

Calhoun: The NPS Institutional Archive

Reports and Technical Reports

All Technical Reports Collection

2008-04-01

The Changing Shape of the Defense Industry and Implications for Defense Acquisitions and Policy

Victoria A. Greenfield

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

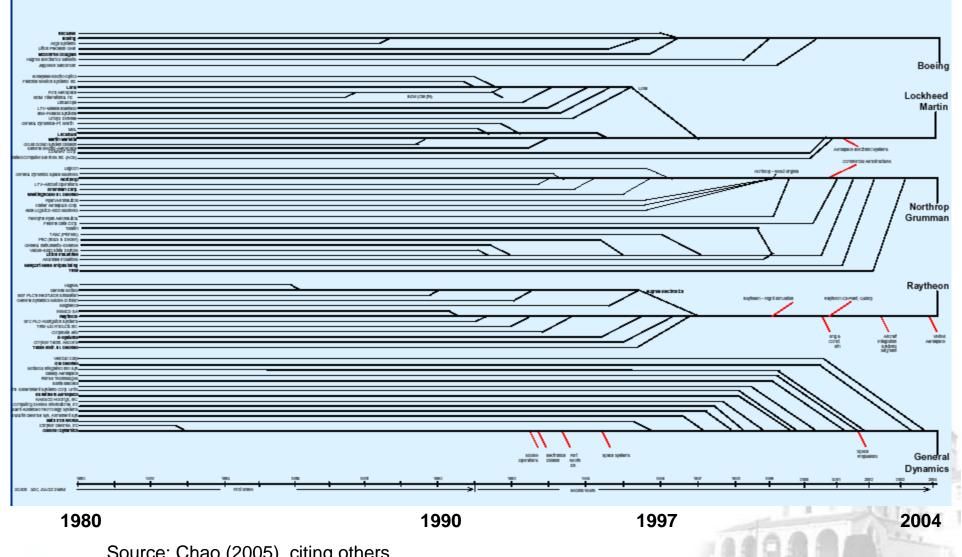
The Changing Shape of the Defense Industry and Implications for Defense Acquisitions and Policy Work in Progress

Victoria A. Greenfield, Ph.D.

Crowe Chair Professor, U.S. Naval Academy

Table of Contents

- > Introduction
- Trends in Consolidation
- Possible Explanations
- Implications for Defense Acquisitions
- Conclusions and Future Research



Wave of Consolidation Hits Defense Industry in 1990s

- Cold War ends... less defense spending
- Top-tier and other defense firms merge
 - Lockheed and Martin Marietta
 - Boeing and McDonnell Douglas
- DOD provides institutional and some financial support for mergers
 - Antitrust policy process
 - Cost reimbursements

"Last Supper" (1993)

The "Eye Chart" Provides One Perspective

Source: Chao (2005), citing others

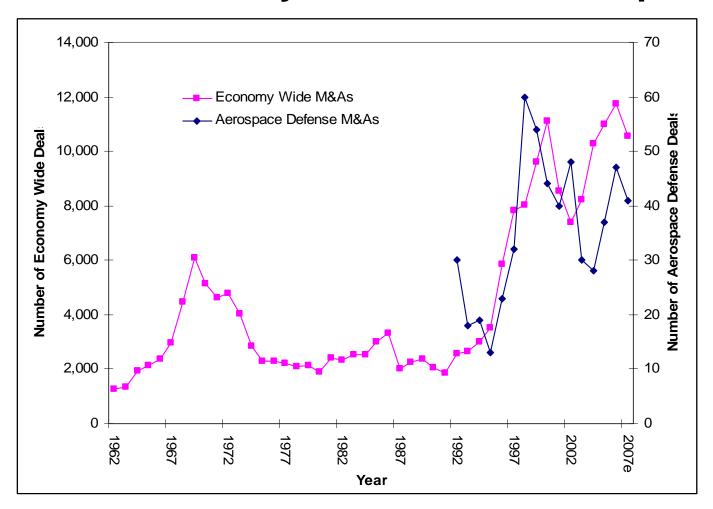
Research Goals

- Establish statistical facts
 - How has consolidation reshaped the defense industry?
 - How might it continue to reshape the industry?
 - What forces have promoted it?
- Consider implications for defense acquisitions using standard economic models and tools
 - Concentration and competition
 - Concentration, productivity, and innovation

Approach

- Define defense industry in terms of DOD "market" and suppliers of goods and services
- Draw data from DD350, DOD top 100 company reports, budget documents, DOL, DOC/BEA, FactSet Mergerstat, and AIA to establish facts and assess implications, using
 - Descriptive statistics
 - Time series and correlation analyses

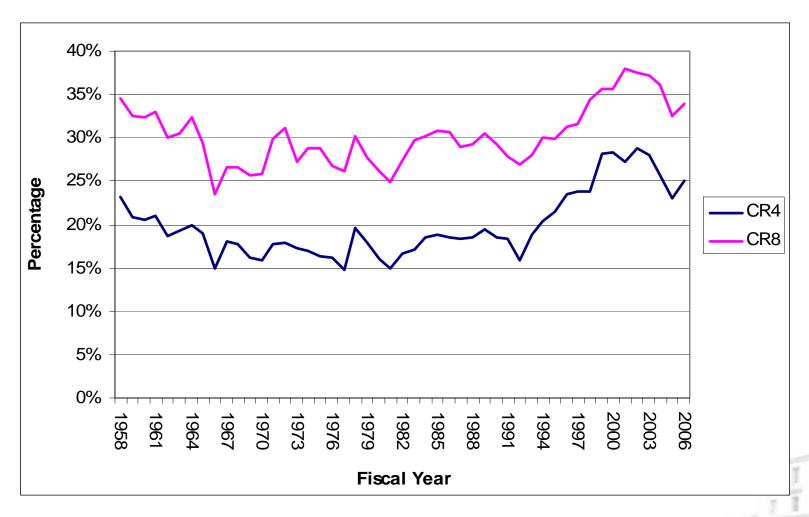
Table of Contents


- Introduction
- > Trends in Consolidation
- Possible Explanations
- Implications for Defense Acquisitions
- Conclusions and Future Research

Data Sources and Use

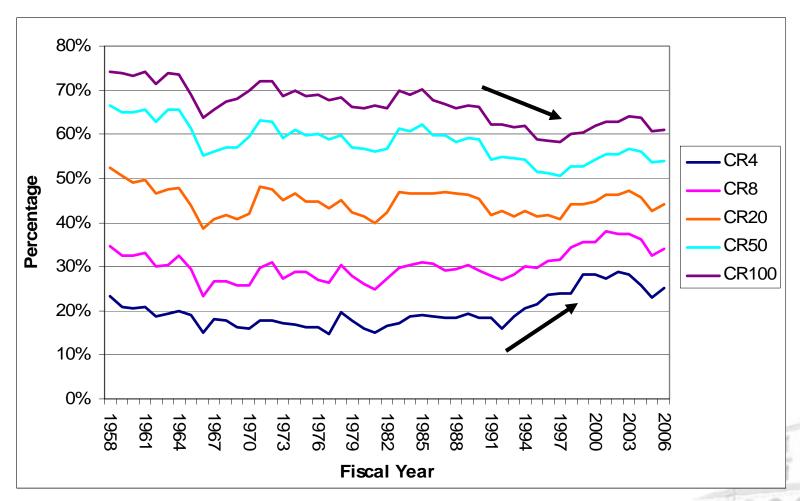
- Mergerstat data show broad trends
- DD350 collects data on DOD contract actions
 - Can sort prime contracts and tally dollars by "Ultimate Parent Company" for 1984-2006 and supplement with "predigested" data from top-100 reports for 1958-1983
 - Rankings allow firm-level comparisons
 - 4-, 8-, 20-, 50-, and 100-firm industry CRs
 - indicate (proxy) consolidation
 - allow market-level and cross-industry comparisons
 - Changes in reporting methods and criteria, especially thresholds, pose substantial challenges

M&As Economy Wide and in Aerospace Defense


Source: Author based on data from FactSet Mergerstat, LLC, 2007 and 2008.

CRs Suggest Differences Across and Within Defense Industry Levels

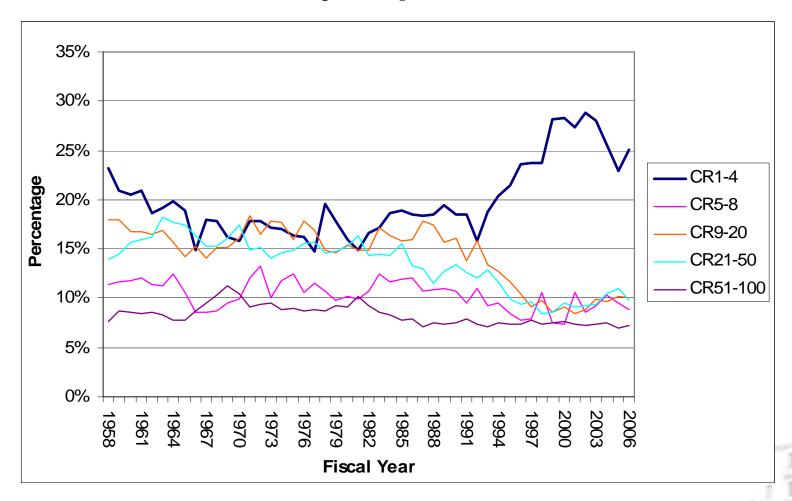
- 4- and 8-firm CRs move together
- 50- and 100-firm CRs also move together
- 4/8- and 50/100-firm CRs do not move together uniformly (e.g., 1990s v. 2000s)
- 20-firm CR acts as "pivot"



4- and 8-Firm CRs Move Together

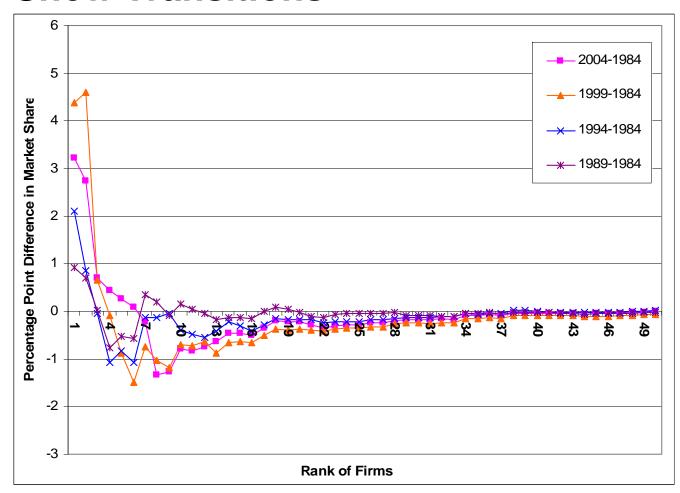
Source: Author based on data from DOD DD350 and top 100 reports (1958-2006).

4/8- and 50/100-Firm CRs Do Not Move Together Uniformly



Source: Author based on data from DOD DD350 and top 100 reports (1958-2006).

Alternative Data Presentations Shed Light on Market-Level Differences


- Market-level breakouts, i.e., 1-4, 5-8, 9-20, 21-50, and 51-100-firms, set top 4 apart.
- Comparisons of equally-ranked firms over time show transition at top-most levels and consequences for other levels
 - Firms 1-4 gain market share
 - Firms 5-8 and 9-20 lose market share
 - Firms 21-50 converge to "business as usual"

CR Rises for Very Top-Most Firms

Source: Author based on data from DOD DD350 and top 100 reports (1958-2006).

Comparisons of Equally Ranked Firms Show Transitions

Source: Author based on data from DOD DD350 (1984-2006).

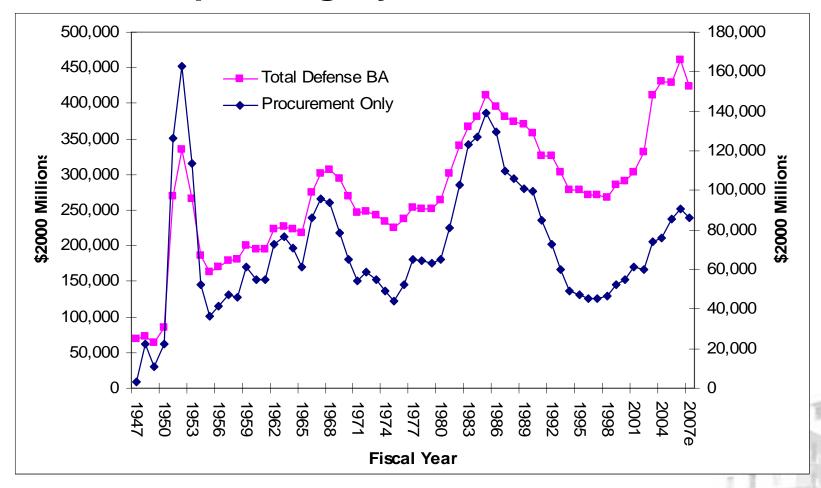
Observations consistent with hollowing out of "5-to-20" market (Good, bad, indifferent?)

Trends abating in recent years

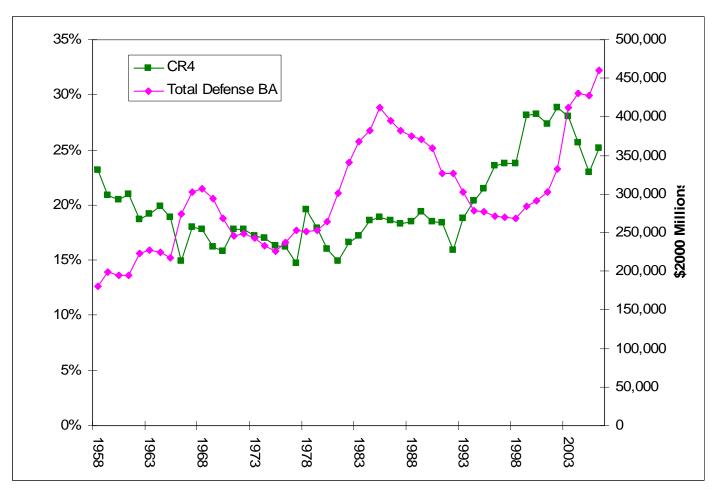
Table of Contents

- Introduction
- Trends in Consolidation
- Possible Explanations
- Implications for Defense Acquisitions
- Conclusions and Future Research

What Drives Consolidation?


- Changes in DOD Spending
- Declining expenditures in 1990s
 - End of cold war
 - Mounting federal deficits
- Increasing expenditures in 2000s (Iraq)

- DOD policy decisions and interventions
- Conditions in larger economy


Given prominence of DOD as purchaser, market forces and policy actions not clearly separable

Defense-Spending Cycles

Source: Author based on data from the DOD Green Book (2007 and 2008).

Industry Concentration v. Spending

Source: Author based on data from the DOD Green Book (2007 and 2008), DOD DD350 (1984-2006) and top 100 reports (1958-1983)

Empirical Model Considers Multiple Factors

$$Y = B_0 + B_1X_1 + B_2X_2 + B_3X_3 + B_4X_4 + B_5X_5$$

Where:

Y = 4-firm concentration ratio (in decimal terms, e.g., 0.18, 0.25, etc.) (CR4F)

 $X_1 = Lagged 4$ -firm concentration ratio (one period lag) (CR4F-L) +

 $X_2 = Lagged real DOD BA (in $2000 billions) (BA-L)$

 $X_3 = DOD \text{ policy } (0, 1 \text{ dummy}) (POL) +$

 $X_4 = Number of economy-wide M&As (MA) +$

 $X_5 = \text{Trend term (Linear, 1...N) (TR)} +$

Results Support Multiple Factors

	Intercept	CR4F-L	BA-L	POL	MA	TR		
(1)	\mathbf{B}_0	B ₁	N/A	N/A	N/A	N/A		
Coefficient	0.18	0.913						
(t-stat)	(1.297)	(13.110)						
Test results	$R^2(adj.) = 0.795$; $F = 171.878$; $DW = 2.082$							
(2)	B ₀ B ₁ N/A N/A N/A B							
Coefficient	0.034	0.753				0.001		
(t-stat)	(2.337)	(8.452)				(2.626)		
Test results	$R^2(adj.) = 0.820$; $F = 101.169$; $DW = 2.060$							
(3)	\mathbf{B}_0	B ₁	\mathbf{B}_2	N/A	N/A	B ₅		
Coefficient	0.059	0.710	-7.976E-5			.001		
(t-stat)	(2.693)	(7.685)	(-1.515)			(3.024)		
Test results	$R^2(adj.) = 0.825$; $F = 70.291$; $DW = 2.133$							
(4)	B ₀ B ₁ B ₂ B ₃ N/A B ₅							
Coefficient	0.051	0.736	-6.315E-5	.007		.001		
(t-stat)	(2.099)	(7.336)	(-1.086)	(0.694)		(2.165)		
Test results	$R^2(adj.) = 0.823$; $F = 52.172$; $DW = 2.153$							
(5)	\mathbf{B}_0	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	B ₄	B ₅		
Coefficient	0.069	0.609	-6.653E-5	0.008	2.628E-6	0.001		
(t-stat)	(2.709)	(5.144)	(-1.180)	(0.885)	(1.883)	(1.817)		
Test results	$R^2(adj.) = 0.834$; $F = 45.103$; $DW = 2.109$							

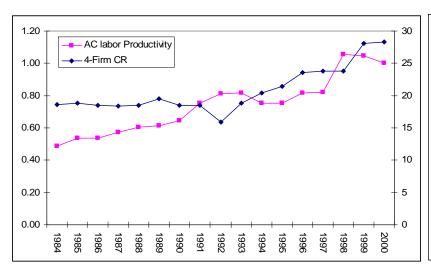
)	Intercept	CR4F-L	BA-L	POL	MA	TR
(6)	\mathbf{B}_0	\mathbf{B}_1	\mathbf{B}_2	N/A	\mathbf{B}_4	\mathbf{B}_{5}
Coefficient	0.077	0.582	-8.682E-5		2.516E-6	0.001
(t-stat)	(3.283)	(5.101)	(-1.690)		(1.815)	(2.737)
Test results	est results $R^2(adj.) = 0.835$; $F = 56.490$; $DW = 2.081$					

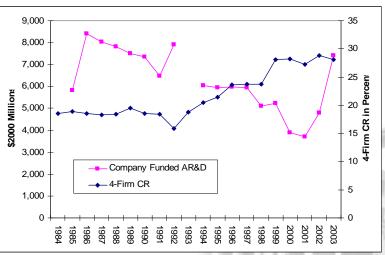
DOD Influences but Does not Control Defense Industry

- Autoregressive "Black Box" explains most of the variation in 4-firm CR, but...
- Defense budgets and economy-wide conditions matter too, while...
- DOD policy actions—e.g., the "Last Supper"—are not statistically significant

Table of Contents

- Introduction
- Trends in Consolidation
- Possible Explanations
- > Implications for Defense Acquisitions
- Conclusions and Future Research




Concentration and Competition

- Preliminary assessment of "Extent of Competition" in DD350 for 1989-1994, 1999, and 2004 yields inconclusive results
 - Competition decreases among the very top-most firms, in aggregate, i.e. top 4
 - Competitive share drops from 61% to 48%
 - Competition has not increased—or decreased—uniformly at other market levels or even among top 4
 - Correlation between concentration and competition is +/- at different market levels

Concentration, Productivity, and Innovation

- Cursory look at data on labor productivity and R&D suggests areas of concern
 - Correlation between aircraft labor productivity and 4-firm CR is negative, after accounting for rise in manufacturing productivity
 - Correlation between company-funded applied R&D and 4firm CR is also negative

Table of Contents

- Introduction
- Trends in Consolidation
- Possible Explanations
- Implications for Defense Acquisitions
- Conclusions and Future Research

Conclusions

- In some sense, the "eye chart" is right
 - The top 4 firms, in aggregate, have become more concentrated and less competitive since the 1990s, albeit with a modest reversal post-2003
- But, the eye chart tells only part of the story
 - Differences across/within market levels, even within top 4
 - Market dynamism, including new, global entrants
 - Competition, productivity, and innovation?
- Moreover, DOD may have less control than it thinks
 - The Black Box suggests potential for additional consolidation in the not-too-distant future

Future Research

In progress for WEAI meetings

- Address structural breaks in time series
- Flesh out competition model, data, and results
- Pursue interest in relationship between competition, productivity, and innovation, especially innovation
 - Using R&D and patent data
 - Conducting cross-industry comparisons
 - Controlling for other economic forces
- Consider feasibility of analysis by product lines

Contact Information

Victoria A. Greenfield
 Crowe Chair Professor
 Department of Economics
 U.S. Naval Academy
 589 McNair Road
 Annapolis, MD 21402
 Phone: 410 293 6896

Cell: 571 239 8467

vag@usna.edu

Ryan R. Brady
 Assistant Professor
 Department of Economics
 U.S. Naval Academy
 589 McNair Road
 Annapolis, MD 21402
 rbrady@usna.edu

Back Up Slides

Summary of Regression Results

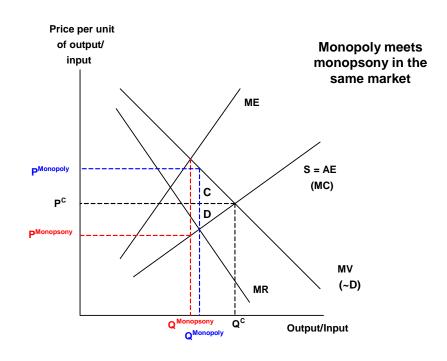
- If BA decreases by one billion dollars in one year, CR4F increases by about 0.00009 in next year
 - Actual decrease in real BA in 2005 would have been associated with increase of about 0.0002 in CR4F in 2006*
- If economy-wide M&As increase by 1 in one year, CR4F increases by about 2.52E-06 in same year
 - Actual increase in economy-wide M&As in 2006, would have been associated with increase of about 0.002 in CR4F in 2006*
- Lagged industry concentration and economy-wide M&As are significantly correlated, but collinearity neither eliminates statistical significance nor confounds signage

^{*}Actual increase in CR4F in 2006 was about 0.0213

Correlations Among Variables

Correlations

		CR4	CR4Lag	DODBA\$2000 Lag_BEAGDP	AIIMA#	Trend
CR4	Pearson Correlation	1	.891"	.158	.799"	.582"
	Sig. (2-tailed)		.000	.279	.000	.000
	N	49	48	49	45	49
CR4Lag	Pearson Correlation	.891"	1	.163	.794"	.561"
	Sig. (2-tailed)	.000		.267	.000	.000
	N	48	48	48	45	48
DODBA\$2000Lag_	Pearson Correlation	.158	.163	1	.324	.693"
BEAGDP	Sig. (2-tailed)	.279	.267		.030	.000
	N	49	48	49	45	49
AllMA#	Pearson Correlation	.799"	.794"	.324	1	.666"
	Sig. (2-tailed)	.000	.000	.030		.000
	N	45	45	45	45	45
Trend	Pearson Correlation	.582"	.561"	.693"	.666"	1
	Sig. (2-tailed)	.000	.000	.000	.000	
	N	49	48	49	45	49


^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Consolidation and Competition

- The "simple market model"
 - Static bilateral monopoly
 - Prices higher*
 - Quantity indeterminant*
 - Net surplus indeterminant*
 - Bilateral monopoly with economies of scale
- Preliminary assessment of DD350 data on "Extent of Competition"...

Preliminary Data Assessment

- DD350 reports on "Extent of Competition" for each award from 1989*-2006
 - -A = "Competed"
 - C = "Follow on to Competed Action"
- Can tally sum of dollars awarded "A" or "C" for each ultimate parent company
 - Share of DOD contract dollars competitively awarded, direct or indirectly, provides measure of competition for firms and industry

Is the Market Less—or More—Competitive?

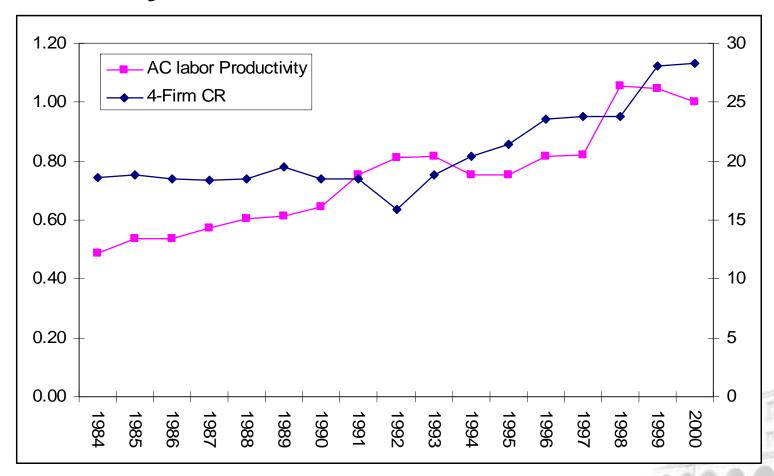
- Competition has decreased among the very top-most firms, in aggregate, i.e., the top 4
 - Competitive share in 1989 = about 61%
 - Competitive share in 2004 = about 48%
- Competition has not decreased—or increased—uniformly at other market levels…
- Or even among the top 1-4
 - the first-ranked firm was more competitive in 2004 (55% "A" or "C") than in 1989 (49% "A" or "C")

How Does Competition Relate to Concentration?

Correlations between competition and concentration do not tell a consistent story across or within market levels

Top 4 -0.5599	Top 8 -0.3211	Top 20 0.5675	Top 50 0.8261	Top 100 0.7834	
Top 1-4*	Top 5-8	Top 9-20	Top 21-50 T	op 51-100	101+
-0.5599	0.4420	-0.4021	0.0027	0.5513	0.0890

^{*}The correlation is positive for the first-ranked firm.



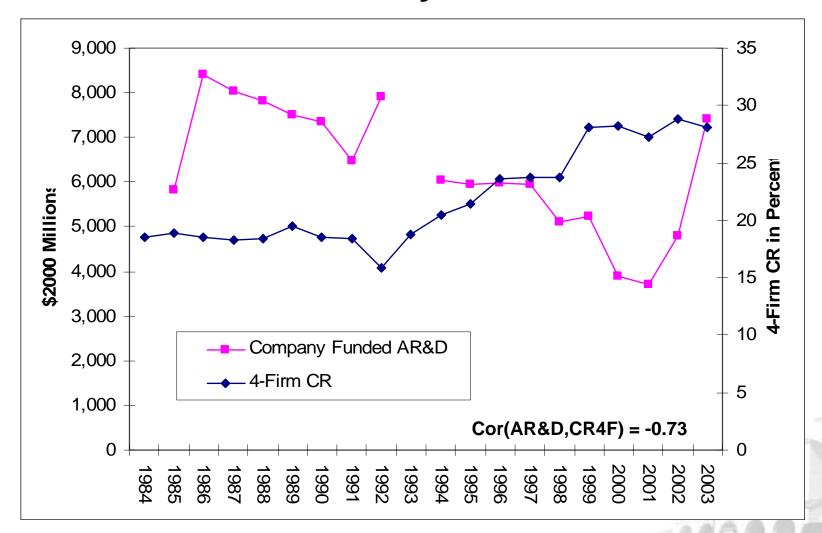
Consolidation, Productivity, and Innovation

- If industry is more consolidated, hence less competitive, will it also become less productive and less innovative?
- Less competition may imply
 - Less incentive to raise productivity/innovate
 - More resources to raise productivity/innovate
 - And some incentive to preserve market position

Has industry, particularly at the top-most levels, become less productive or innovative?

Aircraft Labor Productivity and Defense Industry Concentration

Correlations and Partial Correlations


Correlations

		Aircraft Labor Productivity (2000=1)	U.S. Manufacturing Labor Productivity (2000=1)	CR4F
Aircraft Labor Productivity	Pearson Correlation	1	.947**	.753**
(2000=1)	Sig. (2-tailed)		.000	.000
	N	17	17	17
U.S. Manufacturing Labor	Pearson Correlation	.947**	1	.885**
Productivity (2000=1)	Sig. (2-tailed)	.000		.000
	N	17	17	17
CR4F	Pearson Correlation	.753**	.885**	1
	Sig. (2-tailed)	.000	.000	
	N	17	17	17

^{**} Correlation is significant at the 0.01 level (2-tailed).

But... the partial correlation between aircraft labor productivity and the 4-firm concentration ratio, after controlling for the contemporaneous rise in manufacturing labor productivity, is actually -0.572 and moderately significant

Innovation and Industry Concentration

