
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

2008-04-01

Which Unchanged Components to

Retest after a Technology Upgrade

Berzins, Valdis

http://hdl.handle.net/10945/33279

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36725968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

 

Approved for public release, distribution unlimited. 
 

Prepared for: Naval Postgraduate School, Monterey, California 93943 

NPS-AM-08-031 

bñÅÉêéí=Ñêçã=íÜÉ==

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

ÑáÑíÜ=^ååì~ä=^Åèìáëáíáçå=

oÉëÉ~êÅÜ=póãéçëáìã=

WHICH UNCHANGED COMPONENTS TO RETEST AFTER A 
TECHNOLOGY UPGRADE 

Published: 23 April 2008 

by 

Dr. Valdis Berzins 

5th Annual Acquisition Research Symposium  
of the Naval Postgraduate School:  

Acquisition Research:  
Creating Synergy for Informed Change 

May 14-15, 2008 

 



 

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

 

 

 

 

 

 

 

 

 

 

 
 
 
 
The research presented at the symposium was supported by the Acquisition Chair of 
the Graduate School of Business & Public Policy at the Naval Postgraduate School. 
 
 
To request Defense Acquisition Research or to become a research sponsor, 
please contact: 
 
NPS Acquisition Research Program 
Attn: James B. Greene, RADM, USN, (Ret)  
Acquisition Chair 
Graduate School of Business and Public Policy 
Naval Postgraduate School 
555 Dyer Road, Room 332 
Monterey, CA 93943-5103 
Tel: (831) 656-2092 
Fax: (831) 656-2253 
E-mail: jbgreene@nps.edu   
 
Copies of the Acquisition Sponsored Research Reports may be printed from our 
website www.acquisitionresearch.org  
 
Conference Website: 
www.researchsymposium.org  



 

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- i - 
=

=

Proceedings of the Annual Acquisition Research Program 

The following article is taken as an excerpt from the proceedings of the annual 

Acquisition Research Program.  This annual event showcases the research projects 

funded through the Acquisition Research Program at the Graduate School of Business 
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plenary panels, multiple panel sessions, a student research poster show and social 
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the DoD today.  By jointly and publicly questioning the norms of industry and academia, 
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Abstract  
The Navy’s open architecture framework is intended to promote reuse and reduce costs. 

This paper focuses on exploiting open architecture principles to reduce testing effort and costs 
in cases in which the requirements and code for a subsystem have not been changed, but the 
code is running on new hardware and/or new operating systems due to a technology-
advancement upgrade. This situation is common in Navy and DoD contexts such as submarine, 
aircraft carrier, and airframe systems, and accounts for a substantial fraction of the testing effort. 
Unmodified software components need to be retested after a technology upgrade in some, but 
not necessarily in all cases. This paper reports some early research on conditions under which 
testing of unmodified components can be avoided after a technology upgrade, outlines an 
approach for identifying situations in which retesting can be safely reduced, and indicates how 
to focus retesting in cases in which it cannot be avoided. 

Keywords: open architecture, reducing regression testing, automated testing, statistical testing, 
dependency analysis, reuse, operating system upgrades, hardware upgrades. 

1. Introduction 
The Navy is implementing the open architecture framework for developing joint 

interoperable systems that adapt and exploit open system design principles and architectures. 
Research being performed at the Naval Postgraduate School is pursuing a complementary 
effort to identify weaknesses and gaps in the current state of knowledge with respect to the 
development and testing of DoD/DoN systems according to such open systems principles, and 
to develop or adapt new methods for overcoming those weaknesses. The purpose of this effort 
is to provide sound engineering approaches to better realize the potential benefits of Navy open 
architectures and to provide concrete means that support economical acquisition and effective 
sustainment of such systems. 

This project focuses primarily on improving test and evaluation of systems with open 
architectures, since this aspect can greatly benefit from improvements. Specific goals of this 
research are to enable the following: (i) reduction of unnecessary testing on every system 
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change, (ii) identification of what specific testing and checking procedures need to be repeated 
after changes, (iii) limiting the scope of retesting when the latter is necessary, and (iv) enabling 
a single analysis to provide assurance that all possible configurations that can be generated in a 
model-driven architecture will satisfy given dependability requirements. This paper reports some 
preliminary results of this project that address the first three of the goals listed above. A 
roadmap and technical approach for reaching the fourth goal are outlined in Berzins, Rodriquez 
and Wessman (2007). 

The roadmap provides a long-term plan for eventually eliminating the need for 
regression testing after each reconfiguration and eventually enabling a “plug-and-fight” 
capability. This plan depends on the design and certification of a common architecture for a 
family of systems (FOS) that span a parameterized range of expected requirements, based on 
detailed standards for the components and connections. In this approach, the architecture is 
certified to meet its requirements, components are tested against standards and requirement 
parameters, and reconfiguration is achieved by swapping plug-compatible components with 
different requirement parameters (2007). 

This paper focuses on the shorter-term problem of safely reducing testing for software 
components whose code has not been changed, without waiting for the results of long-term 
research and without relying on architecture-level certification. 

The motivating context for the work reported here was to increase the effectiveness of 
quality assurance for Navy technology upgrades. The first step was to investigate conditions 
under which it is safe to reduce testing for software components whose code has not been 
changed, so that a larger fraction of the available time and effort could be focused on testing the 
new functionality introduced by the upgrade.  

This focus was adopted after the author interviewed representatives from four of the 
organizations actually involved in developing such technology upgrades. These interviews 
indicated (with unanimous support) that those organizations’ highest current priorities are 
reducing testing for unmodified software components after a technology upgrade and adapting 
automated testing methods into production use. The initial research, therefore, explored 
practical methods for checking conditions under which it is safe to reduce or eliminate retesting 
for unchanged components, and sought solutions that leverage automated testing in the 
contexts in which it is easiest and most effective to do so. 

Technology upgrades are typically performed on a two-year cycle. They often involve 
migration to the best hardware and operating system version available at the time, where “best” 
implies a balanced tradeoff between high performance and reliable operation. Typically, only a 
small fraction of the application code has been changed. However, current certification practices 
require all of the code to be retested prior to deployment, whether it has been modified or not. 
Retesting of an unchanged module can be avoided only if we can establish that it has not been 
adversely impacted by the change. The rest of this paper explores ways to determine that, and 
the conditions under which such determination is possible. 

The rest of this paper is organized as follows. Section 2 describes methods for deciding 
when re-testing of unchanged components can be safely reduced or eliminated entirely. Section 
3 discusses the costs of the automated testing of operating system services needed to support 
some of the methods presented in Section 2. Section 4 explains the significance of operational 
profiles (probability distributions characterizing expected workloads for software services), which 
are also needed to support the types of automated testing needed by methods proposed in 
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Section 2. Section 5 identifies the conditions under which unchanged code does need to be 
tested, along with the potential failure modes that may need to be guarded against and how to 
focus the retesting to guard against these modes without repeating previous testing effort. 
Section 6 identifies some relevant previous work, and Section 7 concludes with a summary of 
the steps that should be taken to enable practical application of the test-reduction approach 
presented in this paper. 

2. Deciding When Retesting Can Be Avoided 
If the requirements related to a component have not changed, and the behavior of the 

components has not changed, then retesting may not be necessary. As discussed further in 
Section 4 of this paper, the range of conditions under which a component is expected to provide 
its operational capabilities is a part of its requirements that is particularly relevant to testing and 
re-testing. The rest of this section addresses how to statically and dynamically check that the 
behavior of a component has not changed, assuming for the moment that its requirements and 
range of operating conditions have not changed. 

A type of dependency analysis known as program slicing can be used to identify parts of 
the unchanged code that have the same behavior in the new release as in previous one 
(Weiser, 1984, July).  A program slice at a given observation point is a self-contained subset of 
the code in the sense that it contains all of the code that can affect the behavior visible at the 
observation point. If two different programs have the same slice for a given observation point, 
then they have the same visible behavior at that point. Consequently, if the new release has the 
same slice as the old release for a given service, then that service will have exactly the same 
behavior in the new release as in the old one and, consequently, may not need regression 
testing (Gallagher, 1991, August). This fact is useful because program slices can be computed 
for software systems on practical (large) scales. The testing-reduction method that follows from 
this observation is to compute the slice of each service with respect to the new release and the 
old release, and retest only the services for which these slices differ. 

In the context of technology-advancement upgrades, the test-reduction method 
described above must be augmented with focused, automated testing to produce a substantial 
reduction in retesting. Technology upgrades usually run on a new version of the operating 
system. If the source code of the operating system is proprietary and, hence, not available for 
static analysis (commonly true, except for open source systems such as LINUX), then the only 
safe assumption is that all operating system services have been impacted by the upgrade to the 
new version. Thus, any service whose slice includes a dependency on a system call would be 
potentially impacted and would have to be retested, based on the simple slicing approach 
outlined in the previous paragraph. This is likely to include most of the application-level 
modules, thus severely limiting the amount of savings that can be obtained using slicing alone.   

Automated testing, however, can enable larger reductions in retesting if it is focused on 
the middleware interface to the underlying operating system services. Fortunately, the author’s 
interviews with representative stakeholders confirmed that most Navy systems with open 
architectures are designed around a middleware interface that encapsulates all operating 
system calls. Such middleware interfaces are also prevalent in other DoD systems, including the 
US Army’s FCS. Application architectures are typically designed in this way to ease the job of 
porting the application to new operating systems, whether they are new releases of the same 
product or different products. Consequently, each new release of the operating system and the 
neighboring middleware layer are both designed to preserve the observable behavior of the 
previously available system calls if at all possible—even if the details of the implementation may 
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vary from one release to the next. If we know that the observable behavior of a given system 
call is the same in the old and the new version of the operating system, then we can truncate 
the slice at the middleware layer for that call, and conclude that the behavior of an application 
service is unaffected by the OS change if its abbreviated slices in the two versions are the 
same. The proposed enhancement to dependency analysis using program slicing is to check 
this property for each system call in the middleware layer via automated testing. 

This same strategy can also be applied at higher levels of middleware. For example, for 
the common case of applications that have been developed for the Java or .NET platforms, the 
interface to operating system resources is the framework runtime, such as the interface to the 
Java foundation classes. One related viable strategy for reducing testing of unchanged 
application code is bounding slicing by the interfaces at this level and using automated testing to 
show equivalent behaviors of the two releases at these interfaces. A related, common pattern of 
changes that should not affect behavior involves framework evolution, in which applications are 
recoded to migrate from “deprecated” (soon to become obsolete) interfaces to the 
corresponding new versions of the interfaces. Although such changes produce differences in 
the code, they are intended to preserve behavior, and should be amenable to the automated 
test strategy. Thus, modules one level above the framework runtime interfaces are additional 
candidates for automated testing and slicing cutoff boundaries. 

Automated testing is attractive in these contexts because a simple, reliable 
implementation of a “test oracle” is possible for the encapsulated operating systems services.  A 
“test oracle” is a process for automatically determining which test outputs pass and which ones 
fail. The “unchanged behavior” condition can be easily checked by software for a given set of 
input data. This is possible since both the old and the new versions of the operating system are 
available for testing, and test scaffolding software can compare the results of the two versions 
via equality tests. The existence of such a “test oracle” implies that the OS middleware testing 
process can be completely automated—enabling economic and practical testing with statistically 
significant sample sizes that support very high confidence levels, or, in some cases, even 
exhaustive testing of the operating system interfaces that supports definite conclusions. The 
proposed automated testing process would, thus, classify all of the services in the middleware 
interface to the operating system into two groups: those whose behavior is the same in both 
versions of the operating system (the preserved services), and those whose behavior differs in 
the two versions (the modified services). We expect the first group to be much larger than the 
second group. 

In such cases, we can cut off slices at the system calls to the preserved services, and 
conclude that unmodified application components do not have to be retested unless their slices 
differ or contain system calls that invoke one of the modified services. The operating system 
interface always needs to be thoroughly retested, but this can be done by the affordable 
automated process described above. 

The above analysis depends on the assumption that we can accept a statistical 
inference about the unchanged behavior of the operating system’s calls, if the statistical 
confidence level is high enough. Since most military decisions must be based on information 
that has the same degree of uncertainty, we do not expect lack of certainty to be a problem in 
principle. We, therefore, consider how to determine what level of confidence would be “high 
enough” and how many test cases are necessary to reach that level of confidence. 

We start with a consideration that should be meaningful to the stakeholders: if the mean 
time between observations of a behavioral difference in a given operating systems service is 
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substantially (k times) longer than a mission, it is acceptable to ignore risks due to the possibility 
of such an unexpected difference.  The meaning of “substantially” can be expressed as a 
numerical safety factor k that can be understood and set by system stakeholders based on their 
tolerance for risk. 

Next, we measure the mean number of executions per mission es for each service s in 
the middleware interface to the operating system. The objective of the automated testing for 
each service s is to ensure the mean number of executions between observed differences in the 
behavior of service s is at least Ns, where 

Ns = k es. 

Theorem 4.3 from Howden (1987) can then be used to determine the required number of 
test cases Ts for each service: 

Ts = Ns log2 Ns. 

If we run Ts test cases that are independently drawn from the probability distribution 
characterizing the mission (called the operational profile), the theorem will enable us to 
conclude that the mean number of executions is at least Ns with a statistical confidence level (1 
– 1/Ns); however, this is contingent upon none of the Ts test cases showing any differences in 
the behavior of the services under the new version of the operating system from those in the 
previously released version. 

The rationale for this choice of confidence level is that it makes the probability of making 
a false positive conclusion no more than the acceptable frequency of behavioral differences, 
thus scaling the risk due to random sampling errors to match the specified maximum acceptable 
failure rate. False positive conclusions correspond to cases in which the frequency of behavioral 
differences in the new release of the operating system service in question is actually greater 
than the target bound (1/Ns), but the automated testing procedure failed to observe a difference 
due to random sampling fluctuations that caused conforming results to appear purely by 
chance. The test set size Ts has been chosen to make the probability of such a chance 
observation at most (1/Ns). 

Thorough statistical testing of the operating system interfaces has the additional benefits 
of increasing confidence that differences in hardware (and possibly different versions of the 
compilers, linkers and loaders) have not affected the behavior of the applications built using 
these services. 

3. Cost of Automated Testing 
There are several different kinds of automated testing. The most common kind is semi-

automated testing. This approach automates the type of testing currently performed manually. It 
is commonly the first kind of automated testing implemented in an organization because it does 
not involve any process changes. In this type of approach, the test cases are still developed 
individually by test engineers, but the test cases are run automatically, and the results are 
classified into pass or fail categories automatically—often by comparison to previously captured 
test outputs that were originally individually examined and categorized by people. In this 
approach, execution and categorization of test results is automated, but the choice of test cases 
and the initial pass/fail decisions are not. This approach saves appreciable time and effort 
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relative to a completely manual approach, but the human effort required is still proportional to 
the number of test cases. 

Another approach particularly relevant in our context is automated statistical testing. In 
this approach, the choice of test cases and the initial pass/fail decisions are automated, as well. 
This makes a great difference because the human effort involved does not increase with the 
number of test cases to be executed. This enables economical application of the very large test 
sets needed to achieve the coverage required to support high levels of statistical confidence in 
the dependability of the software. The high levels of statistical confidence are needed to avoid 
testing for other unchanged code based on indirect evidence that the behavior of the underlying 
services on which the unchanged code depends has not changed. 

The context identified in the previous section is well suited for automated statistical 
testing, because the choice of test cases and the initial pass/fail decisions are easily automated 
in that context: the first can be done by random sampling from the operational profile, and the 
second by comparison of the results produced by the previous release of the software to those 
produced by the new release.  

The variation in the number of the test cases Ts required as a function of the acceptable 
risk of false positive conclusions (1/Ns) is illustrated in Table 1. 

Table 1. Number of Test Cases Required for Different Levels of Risk Tolerance 

Ns C Ts 
103 .999 1.0 x 104 
104 .9999 1.3 x 105 
105 .99999 1.7 x 106 
106 .999999 2.0 x 107 
107 .9999999 2.3 x 108 
108 .99999999 2.7 x 109 
109 .999999999  3.0 x 1010 

Ns: Desired lower bound on mean number of executions between differences 
C: Statistical confidence level  
Ts: Number of independent random test cases required 
 
Figure 1 shows how the cost characteristics of the proposed automated testing approach 

compare to the costs of manual testing. The cost curves are close to straight lines; the fixed 
costs of automated testing are larger than for manual testing, and the marginal cost of adding 
another test case is much smaller for automated testing than for manual testing. 
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Figure 1. Testing Cost Characteristics 

In order to determine the crossover points, we must have experimental data. However, 
we expect automated testing to be affordable—even for the very large numbers of test cases 
needed for high confidence in stability of OS services across different releases. We also expect 
manual and semi-automated approaches not to be affordable when we test to high confidence.  

Regarding the time and other resources to perform the proposed automated statistical 
testing, we can note the following: 

1. It typically takes a small amount of time to perform a single system call. 

2. Testing using independent, random samples is easily parallelizable and could be 
effectively spread over large numbers of processors using well-established techniques—
such as Google’s Map Reduce programming model (Lammel, 2008, January)—if very 
high confidence levels are needed. 

3. Behavior of operating system calls can be tested independently of other shipboard 
systems and does not require interactions with human operators. 

Since the testing process is completely automated, the variable cost of these tests is due 
to computing time and hardware, but not to human effort. The benefit of the automated 
statistical test approach described here is that there are no variable costs for labor. Since 
computing resources are currently inexpensive and steadily getting cheaper, this implies that 
even the relatively large numbers of test cases needed for high confidence are likely to be 
affordable. 

This approach does involve some fixed costs for human effort that may be higher than in 
less-disciplined manual approaches. These costs are due to the need for the following activities: 

1. Measurement of operational profiles—i.e., the frequency distributions of operating 
system calls and their associated input parameters. Instrumented versions of the 
software can be used during exercises to collect measurements of the operational 
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profiles, or, if the computational overhead of doing this is acceptable, measurements 
could also be collected during actual operations. 

2. Coding more sophisticated test-driver software that includes code for generating random 
samples from the measured operational profiles, code that implements test oracles as 
described in Section 2, and code that keeps track of testing statistics and reports them. 

4. Why Do We Care about Operational Profiles? 
Accurate estimates of operational profiles, preferably based on actual measurements, 

are necessary because in all practical cases, the reliability of a software system is meaningless 
without firm knowledge of the operational profile. This claim is based on the hypothesis that all 
real systems have at least one input value x for which they perform correctly, and at least one 
other input value y for which they do not. If we know x and y, we can construct a spectrum of 
possible operational profiles for which the reliability of the same system ranges from 0 to 1 and 
attains every value in between.  

The above line of reasoning shows that the only systems whose reliabilities do not 
depend on the operational environment are those that fail for all possible inputs (reliability 
uniformly 0, not interesting), and those that operate correctly for all possible inputs (reliability 
uniformly 1, not attainable in practice for large systems). 

For all other systems, the reliability is determined by the operational profile and can vary 
widely for different operational contexts. This has serious implications for component reuse, 
which is a cornerstone of the open Navy architecture initiative. 

Operational profiles have been used by the testing research community for many years 
and have been applied in many contexts. For example, they have been measured and used to 
assess the reliability of telephone-switching software. 

5. When Retesting Is Needed 
If the process described in Section 2 shows that the slice of a given application level 

service differs in the new and previous release, then behavior of the system has been impacted, 
and the service needs retesting. Services whose requirements have changed will be in this 
category—so new functionality needs to be tested according to the criteria proposed in Section 
2, as expected. If the behavior of unchanged modules with unchanged requirements can be 
affected by other modified modules, they will be also identified by the slicing process. These 
also need retesting to check if there are any unintended indirect consequences of the code 
changes. This is the effect most developers and test and evaluation organizations are 
concerned about guarding against. 

In addition, however, some modules may need to be retested even if their behavior has 
not changed, because reliability of a system depends on its environment as well as on its 
implementation. Thus, changes to the environment of a system can affect its reliability even if 
the behavior of the system remains unchanged. This possibility must be considered in the 
context of Navy open architectures because they strongly encourage reuse of components in a 
variety of operational environments to provide cost savings.  

When a reusable component is moved unchanged to a new operating environment, we 
need to check whether its range of expected operating conditions has expanded—as 
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manifested by an expanded range of expected input parameter values in its new operating 
environment in comparison to its previous operating environment. If this is the case, then the 
component needs to be tested both on samples from the previously untested part of the input 
space, as well as on scenarios typical of the novel features of the new operating environment 
for the reusable component. If the analysis of the operating environment is done properly, we 
will not have to repeat the tests conducted previously, but rather must run new and substantially 
different tests that focus on the new situations that are likely in the new operating environment 
but were not likely in the previous ones. 

One other issue to be considered is whether the requirements of the component involve 
timing constraints. The above discussion has focused mostly on the functional behavior of the 
component, and not on how much time it takes to produce those results. Components that are 
subject to strict timing requirements need additional quality-assurance; analysts must check 
those requirements if the characteristics of the hardware in the new release will differ from those 
in the old one. Perhaps surprisingly, this is the case even if the new hardware is faster than the 
old hardware. This is due to the properties of the scheduling methods to be used. In particular, it 
is known that rate-monotonic scheduling, one popular method for scheduling real-time software, 
is (in some cases) subject to anomalies. For instance, a given schedule may work fine for a 
given hardware configuration but may miss deadlines when executed on faster hardware. This 
can happen if uninterruptible operations or those that lock shared resources are executed in a 
different order on the new hardware—due to the completion of a sped-up task prior to the 
release time of a competing task that was previously unreachable. Methods for checking 
dependencies on timing constraints are beyond the scope of this paper. 

To focus retesting where it is needed most, the author recommends the establishment of 
an explicit process to track past and projected changes in operational profiles and to reflect 
these changes in testing plans. Some preliminary steps in this direction are to: 

1. Keep records of operational profiles used in testing previous releases of subsystems. 

2. Measure operational profiles under mission conditions and exercises exploring new 
concepts of operations. Check for differences from those covered in past testing.  

3. Focus retesting efforts on circumstances and scenarios that have weight in actual and 
projected operational profiles that have not been covered well in previous testing of the 
same unchanged components. 

6. Relevant Previous Work 
Program slicing has been used in a wide variety of applications, including testing 

(Binkley, 1998; Gupta, Harrold & Soffa, 1992; Harman & Danicic, 1995; Hierons, Harman & 
Danicic, 1999; Hierons, Harman, Fox, Ouarbya & Daoudi, 2002), debugging (Agrawal, DeMillo 
& Spafford, 1993; Lyle & Weiser, 1987), program understanding (De Lucia, Fasolino & Munro, 
1996; Harman, Hierons, Danicic, Howroyd & Fox, 2001), reverse engineering (Canfora, Cimitile 
& Munro, 1994), software maintenance (Gallagher, 1991, August; Cimitile, De Lucia & Munro, 
1994), change merging (Horwitz, Prins & Reps, 1989; Berzins & Dampier, 1996), and software 
metrics (Lakhotia, 1993; Bieman & Ott, 1994). More detailed surveys of previous work on slicing 
can be found in Binkley and Harmon (2004). Although the subject is outside the scope of the 
current paper, which focuses on reducing testing by detecting unintended interactions between 
different parts of a program, Gallagher (1991, August) also outlines a method for preventing the 
introduction of new unintended interactions during software upgrades. 
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Automated testing has been studied in a wide variety of contexts. An approach to 
automatically generating test-driver code from formal requirements is described in Berzins and 
Chaki (2002). This approach automatically generates open sets of test cases based on random 
samplings from implementations of operational profile distributions. The pass/fail decisions that 
classify the results produced by the individual test cases are made by software methods that are 
automatically generated from the requirements, which must be sufficiently precise and 
constructive to support this process. The number of test samples in the generated test set is 
automatically set to meet specified reliability goals expressed in terms of mean number of 
executions between failures. This work provides an approach to extending automated statistical 
testing to contexts beyond those in which the expected behavior of a module is unchanged in 
the new release. 

There has also been previous work on quality assurance for flexible systems at the 
levels of requirements (Luqi, Zhang, Berzins & Qiao, 2004, December; Luqi & Lange, 2006, 
November 8) and architectures (Berzins & Luqi, 2006, May 6; Luqi & Zhang, 2006, May 6). In 
addition, a method for assessing the impact of timing constraints on reliability of system 
upgrades can be found in Qiao, Wang, Luqi, and Berzins (2006, March).  

7. Conclusion 
Further research is recommended to substantiate the practical applicability of the ideas 

outlined above. Experimental evaluation of the slicing method for identifying modules that do not 
have to be rested should be performed, together with the focused automated testing methods 
needed to fully realize the potential savings of the approach.  

Measurement and analysis of the operational profiles of reusable components can be 
used to support analysis of changes in the operating environment that may require focused 
retesting of components whose behavior has not changed. Operational profiles are probability 
distributions that serve as mathematical representations of the operating environment and that 
are needed to support statistically significant testing that can reduce the testing effort, as 
described above. These distributions can be measured by instrumenting components and 
collecting statistics as they run, either in exercises or during actual missions, and can be used to 
drive statistically based automated testing that can quantitatively assess the reliability of 
systems. 

Although it is not easy to convince contractors to automate their testing if they are not 
familiar with this approach, the economic incentives to do so are getting more compelling. This 
practical problem is particularly evident in the current situation—in which domain experts are 
often doing the project management and coding with little knowledge of or experience with 
recent advances in the techniques and tools used in software engineering. The increasing 
popularity of agile methods, which depend heavily on semi-automated testing, should help 
change this perception. Pilot projects demonstrating the effectiveness of the suggested 
approach are recommended to provide concrete data about costs and benefits, thereby 
alleviating concerns about project risks due to technology innovations. 
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