
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

2008-04-01

Which Unchanged Components to

Retest after a Technology Upgrade

Berzins, Valdis

http://hdl.handle.net/10945/33279

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36725968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-AM-08-031

bñÅÉêéí=Ñêçã=íÜÉ==

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

ÑáÑíÜ=^ååì~ä=^Åèìáëáíáçå=

oÉëÉ~êÅÜ=póãéçëáìã=

WHICH UNCHANGED COMPONENTS TO RETEST AFTER A
TECHNOLOGY UPGRADE

Published: 23 April 2008

by

Dr. Valdis Berzins

5th Annual Acquisition Research Symposium
of the Naval Postgraduate School:

Acquisition Research:
Creating Synergy for Informed Change

May 14-15, 2008

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented at the symposium was supported by the Acquisition Chair of
the Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

Conference Website:
www.researchsymposium.org

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- i -
=

=

Proceedings of the Annual Acquisition Research Program

The following article is taken as an excerpt from the proceedings of the annual

Acquisition Research Program. This annual event showcases the research projects

funded through the Acquisition Research Program at the Graduate School of Business

and Public Policy at the Naval Postgraduate School. Featuring keynote speakers,

plenary panels, multiple panel sessions, a student research poster show and social

events, the Annual Acquisition Research Symposium offers a candid environment

where high-ranking Department of Defense (DoD) officials, industry officials,

accomplished faculty and military students are encouraged to collaborate on finding

applicable solutions to the challenges facing acquisition policies and processes within

the DoD today. By jointly and publicly questioning the norms of industry and academia,

the resulting research benefits from myriad perspectives and collaborations which can

identify better solutions and practices in acquisition, contract, financial, logistics and

program management.

For further information regarding the Acquisition Research Program, electronic

copies of additional research, or to learn more about becoming a sponsor, please visit

our program website at:

www.acquistionresearch.org

For further information on or to register for the next Acquisition Research

Symposium during the third week of May, please visit our conference website at:

www.researchsymposium.org

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- ii -
=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 142 -
=

=

Which Unchanged Components to Retest after a Technology
Upgrade

Presenter: Valdis Berzins is a Professor of Computer Science at the Naval Postgraduate School. His
research interests include software engineering, software architecture, computer-aided design, and
theoretical foundations of software maintenance. His work includes papers on software testing, software
merging, specification languages, and engineering databases. He received BS, MS, EE, and PhD
degrees from MIT and has been on the faculty at the University of Texas and the University of Minnesota.
He has developed several specification languages, software tools for computer-aided software design,
and fundamental theory of software merging.

Valdis Berzins
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943
E-mail: berzins@nps.edu

Abstract
The Navy’s open architecture framework is intended to promote reuse and reduce costs.

This paper focuses on exploiting open architecture principles to reduce testing effort and costs
in cases in which the requirements and code for a subsystem have not been changed, but the
code is running on new hardware and/or new operating systems due to a technology-
advancement upgrade. This situation is common in Navy and DoD contexts such as submarine,
aircraft carrier, and airframe systems, and accounts for a substantial fraction of the testing effort.
Unmodified software components need to be retested after a technology upgrade in some, but
not necessarily in all cases. This paper reports some early research on conditions under which
testing of unmodified components can be avoided after a technology upgrade, outlines an
approach for identifying situations in which retesting can be safely reduced, and indicates how
to focus retesting in cases in which it cannot be avoided.

Keywords: open architecture, reducing regression testing, automated testing, statistical testing,
dependency analysis, reuse, operating system upgrades, hardware upgrades.

1. Introduction
The Navy is implementing the open architecture framework for developing joint

interoperable systems that adapt and exploit open system design principles and architectures.
Research being performed at the Naval Postgraduate School is pursuing a complementary
effort to identify weaknesses and gaps in the current state of knowledge with respect to the
development and testing of DoD/DoN systems according to such open systems principles, and
to develop or adapt new methods for overcoming those weaknesses. The purpose of this effort
is to provide sound engineering approaches to better realize the potential benefits of Navy open
architectures and to provide concrete means that support economical acquisition and effective
sustainment of such systems.

This project focuses primarily on improving test and evaluation of systems with open
architectures, since this aspect can greatly benefit from improvements. Specific goals of this
research are to enable the following: (i) reduction of unnecessary testing on every system

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 143 -
=

=

change, (ii) identification of what specific testing and checking procedures need to be repeated
after changes, (iii) limiting the scope of retesting when the latter is necessary, and (iv) enabling
a single analysis to provide assurance that all possible configurations that can be generated in a
model-driven architecture will satisfy given dependability requirements. This paper reports some
preliminary results of this project that address the first three of the goals listed above. A
roadmap and technical approach for reaching the fourth goal are outlined in Berzins, Rodriquez
and Wessman (2007).

The roadmap provides a long-term plan for eventually eliminating the need for
regression testing after each reconfiguration and eventually enabling a “plug-and-fight”
capability. This plan depends on the design and certification of a common architecture for a
family of systems (FOS) that span a parameterized range of expected requirements, based on
detailed standards for the components and connections. In this approach, the architecture is
certified to meet its requirements, components are tested against standards and requirement
parameters, and reconfiguration is achieved by swapping plug-compatible components with
different requirement parameters (2007).

This paper focuses on the shorter-term problem of safely reducing testing for software
components whose code has not been changed, without waiting for the results of long-term
research and without relying on architecture-level certification.

The motivating context for the work reported here was to increase the effectiveness of
quality assurance for Navy technology upgrades. The first step was to investigate conditions
under which it is safe to reduce testing for software components whose code has not been
changed, so that a larger fraction of the available time and effort could be focused on testing the
new functionality introduced by the upgrade.

This focus was adopted after the author interviewed representatives from four of the
organizations actually involved in developing such technology upgrades. These interviews
indicated (with unanimous support) that those organizations’ highest current priorities are
reducing testing for unmodified software components after a technology upgrade and adapting
automated testing methods into production use. The initial research, therefore, explored
practical methods for checking conditions under which it is safe to reduce or eliminate retesting
for unchanged components, and sought solutions that leverage automated testing in the
contexts in which it is easiest and most effective to do so.

Technology upgrades are typically performed on a two-year cycle. They often involve
migration to the best hardware and operating system version available at the time, where “best”
implies a balanced tradeoff between high performance and reliable operation. Typically, only a
small fraction of the application code has been changed. However, current certification practices
require all of the code to be retested prior to deployment, whether it has been modified or not.
Retesting of an unchanged module can be avoided only if we can establish that it has not been
adversely impacted by the change. The rest of this paper explores ways to determine that, and
the conditions under which such determination is possible.

The rest of this paper is organized as follows. Section 2 describes methods for deciding
when re-testing of unchanged components can be safely reduced or eliminated entirely. Section
3 discusses the costs of the automated testing of operating system services needed to support
some of the methods presented in Section 2. Section 4 explains the significance of operational
profiles (probability distributions characterizing expected workloads for software services), which
are also needed to support the types of automated testing needed by methods proposed in

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 144 -
=

=

Section 2. Section 5 identifies the conditions under which unchanged code does need to be
tested, along with the potential failure modes that may need to be guarded against and how to
focus the retesting to guard against these modes without repeating previous testing effort.
Section 6 identifies some relevant previous work, and Section 7 concludes with a summary of
the steps that should be taken to enable practical application of the test-reduction approach
presented in this paper.

2. Deciding When Retesting Can Be Avoided
If the requirements related to a component have not changed, and the behavior of the

components has not changed, then retesting may not be necessary. As discussed further in
Section 4 of this paper, the range of conditions under which a component is expected to provide
its operational capabilities is a part of its requirements that is particularly relevant to testing and
re-testing. The rest of this section addresses how to statically and dynamically check that the
behavior of a component has not changed, assuming for the moment that its requirements and
range of operating conditions have not changed.

A type of dependency analysis known as program slicing can be used to identify parts of
the unchanged code that have the same behavior in the new release as in previous one
(Weiser, 1984, July). A program slice at a given observation point is a self-contained subset of
the code in the sense that it contains all of the code that can affect the behavior visible at the
observation point. If two different programs have the same slice for a given observation point,
then they have the same visible behavior at that point. Consequently, if the new release has the
same slice as the old release for a given service, then that service will have exactly the same
behavior in the new release as in the old one and, consequently, may not need regression
testing (Gallagher, 1991, August). This fact is useful because program slices can be computed
for software systems on practical (large) scales. The testing-reduction method that follows from
this observation is to compute the slice of each service with respect to the new release and the
old release, and retest only the services for which these slices differ.

In the context of technology-advancement upgrades, the test-reduction method
described above must be augmented with focused, automated testing to produce a substantial
reduction in retesting. Technology upgrades usually run on a new version of the operating
system. If the source code of the operating system is proprietary and, hence, not available for
static analysis (commonly true, except for open source systems such as LINUX), then the only
safe assumption is that all operating system services have been impacted by the upgrade to the
new version. Thus, any service whose slice includes a dependency on a system call would be
potentially impacted and would have to be retested, based on the simple slicing approach
outlined in the previous paragraph. This is likely to include most of the application-level
modules, thus severely limiting the amount of savings that can be obtained using slicing alone.

Automated testing, however, can enable larger reductions in retesting if it is focused on
the middleware interface to the underlying operating system services. Fortunately, the author’s
interviews with representative stakeholders confirmed that most Navy systems with open
architectures are designed around a middleware interface that encapsulates all operating
system calls. Such middleware interfaces are also prevalent in other DoD systems, including the
US Army’s FCS. Application architectures are typically designed in this way to ease the job of
porting the application to new operating systems, whether they are new releases of the same
product or different products. Consequently, each new release of the operating system and the
neighboring middleware layer are both designed to preserve the observable behavior of the
previously available system calls if at all possible—even if the details of the implementation may

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 145 -
=

=

vary from one release to the next. If we know that the observable behavior of a given system
call is the same in the old and the new version of the operating system, then we can truncate
the slice at the middleware layer for that call, and conclude that the behavior of an application
service is unaffected by the OS change if its abbreviated slices in the two versions are the
same. The proposed enhancement to dependency analysis using program slicing is to check
this property for each system call in the middleware layer via automated testing.

This same strategy can also be applied at higher levels of middleware. For example, for
the common case of applications that have been developed for the Java or .NET platforms, the
interface to operating system resources is the framework runtime, such as the interface to the
Java foundation classes. One related viable strategy for reducing testing of unchanged
application code is bounding slicing by the interfaces at this level and using automated testing to
show equivalent behaviors of the two releases at these interfaces. A related, common pattern of
changes that should not affect behavior involves framework evolution, in which applications are
recoded to migrate from “deprecated” (soon to become obsolete) interfaces to the
corresponding new versions of the interfaces. Although such changes produce differences in
the code, they are intended to preserve behavior, and should be amenable to the automated
test strategy. Thus, modules one level above the framework runtime interfaces are additional
candidates for automated testing and slicing cutoff boundaries.

Automated testing is attractive in these contexts because a simple, reliable
implementation of a “test oracle” is possible for the encapsulated operating systems services. A
“test oracle” is a process for automatically determining which test outputs pass and which ones
fail. The “unchanged behavior” condition can be easily checked by software for a given set of
input data. This is possible since both the old and the new versions of the operating system are
available for testing, and test scaffolding software can compare the results of the two versions
via equality tests. The existence of such a “test oracle” implies that the OS middleware testing
process can be completely automated—enabling economic and practical testing with statistically
significant sample sizes that support very high confidence levels, or, in some cases, even
exhaustive testing of the operating system interfaces that supports definite conclusions. The
proposed automated testing process would, thus, classify all of the services in the middleware
interface to the operating system into two groups: those whose behavior is the same in both
versions of the operating system (the preserved services), and those whose behavior differs in
the two versions (the modified services). We expect the first group to be much larger than the
second group.

In such cases, we can cut off slices at the system calls to the preserved services, and
conclude that unmodified application components do not have to be retested unless their slices
differ or contain system calls that invoke one of the modified services. The operating system
interface always needs to be thoroughly retested, but this can be done by the affordable
automated process described above.

The above analysis depends on the assumption that we can accept a statistical
inference about the unchanged behavior of the operating system’s calls, if the statistical
confidence level is high enough. Since most military decisions must be based on information
that has the same degree of uncertainty, we do not expect lack of certainty to be a problem in
principle. We, therefore, consider how to determine what level of confidence would be “high
enough” and how many test cases are necessary to reach that level of confidence.

We start with a consideration that should be meaningful to the stakeholders: if the mean
time between observations of a behavioral difference in a given operating systems service is

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 146 -
=

=

substantially (k times) longer than a mission, it is acceptable to ignore risks due to the possibility
of such an unexpected difference. The meaning of “substantially” can be expressed as a
numerical safety factor k that can be understood and set by system stakeholders based on their
tolerance for risk.

Next, we measure the mean number of executions per mission es for each service s in
the middleware interface to the operating system. The objective of the automated testing for
each service s is to ensure the mean number of executions between observed differences in the
behavior of service s is at least Ns, where

Ns = k es.

Theorem 4.3 from Howden (1987) can then be used to determine the required number of
test cases Ts for each service:

Ts = Ns log2 Ns.

If we run Ts test cases that are independently drawn from the probability distribution
characterizing the mission (called the operational profile), the theorem will enable us to
conclude that the mean number of executions is at least Ns with a statistical confidence level (1
– 1/Ns); however, this is contingent upon none of the Ts test cases showing any differences in
the behavior of the services under the new version of the operating system from those in the
previously released version.

The rationale for this choice of confidence level is that it makes the probability of making
a false positive conclusion no more than the acceptable frequency of behavioral differences,
thus scaling the risk due to random sampling errors to match the specified maximum acceptable
failure rate. False positive conclusions correspond to cases in which the frequency of behavioral
differences in the new release of the operating system service in question is actually greater
than the target bound (1/Ns), but the automated testing procedure failed to observe a difference
due to random sampling fluctuations that caused conforming results to appear purely by
chance. The test set size Ts has been chosen to make the probability of such a chance
observation at most (1/Ns).

Thorough statistical testing of the operating system interfaces has the additional benefits
of increasing confidence that differences in hardware (and possibly different versions of the
compilers, linkers and loaders) have not affected the behavior of the applications built using
these services.

3. Cost of Automated Testing
There are several different kinds of automated testing. The most common kind is semi-

automated testing. This approach automates the type of testing currently performed manually. It
is commonly the first kind of automated testing implemented in an organization because it does
not involve any process changes. In this type of approach, the test cases are still developed
individually by test engineers, but the test cases are run automatically, and the results are
classified into pass or fail categories automatically—often by comparison to previously captured
test outputs that were originally individually examined and categorized by people. In this
approach, execution and categorization of test results is automated, but the choice of test cases
and the initial pass/fail decisions are not. This approach saves appreciable time and effort

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 147 -
=

=

relative to a completely manual approach, but the human effort required is still proportional to
the number of test cases.

Another approach particularly relevant in our context is automated statistical testing. In
this approach, the choice of test cases and the initial pass/fail decisions are automated, as well.
This makes a great difference because the human effort involved does not increase with the
number of test cases to be executed. This enables economical application of the very large test
sets needed to achieve the coverage required to support high levels of statistical confidence in
the dependability of the software. The high levels of statistical confidence are needed to avoid
testing for other unchanged code based on indirect evidence that the behavior of the underlying
services on which the unchanged code depends has not changed.

The context identified in the previous section is well suited for automated statistical
testing, because the choice of test cases and the initial pass/fail decisions are easily automated
in that context: the first can be done by random sampling from the operational profile, and the
second by comparison of the results produced by the previous release of the software to those
produced by the new release.

The variation in the number of the test cases Ts required as a function of the acceptable
risk of false positive conclusions (1/Ns) is illustrated in Table 1.

Table 1. Number of Test Cases Required for Different Levels of Risk Tolerance

Ns C Ts
103 .999 1.0 x 104
104 .9999 1.3 x 105
105 .99999 1.7 x 106
106 .999999 2.0 x 107
107 .9999999 2.3 x 108
108 .99999999 2.7 x 109
109 .999999999 3.0 x 1010

Ns: Desired lower bound on mean number of executions between differences
C: Statistical confidence level
Ts: Number of independent random test cases required

Figure 1 shows how the cost characteristics of the proposed automated testing approach

compare to the costs of manual testing. The cost curves are close to straight lines; the fixed
costs of automated testing are larger than for manual testing, and the marginal cost of adding
another test case is much smaller for automated testing than for manual testing.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 148 -
=

=

C
os

t

M
an

ua
l T

es
tin

g

Semi- Automated Testin
g

Figure 1. Testing Cost Characteristics

In order to determine the crossover points, we must have experimental data. However,
we expect automated testing to be affordable—even for the very large numbers of test cases
needed for high confidence in stability of OS services across different releases. We also expect
manual and semi-automated approaches not to be affordable when we test to high confidence.

Regarding the time and other resources to perform the proposed automated statistical
testing, we can note the following:

1. It typically takes a small amount of time to perform a single system call.

2. Testing using independent, random samples is easily parallelizable and could be
effectively spread over large numbers of processors using well-established techniques—
such as Google’s Map Reduce programming model (Lammel, 2008, January)—if very
high confidence levels are needed.

3. Behavior of operating system calls can be tested independently of other shipboard
systems and does not require interactions with human operators.

Since the testing process is completely automated, the variable cost of these tests is due
to computing time and hardware, but not to human effort. The benefit of the automated
statistical test approach described here is that there are no variable costs for labor. Since
computing resources are currently inexpensive and steadily getting cheaper, this implies that
even the relatively large numbers of test cases needed for high confidence are likely to be
affordable.

This approach does involve some fixed costs for human effort that may be higher than in
less-disciplined manual approaches. These costs are due to the need for the following activities:

1. Measurement of operational profiles—i.e., the frequency distributions of operating
system calls and their associated input parameters. Instrumented versions of the
software can be used during exercises to collect measurements of the operational

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 149 -
=

=

profiles, or, if the computational overhead of doing this is acceptable, measurements
could also be collected during actual operations.

2. Coding more sophisticated test-driver software that includes code for generating random
samples from the measured operational profiles, code that implements test oracles as
described in Section 2, and code that keeps track of testing statistics and reports them.

4. Why Do We Care about Operational Profiles?
Accurate estimates of operational profiles, preferably based on actual measurements,

are necessary because in all practical cases, the reliability of a software system is meaningless
without firm knowledge of the operational profile. This claim is based on the hypothesis that all
real systems have at least one input value x for which they perform correctly, and at least one
other input value y for which they do not. If we know x and y, we can construct a spectrum of
possible operational profiles for which the reliability of the same system ranges from 0 to 1 and
attains every value in between.

The above line of reasoning shows that the only systems whose reliabilities do not
depend on the operational environment are those that fail for all possible inputs (reliability
uniformly 0, not interesting), and those that operate correctly for all possible inputs (reliability
uniformly 1, not attainable in practice for large systems).

For all other systems, the reliability is determined by the operational profile and can vary
widely for different operational contexts. This has serious implications for component reuse,
which is a cornerstone of the open Navy architecture initiative.

Operational profiles have been used by the testing research community for many years
and have been applied in many contexts. For example, they have been measured and used to
assess the reliability of telephone-switching software.

5. When Retesting Is Needed
If the process described in Section 2 shows that the slice of a given application level

service differs in the new and previous release, then behavior of the system has been impacted,
and the service needs retesting. Services whose requirements have changed will be in this
category—so new functionality needs to be tested according to the criteria proposed in Section
2, as expected. If the behavior of unchanged modules with unchanged requirements can be
affected by other modified modules, they will be also identified by the slicing process. These
also need retesting to check if there are any unintended indirect consequences of the code
changes. This is the effect most developers and test and evaluation organizations are
concerned about guarding against.

In addition, however, some modules may need to be retested even if their behavior has
not changed, because reliability of a system depends on its environment as well as on its
implementation. Thus, changes to the environment of a system can affect its reliability even if
the behavior of the system remains unchanged. This possibility must be considered in the
context of Navy open architectures because they strongly encourage reuse of components in a
variety of operational environments to provide cost savings.

When a reusable component is moved unchanged to a new operating environment, we
need to check whether its range of expected operating conditions has expanded—as

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 150 -
=

=

manifested by an expanded range of expected input parameter values in its new operating
environment in comparison to its previous operating environment. If this is the case, then the
component needs to be tested both on samples from the previously untested part of the input
space, as well as on scenarios typical of the novel features of the new operating environment
for the reusable component. If the analysis of the operating environment is done properly, we
will not have to repeat the tests conducted previously, but rather must run new and substantially
different tests that focus on the new situations that are likely in the new operating environment
but were not likely in the previous ones.

One other issue to be considered is whether the requirements of the component involve
timing constraints. The above discussion has focused mostly on the functional behavior of the
component, and not on how much time it takes to produce those results. Components that are
subject to strict timing requirements need additional quality-assurance; analysts must check
those requirements if the characteristics of the hardware in the new release will differ from those
in the old one. Perhaps surprisingly, this is the case even if the new hardware is faster than the
old hardware. This is due to the properties of the scheduling methods to be used. In particular, it
is known that rate-monotonic scheduling, one popular method for scheduling real-time software,
is (in some cases) subject to anomalies. For instance, a given schedule may work fine for a
given hardware configuration but may miss deadlines when executed on faster hardware. This
can happen if uninterruptible operations or those that lock shared resources are executed in a
different order on the new hardware—due to the completion of a sped-up task prior to the
release time of a competing task that was previously unreachable. Methods for checking
dependencies on timing constraints are beyond the scope of this paper.

To focus retesting where it is needed most, the author recommends the establishment of
an explicit process to track past and projected changes in operational profiles and to reflect
these changes in testing plans. Some preliminary steps in this direction are to:

1. Keep records of operational profiles used in testing previous releases of subsystems.

2. Measure operational profiles under mission conditions and exercises exploring new
concepts of operations. Check for differences from those covered in past testing.

3. Focus retesting efforts on circumstances and scenarios that have weight in actual and
projected operational profiles that have not been covered well in previous testing of the
same unchanged components.

6. Relevant Previous Work
Program slicing has been used in a wide variety of applications, including testing

(Binkley, 1998; Gupta, Harrold & Soffa, 1992; Harman & Danicic, 1995; Hierons, Harman &
Danicic, 1999; Hierons, Harman, Fox, Ouarbya & Daoudi, 2002), debugging (Agrawal, DeMillo
& Spafford, 1993; Lyle & Weiser, 1987), program understanding (De Lucia, Fasolino & Munro,
1996; Harman, Hierons, Danicic, Howroyd & Fox, 2001), reverse engineering (Canfora, Cimitile
& Munro, 1994), software maintenance (Gallagher, 1991, August; Cimitile, De Lucia & Munro,
1994), change merging (Horwitz, Prins & Reps, 1989; Berzins & Dampier, 1996), and software
metrics (Lakhotia, 1993; Bieman & Ott, 1994). More detailed surveys of previous work on slicing
can be found in Binkley and Harmon (2004). Although the subject is outside the scope of the
current paper, which focuses on reducing testing by detecting unintended interactions between
different parts of a program, Gallagher (1991, August) also outlines a method for preventing the
introduction of new unintended interactions during software upgrades.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 151 -
=

=

Automated testing has been studied in a wide variety of contexts. An approach to
automatically generating test-driver code from formal requirements is described in Berzins and
Chaki (2002). This approach automatically generates open sets of test cases based on random
samplings from implementations of operational profile distributions. The pass/fail decisions that
classify the results produced by the individual test cases are made by software methods that are
automatically generated from the requirements, which must be sufficiently precise and
constructive to support this process. The number of test samples in the generated test set is
automatically set to meet specified reliability goals expressed in terms of mean number of
executions between failures. This work provides an approach to extending automated statistical
testing to contexts beyond those in which the expected behavior of a module is unchanged in
the new release.

There has also been previous work on quality assurance for flexible systems at the
levels of requirements (Luqi, Zhang, Berzins & Qiao, 2004, December; Luqi & Lange, 2006,
November 8) and architectures (Berzins & Luqi, 2006, May 6; Luqi & Zhang, 2006, May 6). In
addition, a method for assessing the impact of timing constraints on reliability of system
upgrades can be found in Qiao, Wang, Luqi, and Berzins (2006, March).

7. Conclusion
Further research is recommended to substantiate the practical applicability of the ideas

outlined above. Experimental evaluation of the slicing method for identifying modules that do not
have to be rested should be performed, together with the focused automated testing methods
needed to fully realize the potential savings of the approach.

Measurement and analysis of the operational profiles of reusable components can be
used to support analysis of changes in the operating environment that may require focused
retesting of components whose behavior has not changed. Operational profiles are probability
distributions that serve as mathematical representations of the operating environment and that
are needed to support statistically significant testing that can reduce the testing effort, as
described above. These distributions can be measured by instrumenting components and
collecting statistics as they run, either in exercises or during actual missions, and can be used to
drive statistically based automated testing that can quantitatively assess the reliability of
systems.

Although it is not easy to convince contractors to automate their testing if they are not
familiar with this approach, the economic incentives to do so are getting more compelling. This
practical problem is particularly evident in the current situation—in which domain experts are
often doing the project management and coding with little knowledge of or experience with
recent advances in the techniques and tools used in software engineering. The increasing
popularity of agile methods, which depend heavily on semi-automated testing, should help
change this perception. Pilot projects demonstrating the effectiveness of the suggested
approach are recommended to provide concrete data about costs and benefits, thereby
alleviating concerns about project risks due to technology innovations.

List of References
Agrawal, H., DeMillo, R., & Spafford, E. (1993). Debugging with dynamic slicing and backtracking.

Software Practice and Experience, 23(6), 589–616.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 152 -
=

=

Berzins, V., & Chaki, N. (2002, October 7-11). MTDOAG: Module Test Driver and Output Analyzer
Generator. In Proceedings of the 9th Monterey Workshop: Radical Innovations of Software and
Systems Engineering in the Future (pp. 48-56). Venice: Universita Ca Foscari di Venezia.

Berzins, V., & Dampier, D. (1996). Software merge: Combining changes to decompositions. Journal of
Systems Integration, 6(1-2, special issue on Computer-aided Prototyping), 135-150.

Berzins, V., & Luqi. (2006, May 6). Achieving dependable flexibility via quantifiable system architectures.
In Proceedings of Workshop on Advances in Computer Science and Engineering (pp. 53-54).
Berkeley, CA .

Berzins, V., Rodriguez, M., & Wessman, M. (2007, May 16-17). Putting teeth into open architectures:
Infrastructure for reducing the need or retesting. In Proceedings of the Fourth Annual Research
Symposium—Acquisition Research: Creating Synergy for Informed Change (pp. 285-311).
Monterey, CA: Naval Postgraduate School.

Bieman, J., & Ott, L. (1994). Measuring functional cohesion. IEEE Transactions on Software Engineering,
20(8), 644–657.

Binkley, D. (1998). The application of program slicing to regression testing. In M. Harman & K. Gallagher
(Eds.), Program Slicing, Information and Software Technology, 40(11-12), (pp. 583-594) (special
issue).

Binkley, D.W., & Harman, M. (2004). A survey of empirical results on program slicing. In M.V. Zelkowitz
(Ed.), Advances in Computers (pp. 105–178). (Vol. 62). San Diego, CA: Elsevier.

Canfora, G., Cimitile, A., & Munro, M. (1994). RE2: Reverse engineering and reuse re-engineering.
Journal of Software Maintenance: Research and Practice, 6(2), 53–72.

Cimitile, A., De Lucia, A., & Munro, M. (1996). A specification driven slicing process for identifying
reusable functions. Software Maintenance: Research and Practice, 8(3), 145–178.

De Lucia, A., Fasolino, A., & Munro, M. (1996). Understanding function behaviours through program
slicing. In Proceedings, 4th IEEE Workshop on Program Comprehension (pp. 9–18). Los
Alamitos, CA: IEEE Computer Society Press.

Gallagher, K. (1991, August). Using program slicing in software maintenance. IEEE Transactions on
Software Engineering, 17(8), 751-760.

Gupta, R., Harrold, M., & Soffa, M. (1992). An approach to regression testing using slicing. In
Proceedings of the IEEE Conference on Software Maintenance (pp. 299–308). Los Alamitos, CA:
IEEE Computer Society Press.

Harman, M., & Danicic, S. (1995). Using program slicing to simplify testing. Software Testing, Verification
and Reliability, 5(3), 143–162.

Harman, M., Hierons, R., Danicic, S., Howroyd J., & Fox, C. (2001). Pre/post conditioned slicing. In
Proceedings, IEEE International Conference on Software Maintenance ICSM’01 (pp. 138–147).
Los Alamitos, CA: IEEE Computer Society Press.

Hierons, R., Harman, M., & Danicic, S. (1999). Using program slicing to assist in the detection of
equivalent mutants. Software Testing, Verification and Reliability, 9(4), 233–262.

Hierons, R., Harman, M., Fox, C., Ouarbya, L., & Daoudi, M. (2002). Conditioned slicing supports partition
testing. Software Testing, Verification and Reliability, 12(1), 23–28.

Horwitz, S., Prins, J., & Reps, T. (1989). Integrating non-interfering versions of programs. ACM
Transactions on Programming Languages and Systems, 11(3), 345–387.

Howden, W. (1987). Functional program testing and analysis. New York: McGraw-Hill.

Lakhotia, A. (1993). Rule-based approach to computing module cohesion. In Proceedings of the 15th
Conference on Software Engineering, ICSE-15 (pp. 34–44). Los Alamitos, CA: ACM/IEEE.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 153 -
=

=

Lammel, R. (2008, January). Google’s map reduce programming model—Revisited. Science of Computer
Programming, 70(1), 1-30.

Lyle, J., & Weiser, M. (1987). Automatic program bug location by program slicing. In Proceedings, 2nd
International Conference on Computers and Applications (pp. 877–882). Los Alamitos, CA: IEEE
Computer Society Press.

Luqi, & Lange, D. (2006, November 8). Schema changes and historical information in conceptual models
in support of adaptive systems. In Proceedings, First International Workshop on Active
Conceptual Modeling of Learning (pp. 112-121). Tucson, AZ: Springer LNCS 4512.

Luqi, & Zhang, L. (2006, May 6). Documentation Driven Evolution of Complex Systems. In Proceedings of
Workshop on Advances in Computer Science and Engineering (pp. 141-170). Berkeley, CA.

Luqi, Zhang, L., Berzins, V., Qiao, Y. (2004, December). Documentation driven development for complex
real-time systems. IEEE Transaction on Software Engineering, 30(12), 936-952.

Qiao, Y., Wang, H., Luqi, & Berzins, V. (2006, March). An admission control method for dynamic software
reconfiguration in complex embedded systems. International Journal of Computers and Their
Applications, 13(1), 28-38.

Weiser, M. (1984, July). Program slicing. IEEE Transactions of Software Engineering, SE-10(4), 352-357.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ
=

=

2003 - 2008 Sponsored Research Topics

Acquisition Management

 Software Requirements for OA
 Managing Services Supply Chain
 Acquiring Combat Capability via Public-Private Partnerships (PPPs)
 Knowledge Value Added (KVA) + Real Options (RO) Applied to Shipyard

Planning Processes
 Portfolio Optimization via KVA + RO
 MOSA Contracting Implications
 Strategy for Defense Acquisition Research
 Spiral Development
 BCA: Contractor vs. Organic Growth

Contract Management

 USAF IT Commodity Council
 Contractors in 21st Century Combat Zone
 Joint Contingency Contracting
 Navy Contract Writing Guide
 Commodity Sourcing Strategies
 Past Performance in Source Selection
 USMC Contingency Contracting
 Transforming DoD Contract Closeout
 Model for Optimizing Contingency Contracting Planning and Execution

Financial Management

 PPPs and Government Financing
 Energy Saving Contracts/DoD Mobile Assets
 Capital Budgeting for DoD
 Financing DoD Budget via PPPs
 ROI of Information Warfare Systems
 Acquisitions via leasing: MPS case
 Special Termination Liability in MDAPs

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ
=

=

Human Resources

 Learning Management Systems
 Tuition Assistance
 Retention
 Indefinite Reenlistment
 Individual Augmentation

Logistics Management

 R-TOC Aegis Microwave Power Tubes
 Privatization-NOSL/NAWCI
 Army LOG MOD
 PBL (4)
 Contractors Supporting Military Operations
 RFID (4)
 Strategic Sourcing
 ASDS Product Support Analysis
 Analysis of LAV Depot Maintenance
 Diffusion/Variability on Vendor Performance Evaluation
 Optimizing CIWS Lifecycle Support (LCS)

Program Management

 Building Collaborative Capacity
 Knowledge, Responsibilities and Decision Rights in MDAPs
 KVA Applied to Aegis and SSDS
 Business Process Reengineering (BPR) for LCS Mission Module

Acquisition
 Terminating Your Own Program
 Collaborative IT Tools Leveraging Competence

A complete listing and electronic copies of published research are available on our
website: www.acquisitionresearch.org

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

