this.Left <= p && p <= this.Right )  
  return true; 
     else  
  return false; 
 } 
  
    }  
    //  ------------------- 
    //  end class: Interval 
    //  ------------------- 
    // 
    //  --------------------------- 
    //  private class: IntervalList 
    //  --------------------------- 
    // 
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    private class IntervalList { 
 
 ArrayList<Interval> List; 
     
 IntervalList() {  
     List = new ArrayList<Interval>(); 
 } 
  
 void addInterval(double left, double right) { 
     if ( left < 0.0 ) { 
  List.add(new Interval(1.0 + left, 1.0)); 
  List.add(new Interval(0.0, right));  
     } 
     else if ( right > 1.0 ) { 
  List.add(new Interval(left, 1.0)); 
  List.add(new Interval(0.0, right - 1.0)); 
     } 
     else  
  List.add(new Interval(left, right)); 
      
 } // end addInterval()  
  
 void addArc(double center, double fraction) { 
     double left = center - fraction/2.0; 
     double right = center + fraction/2.0; 
     this.addInterval(left, right); 
 } // end addArc() 
  
 Interval get(int k) { 
     return List.get(k); 
 } 
  
     boolean containsPoint(double point) { 
      
     int nSize = List.size(); 
      
     for (int i = 0; i < nSize; i++)  
  if ( List.get(i).containsPoint(point) ) return true; 
      
     return false; 
 } 
 
 double measure() { 
     double sum = 0.0; 
     int nSize = List.size(); 
     for (int i = 0; i < nSize; i++)  
  sum += List.get(i).measure(); 
     return sum; 
 } 
  
 String getCoverageGraphic(int nGraphic) { 
      
     char[] coverage = new char[nGraphic]; 
     for (int i=0; i < nGraphic; i++) coverage[i] = '.'; 
      
     for (int k=0; k < this.List.size(); k++) { 
  Interval v = this.get(k); 
  int left  = (int) (nGraphic * v.Left + 0.5);  
  int right = (int) (nGraphic * v.Right + 0.5);  
  for (int p=left; p < right; p++)  coverage[p] = 'x'; 
     } 
      
     String coverageGraphic = new String(coverage); 
      
     return coverageGraphic; 
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 } 
    } 
    // 
    //  ------------------------------ 
    //  end private class IntervalList 
    //  ------------------------------ 
    // 
    //  --------------------------- 
    //  main body of class Coverage 
    //  --------------------------- 
    // 
    IntervalList List; 
 
    Coverage (double centerpoint, double fraction) { 
 List = new IntervalList(); 
 this.List.addArc(centerpoint,fraction); 
    }  
 
    double measure() { 
 return this.List.measure(); 
    } 
 
    boolean containsPoint(double p) { 
 return this.List.containsPoint(p); 
    } 
 
    String getCoverageGraphic(int nGraphic) { 
 return this.List.getCoverageGraphic(nGraphic); 
    } 
    // 
    //  end class: Coverage 
    // 
     
} 
// 
//  ===================== 
//  end package: Coverage 
//  ===================== 
// 
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A.7 Utility.java 
Utility.java

// 
//  ===================================================================== 
//  Project: Risk-based Testing Simulation 
//           Pfeiffer, Kanevsky, Housel 
//           Department of Information Sciences 
//           Naval Postgraduate School 
// 
//  Date:    1 Oct 2008 
//  ===================================================================== 
// 
import java.io.*; 
// 
//  package: Utility.java 
//  --------------------- 
// 
//    This is a catch-all class with those subroutines that do not 
//    fit neatly into another object 
// 
public class Utility { 
     
    public static double entropy(double p) { 
 double h = 0.0; 
 if ( p == 0.0 || p == 1.0 ) 
     h = 0.0; 
 else {  
     h += -p * Math.log(p); 
     h += -(1.0 - p) * Math.log(1.0 - p); 
     h /= Math.log(2.0); 
 } 
 return h; 
    } 
 
    public static void dumpArrayToFile(double[] list, String outfile) { 
 try { 
     PrintWriter output =  
  new PrintWriter(new FileWriter(new File(outfile)));      
     int nSize = list.length; 
     for (int i = 0; i < nSize; i++)  
  output.printf("%f\n",list[i]);   
     output.close(); 
 } 
 catch(IOException ioException) { 
     System.out.println("Error writing file"); 
     System.exit(0); 
 } 
    } 
}  
// 
//  ==================== 
//  end package: Utility 
//  ==================== 
// 
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A.8 Logger.java 

Logger.java
// 
//  ===================================================================== 
//  Project: Risk-based Testing Simulation 
//           Pfeiffer, Kanevsky, Housel 
//           Department of Information Sciences 
//           Naval Postgraduate School 
// 
//  Date:    1 Oct 2008 
//  ===================================================================== 
// 
import java.io.*; 
import java.util.Date; 
import java.text.DateFormat; 
import java.text.SimpleDateFormat; 
// 
//  package: Logger.java 
//  -------------------- 
// 
//    The Logger class is a simple utility object for writing all 
//    messages with date-time stamp into a single log file. 
// 
public class Logger { 
 
   private static String OutputFile; 
   private static boolean Append = false; 
   private static DateFormat dateFormat; 
   private static PrintWriter handle; 
 
   Logger(String filename) { 
     this.OutputFile = filename; 
     this.dateFormat =  
       new SimpleDateFormat("yyyy-MM-dd HH:mm:ss SSS"); 
     openLog(); 
   } 
 
   private void openLog() { 
     String outfile = this.OutputFile; 
     try { 
       this.handle =  
         new PrintWriter(new FileWriter(new File(outfile),this.Append));  
     }  
     catch(IOException ioException) { 
       System.err.println("Error opening log file"); 
       System.exit(0); 
     } 
   } 
 
   public void write(String format, Object... args) { 
     Date date = new Date();  
     String outstr = String.format(format,args);  
     String logmsg =  
       String.format("%s %s\n",this.dateFormat.format(date),outstr); 
     this.handle.write(logmsg); 
     this.handle.flush(); 
     this.Append = true;  
   } // end write() 
} 
// 
//  =================== 
//  end package: Logger 
//  =================== 
// 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =  
k^s^i=mlpqdo^ar^qb=p`elli=

2003 - 2008 Sponsored Research Topics 

Acquisition Management 

 Acquiring Combat Capability via Public-Private Partnerships (PPPs) 
 BCA: Contractor vs. Organic Growth 
 Defense Industry Consolidation 
 EU-US Defense Industrial Relationships 
 Knowledge Value Added (KVA) + Real Options (RO) Applied to 

Shipyard Planning Processes  
 Managing Services Supply Chain 
 MOSA Contracting Implications 
 Portfolio Optimization via KVA + RO 
 Private Military Sector 
 Software Requirements for OA 
 Spiral Development 
 Strategy for Defense Acquisition Research 
 The Software, Hardware Asset Reuse Enterprise (SHARE) repository 

Contract Management 

 Commodity Sourcing Strategies 
 Contracting Government Procurement Functions 
 Contractors in 21st Century Combat Zone 
 Joint Contingency Contracting 
 Model for Optimizing Contingency Contracting Planning and Execution 
 Navy Contract Writing Guide 
 Past Performance in Source Selection 
 Strategic Contingency Contracting 
 Transforming DoD Contract Closeout 
 USAF Energy Savings Performance Contracts 
 USAF IT Commodity Council 
 USMC Contingency Contracting 
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Financial Management 

 Acquisitions via leasing: MPS case 
 Budget Scoring 
 Budgeting for Capabilities Based Planning 
 Capital Budgeting for DoD 
 Energy Saving Contracts/DoD Mobile Assets 
 Financing DoD Budget via PPPs 
 Lessons from Private Sector Capital Budgeting for DoD Acquisition 

Budgeting Reform 
 PPPs and Government Financing 
 ROI of Information Warfare Systems 
 Special Termination Liability in MDAPs 
 Strategic Sourcing 
 Transaction Cost Economics (TCE) to Improve Cost Estimates 

Human Resources 

 Indefinite Reenlistment 
 Individual Augmentation 
 Learning Management Systems 
 Moral Conduct Waivers and First-tem Attrition 
 Retention 
 The Navy’s Selective Reenlistment Bonus (SRB) Management System 
 Tuition Assistance 

Logistics Management 

 Analysis of LAV Depot Maintenance 
 Army LOG MOD 
 ASDS Product Support Analysis 
 Cold-chain Logistics 
 Contractors Supporting Military Operations 
 Diffusion/Variability on Vendor Performance Evaluation 
 Evolutionary Acquisition 
 Lean Six Sigma to Reduce Costs and Improve Readiness 
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 Naval Aviation Maintenance and Process Improvement (2) 
 Optimizing CIWS Lifecycle Support (LCS) 
 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance 

Activity  
 Pallet Management System 
 PBL (4) 
 Privatization-NOSL/NAWCI 
 RFID (6) 
 Risk Analysis for Performance-based Logistics 
 R-TOC Aegis Microwave Power Tubes 
 Sense-and-Respond Logistics Network 
 Strategic Sourcing 

Program Management 

 Building Collaborative Capacity 
 Business Process Reengineering (BPR) for LCS Mission Module 

Acquisition 
 Collaborative IT Tools Leveraging Competence 
 Contractor vs. Organic Support 
 Knowledge, Responsibilities and Decision Rights in MDAPs 
 KVA Applied to Aegis and SSDS 
 Managing the Service Supply Chain 
 Measuring Uncertainty in Eared Value 
 Organizational Modeling and Simulation 
 Public-Private Partnership 
 Terminating Your Own Program 
 Utilizing Collaborative and Three-dimensional Imaging Technology 

 

A complete listing and electronic copies of published research are available on our 
website: www.acquisitionresearch.org    

 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =  
k^s^i=mlpqdo^ar^qb=p`elli=

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK



 

 

 

 

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org 


